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1 Prelimilaries

1.1 A review of linear algebra

Vector Space Let IR be the scalar field of real numbers. We consider only real vector spaces. Let
V,, be a set. V,, is a vector space (also called a linear space) if it is equipped with two operations:

scalar product IR x V,, = V,,
vector addition V, x V, — V,,

and it is closed under these two operations. That is, V,, is a vector spaceif Va, 5 € IR & Va,b € V,,,
aa+ b e V,.
The vector space V;, is n-dimensional if we can find a basis {e;,- - ,e,} C V,, such that for any

a € V,,, we have a unique decomposition

n

a= E a;€;,

i=1

where a; € IR (i = 1,-- - n) are the components (coordinates) of vector a under the basis {e;,--- ,e,}.
Tensor Space Let V,, (V;,,) be n-dimensional (m-dimensional) vector space. A mapping A :
Vi, = Vi, is a tensor if A is linear. That is, Va, 5 € IR & Va,b € V,,,

A(aa+ fb) = aA(a) + BA(b). (1)

Let Lin(V;,, Vi;,) be the collection of all linear mappings (i.e., tensors) with domain V;, and range
Vin. For any « € IR and any Aj, As € Lin(V,, Vi,), define two operations

scalar product (aAj)(a) = aAi(a) VaeV,,
vector addition (A; + Asz)(a) = Ai(a) + Az(a) VaeV,.

¢ Coam: For any o, 8 € IR and any A, As € Lin(V,,, Vi), A1 + Az is a linear mapping
(from V,, to Vp,).

The above claim implies that the set Lin(V,,, V;,) is also a vector space.
Inner Product We equip a n-dimensional vector space V,, with a mapping V,, x V,;, — IR, called
inner product such that for any «, 5 € IR and any a, b, c € V,,, the inner product is

1. Positive-definite: a-a>0; a-a=0 < a=0,
2. Linear: a- (ab+ fc) = aa-b+ fa-c,

3. Symmetric: a-b=Db-a.

Geometric interpretations:

e Length of a vector: |a] = +/a- a,

e Angle between two vectors: cos(f) = Bk



Subspace of IR", Orthogonal Subspace A subset M C IR" is a subspaceifVa,5 € IR & Va,b €
M,

aa+ fb e M.

Let M- ={b:b-a=0V ac M}.
¢ CLAIM: M is a subspace of IR™ if M is a subspace.

Projection Theorem Let M be a subspace of IR". For any x € IR", we have

x=y+zwherey e M, ze M*.

The vector y, z are uniquely determined by x.
¢ PRrROOF:

Euclidean Space IR" For a n-dimensional vector space V,, equipped with an inner product, we

¢ CLAIM that there exists an orthonormal basis {e; : i = 1,--- ,n} such that for alli,j =1,--- | n,
1 ifi=j,
€;-ej =0 = .
0 ifi=#j,

where 0;; is called Kronecker delta.

With respect to this basis, for any vector a € V,,, we find its components (ai,--- ,a,) (or
coordinates if @ is a point in space)

n
a:E a;e;, a;=a-e cIR Vi=1,---,n.
i=1

We can further identify the space V,, with the familiar Euclidean space IR™. However, one shall
keep in mind, IR", as a vector space equipped with an inner product, is more than a collection of
arrays of real numbers. One should not think of a vector in IR" as an array of real numbers unless
we specify a basis or a frame.

Tensor Product For vectors a € IR" and b € IR™, the tensor product b®a is a linear mapping:

ba:V, —V,
(b®a)(c)=(a-c)b VcelR"

¢ CrLAaM: For any a € IR" and b € IR™, the mapping b ® a (from V,, to V},,) defined above is
linear.

Einstein convention For many calculations, it is convenient to use index notation and Einstein
convention of summation over repeated index. For example, upon fixing an orthonormal basis, a




vector a can be identified with its components a; whereas a - a can be identified with summation
ofa;a; over i =1,--- ,n:

a is repsented by its components a;,
n
a-a= Zaiai = a;0Q4,
i=1
where in the last equality we drop the summation symbol “>"" | since the index “i” is repeated.
This is precisely the Finstein convention. When use Einstein convention, we notice the following:
1. Every index can appear only once (free index) or twice (dummy index).
2. The symbols used for free index or dummy index are irrelevant.
3. The free index on two sides of an equation must be identical.

¢ CLaM: Let {e; : i = 1,---n} be an orthonormal basis of IR" and {&,: p =1,---m} be an
orthonormal basis of IR™. Show that

{¢p®e;:i=1,--- ,n, p=1,---m} C Lin(IR", IR™)

forms a basis of the linear space Lin(IR", IR™).

Transpose of a Tensor Let A € Lin(IR",IR™), {e; : i = 1,---n} be an orthonormal basis of IR"
and {é, : p=1,---m} be an orthonormal basis of IR™. Then A admits the following decomposition

A=A,6,®e; where Ay =€, -A(e;) Vi=1,--- ,n,p=1,--- ,m.
Define

AT IR, — IR",
AT = Aje; ® 6, € Lin(IR™, IR").

¢ CramM: For any a € IR" and b € IR™,

b-A(a) =a-AT(b).

Symmetric and Skew-symmetric Tensor Let A € Lin(IR", IR"). A is symmetric if A = AT
A is skew-symmetric if AT = —A.
Let {e;:i=1,---n}, {&, : p=1,---n} be two orthonormal bases of IR". We have shown

A = Apiep D e; where Ap; =€, - A(e;) Vp,i=1,--,n.
¢ CLAIMS :

1. For any A € Lin(IR", IR"), we have a unique decomposition A = E + W, where E = ET and
W =-WT,



2. A = AT if and only if for any a,b € IR",
b-A(a)=a-A(b).

3. If A=A"T and a- A(a) = 0 for any a € IR", then A = 0.

4. There exists a nonzero tensor A such that

a-Aa=0 Vae IR", n>2.

5. Assume that (&1, --,&,) = (e1, - ,e,). If A = AT then A, = Ay forall p,i =1,--- ,n;
if A= —AT, then Ap’i = _Aip-

Product of tensors Let A € Lin(/R", IR™), B € Lin(IR™, IR¥). Then

BA : IR" — IR,
BA(a) = B(A(a)).
Orthogonal Tensor Let Q € Lin(/R", IR"). The tensor Q is orthogonal if Qa- Qb = a- b for

all a,b € IR". From the definition we see that orthogonal tensor operating on vectors preserves
the length of a vector and the angle between two vectors since

1. Ja| = |Qal, and
2. a-b=Qa-Qb.

#CLAIM: A tensor Q : IR™ — IR" is orthogonal if and only if Q7Q = QQT = I, where I is
the identity mapping from IR" to IR".

Trace and determinant of a tensor Let A € Lin(/R",IR") and {e; : i« = 1,--- ,n} be an
orthonormal basis. Then we have A = A,e, ® e; and refer to Tr(A) = A, as the trace of A,
det A = det[A,;] as the determinant of A.

¢ CLAM Tr, det : Lin(IR"™, IR") — IR is independent of the choice of orthonormal basis.

Rigid Rotation Tensor An orthogonal tensor R € Lin(IR", IR") is a rigid rotation if det R = +1.
Representation theorem: For any A € Lin(IR", IR), there is an a € IR" such that A(b) =b-a
Vb € IR". Explicitly, if

A=) Aye e, =1,
i
then
n
a = Z Ah‘ei.
i=1

Cross product in IR?: For a, b € IR?,

€ ey €3
aAb=|a; ay a3z |= W(b),
by b2 b3



where W = Zp,i Wyiep ® ey,

0 —as a9
[Wpyi] as 0 —al
—a9 aq 0

¢ CraM: The following properties of cross products holds:
1. bha=—-aAb, a-(aAb)=0,b-(aAb)=0.
2. (aAb)-c=(bAc)-a=(cAa)-b.

3. Geometric interpretation: show that |a A b| =area of the parallelogram formed by a and b;
|c - (a A b)|= volume of the parallelepiped formed by a, b, c.



1.2 The divergence theorem

Tensor Fields Let 2 C IR" be an open domain.

e ©: Q) — IR is a scalar field;
e v:Q — IR™ is a vector field,;
e T:Q — Lin(IR™, IR¥) is a tensor field.

Notation convention: it is often convenient to denote vectors and tensors in index notation, e.g., v;
(v; = v -e;) and Tp; (T = €,Te;), where the bases {€,,p =1,--- ,m} and {e;,i =1,--- ,n} are
usually not specified but tacitly understood.

Differentiation Let ¢ be a scalar field on 2 C IR". For any a € IR",

Dy(x) : IR" — IR,
(D)) (a) = lim PET ) = #(0),

e—0 e

Definition: ¢ is differentiable on Q if Dp(x) € Lin(IR", IR) for all x € Q

p(x+ea) = o(x)+e(Dp(x))(a) +ofe)
= @(x)+eVe(x)-a+o(e) Vx e Q,ae IR".

and

o(x +ce) —p(x)  Odp(xier + -+ zpep)

ZZWG@', pi=€;- V@—gl_% . - o
. (2

Definition: v : 2 — IR™ is differentiable on 2 if every component is differentiable

X) = Z vp(x)é

Definition:
Vv(x) = Dv(x) : IR" — IR™
(Vv i &,Vuy(x
p=1
Thus,

X) = g Up,i€p @ €; .
Dt

Divergence: If m = n, div(v) = Tr(Vv), i.e
diV(V) = V;,i€; - €; = U4 ;.
Further, if T : Q — Lin(IR", IR™) and

T(.%') = Tpiép X e;.



Then
div(T) : R™ — IR
d1v(T)(a) = Tpm-a : ép.

One may identify div(T) with a vector field Q — IR™ (instead of Lin(IR™, IR)). With an abuse of
notation, we write

le(T) = Tpi,iép-

Field of class C°,CY,C?,... ,C™®
¢ CramM: Assume ¢, v, u, T: Q — IR, IR", IR",Lin(IR",IR™), w : Q — IR™ are smooth
fields on €2. The following identities hold:

L. V(pv) =v® (Ve) + ¢oVv;

2. div(pv) = (V) - v+ @divv; V-v =divv
3. V(v-u) = (Vv)Tu+ (Vu) v

4. div(v @ u) = vdiv(u) + (Vv)u

5. div(TTw) =T - Vw + w - divT

6. div(¢T) = @divT + TV

Proof: Tacitly, an orthonormal basis {eq,--- ,e,} C IR" and an orthonormal basis {1, - ,&,} C
IR™ are chosen and fixed. Notation: Einstein summation, i.e., summation over double index is
understood. For example, to show 5, we have

diV(TTW) = (Tpiwp) i = Tpizwp + Tpiwp; = w - divT + T - Vw

Curl operator: Let v : Q — IR3.

€1 ey e€3 3
curlv =V Av=| 01 0y 03 |= g EijkVk j€i,
v1 V2 V3 =1

where Levi-Civita symbol is defined as

1 if (ijk) = (123), (231), (312),
Sk = =1 if (ijk) = (132), (213), (321),

0 otherwise.
We notice that &;;; is antisymmetric, i.e.,

Eijk = —Eikj,  Eijk = —Ejir,  etc.



A useful identity between Kronecker symbol and Levi-Civita symbol is
EpiiEpkt = 001 — 010 k.

Let Q C IR? be a domain in IR3. Assume that v : Q — IR3, ¢ : Q — IR are smooth fields.
¢ CLAaM: the following identities hold:

1. VA Ve =0.

2. div(VAv)=0.

3. Ifa,b,c€ IR®*, an(bAc)= (a-c)b— (a-b)ec
4. VA(VAV)=V(V-v)—Av.

Proof:

Divergence Theorem
Let © be a smooth simply connected domain in IR", v : Q — IR™ is a smooth vector field on

). Then we have
/ v®nda = / Vvdv, (2)
o0 Q

where n : 90 — IR" is the outward unit normal on the boundary 92. If m = n, take the trace of

Eq. (2), we have
/ v-nda = / divvdw. (3)
o0 Q

For a smooth tensor field T : Q@ — Lin(IR"; IR™), we have

Tnda:/didev. (4)
a9 Q

¢ PROVIDE a heuristic proof for (2) with Q being a rectangle in two dimensions.

Implications of divergence theorem in physics and mechanics

1. Gauss theorem

2. Stokes theorem Let C be a closed curve given by {x(s) : s € [0, 1]}.

/Ccpdx = /01 cp(}%(s))(b;(lf)ds:/snAV¢,
[voae= | e ) g [n-cu.

10



1.3 Curvilinear coordinate systems

¢ INTRODUCE the cylindrical coordinate system and spherical coordinate system in 3D.

11



2 Kinematics

Consider a continuum deformable body subject to the applications of external loads and a set of
geometric constraints. To describe the change of shape or deformation of this body, we introduce
the concepts of reference configuration and current configuration.

e Reference configuration €2: a configuration of body. Generally speaking, the reference con-
figuration may be selected arbitrarily. However, in elasticity the reference configuration is
typically selected to be the state when the body is subject to no external loads at all, i.e.,
the natural or stress-free state.

e Current configuration y(2): the configuration after the body is deformed by external loads.

We expect that a material point x in the reference configuration would move to a new poisition y,
which enable us to establish a mapping y : Q — y(€2). This mapping is referred to as deformation.
Based on physical ground, we assume that y :  — y(Q) is one-to-one, Lipschitz continuous and
det(Vy) > 0 on €, as illustrated in Fig. 1.

Deformation: y=p(x)
Deformation gradient: F=Vy

(a) (b)

Figure 1: Deformation y : Q — IR? and deformation gradient F = Vy. (a)
Reference configuration; (b) current configuration.

2.1 Geometric interpretation of the deformation gradient

We now explore the geometric interpretation of deformation gradient. For simplicity, we first
consider a homogeneous deformation y : Q — IR with deformation gradient Vy = F € IR**3 and
det(F) > 0. Note that the deformation gradient F is independent of the position x.

1. The length of a material line. Let pg, p1 be two points in , L = |p; — po| the length of the
line pop; in the reference configuration. After deformation, the deformed line is between Fpg
and Fp1, and the length of the deformed line is

L' = |F(p1 — po)| = [(P1 — Po) - F'F(p1 — po)]"/?, (5)

where C = FTF is called the CAUCHY-GREEN strain tensor.

12



2. The area of a material surface. Let pg, p1, p2 be three points in Q, A = %|(p2 —po) A (p1 —
po)| # 0 the area of the triangle pop1p2. After deformation, the deformed triangle have
Fpo, Fp1, Fps as vertices and the area of the deformed triangle is

A' = |F(p2 — po) AF(p1 — po)| = det(F)[q- F'FTq]"/% (6)

where q = (p2 — po) A (P1 — Po)-

To show the identity (6), we consider three vectors a, b, c € IR3. An use of (8) yields
Fa- (FbAFc)=det(F)a- (bAc) = a-F/(FbAFc)=det(Fla-(bAc).

Since a is arbitrary, we conclude

FZ(Fb A Fc) = det(F)(b Ac) = Fb AFc = det(F)F (b Ac). (7)

3. The volume of a material volume. Let pg, p1, P2, P3 be four points in Q, V = %|(p3 — po) -
[(p2 — Po) A (P1 — Po)]| # O the volume of the tetrahedron with popip2ps as vertexes. After
deformation, the deformed tetrahedron have Fpg, Fp1, Fpo, Fps as vertexes and the volume
of the deformed tetrahedron is

szA%KFpg—Fp@~KFGH—WM)AFKPQ—pMH:“m“Fﬂ[ (8)

2.2 Small strain and linearization

Assume the deformation gradient is small: F = I4+cH with € << 1 and I being the identity matrix.
Let

1 1
E=§@+FU—I:&§H+HH.
Let p1,p2, p3 € IR? be three points in . Without loss of generality we choose pg = 0 be the
origin.
¢ Cramv: Show the following identities (9), (10) and (11). (Hints: Taylor expansion with

respect to the small number ¢)

1. The change of length per unit lenght (in the reference configuration), to the leading order, is

given by
€1 = ng L b1 Epi+o(e),
where €17 is called the normal strain along direction p; = p1/|p1|- That is,
lim ~[(p1 - F7Fp1)!/? ~ pif] = b1 - (H + H)p1/|pi]. )

2. The change of volume per unit volume (in the reference configuration), to the leading order,

is given by
/ [e—
Vvvzﬁmwmg
That is,
1
lim —(det(F) — 1) = Tr(H). (10)
e—=0¢€

13



3. The change of area per unit area (in the reference configuration), to the leading order, is

given by
A — A . R N
1= Tr(E) —q-Eq+o(e) where q=p2Ap1 #0, q=4q/|q|
That is,
1 1 .
lim ~[|[Fp2 AFp1| — [p2 A pil] = Te(H)|g| — 5a- (H+H")q/|al, (11)
where we have noticed that
Fl=I+cH)'~I-cH. (12)

2.3 Transformations of a deformation gradient

Consider a homogeneous deformation with y = Fx and F € IR**3. For the reference configu-
ration we choose the orthonormal basis {e1,eq,es}; for the current configuration we choose the
orthornormal basis {€1,é2,€3}. In these bases, we have

Y = Yp€p, X = x;€;.
Let F,; = g—i’; be the numerical matrix of the deformation gradient. Then the tensor
F=Vy=F,¢,Qe;.
1. Passive viewpoint. We have a change of the bases:
{e1,e0,e3} — {e],€), e}, {&1,e9,83} — {&],6),e}.

We assume the new bases are orthonormal as well. In terms of the orginal bases, the new
bases can be expressed as

e; = Hijej, élp = quéq‘
¢ CLAIM:
HZ] = e; €y, sz:H]k = 57/] or HHT = I,
qu - A; ) éq7 QpTQq'r = 5pq or QQT == I

In these new bases, the same tensor F admits the following decompositions:
F = lené;) X e; = F;/n'quéq &® Hijej
= F;,;iquHijéq RKe; = piép X e;. (13)

Since the representation of a tensor in a basis is unique, by (13) and QQ” = HH? =T we
obtain

F]Z)iquHij = qu or FI/),L = quFquik- (14)

14



2. Active viewpoint. Assume H, Q € So(3) be two rigid rotation matrix. Here we consider the
following composition of mappings:

x' =Hx < x=H'x' +— rotate the reference configuration by H,
y =Qy <y=Q"y <+ rotate the current configuration by Q.

Then with respect to the old deformation €2 3 x — y(x), we consider the new deformation
given by

V' 5x' —y'(¥):=Qy(x) = QyH"X).
If since the old deformation is homogeneous, y = Fx, we have
F' =Vyy' (x)=QFH" or F =F)&,®e = QpFyHié,®e;, (15)
which implies
F;Z- = QpgFypHiy. (16)

Note that the relation between the new matrix Féi and the old matrix Fj,; of the deformation
gradients are exactly the same for the two viewpoints, see (14) and (16).
¢ Consider a vector v = vie1 + v9es in 2D and a rotation matrix

Q=50 cot))

Draw two diagrams that show the differences between the passive viewpoint and the active
viewpoint. (Hints: In one diagram, plot v, its components in the bases {e1,e2}, {Qe1, Qea};
in the other, plot v and its rotation Qv, and their components in the bases {e1,es}.)

15



2.4 Compatibility conditions

Let © be a simply-connected open domain in IR?, 0, two disjoint open set, and T' an interface
such that Q = QU Qy UT.

Figure 2: Compatibility conditions.

1. Compatibility conditions for a vector field v : Q — IR? to be a gradient of a scalar potential.

(a) Assume v : Q — IR? is differentiable.

e A necessary condition (curl-free condition). If v =V, then
VAv=VAVp==Ejrpr=0,
That is,
VAv=0 on €. (17)

e A sufficient condition. It turns out that equation (17) is also sufficient. To see this,
let us define

p(x,7) = / vi(x)e; - (dw}ej) = / vi(x')d.
v(%0,%) 7 (%0,%)

The above integral in general depends on the integration path . However, if equa-
tion (17) is satisfied, by the Stoke’s theorem we have that for any closed contour .,

Vi(2")dz} = / n-(VAv)=0.

Ve Q

Assume there is a second path 4" between zy and x;. By the above equation we
have

/ vi(X')de’é:f vi(x)do; =0, ie, ¢(x,7)=p(x,7) = p(x).
= c
Further, we verify that, indeed,

Vop=v on ().

Henceforth, we conclude that the curl-free condition (17) is a necessary and sufficient
condition for a differentiable vector field v : Q — IR? to be a gradient of a scalar
potential ¢ : Q) — IR.

16



Remark: In higher dimension, the necessary and sufficient condition is that the
antisymmetrization of Vv vanishes:

1
—Q(Vv — (V) =0 on Q.
(b) Assume that v : Q — IR? is differentiable on Q; U Qy but discontinuous across T'.
e A necessary and sufficient condition for v being a gradient field:
VAv=0 on ; UQy, [vl-t=0o0r[v] =c¢(x)n on T, (18)

where ¢ : I' — IR is a scalar function on I', n is the unit normal on I'" and t is any
unit vector parallel to the surface, i.e., t-n = 0.

¢ CrAamM: Assume the vector field v.= Ve, where ¢ : @ — IR is continuous. If v is
discontinuous across I', then

[vl]-t=0o0r[v] =c¢(x)n on T.

(Hint: Use equation (17) and the Stoke’s theorem.)

2. Compatibility conditions for a tensor field F : Q — IR? to be a gradient of a vector field, e.g.,
a deformation gradient.

(a) Assume F : Q — IR3*3 is differentiable.

e A necessary condition. If F = Vy, we have
Eijklpjk = EijkYp,jk = 0 Vi=1,2,3&p=1,2,3 on €. (19)
o A sufficient condition. First, we may write F = F;&, ® e; and define
vy = FT(ép) = Fpie; 1 Q — IR3.
From (19), we have
V Ay = Eijk(Vo - €) k= EijeFpik = 0.

Applying (17) to each of the vector field V}, for p = 1,2, 3, we see that (19) is also
sufficient and

() = / vo(x') - dihe; = / Fyi(x')d.
~(x0,x) ~(x0,x)

(b) Assume F: Q — IR3*3 is differentiable on Q7 U Q5 but discontinuous across T.

e A necessary and sufficient condition

VAFT(&,)=0 or(19) on Q1UQy, [Flt=0o0r[F]=a®n on I. (20)

3x3

sym 0 be the symmetrized

3. Compeatibility conditions for a symmetric tensor field E : @ — IR
gradient of a vector field

E = —;(Vu—i-(Vu)T), u:Q— IR3. (21)

17



(a) Assume E : Q — IR3X3 is of C?

sym
1 1
€xx €Exy €xz Uy, j(ux,y + uy,x) j(ux,z + uz,ac)
_ 1 1
E= ez ¢y €| = *%(ny + Uy,z) ) Uy.y 5 (Uy,z + Uzy)
€2z €zy €zz j(ux,z + Uz,:r) j(uy,z + uz,y) Uz, 2
Note that E = ET.
e A necessary condition:
%€ 0 0%uy

0y0z Oz Jyoz
0 Oeyy | O€yy Oegy
N 33:[ Ox + oy Ox ] (22)
826%, 1 Py 83uy)
0xdy 2 0x0y?  Oyox?
1[826xx 826yy]
24 Oy? Ox?

Similarly, we have (# (2pt) 17. Complete the right hand side of the following
equations):

2
0%€yy

0x0z
0%,
0xdy
ey,
0x0z
826yz

0yoz

- (23)

e A sufficient condition: it can be shown that the above conditions are also sufficient
for the existence of a displacement such that equation (21) admits a solution u for a
given strain field that satisfies the compatibility equations (22)-(23). This was first
shown by VOLTERRA (1907).

(b) Assume E : Q — IR?*3 is of C? on Q; U Qs but discontinuous across T

e A necessary and sufficient condition for the existence of a continuous displacement
u: Q — IR? such that (21) is satisfied is

E satisfies the compatibility equations (22)-(23) on 3 U, and
1
[[E]]:—Q(a®n+n®a) on T (24)

where a : T' — IR3 is a vector field on T, and the jump condition is called HADAMARD’s
jump conditions.
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4. Assume v : Q — IR? is differentiable on Q; U Qs but discontinuous across I'. Let b: Q — IR
is continuous and bounded. By

divv = b on (2, (25)
we mean the following
divv = b on 2y UQs (26)
and
[vl - n=0 on I'. (27)

Note that v is discontinuous across I', v is not differentiable and so divv is not literally
well-defined on I'.

5. Assume o : Q — IR¥*3 is of C1 on Q; U Qs but discontinuous across I'. Let b : Q — IR3 be
continuous and bounded. By

dive =b on €, (28)
we mean the following
dive =b on 3 UQy (29)
and
[eln=0 on I (30)

To see the motivation behind the definition, e.g., (25)-(27), we assume the divergence theorem
is valid even though v and ¢ is discontinuous across I'. That is, we have for any subdomain

D C Q,
/divv:/b: V n.
D D 8D

Choosing D to be a domain as shown in the figure, we obtain (27).
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3 Concepts of Stress

3.1 Cauchy stress and balance laws

Cauchy hypothesis: On any interface in the material body, there exists contact force between
the two parts separated by the interface. This contact force on an infinitesimal area da can be

expressed as
¥ (x,n)da,

where x is the position of the area element da and n is the unit normal on da, see the following
figure.

Cauchy theorem:

Theorem 1 The contact force can be expressed as
¥ (x,n)da = o(x)nda,
where o : Q — IR>*3 is a tensor field.

The meaning of this theorem is that the dependence of 3(x,n) on the unit normal n is linear.

Balance laws and their implications:

First, let us assume the following theorem.

Theorem 2 (Localization theorem) Let 2 C IR" be an open bounded domain. Assume f is a
continuous function.

1. If
/Qfg =0 YV continuous functions g : Q — IR, or (31)
2. if
/D f=0 V subdomains D C €, (32)
then
F=o.

Proof: We prove it by contradiction. Assume f #£ 0 at xg € 2. By continuity of f, we know f > 0
on a neighborhood U of zy. Then equation (31) is violated for the choice of g which is a continuous

positive function and vanishes outside U or the subdomain D = U.
|
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Let ©Q be the material body. Assume the body is subject to a body force b : Q — IR? and
traction t : 9Q — IR? and is in equilibrium. Consider a part of the body D C © with 9D NoQ = 0.
Then the balance of linear momentum implies

/ anda—i—/b:O = /(diva+b)=0; (33)
oD D D

the balance of angular momentum implies
/ x A (on)da + / xANb=0 = / [x A (dive + b) + &;jror;] = 0. (34)
oD D D

From (33), (34), and part 2) of Theorem 2, we arrive at the equilibrium equation
divo+b=0 and o=0" on . (35)

Thus, the CAUCHY stress is symmetric.

3.2 Implications of the first and second laws of thermodynamics

We begin from the following hypothesis

H1. Assume the homogeneous material body € has a deformation y : Q@ — IR3. Let F = Vy be
the deformation gradient. At a constant temperature, the internal energy of the body can be
expressed as

U(y) = /Q W(y). (36)

Assume that the body is subject to a body force b : @ — IR?, a traction t : T'y — IR, and
y =xon ['p, where 'y C 92 and I'p = 92 C I'y. In equilibrium, the deformation of the body is
y : © — IR®. Now let us imagine the deformation is perturbed infinitesimally with new deformation
ye =y + ez with z = 0 on I'p. By the first law of thermodynamics, within the leading order we
have

U(yg)—U(y)—E/Qb‘z—i—E/FNt-zé (37)
/Q[Vz-(?;‘/(Vy)—b-z]—/FNt-z:O.

Note that an immediate implication of the above formula is that the body is not “moving”, i.e., in
equilibrium, since we have not included the kinetic energy in (37). Define S : IR3*3 — IR3*3 as the
first order derivative of the scalar function W : IR3*® — IR

oW oW

S—aiF or Spl:anZ

(38)

For the deformation gradient Vy : Q — IR3*3, we evaluate the function S and obtain the Piola-
Kirchhoff stress on point x € Q2 as

S(Vy(x)).
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Further, by an use of the divergence theorem, equation (37) can be rewritten as
/ z - [—divS(Vy) — b] + / [S(Vy)n—t]-z=0. (39)
Q I'n

If we a priori assume that [—divS(Vy) — b] and [S(Vy)n — t] are continuous functions on € and
I, respectively, by the part 1) of the localization theorem 2, we conclude the equilibrium equation
and boundary conditions

div(S(Vy)) =—-b on Q,
S(Vy)n=t on Ty, (40)

y=xXx on I'p.

¢ (6pt) 18. By index notation, carry out the derivation of (39) in details.
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The second law of thermodynamics implies that when the body is in equilibrium, the GIBBS
free energy

Gy = /Q W(Vy)— by - / ¥t (41)

I'n

is minimized among all admissible deformation satisfying y’ = x on I'p.
¢ (6pt) 19. Assume that y : Q — IR? is a minimizer of the energy functional G(y’):

G(y) =minG(y'). (42)
y/
Consider a small perturbation of y, i.e., y. =y + ez with z = 0 on I'p. Show that the minimizer y
necessarily satisfies (37), and hence (40) if the relevant fields are a priori assumed to be continuous.
The PDE (40) is called the EULER-LAGRANGE equation of the variational principle (42).

Pialo-Kirchhoff stress vs Cauchy stress:
¢ (2pt) 20. Explain in words the difference between PIALO-KIRCHHOFF stress and CAUCHY
stress. Draw a diagram if necessary.
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4 Constitutive Laws

4.1 Hooke’s law

To complete our theory of elasticity, we need an additional equation that describes the properties
of the material. Such a equation or a “law” is called the constitutive law (of the material). The
classic Hooke’s law states that the stress depends on the strain linearly

o =CE, (43)

where o is the (Cauchy) stress tensor, E is the symmetrized strain, and C : ZRZ’;% — ZRZ’;% is called
stiffness tensor.

A constitutive law describes the behaviors of a material. At the continuum level, a constitutive
law cannot be “derived” from the laws of physics. Instead, we should think of the constitutive law is
obtained by experimental measurements. Nevertheless, the symmetries of the underlying material
and the physical space and the laws of physics place nontrivial restrictions on the forms of the
stiffness tensor C. Though these restrictions are realized long time ago, a systematic derivation of
these restrictions mature after the development of the general framework of continuum mechanics.
The modern viewpoint on the Hooke’s law (43) is that it is the first-order approximation of the
actual behavior of the material, and hence valid only for small strain. For materials, e.g., rubber
that remain to be elastic for large strain, the Hooke’s law fails completely.

4.2 Frame indifference and material symmetry

The modern viewpoint of the constitutive laws, instead of specifying the stress-strain relation,
specifies the stored energy function W : IR3*3 — IR, see (36). Consider a material body Q with a
homogenous deformation y = Fx. From (36), we see that the stored energy in the material is

U =W(F)[Q],

where Q] is the volume of Q. Now let us consider a new deformation y’ = Qy(x) with Q € So(3),
i.e., the new configuration of the material body is an rigid rotation of y(€2). The principle of
relativity (Galilean invariance) tells us the stored energy in the material shall be the same as
before, i.e., (c.f. (15))

W(F)=W(QF) VFecIR>3& Qe So3). (44)

The above equation is referred as the principle of material frame indifference, which is in fact valid
in a much broader context.

Material symmetry. Without loss of generality we may assume ) is a perfect sphere. Before
applying the deformation y : Q — y(€), we transform the reference configuration Q to Q' = RQ.
If the new reference configuration ' is “exactly” the same as Q, then we will have

W(F)=W(FR!) VFeR>3&Reg, (45)

where G is called the symmetry group of the material. If the material is a crystal with a Bravais
lattice

3
L:={ g v;a; . v; are integers and a; are lattice vectors},

=1
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then G is the point group £, which is the collection of orthogonal matrices R such that
L=RL.

Multiplying the above equation by R’ we see that if R € G, then R € G.

Note that the frame-indifference (44) is material-independent, but equation (45) depends on
the material through the group G.

A material is isotropic if G D So(3).

¢ (1pt) 21. Read the article http://en.wikipedia.org/wiki/Crystal _system and write below the
names of seven crystal systems.

4.3 Approximation of the stored energy functions

Clearly, the stored energy function W : IR**3 — IR depends on the reference configuration. We
now make a choice of a reference configuration. Assume the body is free of body force and traction.
From the variational principle (42), we see that the deformation gradient shall take the matrix that
minimizes the energy function

W(F*) = _min W(F).
FeR3*3 det(F)>0
We assume the minimizer exists. If a minimizer does not exist, our solid won’t be stable by the
second law of thermodynamics. If the minimizer F* # I (I is the identity matrix), we redefine our
energy function as W(F) = W (F*F). So, without loss of generality, we assume F* =1, ie., y = x
is the minimizing deformation when the material is free of body force and surface traction. Upon

a Taylor expansion of the function W at a neighborhood of the point I, we have

W+ eH) = W(I) +5H~%—¥(I) +62—;H-CH+0(€2), (46)
where
O2W o*wW

¢ 22. Answer the following questions:
(i) (2pt) Explain why

ow
87(1) =0 and C is positive semi-definite, i.e., H-CH >0 VH € IR>*3.

(ii) (3pt) Read the article http://en.wikipedia.org/wiki/Matrix_exponential and show that for
any skew-symmetric matrix W, Q = exp(W) is a rigid rotation, i.e.,

QQT =1 and det(Q)=1.
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(iii) (2pt) Using the frame-indifference equation (44), show that the stiffness tensor C defined
by (47) satisfies (Hint: consider rigid rotation Q = exp(¢W) and (46))

CW=0 YW/ =-W or Cpy = Cpijq

(iv) (2pt) Let G be the symmetry group of the material. By (45), (44) and (46), show that
H-CH = (RHR”)-C(RHR?) VHec R*>3 &R c(GNSo(3)). (48)

(Hint: first show that W (I +eH) = W(R(I + eH)RT), and then use (46))

(v) (2pt) Assume the 180° rigid rotation around z-axis

-1 0 O
R=|0 -1 0[€g
0 0 1

By (48), show that

Ci113 = Ca213 = C1213 = Cl123 = C2223 = Cl223 = 0.

(vi) (2pt) If G = So(3), from similar calculations as in the last problem, one can show that the
stiffness tensor must take the following form

Cpigj = N(‘Spq(sij + dp; Siq) + Adpidq; (49)

where p and A are called LAME constants. Show that the stored energy function

W(F) = W(I) + —;(F ~ 1) C(F - 1), (50)
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with C given by (49) violates the frame-indifference requirement (44).

Is there a contradiction? Why? In fact, there is no quadratic energy function as in (50) can
fulfill the frame-indifference requirement (44). This is why you may see statements such as
“there exists no linear material in nature” or terminology such as “linearized elasticity”.

5 Formulations of Linear (Linearized) Elasticity Problems

5.1 PDE formulation, Variational formulation, Weak formulation

Assume y = x + u with Vu being small. Neglect the higher order terms in the energy function
expansion (46), we can write the stored energy function as in (50), where the stiffness tensor is
positive semi-definite and satisfies

Chigj = Cyjpi = Cpijq-
Based on stability requirement, we shall further assume that for some ¢ > 0,
E-CE>(E? VE'=E.

Collecting results from previous chapters, in particular, by (38), (40), (50) we have the PDE
formulation of the linear elasticity problem

div[CVu] =—-b on Q,
(CVun =t on Ty, (51)

By (38), (39), (50) we have the weak or integral formulation of the linear elasticity problem
that for any z = 0 on I'p,

/ 2+ [~div(CVu) — b] + / (CVu)n—+t] -7 = 0. (52)
Q I'n

By (42), (39), (50) we have the variational formulation of the linear elasticity problem that u is
the minimizer among all admissible v satisfying v =0 on I'p

Gi(u) = m&n {Gl(v) ::/

1
Q[QVV-CVV—b-V}—/

I'n

t- u}. (53)

The equivalence between the PDE formulation (51) and the weak formulation (52) follows from
part 2) of the localization Theorem 2 if all relevant quantities are a priori assumed to be continuous.

¢ (5pt) 23. Show that if u is a solution (minimizer) of the variation problem (53), then u
necessarily satisfies that for any z € C! with z =0 on I'p,

/[Vz-CVu—z~b]—/ t-z=0,
Q I'n

which, by the divergence theorem, implies (52), and hence (51).
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5.2 Uniqueness of the solution

¢ (6pt) 24. Show that if u and u’ are both minimizers of the variation problem (53), then u and
u’ necessarily satisfies

/ V(u— ) + [V(u—u)[T =0,
Q

which implies

SV W) Vo) =0 om0 (54)

¢ (3pt) 25. By (54), show that there is a skew-symmetric matrix W € IR**3 and a constant
vector ¢ € IR? such that

u—u =Wx+c on 0.

Well-posedness of a problem means the following three properties

e Existence. The existence theorem is usually the most important question in a theory. How-
ever, a proof of the existence theorem is usually difficult. We will not address the existence
problem in this course.

e Uniqueness. Note that, though the displacement may not be unique in linear elasticity, the
strain and stress fields are unique.

e Stability.
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Homework 3, Problem 26-32, due on Tuesday, December 15, 2009

5.3 Plane strain problem

In a plane strain problem, we consider an infinite cylindrical body Q@ = D x (—oo,+00), where
D C IR? is a two dimensional region on zy-plane. Consider the elasticity problem

—div[CVu] = by(z,y)e, + by(z,y)e, on Q,

(CVu)n = t.(z,y)es + ty(z,y)ey on I'y x (—o0,+00), (55)
u=ul(z,y)e, + ug(az, y)ey on I, x (—o0, +00),
where by, by, ts, ty, u?, ug are given data and independent of z, C is independent of x,y, z, i.e., the

material is homogeneous, Iy, I, are a mutual disjoint subdivision of 9D, see the following figure.

¢ (2pt) 26 (i). Show that if u(x,y, z) satisfies (55), then for any 2y € IR,
w'(z,y,2) = u(z,y, 2+ 20) (56)

satisfies (55) as well.

From the uniqueness theorem, by (56) we conclude that u'(x,y, z) = u(z,y, z + 20) = u(z, vy, 2)
(the arbitrary translation is ignored). Therefore, any solution to (55) is in fact independent of z.
Thus,

—u=0. (57)

In another word,

Ug,x Ug,y 0
Vu= | uys uyy 0
Ugze Uzy O

)
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Let o, 8,d/, 8" € {1,2} or {z,y}, i.e., the in-plane indices. By (57), the stress can be written as
(summation over double indices «, f3)

Ozz Ozy Ozz Ci1agUa,p + Cr13su3s  Craapta,s + Cr235u3 g Ci3agla,g + Ci33suss
o= |0yx Oy 0yz| = |Coraplia,s + Coszpusz s Cragas + Crsgus s Cozaplia,s + Caszzpusg| ,
Oz Ozy Oz C3108Ua,s + C3138u3,8  C3208Ua,8 + C3238u3 3 C3308Ua,g + C3335U3,3

and the equations in (55) are

'Cafgo/g/ua/’ﬁ/ﬁ + Capapus pgg = —ba on D,
C35a/5/u0/’5/5 + nggg/u;g?glg =0 on D,
Copa’ g, g + Capsgruz gng =to, on F?V? (58)
Cagarprie, grmg + Csgagrug grmg = 0 on FQV?

Ug = ul(2,y), u3=0 on I',.

For plane strain, we seek a solution satisfying
uz(z,y) =0 on D. (59)
Using (55), equation (58) can be written as (the in-plane components)
Capa'priar,prg = —bo on D,

Caﬁalﬂxua/ﬁ/ng = ta on F/ s (60)

o = ud(2,7) on I,
plus the out-of-plane equations
nga/g/ua/ﬂ/g =0 on D,

Csgarptia pmg =0 on Iy, (61)

uz =0 on I',.

Note that (61) is not automatically satisfied for all materials. However, if the stiffness tensor
satisfies

OSa’aﬁ =0 VO/,OZ,B € {172}7 (62)

then equation (61) is trivial.

The equation (60) is the plane strain problem. For given data by, by, ts, ty, u?, ug and domain
D, it can be shown it is a well-posed problem, i.e., there exists a solution, the strain is unique and
the solution is stable with respect to given data.

5.4 Antiplane shear problem

The antiplane shear problem is similar to the plane strain problem. The difference is that the given
body force b, traction t, and displacement u® have only e, component. More precisely, we pose
the antiplane shear problem as

—div[CVu] = b,(z,y)e, on Q,

(CVu)n =t (z,y)e, on Iy x (—o0,+00), (63)
u=u(z,ye, on I, x (—o0, +00).
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By similar arguments as before, we conclude that u is independent of z. Further, we seek a solution
satisfying

ug(,y) = uy(z,y) =0 V(z,y) € D. (64)
By the above equations, the antiplane shear problem (63) can be written as (c.f. (58))
Caggﬁfu;g”g/g =0 on D,
03535/U37/3//3 = —bz on D,

Caggglu;;’glng =0 on F/N, (65)
Cspsprusz gng =t,  on FIN’

uz = ud(z,y) on I',.
That is,

Cgﬁgﬁ/Ugﬁ/ﬁ = —bz on D,

Cagaprusgng =t.  on I'y, (66)
uz = ud(z,y) on I',.

plus the in-plane components
Capapuz pg =0 on D, (67)
CaﬁB,B’“&B’”B =0 on F;V

Note again that equation (67) is not always trivial. If

OO:/53,3’ =0 Va?ﬂaﬁ/ € {172}7 (68)

then indeed equation (67) is automatically satisfied regardless what values is us(z,y). In this case,
the equation (66) is the governing equation for antiplane shear.
¢ (6pt) 26 (ii). Consider an isotropic stiffness tensor C with LAME constants p, \.

(i) Is equation (62) equivalent to (68)7 If yes, please explain why. Does the isotropic stiffness
tensor C satisfies (62)7

(ii) Write down the equations in (60) in terms of p, A (instead of Cyp.4/p).

(iii) Write down the equations in (66) in terms of u, A (instead of Cypp.a/p).
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5.5 Plane stress problem

In a plane stress problem, we consider a thin body Q = D x (—h/2,h/2), where h << 1 and
D C IR? is a two dimensional region on zy-plane. Consider the elasticity problem

—div[CVu] = by(z,y)e; + by(z,y)e, on Q,

(CVu)n = ty(z,y)es + ty(z,y)ey on I'y x (=h/2,h/2), (69)
(CVu)e, =0 on {x:z=-h/2}U{x:2z="h/2},
u = ud(z,y)e, + uy(z,y)e, on I'y x (=h/2,h/2),

, are given data and independent of z, C is independent of z,y, 2, i.e., the
material is homogeneous, Iy, I, are a mutual disjoint subdivision of 9D.

where b, by,tx,ty,ug,,uo

Based on the boundary condition (CVu)e, = 0on {x:2z = —h/2} U{x : 2z = h/2} and the
fact that the body is a thin (h << 1), we seek a solution with stress field of the following form

sz(x7y) O':ch(xay) 0
o= |oy(z,y) oyylz,y) Of. (70)
0 0 0

Note that the stress field is assumed to be independent of z. Let S = C~! is the compliance tensor.
Then in terms of the compliance tensor, the strain can be written as

€aB = Saﬁa’,é”o-a’ﬂ’a €38 = Sg/ga//glaa//gl, €33 = S33a’,8’0'o¢’,8’7 (71)

which is independent of z. Therefore, the displacement u is also independent of z. The first of (71)
defines a linear mapping S’ : le;ﬂ% — leyxn% with components given by S,ga/g. It can be shown
S’ is invertible and we denote by C’ = S'~1. Therefore, if 0’ = (ug, uy),

V' = ["“ u”’} , (72)

Uy, Uyy

then the in-plane components of (69) can be written as

Coparprtiat, /s = —ba  on D,
Cl Ba/ﬁ/ua/7ﬂlnﬂ — tOé on Fljv, (73)

«Q

o = ud (2,7) on Iy x (=h/2,h/2).

4 (6pt) 27. Consider an isotropic stiffness tensor C with LAME constants p, A.
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(i) Calculate C’' = (S’)~!. That is, for a given 2 x 2 symmetric matrix e,4, what are Coparpr€arpr?

(Hint: see the handout I gave in class)
(e

(i) Write down the equations in (73) in terms of u, A (instead of C7 5 ,/5/).

(iii) Compared with plane strain problem, list at least four differences between plane strain prob-
lem and plane stress problem (Hint: geometric feature of the bodies, out-of-plane component
of strain and stress, boundary conditions, the modulus, etc)
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6 A Brief Introduction to Finite Element Method

6.1 Basis
6.2 Shape fucntions
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7 St Venant’s Problems and Semi-inverse Method

St Venant’s Principle: The elastic field produced by a self-balanced force system on a local region
on the body is also local. More precisely, consider the Dirichlet problem or the Neumann problem

div[CVu] =0 on Q,
or u=0 on I'p, (74)

{diV[CVu] =—b on Q,
[CVuln =t on I'y.

u=20 on 0f),
Let us denote the support of b or t by D

D =suppb:={x € Q:|b(x)|#0} or ={x:]t(x)|#0}.
If D is small and

/b—O and /X/\b—O or / t=0 and / xAt=0
D D I'n I'n

then u(x) is small for points x that is far away from D.
St Venant’s Problem: Consider a long prismatic bar D x (0, L), where D is the two dimensional
cross-section. Denote by the two end surfaces by Sy and Sy, and the side surface by S;:

So={x€0Q:2=0}, Sp={x€dQ:z=1L}, Ss=0D x(0,L),

see the following figure.

Consider the problem

div[CVu| =0 on (,

[CVuln=0 on Ss,
[CVuln=t on S,
u=20 on Sj.

(75)

From the general theory of linear elasticity, we know the above problem admits a unique solution.
By St Venant’s principle, we can instead consider a relaxed problem
div[CVu] =0 on
[CVu|n =0 on Ss, (76)
Js,[CVun=[o t=R, [; xA[CVun= [, xAt=M.

35



Clearly, the solution of (75) satisfies (76). In general equation (76) admits infinitely many solutions.
However, since the scale of the cross-section D is small compared with L, by the St Venant’s
principle, we conclude that any solution of (76) is a good representation of the true solution of the
original problem (75). In practice, we of course shall focus on the solution of (76) that can be made
as simple as possible.

Classification of St Venant’s Problems: For St Venant’s problems, what is given is the domain
Q = D x (0,L), and the total force R € IR® and torque M € IR® applied on one end of the bar,
say, Sr. According to the directions of vector R and M, we classify the St Venant’s problems as
follows.

(i) Simple extension: R || e,, M = 0.
(ii) Pure bending: R =0, M L e,.
(iii) Torsion: R =0, M || e,.
(iv) Bending: R L e,, M =0.

To solve the St Venant’s problems (76), we often focus on the stress field o : Q — IR3*3. In

sym:*
terms of stress field (instead of the displacement), the St Venant’s problems (76) can be rewritten
as

dive =0 on (),
on=0 on S, (77)
fSLan:fSLt:R, fSLx/\an:fSLx/\t:M.

plus the compatibility equation: the strain field

€xx €xy €xz €xx €Exy €Exz

. _ -1
€yz €y €yz| satisfies (22)-(23), where [ey, €y €4.| =C 0. (78)
€zx €Ezy €Ezz €zx €Ezy €Ezz

If C is homogeneous and isotropic with Young’s modulus F and Poisson’s ration v, then

€re €xy €xz 1 | - V(oyy +022) (14 v)ogy (1+v)oy,
Gz Cyy G| T g (14 v)oye (1 +v)oyy — (002 + 022) (1+v)oy: -(79)
€xp €zy €z (1+v)osy (14+v)ozy Oz — V(Oyy + Ouz)

Thus, in terms of the stress field, the compatibility equations (22)-(23) can be written as

0? 0 00y 00, 004y
8yaz(o—$$_y(o—yy+o—zz)) - (1+I/)%[ ox + ay - ox ]

Doy 1. 02 0’
8$3;// N 72[8792(0” — v(oyy +022)) + @(Uyy — V(0we +022))] (80)

(1+v)

In particular, if there is no body force, i.e., dive = 0 on €, then the above equation can be rewritten
as
1

Vi +
1+v

VVTr(o) =0 on €. (81)

This equation is called MICHELL stress compatibility equation.
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7.1 Simple extension

R = R.e. and M = 0. By the last of (77), we make a guess on the stress field o : Q — IR3X3

sym
Oz Ogxy Ozxz 00 0

o= |Oy Oy 0y.| =10 0 0|, (82)
Oz Ozy Oz 0 0 L=

where |D| denotes the area of the cross-section D. Note that o is constant throughout the domain
D. Further, the equilibrium equation (the first of (77)) and the compatibility equation (78) is
automatically satisfied. Thus, we conclude that (82) is indeed a solution of the St Venant’s problem
(77) and (78) with R = R,e, and M = 0 for general anisotropic medium.

To find strain and displacement when the medium is isotropic, by (82) and (79) we have

_y R
€xx CExy CExz 1 v |D] OR 0
_ it
€yr €y Eyz| = = 0 vipr 0 |. (83)
€z €zy €2z 0 0 %

Uy = —VHE
_ R

Uy = Vg - (84)
— R

U: = gip1 2

7.2 Pure bending
R = 0and M = M,e,+Mye,. By the last of (77), we make a guess on the stress field o : Q — IR2*3

sym
Ozx Ogy Ozxz

0 0
o= |oys Oy 0y:| =10 0 0 , (85)
0 0

Oz Ozy Ozz

where A, A, are constants to be determined by the third of (77). Note that ¢ is linear throughout
the domain D. Thus, the equilibrium equation (the first of (77)) and the compatibility equation (78)
is automatically satisfied. Thus, we conclude that (82) is indeed a solution of the St Venant’s
problem (77) and (78) with R =0 and M = M e, + Mye, for general anisotropic medium if

{R = fSL(Agcsc + Ayyle. =0,

(86)
M = fSL x A (Azz + Ayy)e, = Mye, + Mye,.

Choose the centroid of Sy, as our origin, then the first of (86) is automatically satisfied. Choose
ey, e, such that the momentum of inertia is diagonized

:C2 l‘y:|
= diag[ly, Iy].
/SL |:y$ y2 g[ xx yy]

By the second of (86), we obtain



To find strain and displacement when the medium is isotropic, by (85) and (79) we have

My Ma;
€xx €xy €Exz V( mEIawc + yEIyy) MO 0
_ o y M.
€yz €y Eyz| = 0 v(—z g + yEI;‘y) 0 . (88)
€ € € —
zx 2y zz 0 0 xELm —+ yEIyy

Thus, a solution of displacement (ug,uy,u.) to 5(Vu+ (Vu)?) = E is

M My
Uy = — QE]iI( 2 _V( ))_nyEIyy’
M
Uy = Q%g;y( 24 v(@? =) +vaygr, (89)
uz——szI —i—yzEIyy

7.3 Torsion

R =0and M = M,e,. We assume the material is isotropic. By physical intuition, we make a
guess on the stress field o : Q — IR3*3

sym
Ozx Ogy Ozxz 0 0 0z

o= |0yz Oy 0Oy| =10 0 oy, (90)
Oz Ozy Ozz Ozz Oyz 0

where 04,0y, : D — IR, depending on (x,y) but independent of z, are shear stress to be deter-
mined. By (77) we have

Ogs 1 002 — on D,
OpzNp + Uyzny =0 on 0D, (91)
fSL<UIZe$ + 0y.€y) =0, fSL XN (0g.€5 + 0y2€y) = Me,.

Note that
/ XA (0p.€5 + 0yzey) = / —20y.€; + 204.€y + (X0y, — Y02 )e..
SL SL

Further, by the compatibility equation (81), we have
Vio,, = V20, =0 on . (92)

By the first of (91), we have V A [—0y.,04,0] = 0, i.e., the vector field [—0y,0,.] is curl-free.
Therefore, the following scalar potential

(z,y)
F(]T,y) = / [_ayZ7sz] - dl.
(

0,40)

is well-defined and

3F(az,y) Y (z,y) € D. (93)

F(x)y)a Uyz - _830

Oxz =

dy
Plugging the above equation to the stress compatibility equation (92) we obtain

9 o2 9 o
ViF V°F = D.
y 0, = 0 on
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We thus conclude
V20 = -2, F=pal on D, (94)

where p is the shear modulus, « is a constant to be determined, and ¥ is called PRANDL stress
function. Let (ng,n,) be the unit normal on 0D at a point p € 0D and (¢,,t,) be the unit tangential
unit vector along 9D at the same point p. Clearly,

e, ty] - [ne,ny] = 0 = (te, ty) = £(—ny, ne). (95)
Further, from the second of (91), (93) and (95) we have

oOF oF
tosty]  VF = ty— + t,—
[ y] \Y or + yaw

= £(nyoy, + ngoz.) =0 on O0D.
Therefore, we conclude that for some ¢ € IR,
F=c on 0D. (96)

To see the consequence of the last of (91), we first verify the total force

/ szZ/ 8j: [nx,ny]-[O,l]F—c/ ny—c/ div[0,1] = 0.
Sy, s, Oy oD oD Sy

Similarly, we have |, 5, Oyz = 0. Second, we calculate the total torque in e, direction
ov ov oz oyv

— =— — —)=— —+ = =2V

[ @ove = voe) = <o [ @y = pn [ (G T 0w
= —,ua[/ (ngx¥ + nyy¥) — / 2V] = 2uax = M, (97)

OSL SL
where
1
X = / - — (ngx¥ + nyy¥) (98)
St oSt

is called torsion stiffness.

Note that torsion stiffness is an geometric property of the cross-section D, i.e., S = D. To
calculate the torsion stiffness, from (94) and (96) we notice that the stress function ¥ satisfies that
for some constant ¢’ € IR,

(99)

AV =-2 on D,
U= on O0D.

4 28. Consider the torsion of a long prismatic bar Q = D x (0, L), i.e., the problem (75) with
R =0 and M = M,e,. Assume the material is isotropic with LAME constants u, A. As discussed
above, the torsion stiffness is determined by (99) and (98).

(i) (2pt) Show that the torsion stiffness is independent of the constant ¢/.

(i) (2pt) Assume D = {(z,y) : 22 +y? < R?} is the circle centered at the origin and with radius
R. Solve (99) for ¢ = 0 and calculate the torsion stiffness x.
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(iii) (4pt) By (93) and (94), calculate the stress field 0., 0y, the strain field, and the displacement
(Assume u = 0 if z = 0). (Note that the “fields” are functions defined on ).

(iv) (2pt) If we express the displacement ug,u, in the following form

=5

where W € IR?*2. Is it true WT = —W? Sketch a figure that illustrates the geometric
meaning of the constant « in (94). What is the relation between o« and M, x?

7.4 Bending
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8 Important Problems and their Solutions

8.1 The fundamental solution —— Kelvin’s solution

Formulation of the problem. Consider an infinite homogeneous body with an elastic stiffness
tensor C in IR". At the origin, there is a concentrated body force b(x) = b%3(x), where §(x) is
the Dirac function that satisfies

- fx)o(x) = f(0) ¥V [feC5(R").

We are interested in finding the elastic field, i.e., solving the following problem for u : IR" — IR",

{diV[CVu] = -b%(x) on IR", (100)

[Vu| — 0 as |x| — oo.

Solution. We will solve this problem by the Fourier method. First let us recall the definition of
Fourier transformation and the inversion theorem. Let f : IR" — IR be a “generalized” function
(Precisely, f needs to be a “tempered distribution”. We notice that the Fourier transformation
and the inversion theorem are valid for almost all functions we encountered in elasticity, including
the Dirac function and its derivatives). Then the Fourier transformation of f, denoted by
f : IR™ — IR, is given by

f(k)= [ f(x)exp(—ik-x)dx. (101)
.

Further, the Fourier inversion theorem holds

F(k) exp(ik - x)dk. (102)
™

4 29 (i). (2pt) Let (k) be the Fourier transformation of the solution of (100). Show that a(k)
satisfies

(k) = N(k)b?, (103)

where N(k) € IR} " is the inverse of the matrix Cp,gjkik;.

sym

Equation (103) is the k-space equation corresponding to (100). In effect, the Fourier transfor-
mation converts a partial differential equation, e.g., (100) into an algebraic equation, e.g. (103).
This is possible because our problem is homogeneous in the sense that the material properties C is
independent of the position x and the domain is special, i.e., IR".

An application of the inversion theorem to (103) yields

1
u(x) = _ N (k)b? exp(ik - x)dk. (104)
(27'(') R™
Further, if C is an isotropic stiffness tensor with LAME constants p, A (see (49)), we find
o p
Nk)=-—I-—k®k. 1
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4 29 (ii). (2pt) Calculate the constants a, 8 in terms of p, A.

Plugging (105) into (104), we arrive at

u(x) = ag(x)b” — B[V (x)b, (106)
where
1 1 .
p(x) = G /Rn Wexp(zkoc)dk,
1 1 .
P(x) = G /R" Wexp(zk - x)dk.

¢ 29 (iii). (2pt) Show that the above functions ¢ and 1) satisfy

Ad(x) = —5(0),  AAY(x) = —5(0). (107)

By symmetry, we seek solutions to (107) that can be written as

6=0(r) ¥ =),
where r = (2% + -+ + 22)Y/2, In this case, we have

" n—1

Ap(r) = o(r) gz, = (' (1)ra2,) e = & (1) + ¢'(r), (108)

where () = 4().
4 29 (iv). (2pt) Show in detail the identity A¢(r) = (¢’ (r)rz;) e = ¢ (r) + =L/ (r).

Therefore, by (107) we have

7 n—1

¢ (1) + ¢(r)y=0  Vr>0. (109)

From the theory of ordinary differential equation, we know that a solution to (109) can be written
as

b(r) = {Cz log(r) +Cop ifn=2, (110)

Combz +Co  ifn >3,
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where C; are constants determined by the boundary conditions. In particular, the constant Cy is
immaterial since it does not affect the strain and stress field, see (106). It is the usual convention
that we choose it to be zero. Further, to find the constants C; (i = 2,---), we integrate the first of
(107) over a unit ball centered at the origin By and obtain

1= [ s0)= [ v Vo) = / e Vo) = | ¢
B1 B 9B, dB

¢ 29 (v). (2pt) Plug (110) into the above identity and find out what is the constants Cy and
C3. (Bonus problem: 1pt, find C,, for n > 4)

We now calculate the other potential function ¢ (r) in (107). From (107), (108), and (110), we
see that

" n—1 Cylog(r) ifn=2,
A = + "(r) = = 111
v) =4 0) + ) = 1) { e (111)
Again, from the theory of ordinary differential equation, we find
Dor?(log(r) — 1) if n =2,
P(r) = ¢ Dprd" if n>3,n # 4, (112)

Dy log(r) if n=4.

¢ 29 (vi). (2pt) Verify that the above defined (r) indeed satisfies (111) for appropriately
chosen constants D; € IR and find the relation between the constants D; and C; for i = 2,3.
(Bonus problem: 1pt, find D; for ¢ > 4)

In summary, from (106), (110) and (112), we conclude that the solution to (100) is
u(x) = G™ (x)b?,

{aCylog(r)I — BD2[(1 — 2log(r))I — 2e, ® e,]} if n=2,
G (x) = { r2{aC,I — BD,[(4 —n)(2 — n)e, ® e, + (4 —n)I]} if n>3,n #4,(113)
r>~{aC,I — BD,[2e, ® e, + 1]} if n =4,

where e, = x/|x|, and we have used the identity

r

VYl = (' () - vy

e, ® e, +

The above solution (113) is called the KELVIN’s solution in three dimensions (n = 3). It is also
referred to as the GREEN’s function or the fundamental solution.
Direct calculations verify that for any b € [Cy(IR™)]"™, the solution to

{div[CVu] = —b(x) on IR", (114)

[Vu| — 0 as |x| — oo
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is given by

which is called the GREEN’s formula.
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8.2 Pressured vessel

Formulation of the problem. Consider a homogeneous body with an elastic stiffness tensor C
on an annulus region Q = {x : r, < |x| < 7} subject to a hydrostatic pressure p, from inside and
pressure pp from outside. We are interested in finding the elastic field, i.e., solving the following
problem for u: ) — IR"™,

div[CVu] =0 on €,

—(CVu)e, =pge, if r=rg, (115)

(CVu)e, = —ppe, if r =1y

Solution. For simplicity, we assume the stiffness C is isotropic. First, we show that if u is a
solution to (115), then

W(¥) = Qux), ¥ =Qx (116)
is also a solution to (115), where Q € So(n) is any rigid rotation. To see this, by the chain rule we
have

Uga; = quu;,xj = quu;,x;g'x;c,xj = 623(162’0'”;,:1:;C

/ / !/
CrigjUqz;e; = (Cpiqj@sq@kjus,x;),acgfcl,zi = Cpiququkalius,x;Cx;'
Since u satisfies the first of (115), by the second of the above equation we obtain

CpiququkaliQrpu' =0 ie., divy [C’Vx/u’(x’)] =0 vVx' e Q0 =, (117)

8,%1,T)

where

(Cpigj = (C)prirg it Qup Qug Qi Q-

Since C is an isotropic tensor, by (48) we see that C' = C, and hence equation (117) is identical to
the first of (115). Similarly, we can verify u’ satisfy the second and third of (115) as well. We thus
conclude that u’ is also a solution of (115) if u is so. From the uniqueness theorem, we infer that

ux) =Qu(Qx) VxeQ&QeSon) = ux)=u/re,.

Therefore, the strain
SryZif | %5;,1, (118)

r r
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the stress

Uy, Ti X U i Uy
opi = Cpigjliq,; = 2“[(7),717 + 75131'] + )‘[(7)/7” =+ n7]5pi» (119)
and
. Up ) T3 Uy Uy Uy
div[CVu] = Cpigjug,ji = 2#[(7)/710],2' + 2#(7)71) + A[(7)/T + ”7],19
_ T Loy Uy ary” ury
= 2 Lol o+ (0 Y] ALY 7+ (0 1)) (120)

4 30 (i). (2pt) Start from (119). Show (120) in details.

Thus, the first of (115) implies

Uy 11 Uy
— H(—) =0.

() + (n+ 1))

From the theory of ordinary differential equation, we conclude that

Uy -

.
T Loy,
r n

where the constants Cp, C; are determined by the boundary conditions in (115).
4 30 (ii). (3pt) Find the constants C1,Cy in terms of py, pp, T'as Tp-

4 30 (iii). (3pt) Let n = 2 and ey = [—z2,x1]/r. Calculate the stress tensor in the frame
{e,,ep}, i.e., calculate the following matrix

Oryr  Orf €r-0€r €y 0€,
g = =
gor 009 €, -0€y €y -0€y

where the stress is given by (119) in the rectangular frame {e;, es}.

¢ 30 (iv). (2pt) Assume n = 2, rp, = cryq (¢ > 1), pp = 0 but p, # 0. What is g9 = ogg/pa at
r = a? Sketch the curve 699 = Ggp(c) below.
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8.3 Half-space problem —— Boussinesq’s solution

Formulation of the problem. Consider a homogeneous body with elastic stiffness tensor C in
the half space H = {x € IR" : z < 0}. Our problem is to solve for u: H — IR" (n = 3) such that

div(CVu) =0 on H,
(CVu)e, = t(xz,y) on O0H, (121)
|[Vu| =0 as z — —00.

Solution. Let k' = (ky, k), X' = (z,y) € IR"! be the in-plane wave vector and position vector,
respectively. Upon Fourier transformation on variable (z,y), the first of (121) can be written as

X . dig di d*a,
Cpaqﬂ(_uqkakﬁ) + Zcpaqt’ikadf; + ZCPSQBkBaTZq + Cp3q3?2q =0, (122)
where «, 8 € {1,2} are in-plane indices,
kg, ky,2) = / u(z,y, 2) exp(—ik’ - x')dxdy. (123)
Rnfl
Similarly, the second of (121) can be written as
iCp3gatigha + Cpgqgg = ty(ky, ky) = / tp(z,y) exp(—ik’ - x')dzdy. (124)
n—1
Denote by
qu = Cpgqg, qu = iCpaqgka (i.e., qu = icpgqgkg), qu = —Cpaqﬁkakﬁ. (125)
The equation (122) can be written as
d*a di )
quﬁ + (Rpq + qu)T; + Qpqliq = 0. (126)
Let
o1 Rjry ¢ = u (127)
T dz ’ T

Note that 7, = Rgptq+ qu% = 1Cp3qalgka + Cpgqg% is the Fourier transformation of the traction
(CVu)e,. By (126) and (127) we arrive at
d¢ ~T 'RT T! ]

5 Ho, H= [RTlRT—Q _RT-! (128)
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Thus, in general a solution to (122) can be expressed as
u= [17 0] exp(ZH)d)O? (129)
where the constant vector ¢g is determined by the boundary conditions at z — —oo and z = 0.

Example 3 For an isotropic material with the LAME constants p, X (c.f. (49)), the matrices Q,
R, T in Eq. (125) can be identified as

[ u 0O 0 0 0 ik
T=|0 p 0 CR=1| 0 0 Mk |,
| 0 0 2p+A ipky ipky, 0
[P+ (e NEE (o Nk 0
Q=- (W+Nhaky  plKP+p+NE 0 . (130)
i 0 0 plk'f?

From Egs. (128), direct calculations reveal that

0 0 —iky 0 0
0 0 —ik, 0 m 0
(Akzg ) (Akyg ) 0 0 0 ST
(A (At +
H(ky, ky) = 4u(u+/\)k3-“+ k2 u(2u+3k)ﬂkykz 0 0 0 :wA : (131)
2p+A y ( Q)SZQA iF2p)
(2u+3\)kyky Ap(p+ ky A
: #2,u+)\ - 20N “+ k:% 0 0 0 z(»ykizu)
i 0 0 0  —ik, —iky 0 |
The Jordan normal form of H(ky, ky) is (k. = |K'|)
k., 0 0 O 0 0 7
0 k, 1 0 0 0
B 0 0 k O 0 0 1
H(kz, ky) = P 0 0 0 —k, O 0 P
0O 0 0 0 —k 1
L0 0 0 O 0 —k]

where the column vectors in P € IR are the generalized eigenvectors. Note that the eigenvalues
of H(kg, ky) are £|K'| and the above decomposition is unique. By (129) we conclude that

u = (a+ zb)exp(k,2), (132)
and by (127)
7 = [Tb + (R + k., T)a+ 2(R" + k,T)b] exp(k.2) (133)
Plugging (132) and (133) back to (128) or (126) we find that for all z <0,
22T +E(R+RNH+ Qb+ [T+ kR +RT) +Qla+ (2k.T+R+RT)b =0,
which implies

2T +kR+RY)+Qb=0 (134)
2Tk, R+RT)+Qla+ 2k, T+R+RH)b=0
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Direct calculations show that the rank of k2T +k,(R+RT) + Q is two (because k, is an eigenvalue
of H(ky, ky), k2T + k(R + RT) + Q is necessarily singular) and equation (134) is equivalent to

bk — bky + ibsks = 0
biky — boky = 0 (135)
kyai + kyag —ik,a3 — Z(3 — 41/)[)3 =0

Further, the boundary condition (124) implies
Tb + (RT + k,T)a=t. (136)

Equations (135)-(136) have siz unknowns and siz equations. The coefficient matriz is non-singular
and hence they admit a unique solution for any given t. In particular, if t = [0,0,t,], we find that

_ k(1—20)E, kb,

ar = (2iuk§)A ) by = ik’
 ky(1-20)E, Kyl

CL2 - 21'“162 9 b2 - Qilujgza (]‘37)
_ (1-v)t. .

as = k. b3 2u°

Further, if t(x) = —Pd2(0)e,, then
t(ky,ky) = —Pe, ¥ (ky,ky) € IR

Thus, by (132) and (137) we obtain

kz(1—2v) ke
} 22’1/1]&‘22 Qiﬁkz
u(ky, ky,z) = —P y2(m;2y) exp(kz2) — P | 54— | zexp(kz2). (138)
(1) —L
ko K
Let
1 1 - - 2 1.2y1/2
0(0,9.2) = G /R R exp(ikew + ikyy + (k2 + k)2 2)dkydk,. (139)
Then, by (138) we arrive at
u(x,y,z) ! / u(ky, ky, z) exp(ikyx + ikyy)dkdk
= 75 9 x> ) X T x )
'Y, (271')2 R Y p vY Y
which, by (156), can be identified as
—(1-2v
Uy (Qu : T QLZQP,Z:E
—(1-2v
uy| =—P |52, | — P 220 | (140)
Uy (1:/) 0. — 320,22

To evaluate @, let r = (x% 4+ y?)?, cos O = (kyx + kyy)/rk, and the integral formula that for & € O,

/000 exp(t&)dt = —2, /OOO %exp(tf)dt = —logé&.
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Thus,

1 o) 2m
o(r,y,z) = s exp(ik,r cos O + k,z)d0dk,

log z 4 ircos0)df

log 22 + 12 cos® 0)do

and hence
z(R+2)
P 1 " TR
gp y = — . y(R+Z) y
’ 27 TR
P,z =

where R = (22 +r2)Y2. Finally, by (140) we conclude that for any (x,y,2) € H,

Ug P % + (1 B 21/) R(l%—z)
Yyl = Ay i +2(1 — ) R(I%—Z) : (141)
Uz —Z—(1-2v)%

From the above equation, if there is a distributed surface load p(x,y) in —e, direction on {x :
z = 0}, then the displacement is given by the Green’s formula

,7 l)(_l) ’ ( )
Uy . J‘P:cnyx +( 2V pr/yR,z)a:
Uy 47r,u fp ,y)(y y)+( —2v) pr/ R/y )y) , (142)
“ - prT* —2v) [ )

where

R =[z—2)+@y—y)* + "%
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¢ 31. Consider a homogeneous half space H = {x € IR® : z < 0}. For given k > 0, let
u: H — IR? be given by

u(x) = (a+ zb) exp(kz) exp(ikx), (143)
where a, b € IR? are independent of position x. Consider the equilibrium equation
div(CVu) =0 on H, (144)
where C is an isotropic stiffness tensor, i.e., the above equation is equivalent to
pAu+ (p+AN)V(V-u)=0 on H. (145)

(i) (3pt) Plug (143) into (145). Find the conditions on the vectors a and b such that (145) is
satisfied.

(ii) (3pt) Calculate the traction on the plane {x: z = 0} in terms of a, b, i.e., the quantity

t(z,y,2=0) = (CVu)eZ‘Z:O

(iii) (4pt) Assume the traction

(CVue.|,_, = t% exp(ikz),

z=0

where t0 = [t9,0,t9] € IR? is given. Solve for vectors a,b in terms of t°, k, u, A.
Y103
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8.4 Contact problem —— Hertz’s solution

Formulation of the problem. Consider a homogeneous body with an elastic stiffness tensor C
on a half-sphere Q = {x: 2% +y? + (2 + Ro)*> < R%,z > —Ry}. Assume the base of the body is
hold still, i.e., u=00onI'p =900 N{x: 2= —Rp} and  is initially in contact with a rigid plate I
at the point x = 0. Assume that there is no friction between the rigid plate and 2. Now we push
down the rigid plate I' by a small amount h in z-direction. We are interested in the elastic field,
i.e., solving for u: Q — IR3,

(div(CVu) =0 on €,
(CVu)n =0 on 90\ g,
u=0 on I'p, (146)

(x+ux))-e, <—-h VxeQ,
\ (Cvu)n = _p(x7 y)eZ on PC;

where the contact area

Fe = {(:Evya Z) A +UZ(ZL‘,y, Z) = _h} (147)

Solution. Let I'y, = {(z,y) : (z,y,2) € T'c} be the contact area in the current configuration
(projected to the xy-plane). Then for a point (x,y,z) € I'p, we have

2R ——RagTalg = ——(x . 148

5 Faplalp Ro( +y°) (148)

Since h << 1, the contact area is small compared with the curvature of 02 at the contact point.

Therefore, near the contact point, the solution to (146) is given by the BOUSSINESQ’s solution (142).
In particular,

1 _ 2 / /
uy(z,y,2=0) = — 47WV/F p(xrjy )dx'dy’, (149)

e,
where
=@ —a) + (y -y

From (147), (148) and (149), we have

1 1—2v p(x',y
- 2—]%0(362 +y?) — I /F ( 7 )dx’dy’ =-h V(z,y) €Tp. (150)

/
C
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The above equation is peculiar in the sense that we need to determined the unknown function
p(2’,y’) and the unknown domain I';, simultaneously. There is a general theory called the varia-
tional inequalities which addresses such kind of free-boundary problems, see e.g. FREEDMAN (1982).
Below, by our knowledge of potential theory and elliptic integrals, we solve such an equation which
includes (150) as a special case

1 / /
kiz? + koy? + / f(mi;y)dx’dy' =h V(z,y) €T, (151)
2 T T

where k1, k2 > 0 are two constants, f : I' = IR and T' C IR? are to be determined.

First, let us recall a theorem.
2

Theorem 4 Let Q = {x: > " - YL =1} be an ellipsoid in IR™. Consider a POISSON’s equation

Aplx) = —pral)  on I

where p € IR is a constant and xq = 1 on Q but vanishes otherwise. Then the solution

= —x')dx’ 152
x)=p [ ox—x)ax (152)
satisfies

o(x) = Dg — —;x - Qox Vx €, (153)

where ¢ is the Green’s function given by (110), the constant Dg > 0 and the symmetric matriz Qg
are given by (158) and (161), respectively.

Proof: By the Fourier method, we have that for any x € IR",

#00 = i [ pemial espiic- )k

)
- k®k _
VVp(x) = (27:; / |l({8|)2 xa(k) exp(ik - x)dk, (154)
where
Xa(k) = /XQ exp(—ik - x)dx.
Let

k:|k|7 lA{:k/kj? A= diag[alv"' 7a7’b]7
B, =A'0={Ax:x€Q}, S"!=0B,. (155)
Note that B,, is the n-dimensional unit ball centered at the origin, and S™~! the spherical surface

of the unit ball B, which is (locally) homeomorphic with (n — 1)-dimensional space.
Direct integration yields

n—1 R R
Tk / exp(ikk - (x — x1))dx1dkdk

Sn— 1
= / / k" 3/eXp (ik(AKk) - (A7'x — A7 %)) dx; dkdk
Sn— 1

- - (Ak) -1 )
Ak|k)" /ex A7 'x — A7 'xq))dx1dkdk
27r /sn 1/ |Ak|" Ak VAR J expURIAK] e 1))
det k -1 ~
= x)dk 156
p /S L apam e AT (156)
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where

. 1 oo .

9B, (k,x) = n/ k:”_3/ exp(ikk - (x — x1))dx1dk.
(2m)"™ Jo ;

In particular, if x = 0, we have that for any R € So(n),

A~

1 &0 .
9B, (k, O) = (271')774/0 knB/ eXp(—’lkk . Xl)Xmdk

1
(2m)"

/ k;”B/ exp(—ik(Rk)" - Rx1)dx1dk = gp, (Rk,0) = wi.  (157)
0 n

Thus, gz, (k,0) is in fact independent of k and
1 .

Dq = pdet(A)w / — 158
o = pdet(A)w s [AK2 (158)
Similarly, we have
kok Ak \
VVo(x) = —pdet(A — ¢, — A 'x)dk, 159
o) = —pdet(a) [ S (G AT (159)
where
. 1 o0 .
g5, (k,x) = / k”_l/ exp(ikk - (x — x1))dx1dk.
2m)"™ Jo v
4 32 (i). (4pt) Show in details the above equation (159) (as in (156)).
It is a fundamental property of spherical domain that
gjgn(f{,xl) = ngn(lA{,XQ) =: Wy Vx1,X9 € By,. (160)

That is, the function x +— gjgn (R,x) is a constant on B,. Further, choosing x = 0, by a similar
argument as in (157), we can show the constant ws is independent of k as well. Thus, we identify
kok -

Qq = pdet(A)wg/ dk, (161)

Sn—1 ‘AIA{|”

To find wy, w2, we consider the case € is the unit ball B,, and so A = 1. Immediately, we have

1 ~
DBn :wl/ = dk — wq :Do/‘5n71|,
sn—1 ’k|n—2
1 1 7.2 11 .2 11, n—1
Qs =-1, — = Pk = = 2dk = wy = 1/[S™7Y,  (162)
n nws9 Sn—1 Sn—1
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where |S"71| denotes the area of the spherical surface S~ !, and Dp,, Qp, are determined by

1
App, (X) = —XB,, vB, (x)=Dp, — —2x -Qp,x on B,. (163)
[ |

4 32 (ii). (3pt) Assume n = 3. Calculate the value of Dp, defined in (163).

Note that for any continuous function f: S"~! — IR,

Flloe = [ b Uk )Y
gn1 1 y hvmy B (1 _ ]%% N ]%721_1)1/2 1 n—1
P (L2 g2 iy
+/ Ul S Gl n=0) ) i i, (164)
Bu-1 (1 —kf — o —kp )2

We now continue our solution to (151). From (152)-(153), in three dimensional space (n = 3)

we have the identity

e 1
ir Jo @ — a2+ (y— g2+ (= — )]

1
dx'dy'dz = Dg — 2% Qaox. (165)

Now send ag — 0 while keep pas = 1. Then the domain 2 approaches to a flat elliptic area
I'={(z,y) : #2/a? + y*/a3 = 1} on the zy-plane, and we denote by

1 ~
Dr= lim Dq = ajasw; lim ~ ~ ~
P a0 0 T as0 Jon (a3R2 4 a3kE + a3k2) /2

1
= 2a1asw / ~ ~ - -
N s @R BRI - )

diydks, (166)

where the last equality follows from (164). Similarly, we have

Qr= lim Qq= diaglQf,QF, Q7). (167)

az=1/p—0

where

A 52 .
Qr = a1azwy lim 272 2i2 L 212
a3=0 Jgn-1 (afk? + a3k3 + a3k3)"/?

;2
= 2a1a2w2/ — _ L - -
By (aik7 + a3k3)"/2(1 — kf — k3)1/2

dieydks, (168)
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where k2 = 1 — k? — k3. Further, in this limit the Lh.s. of (165) can be written as

P 1 L
I dx'dy'd
as=1/p0 47 / [(z—2")*+ (y - Z/')2 + -t W

azz(x’, 1
= 1 dZ dz' dy'
az= i%—m@r//asz(x o @ —a)?+ (y— )2+ (2 — 2)?/2 sardy
1 Z(Ilay) I,
= — dx'd 169
o7 ol Pt -y 1o

where
2(z,y) = (1—2?/af — y?/a3)"/?.

¢ 32 (iii). (1pt) Explain in words why the last equality in (169) holds.

Therefore, taking into account (165)-(169), choosing z = 0 we arrive at

1 22, y) di'd — D 1.1 - y - 0
2 Jp @ — 22+ (y— )72 T r— 5 (@ra” +Qry’) (z,y) €T (170)

Comparing (170) with (151), we see that if for some [ € IR,
h=IDr, rk =I1Q%, Ky =I1Q3, (171)
then equation (151) is satisfied with
To=T, f@'y)=1z"y).

We remark that equation (171) determines aj, az and the constant [ uniquely.
In particular, if a; = a2 = ag, by (168) we see that (By (162) we = 1/4m)

1 k2 .
1 2 1
N = = > dkidks,
Qr = Qr 21ag /32 (k% + k%)3/2(1 _ k% — k%)l/Q 14R2
and
1 1 PO 1 (Y dt T
1 2
+ = = = = = dkidke = — = —,
Qr + Qr 2mag /32 (/@% + k%)l/Z(l — k% — k%)l/g 10h2 w o VI8 2a0

where the last integral is found by using Mathematica (which you should learn how to use). Simi-
larly, by (166), we find (By (162) wy = 1/8)

1 7Ta0

dikydky =

ao

Dp=% / . I
VT dn g, (R R)VR(1 k2 R2)1e

By (170), we obtain the formula that for T' = {(z,y) : 2% + y* < a3} and 2(z,y) = (1 — 2?/a} —
y2/a%)1/27

1 Z(x,’y/) / / mao T
o do'dy = =20 - -
o o @ — a2+ (y— )22 Y T 8a0($ +y) Ve (172)
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4 32 (iv). (6pt) Using the above formula (172) and the procedure outlined in (171), solve (150),
i.e., find the unknown I';, and p(2’, ). Further, let F = fF’c p(2’,y')dx'dy’. What is the functional

relation between F' and h? This relation, i.e., F' = F(h), is called the HERTZ contact force law.
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8.5 Inclusion problem —— Eshelby’s solution

Formulation of the problem. Let Q := {x: Y 2?/a? = 1} be an ellipsoidal inclusion.

Consider a homogeneous body with elastic stiffness tensor Cy in IR". We are interested in solving
for u: IR" — IR",

(173)

div(CoVu +P%q) =0 on IR",
[Vu| — 0 as |x| — oo,

where P¥ € IR"*" is called eigenstress. This problem is called the homogeneous ESHELBY’s inclusion
problem.

Solution. By Fourier transformation, we have

-1 R@ cof D(k)T Pk .

(%)n/ . det(D((fj)) /QeXp(Zk' b= 3) ke
k @ cof D(k)TP% (AR

st det(D(K))[AK[» P\ |AK|

Vu(x) =

A~

= —det(A) A~ 1x)dk

where
[D(K)lpg = [Colpigikiks, [D(k)]™" = cof D(k)"/ det(D(k)).

By (160), we find

x € (.

k ® cof D(k)TP%k -
Vu(x):—det(A)wg/ @ cofD(k) Pk o
st det(D(K))|AK[?

That is, inside the ellipsoidal inclusion €2, the induced strain is uniform and can be written as
Vu = -RP’ on (174)

where

[Rlpigj = det(A)L«JQ/ [COfD(lA{)T]pq(l;)i(l;)j dk

1pgr s (175)
si-1 det(D(k))| Ak

is called the ESHELBY’s tensor. The uniformity of the induced strain is now called the ESHELBY’s
uniformity property, which is remarkable since we solve a PDE but obtain a simple quadratic

solution.
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In particular, if Cy is isotropic with LAME constants p, A, by direct calculations we find the
above ESHELBY’s tensor can be written as

R=“2g - AT Ag
I 2+ A
where
S Z-»:detA/ M, S i-:detA/ M
[ l]pqy ( ) gn1 |Ak[” [ 2]1)!1] ( ) gn1 ]Ak|”

Note that the tensors S; and So depends only on the geometric properties of ellipsoid.
A critical observation made by ESHELBY in his famous 1957 paper is that the solution the
inhomogeneous inclusion problem

{div(C(x)Vu—i—P*XQ)—O on IR", Ol = {01 if x € Q,

_ 176
|Vu| =0 as |x| — oo, Cy ifxeQF (176)

if the eigenstress for the homogeneous problem PY is appropriately chosen. To see this, let us
formally rewrite equations (173)and (176) in a less concise form as

div[CoVu] =0 in Q°,
div[CoVu] =0 in Q, (177)
[CoVu + Pxq]n =0 on 01,
and
div[CoyVu] =0 in Q°,
div[C1Vu] =0 in Q, (178)
[C(x)Vu+P*xq)[n=0 on 09,

respectively, where [ -] denotes the jump across the 9. Clearly, a solution to (177) satisfies the
first two of (178) automatically since on €2, the first of (177) coincides with the first of (178), and
the uniformity of (174) guarantees the second of (178). Finally, to verify the last of (178), we
rewrite the last of (177) as

[CoVu™ — CoVu™ — PIn =0 on 09, (179)
and the last of (178) as
[CoVu' — C;Vu™ —P*In=0 on 99, (180)

where ut (u™) is the boundary value approached from the outside (inside) of Q. From (179) and
(174), we have

[CoVuTln = [CoVu~ 4+ P%n = [-CoRP + P'n on Q.
Plugging the above equation into (180), we verify that equation (180) is satisfied as well if
[(C; — Co)R + IPY = P, (181)

where I : IR™™"™ — IR™ " is the identity mapping, i.e., for any P’ € IR"*" IP° = PY. From
the definition of R (see (175)), we can show that the the above linear algebraic equation admits
a unique solution PY € IR, for any given Py, .. The above solutions are referred to as the
ESHELBY’s solutions.

¢ 33. Important physical quantities can be explicitly computed for the inhomogeneous inclusion
problem (176).
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(i)

(iii)

(iv)

(2pt) Calculate the elastic energy in terms of the Eshelby’s tensor R, which is given by

E(P) = =

Vu- C(x)Vu.
2 Rn

( Hints: use the divergence theorem

Vv~0:—/ v - divo.
Bn n

In particular, you may choose o = C(x)Vu + yoP*. )

Now let us consider a physical situation: let V' be a finite but large elastic body containing
the ellipsoidal inhomogeneity 2. Assume the body is subjected to a uniform applied stress
P% ¢ IR"X", i.e., the stress satisfies

sym

on=P°n=t on IV,

and the material properties are given by

C() C, ifxeq,
X) = _ _
Co ifxeQ=V\0

see the following figure.

(2pt) What are the governing equation and boundary conditions for the displacement?

(2pt) The displacement u may be written as
u=up+ uy, up = [C; ' PYx.

What is the governing equation and boundary conditions for u;?

(4pt) In particular, we notice that u; satisfies

(CoVu)n =0 on JV.
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Figure 3: An elastic body with an ellipsoidal inhomogeneity

Since V' is much larger than €2, to solve the governing equation for u;, we may replace V' by
IR™ and require the strain and stress approach to zero at infinity. Calculate the strain, i.e.,
Vuy, on Q in terms of the applied stress P% and the Eshelby’s tensor. (Hint: identify the
equivalent eigenstress P° for the homogeneous problem such that

div[CoVuy + PYq] = 0.

That is, find the relation between P® and P°.)
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(v) (3pt) Now let us calculate the total free energy of the system which can be defined as
1
F(C1,R;PY) = / Vu- C(x)Vu —/ u-Pn

2 Jv av
1 a

= / {Vu- [Co+ (C1 —Cp)xa)]Vu—Vu-P }
2 Jv
1

= E / {Vu . COVu 4+ Vu- (Cl — Co)XQ]Vu —Vu- Pa}

1%
1
= 2/ {P“ . CalPa +xoVu- (C; — Cyp)Vu — Vu- Pa}
\%
= ... (182)
Complete the rest of the calculations, i.e., obtain the functional relation F = F(Cy, R;P%).

(Hint: [, Vu-P® = [,(Cy'P?+Vu;) -P* = P*.Cy'P*+P. [, Vu; = P*-C;'P? Think
for a while about the last equality.)

(vi) (20pt, bonus problem) In 2D, assume Q = {(x,%),2%/a® + 3?/b*> = 1}, Cy (Cy) is isotropic
with Young’s modulus and Poisson’s ratio Ey,vy = 0.3 (Fy,v; = 0.3), and P* = diag]0, ¢].
Rewrite the above energy function as

f:f(EO,El,(I,b,t)
and define

1 1
AF(Eo, Bra,b,t) = F(Eo, Ey,a,b,1) + 5P C,'P* = 2/ Vu- (C; — Co)Vu.
Q

Plot the following curves using Mathematica or Matlab (submit your Matlab or Mathematica
codes if you choose to work on this problem):

Curvel : y1 = y1(b) =AF(Eg =1,E; =10,a = 1,b,t = 1),

Curve2 : y2 = y2(b) =AF(Eg =1,E; = 10,a = 1,b,t = —1),
=AF(Ey=1,E; =0.1,a=1,b,t =1),
=AF(Ey=1,E; =0.1,a=1,b,t = —1),
AF(Ey=1,E1,a=1,b=0.1,t =1),
AF(Ey=1,E1,a=1,b=0.1,t = —1),
AF(Ey=1,E1,a=1,b=10,t =1),
AF(Ey=1,E1,a=1,b=10,t = —1).

Curve3 : Ys = Y3
Curved : Ya = Y4

Curveb : Y6 = ye(F1

(

(

(
Curveb : ys = ys5(En

(

(

(

)
)
Curve’ : yr = y7(E1)
CurveS : ys = ys(E1)
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