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Entire Solutions of Nonlinear Elliptic Equations
Classifying entire solutions of semilinear elliptic equations

∆u + f(u) = 0 in RN

is a problem that has always been at the center of nonlinear PDE
research.
This is the context of various classical results in PDE literature like

Liouville Theorem

∆u = 0 in RN , |u| ≤ C =⇒ u ≡ C

Gidas-Ni-Nirenberg Theorem

∆u+f(u) = 0, u > 0 in RN , lim
|x|→+∞

u(x) = 0 =⇒ u(x) = u(|x−x0|)

Caffarelli-Gidas-Spruck Theorem

∆u + u
N+2
N−2 = 0, u > 0 =⇒ u = cN (

λ

λ2 + |x− x0|2 )
N−2

2



In this series of lectures, I will introduce our recent research
program of bringing geometry into the constructions and
classifications of entire solutions of some classical semilinear elliptic
equations.

Two objectives of this mini-course

•• uncover deep connection between geometry and nonlinear field
equations
•• introduce the gluing methods: finite dimensional as well as
infinite dimensional reduction method



Outline of Mini-course

Lecture 1: New Entire Solutions to Nonlinear Schrödinger
Equation: An Overview

(NLS) ∆u− u + u3 = 0 in RN

Lecture 2-3: Finite Dimensional Liapunov-Schmidt Reduction
Method and Applications to Finite Energy Solutions of (NLS)



Lecture 4: New Entire Solutions to Allen-Cahn Equation: An
Overview

(AC) ∆u + u− u3 = 0 in RN

Lecture 5-6: Infinite Dimensional Reduction Method and
Applications to High Dimensional Concentrations



Lecture One
Entire Solutions of Nonlinear Schrödinger Equations:

An Overview



Entire Solutions of NLS

This first lecture deals with entire solutions of

(NLS) ∆u− u + up = 0 in RN

Nonlinear Schrödinger equation (NLS)



Problem (NLS) arises as
•• standing wave of nonlinear Schrödinger equation

−√−1
∂u

∂t
= ∆u + |u|p−1u

Let u = eiλtv(x)
Then v satisfies

∆ v − λ v + |v|p−1 v = 0

λ can be scaled out to be one.
This is an important equation is soliton dynamics.



Or
•• Gierer-Meinhardt system of biological pattern formation



at = ε2∆ a− a +
ap

hq

τht = D∆ h− h +
ar

hs

Gierer-Meinhardt System





at = ε2∆ a− a +
ap

ξq

τξt = −ξ +

1
|Ω|

∫

Ω
ar

ξs

shadow System

Ward-Wei, Winter-Wei, Ni-Takagi-Yanagida, etc.

ε2∆u− u + up = 0, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω. (P)ε.

Ni-Takagi, Gui-Wei, Lin-Ni-Wei, Ao-Wei-Zeng etc.



I.1. Previous Known Entire Solutions

4 u− u + up = 0, u > 0 in R2 (NLS)

It is well-known that if we impose decaying assumption

(1) u(x) → 0 as |x| → +∞ uniformly

then Gidas-Ni-Nirenberg theorem implies that

(2) u is radially symmetric around some point x0.



Ground State

That is

u(x) = w(|x− x0|), w = w(r)

where w satisfies

w′′ +
1
r
w′ − w + wp = 0

w = w(r) – “ground state”
This solution is called spike. It has been shown to be unique
(Kwong 1991)



Ground State



Second Solution

Another solution, which is obvious, canonical one, is the
one-dimensional profile.

(3)

{
w′′ − w + wp = 0, w > 0 in R
w → 0 at +∞

Let u(x, y) = w(x) – solution to (NLS) with two “ends”

This solution is called front







Third Solution:Dancer’s Solutions

The third type of solution is the so-called Dancer’s solution. Such
solutions satisfy

{
u(x, y + T ) = u(x, y)
u(x, y) → 0 as |x| → +∞

for some T > 0
How to find such solutions?



Bifurcations:

Linearize problem (I) around w(x)

L[ϕ] = ϕxx + ϕyy − ϕ + pwp−1(x)ϕ

What are possible kernels?

L0(ϕ) = ϕxx − ϕ + pwp−1(x)ϕ

ϕxx − ϕ + pwp−1(x)ϕ = λϕ, ‖ϕ‖L∞ < +∞



Spectral Information in one-dimension

ϕxx − ϕ + pwp−1(x)ϕ = λϕ, ‖ϕ‖L∞ < +∞
• λ1 > 0, ϕ1 = (w(x))

p+1
2 = Z(x)

• λ2 = 0, ϕ2 = w
′
(x)

• λ3 > 0

λ1 = 1
4(p− 1)(p + 3),



Now we consider the full linearized operator

L(ϕ) := L0(ϕ) + ϕyy (1)

A simple computation shows that

wx(x), Z(x) cos
√

λ1y, Z(x) sin
√

λ1y (2)

satisfy L(ϕ) = 0. The following lemma shows these are the only
kernels.
Lemma (del Pino, Kowalczyk, Pacard, Wei) Let ϕ be a bounded
solution of the problem

ϕxx + ϕyy − ϕ + pwp−1(x)ϕ = 0 in R2 (3)

Then

ϕ(x, y) = c1wx(x) + c2Z(x) cos(
√

λ1y) + c3Z(x) sin(
√

λ1y) (4)



Proof: (sketch)
Consider the Fourier transform in the y-variable

ϕ̂(x, ξ) =
∫

ϕ(x, y)eiξydy

⇒ ϕ̂xx − ξ2ϕ̂− ϕ̂ + pwp−1(x)ϕ̂ = 0
by the spectral information

Support (ϕ̂(x, ·)) ⊂ {
√

λ1,−
√

λ1, 0}

By distribution theory

ϕ(x, y) = p0(x, y) + p1(x, y) cos(
√

λ1y) + p2(x, y) sin(
√

λ1y)

where pj are polynomials in y with coefficients depending on x

ϕ bounded ⇒ p0 = c1wx(x)
p1 = c2Z(x)
p3 = c3Z(x) ]



If we restrict our solution to have symmetry

u(x, y) = u(−x, y) even in x
u(x,−y) = u(x,−y) even in y

then ϕ(x, y) = Z(x) cos
√

λ1y is the only kernel.

Now rescaling the problem:

∆u + λ(−u + up) = 0 RN−1 × (0, 2π)



Applying the standard Crandall-Rabinowitz theory, Dancer (2001)
proved that there exist solutions to (I) with

wδ(x, y) := w(x) + δZ(x) cos
√

λ1y + O(δ2e−2|x|)

T = T1 + O(δ)



Dancer’s Solutions

More generally, the Dancer solutions have two parameters

wδ,τ (x, y) := w(x) +

δZ(x) cos
√

λ1y + τZ(x) sin
√

λ1y

+O((δ2 + τ2)e−2|x|)



Solutions with Wriggled two-ends



Variational characterization of Dancer’s solutions

Dancer’s solution actually continues as T > T1. Another way of
obtaining Dancer’s solutions is to consider the following problem in
a strip:

{
∆u− u + up = 0 in Σ := RN−1 × (0, L),
∂u
∂ν = 0 on ∂Σ, u > 0, u ∈ H1(Σ).

(5)

Here L is the parameter. We consider the so-called least energy
solutions. More precisely, let

c(L) := inf
u∈H1(Σ),u6≡0

∫
Σ(|∇u|2 + u2)

(
∫
Σ up+1)

2
p+1

. (6)



I If p < N+2
N−2 when N ≥ 3 and p < +∞ when N = 2, then

there exists a unique L∗ = π√
λ1

such that for L ≤ L∗, c(L) is

attained by a trivial solution and for L > L∗, c(L) is attained
by a nontrivial non-one-dimensional solution (Dancer’s
solutions).

I There exist L2 ≥ L∗ such that the least energy solution is
unique and nondegenerate for any L ≥ L2. As L → +∞, the
least energy solution approaches the spike solution in RN .

Berestycki-Wei 2010
N = 2, T = 2L gives Dancer’s solution.



Summary

We have known so far the following three types of entire solutions

1. Spike w(|x− x0|)

2. Front w(x)

3. Dancer’s solutions-Wriggled Front wδ,τ (x, y)



New Entire Solutions for (NLS)

We discuss three kinds of new entire solutions obtained since 2007

Solution I: Multiple (2m) ends front solutions (del
Pino-Kowalczyk-Pacard-Wei 2007)

Solution II: Triple-junction Y -shaped spike solutions (Malchiodi
2008)

Solution III: Front-Spike three end solutions (Santra-Wei 2010)



Solution I:Multiple Bump Line Solutions

We say that u, a solution of (NLS), is a multiple bump line with
2m ends if there exist 2m oriented half lines {aj · x + bj = 0},
j = 1, . . . , 2m (for some choice of aj ∈ R2, |aj | = 1 and bj ∈ R)
such that along these half lines and away from a compact set K
containing the origin, the solution is asymptotic to
wδj ,τj (aj · x + bj) for certain numbers δj , τj , j = 1, . . . , 2m, that is
there exist positive constants C, c such that:

‖u(x)−
2m∑

j=1

wδj ,τj (aj · x + bj)‖L∞(R2\K) ≤ Ce−c|x|. (7)



What we actually look for is a solution with a multiple bump line
solution of of (NLS) whose asymptotic behavior is determined by
m curves

γj = {(x, z) | x = fj(z)}, j = 1, . . . , m,

f1(z) ¿ f2(z) ¿ · · · ¿ fk(z)

which asymptotically resemble straight lines.



Figure: Multi-front solutions with even-ends.



Toda System

The functions fj defining the curves γj are not arbitrary and turn
out to be related to a second order system of differential equations,
the Toda system, given by

c2
pf
′′
j = efj−1−fj − efj−fj+1 in R, j = 1, . . . , m (8)

with the conventions f0 = −∞, fm+1 = +∞.

Moser (1978), Kostants (1979): Toda system is integrable, i.e., all
solutions can be written explicitly by 2m parameters.



Scaling Invariance

The Toda system has a special scaling property: We observe that if
f = (f1, . . . , fk) is a solution of this system, then function fε
defined by

fε = (fε,1, . . . , fε,k), fε,j(z) := fj(εz) + 2(j − m + 1
2

) log
1
ε
,

(9)
is also a solution.



The functions fj are asymptotically linear, namely the limits
νj = f ′j(+∞), exist and

ν1 < ν2 < · · · < νk,
k∑

j=0

νj = 0. (10)

For the rescaled solutions, ε small

fε,1(z) ¿ fε,2(z) ¿ · · · ¿ fε,k(z), f ′ε,j(±∞) = a±,jε,

and

fε,j(z) = a±,jε z + b±,j + 2(j − k + 1
2

) log
1
ε

+O((cosh z)−ϑε)

(11)

as |z| → +∞, for certain scalars a±,j , b±,j and ϑ > 0.



Deficiency Space

Let χ+ (resp. χ−) be a smooth cutoff function defined on R which
is identically equal to 1 for z > 1 (resp. for z < −1) and
identically equal to 0 for z < −1 (resp. for z > 1) and additionally
χ− + χ+ ≡ 1. With these cutoff functions at hand, we define the
4 dimensional deficiency space

D := Span {χ±(z), z χ±(z)} , (12)

and, for all µ ∈ (0, 1) and all θ ∈ R, we define the space C2,µ
θ (R) of

C2,µ functions h which satisfy

‖h‖C2,µ
θ (R)

:= ‖(cosh z)θ h‖C2,µ(R) < ∞ .



Theorem
(del Pino-Kowalczyk-Pacard-Wei 2007) Assume that N = 2 and
p > 2. Given m ≥ 2, for any sufficiently small number ε > 0, there
exists a 4m parameter family of multiple bump line solutions of
equation

∆u− u + up = 0 in R2 (NLS)

with 2m ends. Their asymptotic profiles are determined by m
curves

γε,j = {x = fε,j(z) + hε,j(εz)}.

Here fε is the rescaled solutions of Toda system. Functions
hε,j ∈ C2,µ

θ (R)⊕D representing small perturbations satisfy

‖hε,j‖C2,µ
θ (R)⊕D

≤ C εκ

with some constants θ, κ > 0.



Remark 1: Moduli Spaces

Each bump line of this solution (represented by one curve γα,j)
consists of three parts: two Dancer ends and a middle ”connector”
which is a curved piece of the homoclinic inserted between the
wriggling Dancer pieces. Each of the 2m Dancer ends depends on
2 free parameters. Each curve γα,j depends on 2 initial conditions
for the Toda system. Thus in all there are 4m Dancer parameters
and 2m initial conditions for the Toda system. This gives 6m
parameters of which 2m Dancer parameters must be adjusted at
the end. As a consequence we obtain 4m parameter family of
solutions.
dimension of the multiple 2m end solutions: 4m



Remark 2:Energy Point of View:

w′′ − w + wp = 0

E[u] = 1
2

∫

R
|∇u|2 +

1
2

∫

R
u2 − 1

p + 1

∫

R
up+1

u ≈
k∑

j=1

w(x− aj)

E[u] ≈ KI[w]−
∑

i6=j

e−|ai−aj | + h.o.t.

No stationary points



Now we extend it to R2

Choose u ≈
k∑

j=1

w(x− fj(y))

Then E[u] = 1
2

∫

R2

(|∇u|2 + u2)− 1
p + 1

∫

R2

up+1

is not well-defined. However, we can define a renormalized energy

E[u] =
∫ L

−L

∫

R
[....]

≈ LkI[w] + cL

+
1
2

k∑

j=1

|ḟj |2 −
∑

i6=j

e−|fi−fj |

︸ ︷︷ ︸
I[f1, ..., fk]

I[f1, ..., fk] has stationary points ⇐⇒ Toda system



Bridge

The scaling invariance of the Toda system

fε,j(z) := fj(εz) + 2(j − m + 1
2

) log
1
ε

provides a natural bridge between the NLS and Toda system.

∆u + u− u3 = 0
in R2 ←→ Toda System

in R1



Proof

1. Infinite-dimensional reduction method

2. Modulli space technique

3. theory on Toda system

I will explain this in Lecture 6—(the role of Jacobi-Toda system)



Solution II:

Malchiodi, 2008 constructed another new kind of solutions with
three rays of spikes.

u(x, z) ≈
3∑

j=1

+∞∑

i=1

w((x, z)− iL~lj) (13)

where ~lj , j = 1, 2, 3 are three unit vectors satisfying some
balancing conditions (Y-shaped solutions). Here w is the unique
solution to the two dimensional entire problem

∆w − w + wp = 0, w = w(r), w ∈ H1(R2). (14)

Proof: finite dimensional reduction method (see Lecture Two)



Figure: Multi-bump solutions with Y shape.



Malchiodi’s solution: Three lines meetings a common point, the
angle between the lines must be large than 2π

3 .

AO-Musso-Pacard-Wei 2012: the existence of positive solutions
with any number and any directions of rays.



Solution III: Coexistence of Fronts and Spikes

Santra-Wei 2010: find entire solutions with coexistence of spikes
and fronts

u(x, z) = w(x− f(z)) +
∞∑

i=1

w((x, z)− ξi~e1) (15)

for suitable large L > 0 and ξi’s are such that ξ1 − f(0) = L and

ξ1 < ξ2 < · · · < ξi < · · ·

and satisfy ξj = jL + O(1) for all j ≥ 1.



Interaction of Spikes and Fronts

{
f ′′(z) = ΨL(f, z) in R
f(0) = 0, f ′(0) = 0,

(16)

where ΨL(f, z) is a function measuring the interactions between
bumps and fronts and asymptotically

ΨL(f, z) ∼ ((f − L)2 + z2)−
1
2 e−

√
(f−L)2+z2

.



Theorem
(Santra-Wei 2010) Let N = 2. For p > 2 and sufficiently large
L > 0, (I) admits a one parameter family of positive solution
satisfying





uL(x, z) = uL(x,−z) for all (x, z) ∈ R2

uL(x, z) ∼
(

wδ(x− f(z)− hL(z), z)+
∞∑

i=1

U((x, z)− ξi~e1)
)

(17)



Figure: Front-Spike Solution



Figure: Front-Spike-Front Solutions



Entire Sign-Changing Finite Energy Solutions

∆u− u + u3 = 0 in RN (NLS).

Finite Energy

u ∈ H1(RN ) =⇒ lim
|x|→+∞

u(x) = 0

Obviously (NLS) is equivariant with respect to the action of the
group of isometries of RN , it is henceforth natural to ask whether
all finite energy solutions of (NLS) are radially symmetric.
Indeed this is case for positive solutions by the classical result of
Gidas-Ni-Nirenberg 1981.
Therefore, nonradial solutions, if they exist, are necessarily
sign-changing solutions.



Sign-Changing radial solutions

•• Berestycki-Lions 1983, Struwe 1984: the existence of infinitely
many sign-changing radial solutions—variational methods

•• Conti-Merrizi-Terracini 2003, : the existence of infinitely many
sign-changing radial solutions—parabolic flow method

•• T. Weth (thesis 2005):the existence of infinitely many
sign-changing radial solutions—Nehari manifold method

•• Wei-Yao 2011: uniqueness (and nondegeneracy) of
sign-changing radial solutions when N+2

N−2 − ε < p < N+2
N−2



Open Question

existence of non-radial sign-changing solutions?

{
∆U − U + |U |p−1U = 0 in RN

lim|x|→+∞ U(x) = 0



Sign-Changing Nonradial Solutions

•• Bartsch and Willem 1994: the existence of infinitely many
sign-changing solutions in dimension N = 4 and N ≥ 6.
The key idea is to look for solutions invariant under the action of
O(2)×O(N − 2) ⊂ O(N) to recover some compactness property.

RN = Rm × Rm × RN−2m

N = 4 or N ≥ 6

U(x
′
, x

′′
, x

′′′
) = U(|x′ |, |x′′ |, |x′′′ |)

U(|x′ |, |x′′ |, |x′′′ |) = −U(|x′′ |, |x′ |, |x′′′ |)
variational method: Lijusternik-Schnirlman category theory

•• Lorca and Ubilla 2003: N=5



Low Dimensions

Open Question
Are there infinitely many sign-changing nonradial solutions in
dimensions
N=2, 3?

Note that N = 2 or 3 is the physically relevant dimension.
Klein-Gordon equation

{
∆U − U + U3 = 0 in R2

lim|x|→+∞ U(x) = 0
(18)
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Note that N = 2 or 3 is the physically relevant dimension.
Klein-Gordon equation

{
∆U − U + U3 = 0 in R2
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(18)



First Result

Musso-Pacard-Wei (2009) construct unbounded sequences of
solutions of (NLS) in any dimensions N ≥ 2.
The solutions we obtain are nonradial, have finite energy and are
invariant under the action of Dk ×O(N − 2) where Dk ⊂ O(2) is
the dihedral group generated by the rotation of angle 2π/k, for
k ≥ 7.
Moreover, these solutions are not invariant under the action of
O(2)×O(N − 2) and hence they are different from the solutions
constructed by Bartsch-William, Lorca-Ubilla



Building Blocks

Our building block is the unique radially symmetric (in fact radially
decreasing) positive solution of

∆w − w + wp = 0, w > 0 in RN , w ∈ H1(RN )

lim
r→∞ er r

N−1
2 w = cN,p > 0, and lim

r→∞
w′

w
= −1 , (19)

The function w together with its translations will constitute the
building blocks of our construction.



Nonradial Finite Energy Solutions

Theorem (Musso-Pacard-Wei 2009) Let k ≥ 7 be a fixed integer.
Then there exist (mi)i and (ni)i, sequences of integers tending to
+∞, and ui, a sequence of nonradial, sign-changing solutions of
(NLS), such that

ui =
mi∑

i=1

w(x− z+
i )−

ni∑

j=1

w(x− z−j ) + o(1)

Moreover, the solutions ui are invariant under the action of
Dk ×O(N − 2) but are not invariant under the action of
O(2)×O(N − 2).



Positive Bump: w



Negative Bump: w



Figure: The location of the bumps. Here k = 7,m = 8, n = 4.



Let m be the number of positive bumps, n be the number of
negative bumps, and l be the distance between positive bumps.
Then the following relation hold:

2n− 1
m

= 2 sin
π

k

(
1− ln

(
2 sin

π

k

)
`−1 + O(`−2)

)
. (20)

l ≈
2n−1

m − 2 sin π
k

− ln
(
2 sin π

k

) (21)

mi, ni → +∞

li → +∞



Symmetry Class

The solutions constructed by Musso-Pacard-Wei are invariant
under a large group of symmetries. More precisely, they will enjoy
the following invariance :

u(x) = u(R x), for all R ∈ {I2} ×O(N − 2) , (22)

also
u(Rk x) = u(x) and u(Γx) = u(x) , (23)

where Rk ∈ O(2)× {IN−2} is the rotation of angle 2π/k in the
(x1, x2)-plane and Γ ∈ O(2)× {IN−2} is the symmetry with
respect to the hyperplane x2 = 0. Here In denotes the identity in
Rn.



The nonradial finite-energy solutions constructed by
Bartsch-Willem has the symmetry

O(2)×O(N − 2)

The nonradial finite energy solutions in Theorem 1 has the
symmetry

Dk ×O(N − 2)

In view of these results, a natural question is the following:

Do all solutions of

(KG) ∆u− u + u3 = 0 in R2, u ∈ H1(R2)

have a nontrivial group of symmetry ?



If we drop the finite energy assumption, then the answer is Yes.
For example consider positive solutions

(KG) ∆u− u + u3 = 0 in R2, u > 0

•• Malchiodi 2009: constructed positive (infinite energy) solutions
of (KG) by perturbing a configuration of infinitely many copies of
the positive solution w arranged along three rays meeting at a
common point. The solutions he has constructed are bounded and
possess No symmetry but they have infinite energy.



(KG) ∆u− u + u3 = 0 in R2, u ∈ H1(R2)

Does the finite energy assumption or the decaying condition

lim
|x|→+∞

u(x) = 0

impose some kind of symmetry on the solutions?



Surprisingly, the answer to this question is negative. In fact, we
prove the :

Theorem (Ao-Musso-Pacard-Wei 2012): There exist infinitely
many solutions of (KG) which have finite energy but whose group
of symmetry reduces to the identity.

Ao-Musso-Pacard-Wei 2012: start with any planar weighted
network which is balanced, flexible and closable, sign-changing
nonradial solutions can be built.

Lecture Two-Three: we will discuss these constructions, using
finite dimensional reduction method
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An example of nonsymmetric network.



The blue and red dots correspond to the set of points in which
positive/negative spikes are placed.



Summary

New (and old) Entire Solutions to

∆u− u + |u|p−1u = 0 in RN (NLS).

I Ground states (spikes)

I front solutions

I Dancer’s solutions

I multiple 2m end solutions (del Pino-Kowalczyk-Pacard-Wei
2007)

I Y−shaped bump lines (Malchiodi 2007)

I Front-spike three end solutions (Santra-Wei 2010)

I Sign-Changing finite energy solutions (Musso-Pacard-Wei
2009, Ao-Musso-Pacard-Wei 2012)



PDE and Geometry

One of the striking features of all the existence results, which are
purely PDE result, is that their counterparts can be found in
geometric framework: the analogy between the theory of complete
constant mean curvature surfaces in Euclidean 3-space and the
study of entire solutions of I.
CMC surfaces in R3: mean curvature =Constant
Examples: spheres, cylinder



Delaunay Surfaces

Embedded constant mean curvature surfaces of revolution were
found by Delaunay in the mid 19th century. They constitute a
smooth one-parameter family of singly periodic surfaces Dτ , for
τ ∈ (0, 1], which interpolate between the cylinder D1 = S1(1)× R
and the singular surface D0 := limτ→0 Dτ , which is the union of
an infinitely many spheres of radius 1/2 centered at each of the
points (0, 0, n) as n ∈ Z.



The Delaunay surface Dτ can be parametrized by

Xτ (x, z) = (ϕ(z) cosx, ϕ(z) sin x, ψ(z)) ∈ Dτ ⊂ R3,

for (x, z) ∈ R× R/2πZ. Here the function ϕ is smooth solution of

(ϕ′)2 +
(

ϕ2 + τ

2

)2

= ϕ2,

and the function ψ is defined by

ψ′ =
ϕ2 + τ

2
.



When τ = 1, the Delaunay surface is nothing but a right circular
cylinder D1 = S1(1)× R, with the unit circle as the cross section.
This cylinder is clearly invariant under the continuous group of
vertical translations, in the same way that the single bump-line
solution of (I) is invariant under a one parameter group of
translations. It is then natural to agree on the correspondence
between

The cylinder
D1 = S1 × R ←→ The single bump-line

(x, z) 7−→ w(x)
.



Inspection of the other end of the Delaunay family, namely when
the parameter τ tends to 0, suggests the correspondence between

The sphere
S1(1/2)

←→ The radially symmetric solution

(x, z) 7−→ U(
√

x2 + z2)
.



More generally, there is a natural correspondence between

Delaunay surfaces
Dτ

←→ Least energy solutions
(x, z) 7−→ wL(x, z)

.

The Jacobi operator
J1 = 1

ϕ2

(
∂2

x + ∂2
z + 1

) ←→ The linearized operator
L = ∂2

x + ∂2
z − 1 + pwp−1 .



The ground state 1 of
∂2

x + 1
←→ The first eigenfunction Z(x) of

∂2
x − 1 + p wp−1 ,



Multiple-end
solutions to (I)

of DKPW
←→

Connected Sums
Cylinders

of Mazzeo-Pacard, Pollack
,



Y−shaped
solutions to (I)
of Malchiodi

←→
Noncompact Embedded

CMC
of Kapoulous

,



Front-Spike
solutions to (I)
of Santra-Wei

←→
End-to-End

Gluing of CMC of
of Mazzeo-Pacard, Pollack

,



Sign-Changing
finite energy solutions to (I)

of Musso-Pacard-Wei
←→

Immersed
CMC surfaces
of Kapoulous

,



However

Toda
System

←→ ??
????

,



We have established an intricate correspondence between the study
of entire solutions of Nonlinear Schrodinger Equation and the
theories of constant mean curvature surfaces (CMC):

Study of Entire Solutions of
Nonlinear Schrodinger Equation

∆u− u + u3 = 0
in RN

←→
Theory of

Toda System or
Constant Mean Curvature

Surface (CMC)



Open Question I

In CMC theory, the Delaunay surfaces form a continum of
solutions, depending on a parameter τ–the necksize, or the period
L.

In NLS, we have found for the existence of nontrivial least energy
solutions of period L > L1 (Berestycki-Wei 2010)

{
∆u− u + up = 0 in Σ := RN−1 × (0, L),
∂u
∂ν = 0 on ∂Σ, u > 0, u ∈ H1(Σ).

Question: Are these least energy solutions continuous in L?



Open Question II

In CMC theory, it has been proved by Koveraar-Kusner-Solomon
(JDG 1989) that
The only embedded CMC surfaces in R3 with two ends are
Delaunay surfaces

The corresponding PDE Conjecture is:
The only solutions to ∆u− u + up = 0 in R2 that decays uniformly
in y as |x| → +∞ are Dancer solutions, i.e. periodic in the other
direction
This can be considered as NLS Gibbons’ Conjecture

(Axially symmetry result by Gui-Malchiodi-Xu 2010)



Open Question III

∆u− u + u3 = 0 in R2

Solutions with fronts (one-dimensional concentrations) and spikes
(zero-dimensional concentrations) are constructed.

∆u− u + up = 0 in RN , N ≥ 3

Question: Are there solutions concentrating on k−dimensional
sets? What is the underlying geometry?

A natural guess is k−dimensional minimal manifolds in RN . But
the proofs remain completely open.



Some Applications to real Physical Models



Application I: magnetic Ginzburg-Landau equations

The previous constructions for (NLS) can actually be applied to
real physical problems.
Ginzburg-Landau energy functional

EGL(ψ,A) =
1
2

∫

R2

|∇Aψ|2 + (∇×A)2 +
λ

2
(|ψ|2 − 1)2, (24)

(mGL)
{ −∆Aψ + λ(|ψ|2 − 1)ψ = 0
∇×∇×A− Im(ψ̄∇Aψ) = 0

called the magnetic Ginzburg-Landau (mGL) equations.



Here λ > 0 is a constant depending on the material in question:
when λ < 1/2 or > 1/2, the material is of type I or II
superconductor, respectively; ∇A = ∇− iA is the covariant
gradient, and ∆A = ∇A · ∇A. For a vector field A, ∇×A is the
scalar ∂1A2 − ∂2A1 and for scalar ξ, ∇× ξ is the vector
(−∂2ξ, ∂1ξ).
We consider here configurations satisfying the superconducting
boundary condition

|ψ(x)| → 1 as |x| → ∞.



Gauge-Invariance

Equations (mGL), in addition to being translationally and
rotationally invariant, have translational and gauge symmetries:
solutions are mapped to solutions under the transformations

ψ(x) 7→ ψ(x− z), A(x) 7→ A(x− z)

for any z ∈ R2, and

ψ 7→ eiγψ, A 7→ A +∇γ

for twice differentiable γ : R2 → R.



To date, the only non-trivial, finite energy, rigorously known
solutions to equations (mGL) on all of R2 are the radial and
equivariant solutions of the form u = (ψ(n), A(n)), with

ψ(n)(x) = fn(r)einθ and A(n)(x) = an(r)∇(nθ) (25)

called n− vortices. Here (r, θ) are the polar coordinates of the
vector x ∈ R2 and n = deg ψn is an integer.

{
1
r∂r(r∂rfn)− n2fn

r2 (1− an) + λ
2fn(1− |fn|2) = 0.

r∂r

(
∂ran

r

)
+ f2

n(1− an) = 0.



One has the following information on the vortex profiles fn and an:
0 < fn < 1, 0 < an < 1 on (0,∞); f ′n, a′n > 0; and
1− fn, 1− an → 0 as r →∞ with exponential rates of decay. In
fact,

fn(r) = 1 + O(e−mλr) and

an(r) = 1 + O(e−r) with

mλ := min(
√

2λ, 2).

At the origin, fn ∼ crn, an ∼ dr2 (c > 0, d > 0 are constants) as
r → 0.



By Gauge-invariance, we also have the following families of
solutions

ψnzγ(x) = eiγ(x)ψ(n)(x− z) Anzγ(x) = A(n)(x− z) +∇γ(x)
(26)

where n is an integer, z ∈ R2 and γ : R2 → R.



A result of the invariance is that the dimension of the kernel is
+∞:

(
∂xjψ
∂xjA

)
, j = 1, 2,

(
iχψ
∇χ

)



Previous Results

Non-magnetic GL: ∆u + (1− |u|2)u = 0
works of Bethuel-Brezis-Helen, FH Lin-Rivier, Serfaty, ...
In the case of the Ginzburg-Landau equation on bounded domains,
non-radial non-magnetic solutions have been found by
Bethuel-Brezis-Helen, Lin-Lin and non-radial magnetic solutions
have been found by Sandier and Serfaty. This is due to the
boundary forces which keep repelling vortices within the bounded
domain.

In the case of the nonmagnetic Ginzburg-Landau equation on R2,
Ovchinnikov and Sigal (2004) conjectured by numerical evidence
that for the non-magnetic Ginzburg-Landau equations on the
whole plane, non-radial solutions do exist.



Jaffre-Taubes Conjecture

In the famous book by Jaffre-Taubes

Vortices and Monopoles

they stated that the finite energy assumption is too rigid and
conjectured

Conjecture The only stationary multi-vortex of degrees ±1 for the
magnetic Ginzburg-Landau equation is the radially symmetric
profile.



Results: Finite-energy non-radial magnetic vortex solutions

Theorem (Ting-Wei 2011) Fix λ > 1/2 and an integer k ≥ 7.
There exists a sequence, (ui)i≥0 := (ψi, Ai)i≥0, of non-radial
degree-changing solutions to (mGL) containing kmi vortices,
mi →∞, invariant under rotations by 2π

k (but not by rotations in
O(2) in general) and reflections in the x2 = 0 line. Each ui has
finite-energy of the form

EGL(ui) = kmiEGL(v•) + o(1) as mi →∞, (27)

where v• = v±1 is the +1 or −1 degree vortex.

analogous result of Musso-Pacard-Wei for (NLS)
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Finite Energy Solutions Without Any Symmetry

Theorem (Ao–Pacard-Ting-Wei 2012) Fix λ > 1/2 and an integer
k ≥ 7. Let Γ be a balanced, flexible, closable network. Starting
with this graph, there exists a sequence, (ui)i≥0 := (ψi, Ai)i≥0, of
non-radial degree-changing solutions to (mGL).

analogous result of Ao Musso-Pacard-Wei for (KG)
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Key Elements of Proofs

1. The stability of degree ±1 vortex to (mGL) was proved by
Gustfason-Sigal (2004): The kernel conists exactly the
translational modes and the gauge-part

(
∂xjψ
∂xjA

)
, j = 1, 2,

(
iχψ
∇χ

)

2. The interaction between vortices is exponentially small.

3. A major problem is how to deal with the gauge-invariance
kernel, which is infinite-dimensional.



Vortex Filaments and Magnetic Ginzburg-Landau system in
RN , N ≥ 3

There is an extension of magnetic Ginzburg-Landau system in
higher dimensions RN , N ≥ 3.
Edward Witten, From superconductors and four-manifolds to weak
interactions, Bull. Amer. Math. Soc. 44 (2007), 361-391
We start by introducing the following the notations:

1. By A = Ajdxj we denote the magnetic field vector potential
A. Thus A is a 1-form in RN , N ≥ 2.

2. By F = dA we denote the exterior derivative of A (2-from).

3. We introduce a 1 form dA = d− iA, where d is the exterior
differentiation.

4. For a k-form on RN by ?ω we denote the Hodge star
operation.



1. We define the magnetic field B = ?F . By definition
|B|2 = ?F ∧ ?F . In general, when ω is a k-from we agree
that |ω|2 = ?ω ∧ ?ω.

2. We introduce a scalar complex field u : RN → C.

3. The magnetic Ginzburg-Landau energy functional is defined
by:

EGL(B, u) =
∫

RN

{1
2
|B|2 +

1
2
|dAu|2 +

λ

8
(1− |u|2)2} dx.

(28)

Here λ > 0 is a parameter.



The Euler-Lagrange equation of this system takes form:

?d ? F +
i

2
? ?{ūdAu− udAu} = 0,

?dA ? dAu +
λ

2
u(1− |u|2) = 0.

(29)



Gauge invariance

The fundamental property of the Ginburg-Landau system, which
has very important consequences for us, is its invariance with
respect to the gauge transformation:

(A, u) 7−→ (A +∇χ, ue iχ), χ : RN → R, (30)

where with some abuse of notation we identify ∇χ with a 1-form
∂xjχdxj .



Note that the generator of the gauge transformation is:

gχ ≡ (∇χ, iχu), χ : RN → R. (31)

Of course (mGL) is also invariant with respect to translations of
RN :

(A(x), u(x)) 7−→ (A(x + v), u(x + v)), v ∈ RN . (32)

The generator of this group is:

Zj ≡ (∂xjA, ∂xju), j = 1, . . . , N. (33)

These two invariances play a crucial role in the theory of the
linearized Ginzburg-Landau operator.



Coulomb Gauge
Let us now mention one important choice of gauge, called the
Coulomb gauge, which is obtained by taking ξ such that

d ? (A +∇ξ) = d ? A + ∆ξ = div A + ∆ξ = 0.

Denoting A = A +∇ξ, u = e iξu we get the Ginzburg-Landau
system in the Coulomb gauge:

(−1)N∆A + ? ?
i

2
{udAu− udAu} = 0,

?dA ? dAu +
λ

2
u(1− |u|2) = 0.

(34)

Note that the first equation can be written as

∆A + Im
(
u(∇− iA)u

)
= 0, A = (A1, . . . , AN ),

and the second is:

(∇− iA) · (∇− iA)u +
λ

2
u(1− |u|2) = 0.



Pohozaev identity

Let (, ) be a solution of the Ginzburg-Landau system in the
Coulomb gauge. Let X = Xj∂xj be a vector field in RN . Then it
holds:

div
∑

k

{1
2
|∇k|2X −X(k)∇k}+ div {(1

2
|d2
|

+
λ

8
(1− ||2)2)X − 1

2
X()d − 1

2
X()d}

=
1
2

∑

k

|∇k|2div X − 1
2

∑

k

(∂xl
Xm + ∂xmX l)∂xlk∂xmk

+ {1
2
|d2
| +

λ

8
(1− ||2)2}div X

− 1
2
{∂xj (d)l + ∂xj (d)l}∂xl

Xj .

(35)



The balance of forces for the two dimensional vortices

Let us assume that we have a solution (A, u) of the
Ginzburg-Landau system in R2 with k vortices located at points
{zj}j=1,...k ⊂ R2. The degrees of these vortices will be denoted by
nj , j = 1, . . . k and the total degree by n =

∑
j nj .

A consequence of Pohozaev identity is

∑

j

njzj ·X = 0, (36)

for all constant vector fields X in R2, which is the balance of
forces formula for the k vortex solution.



Toda system and Vortex Filaments

Theorem (Kowalczyk-Wei 2012) Let λ > 1/2. For any m ≥ 1
there exists εm > 0 such that for any ε ∈ (0, εm] there exist: a set
Λε

4m = {λε
1, . . . , λ

ε
4m} of 4m affine-lines with dihedral symmetry,

and a solution (uε, Aε) of the magnetic Ginzburg-Landau system
with 4m + 1 vortex lines such that the following holds:

(uε, Aε)−(A(n0)+
∑

j

A
(nj)
λε

j
, u(n0)

∏

j

u
(nj)
λε

j
)(x) → 0, |x| → ∞, nj = (−1)j .

Above (A(n0), u(n0)) is the standard vortex line of degree n0 = ±1
centered at the x3-axis.
In addition, if by eε

j we denote the direction vectors of the
half-lines λε

j then

eε
j · (0, 0, 1) = O(ε), ε → 0.



Toda system in R3

Let ~fj be a curve in R3. The Toda system, governing the dynamics
of vortex filaments, is described by the following (nonlocal) ODE

~f
′′
j = ∂ν(ninj

∑

i6=j

e−d(~fi, ~fj))

The Toda system is an expression of the balance of the normal
forces resulting from the interactions. The tangential forces are
balanced because of the Pohozhaev identity.

When we have dihedral symmetry or reflectional symmetry this
system can be reduced to the one-dimensional Toda system.

f
′′
j = e−(fj−fj−1) − e−(fj+1−fj)



Other Physical Models

I Chern-Simons-Higgs

ECSH(ψ, A) =
1
2

∫

R2

|∇Aψ|2+µ2

4
(∇×A)2

|ψ|2 +
λ

2
|ψ|2(|ψ|2−1)2.

Self-dual case: Yang, Caffarelli-Yang
Non-self-dual case: radial case Chen-Spirn
Infinitely many nonradial solutions Ao-Pacard-Ting-Wei 2013

I Yang-Mills-Higgs

EY MH(ψ, A) =
1
2

∫

R3

{|FA|2 + |dAψ|2 +
λ

4
(|ψ|2 − 1)2}.

I Gauged Harmonic Map

I Kadomtsev−−Petviashvili I equation
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Allen-Cahn Equation

In lectures 4 to 6, we consider entire solutions of the Allen-Cahn
equation

(AC) ∆u + u− u3 = 0 in RN

Euler-Lagrange equation for the energy functional

J(u) =
1
2

∫
|∇u|2 +

1
4

∫
(1− u2)2

u = +1 and u = −1 are global minimizers of the energy
representing, in the gradient theory of phase transitions, two
distinct phases of a material.



1. Background

Equation (AC) arises in the gradient theory of phase transitions by
Cahn-Hilliard and Allen-Cahn, in connection with the energy
functional in bounded domains Ω
Jε(u) = ε

2

∫
Ω |∇u|2 + 1

4ε

∫
Ω(1− u2)2, 1

|Ω|
∫
Ω u = me

whose Euler-Lagrange equation corresponds precisely to
ε2∆u + u− u3 = λ in Ω, ∂u

∂ν = 0 on ∂Ωe

I Function F (u) = 1
4(1− u2)2 has two minima of equal depth

(double well potential).

I u = −1 and u = +1 represent two phases

I The gradient term penalizes sharp transition between the
phases (phase transitions).
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Phase Separation



Γ-Convergence

The theory of Γ-convergence developed in the 70s and 80s, showed
a deep connection between this problem and the theory of
minimal surfaces,

•• Modica-Mortola 77
•• Modica 87
•• Kohn-Sternberg 89
In fact, the functional Jε converges in suitable sense as ε → 0 to
the perimeter functional of the limiting interface between the stable
phases u = 1 and u = −1, so that roughly speaking, interfaces of
local minimizers of Jε are expected to approach minimal surfaces.

Jε[u] ∼ c0Perimeter of {u = 0}

Rigorous Results Caffarelli-Cordoba 95, 2006, Roger-Tonegawa
2008



Minimal Surfaces

critical points of Jε[u] ∼ critical point of the Perimeter

∼ mean curvature = 0

Minimal Surfaces are surfaces with zero mean curvature

H = 0

Typical examples of minimal surfaces
•• hyperplanes xN = 0
•• catenoid
•• Costa surface







Bernstein Conjecture for Minimal Graphs

If minimal surfaces are graphs, they are called minimal graphs.

Minimal graphs: xN = F (x1, ..., xN−1) where F satisfies

∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in RN−1

For example F (x′) = a · x′ + b,∇F = a, an affine function, is a
minimal graph in any dimension (its graph is a hyperplane).

Bernstein Conjecture:any minimal hypersurface in RN , which is
also a graph of a function of N − 1 variables, must be a
hyperplane.



Some history on Bernstein Conjecture
I Bernstein (1910) N = 3.
I Flemining (1962) and De Giorgi (1965) reduced the problem

to showing the non-existence of a minimal cone in dimension
one less (extension to N = 4).

I Almgren (N = 5, 1966) and Simons (N ≤ 8 1968).
I In R8 there is a minimal cone (Simons’ cone 1968):

C = {u = v}, u =
√

x2
1 + · · ·+ x2

4, v =
√

x2
5 + · · ·+ x2

8.

I Bombieri, De Giorgi, Giusti (1969) found an analytic minimal
graph that is not a hyperplane for N ≥ 9. They looked for a
solution of the minimal surface equation in the form
x9 = F (u, v), and found an F such that F (u, v) = −F (v, u).

I Miranda’s program: given a minimal cone one can construct a
minimal graph.

I Simon (1988) showed a key estimate to complete this program
and obtained further examples (Ferus-Karcher, Lawson).



The Bombieri-De Giorgi-Giusti minimal graph:

Explicit construction by super and sub-solutions. N = 9:

·
(

F√
1 + |F |2

)
= 0 in R8.

F : R4 × R4 → R, (, ) 7→ F (u, v), u = ||, v = ||.
In addition, F (u, v) > 0 for v > u and

F (u, v) = −F (v, u).



Asymptotic behavior for BDG surface in polar coordinates
u = r cos θ, v = r sin θ (del Pino, Kowalczyk, Wei (2008)):

F (u, v) = r3g(θ) + O(r−σ) as r → +∞
where

g(θ) > 0, θ ∈ (
π

4
,
π

2
), g(

π

4
) = 0 = g′(

π

2
).

21 g sin3 2θ√
9g2+g′2 +

(
g′ sin3 2θ√

9g2+g′2

)′
=0(π

4
, π
2 )e





2. De Giorgi’s Conjecture

Associated with Allen-Cahn equation is the famous De Giorgi’s
Conjecture.
De Giorgi’s Conjecture concerns solutions of (AC) that connect
these two values. They represent states in which the two phases
coexist.

Solutions that ”connect” the values -1 and +1 along some
direction, say xN :

lim
xN→−∞

u(x
′
, xN ) = −1, lim

xN→+∞u(x
′
, xN ) = +1, for all x

′ ∈ RN−1



The case N = 1. The function

w(t) := tanh
(

t√
2

)

connects monotonically −1 and +1 and solves

w′′ + w − w3 = 0, w(±∞) = ±1, w′ > 0.

Canonical Example

For any p, ν ∈ RN , |ν| = 1, νN > 0, the functions

u(x) := w((x− p) · ν)

solve equation (AC) and connects −1 and +1 along xN .



De Giorgi’s conjecture (1978): Let u be a bounded solution of
equation

(AC) ∆u + u− u3 = 0 in RN ,

which is monotone in one direction, say xN u > 0. Then, at least
when N ≤ 8, there exist p, ν such that

u(x) = w( (x− p) · ν).



This statement is equivalent to:

At least when N ≤ 8, all level sets of u, [u = λ] must be
hyperplanes.

Parallel statement of Bernstein Conjecture for minimal graphs.
Minimal graphs: xN = F (x1, ..., xN−1) where F satisfies

H = ∇ ·
(

∇F√
1 + |∇F |2

)
= 0 in RN−1

For example F (x′) = a · x′ + b,∇F = a, an affine function, is a
minimal graph in any dimension (its graph is a hyperplane).

Bernstein Conjecture:any minimal graph in RN must be a
hyperplane.
True for N = 3: Bernstein (1910), N = 4 De Giorgi (1965),
N = 4 Fleming (1962), N = 5 Almgren (1966), N ≤ 8 Simons
(1968). False for N ≥ 9: Bombieri-De Giorgi-Giusti found a
counterexample (1969)



History of De Giorgi’s conjecture

I True when N = 2, Ghossoub and Gui (1998) .

I True when N = 3, Ambrosio and Cabré (2000).

I True when 4 ≤ N ≤ 8, Savin (2009) under an additional
assumption

lim
xN→±∞

u(x
′
, xN ) = ±1

I False when N ≥ 9, del Pino-Kowalczyk-Wei (2011)
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Main Ideas of Proofs

Two Main Ingredients of Our Proofs:

I.detailed analysis of minimal surfaces, in particular the asymptotic
behavior of such minimal surfaces, the global estimates for its
derivatives, analysis of Jacobi operator and Jacobi fields

∆Γh + |A|2h = g

II. infinite-dimensional Liapunov-Schmidt reduction method
developed in
del Pino-Kowalczyk-Wei 2007, (for compact geodesics)

del Pino-Kowalczyk-Pacard-Wei 2009 (for the whole RN )
Lecture 5/6.



Gluing Method: Infinite-dimensional Liapunov-Schmidt
Reduction Method

The basic idea is to generalize the finite-dimensional
Liapunov-Schmidt reduction method to infinite-dimensional
Liapunov-Schmidt reduction.

In finite-dimensional reduction method, one moves the points
(which is a finite-dimensional space) in order to find the true
solution.

In infinite-dimensional reduction method, we move curves or
surfaces (which are infinite-dimensional space).



3. Beyond De Giorgi Conjecture–Stable Solutions

The assumption of monotonicity in one direction for the solution u
in De Giorgi conjecture implies a form of stability.
In general, given a bounded solution u to the semilinear elliptic
equation

∆u + f(u) = 0 in RN .

We say that u is stable if

∫

RN

(|∇ϕ|2 − f
′
(u)ϕ2) ≥ 0, ∀ϕ ∈ C∞

0 (RN )

u is stable if and only if there exists a positive function h > 0 such
that

∆h + f
′
(u)h = 0 in RN , h > 0 in RN



Stability Conjecture

Stability Conjecture: Let u be a bounded stable solution of
equation

∆u + u− u3 = 0 in RN .

Then the level sets {u = λ} are all hyperplanes.

I Ambrosio-Cabre: N = 2, Stability Conjecture is true

I Pacard-Wei: N = 8, Stability Conjecture is False

Theorem
(Pacard-Wei 2009) Let N = 8. Then there exists a stable and
bounded solution to (AC) such that its level set is not hyperplane.



A Dictionary for Allen-Cahn Equation

Bernstein Conjecture −→ De Giorgi Conjecture

Bernstein’s Proof N = 2 −→ Ghoussoub-Gui’s Proof:N = 2

Almgren’s Proof N = 3 −→ Ambrosio-Cabre’s Proof:N = 3

Simon’s Proof 4 ≤ N ≤ 8 −→ Savin’s Proof:4 ≤ N ≤ 8

BDG’s Counterexample N ≥ 9 −→ DKW’s Counterexample N ≥ 9

Foliation of Simon’s Cone −→ Pacard-Wei’s Stable Solution



4. Beyond De Giorgi Conjecture–Finite Morse Index
Solution

After stable solutions, next we study solutions which are not too
unstable–Finite Morse Index Solutions.

Morse index of a solution u of (AC), m(u): roughly, the number of
negative eigenvalues of the linearized operator, namely those of the
problem

∆ϕ + (1− 3u2)ϕ + λϕ = 0 ϕ ∈ L∞(RN ).

Finite Morse Index: m(u) < +∞. Easy to check: m(u) < +∞ if
and only if there exists a compact set K such that

∫

RN

(|∇ϕ|2 − f
′
(u)ϕ2) ≥ 0, ∀ϕ ∈ C∞

0 (RN\K)

In other words, finite Morse index implies that u stable outside a
finite region.



4.1: Finite Morse Index Solutions of Allen-Cahn Equation
in R2

(AC) ∆u + u− u3 = 0 in R2

As we have discussed before, the only stable solution to (AC) in R2

is given by

u = tanh
(

(x− p) · ν√
2

)

Next we consider finite-Morse index solutions.
Multiple-end solutions are finite Morse index solutions.
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k−end solutions
We say that u, a solution of (AC), is a multiple ends with k ends if
there exist k oriented half lines {aj · x + bj = 0}, j = 1, . . . , k (for
some choice of aj ∈ R2, |aj | = 1 and bj ∈ R) such that along
these half lines and away from a compact set K containing the
origin, the solution is asymptotic to w(aj · x + bj), that is there
exist positive constants C, c such that:

‖u(x)−
k∑

j=1

w(aj · x + bj)‖L∞(R2\K) ≤ Ce−c|x|.

Similar definitions as in the Nonlinear Schrödinger Equation

Balancing Formula:

k∑

j=1

aj = 0

k∑

j=1

aj ∧ p = 0



Existence of 2m-ends Solutions and Toda System

Theorem
(del Pino-Kowalczyk-Pacard-Wei 2008) Given any solution
f1 < f2 < ... < fK to the (integrable) Toda System:

f
′′
j = efj−1−fj − efj−fj+1 , j = 1, ..., K, f0 = −∞, fK+1 = +∞,

there exists a solution to the Allen-Cahn equation

∆u + u− u3 = 0 in R2

with the following property:

u(x, y) ∼
K∑

j=1

(−1)jw(x− fj(αy)) + (−1)K−1





A close look at 4−end Solutions I: Saddle Solution

(AC) ∆u + u− u3 = 0 in R2

• Dang, Fife, Peletier (1992). The cross saddle solution:
u(x1, x2) > 0 for x1, x2 > 0,

u(x1, x2) = −u(−x1, x2) = −u(x1,−x2).

Nodal set two lines (4 ends). Super-subsolutions in first quadrant.

Two orthogonal lines



cross-solution

- +

-+



4−end Solutions II: Two Parallel Lines

Theorem ( del Pino, Kowalczyk, Pacard, Wei (2008) )

If f satisfies

√
2

24
f ′′(z) = e−2

√
2f(z), f ′(0) = 0,

and fε(z) :=
√

2 log 1
ε + f(εz), then there exists a solution uε to

(AC) in R2 with

uε(x1, x2) = w(x1 + fε(x2) ) + w(x1 − fε(x2) − 1 + o(1)

as ε → 0+. Here w(s) = tanh(s/
√

2).
This solution has 2 transition lines.

f(z) = A|z|+ B + o(1) as z → ±∞.



Two-end solution



2-line transition layer and 4 end saddle: Do they connect?



Gui 2011: proved that any four-end solution is even symmetric
with respect to two orthogonal lines.

Kowalczyk-Liu-Pacard (2012):Modulo rigid motions they constitute
a one parameter family which is diffeomorphic to R. The solution
can be parametrized by the angle s, us.
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Consequently, given any two lines, one find a solution to
Allen-Cahn whose zero-level set approaches these two lines.

Question:

Given any k lines in R2, k ≥ 3, can one find a solution to
Allen-Cahn whose zero-level set approaches these k lines?

Answer: Yes, generic for k > 2.
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three-non-parallel-lines

L1

L3

L2



Theorem
(Kowalczyk-Pacard-Liu-Wei 2012) Let Σ be a set of k straight
lines, k > 2. Suppose any two lines in Σ are not parallel and the
intersection of any three lines are empty. Also suppose that the
angle between any two of these lines is not equal to some
exceptional values θi, i = 1, ..., n. Then there exists a family of
2k-end solutions uε to (AC) such that the nodal sets of the
functions uε

(
z
ε

)
converge to Σ on any compact set of R2, as

ε → 0.

Ingredients of proofs: moduli spaces theory and Cauchy data
matching



5. Finite Morse Index Solutions in R3

We now consider three dimensional case:

∆u + u− u3 = 0 in R3.

Finite Morse index solutions in R3 are generated by

I embedded minimal surfaces with finite total curvature in R3

I the Toda system in R2



Embedded minimal surfaces of finite total curvature

The theory of embedded, minimal surfaces of finite total curvature
in R3, has reached a notable development in the last 25 years. For
more than a century, only two examples of such surfaces were
known: the plane and the catenoid. The first nontrivial example
was found in 1981 by C. Costa. The Costa surface is a genus one
minimal surface, complete and properly embedded, which outside a
large ball has exactly three components (its ends), two of which
are asymptotically catenoids with the same axis and opposite
directions, the third one asymptotic to a plane perpendicular to
that axis. The complete proof of embeddedness is due to Hoffman
and Meeks (1990).



Costa-Hoffman-Meeks Minimal Surfaces

Hoffman and Meeks also generalized notably Costa’s example by
exhibiting a class of three-end, embedded minimal surface, with
the same look as Costa’s far away, but with an array of tunnels
that provides arbitrary genus k ≥ 1. This is known as the
Costa-Hoffman-Meeks surface with genus k.





Many other examples of multiple-end embedded minimal surfaces
have been found.
Kapoulous (1997)
Traizet (2002)
etc.
In general all these surfaces look like parallel planes, slightly
perturbed at their ends by asymptotically logarithmic corrections
with a certain number of catenoidal links connecting their adjacent
sheets.
Osserman, Schoen, ...: All ends are either catenoid or planes



Main results

Let M be a complete, embedded minimal surface in R3 with finite
total curvature .

For x = (x1, x2, x3) = (x′, x3) ∈ R3, we denote

r = r(x) = |(x1, x2)| =
√

x2
1 + x2

2.

After a suitable rotation of the coordinate axes, outside the infinite
cylinder r < R0 with sufficiently large radius R0, then M
decomposes into a finite number m of unbounded components
M1, . . . , Mm, its ends.



Osserman, R. Schoen: asymptotically each end of Mk either
resembles a plane or a catenoid.

Mk = { y ∈ R3 / r(y) > R0, y3 = Fk(y′) }
where Fk is a smooth function which can be expanded as
Fk(y′) = ak log r + bk + bik

yi

r2 + O(r−3) as r →
+∞, eforcertainconstantsak, bk, bik,

a1 ≤ a2 ≤ . . . ≤ am ,

m∑

k=1

ak = 0 . (37)

This last condition is the so-called Balancing Formula.





Jacobi Operator

Let us consider the Jacobi operator of M (h) :=
∆Mh + |A|2hewhere—A—2 = −2K is the Euclidean norm of the
second fundamental form of M .
A smooth function z(y) defined on M is called a Jacobi field if
(z) = 0. Rigid motions of the surface induce naturally some
bounded Jacobi fields: Associated with respectively translations
along coordinates axes and rotation around the x3-axis, are the
functions

z1(y) = ν(y) · ei, y ∈ M, i = 1, 2, 3,

z4(y) = (−y2, y1, 0) · ν(y), y ∈ M.e



We assume that M is non-degenerate in the sense that these
functions are actually all the bounded Jacobi fields, namely {
z∈ L∞(M) / (z) = 0 } =
span { z1, z2, z3, z4 } .eWedenoteinwhatfollowsbyJthedimension(≤
4) of the above vector space. Note that for a catenoid, z04 = 0 so
that J = 3.

This assumption, expected to be generic for this class of surfaces,
is known in some important cases, most notably the catenoid and
the Costa-Hoffmann-Meeks surface.
Nayatani 1994 (genus k ≤ 37)
Morabito 2008 (genus k ≥ 38)



Adjustment of Ends
If the two ends are parallel, say ak+1 = ak, we need to adjust the
ends by logarithmic growth β.



Let β be a vector of given m real numbers with
β = (β1, . . . , βm),

∑m
i=1 βi = 0 .e

The parameters β must satisfy an additional constraint. It is clear
that if two ends are parallel, say ak+1 = ak, we need at least that
βk+1 − βk ≥ 0, for otherwise the ends would eventually intersect.
Our further condition on these numbers is that these ends in fact
diverge at a sufficiently fast rate. We require
βk+1 − βk > 4 if ak+1 = ak .e



Theorem 5.1. (del Pino-Kowalczyk-Wei 2009) Let N = 3 and
M be a minimal surface embedded, complete with finite total
curvature which is nondegenerate. Then, given β satisfying
relations (158) and (158), there exists a bounded solution uε of
Allen-Cahn equation, defined for all sufficiently small
ε, such that uε(x) = w(z−q(y))+O(ε)x = y+zν(εy), |z−q(y)| <
δ
ε , ewherethefunctionqsatisfiesq(y) = (−1)kβk log |εy′|+ O(1) y ∈ Mk,ε, k = 1, . . . , m.Inparticular, foreachgivenλ ∈
(−1, 1), the level set [uε = λ] is an embedded surface that
decomposes for all sufficiently small ε into m disjoint components
(ends) outside a bounded set. The k-th end lies at O(1) distance
from the graph

y3 = ε−1 Fk(εy) + βk log |εy′|.



Next we discuss the connection of the Morse index of the
solutions of Theorem 5.1 and the index of the minimal surface M ,
i(M), which has a similar definition relative to the quadratic form
for the Jacobi operator: The number i(M) is the largest dimension
for a vector spaced E of compactly supported smooth functions in
M with

∫

M
|k|2 dV −

∫

M
|A|2k2 dV < 0k ∈ E \ {0}.

For complete, embedded surfaces, finite index is equivalent to
finite total curvature (Gulliver, 1986). Thus, for our surface M ,
i(M) is indeed finite.



Theorem 5.2. Let uε the solution given by Theorem 5.2. Then for
all sufficiently small ε we have

m(uε) = i(M).

Besides, the solution is non-degenerate, in the sense that any
bounded solution of

∆ϕ + f ′(uε)ϕ = 0 in R3

must be a linear combination of the functions Zi, i = 1, 2, 3, 4
defined as

Zi = ∂iuε, i = 1, 2, 3, Z4 = −x2∂1uε + x12uε.



Finite Morse Index Solutions

In the Costa-Hoffmann-Meeks surface it is known that
i(M) = 2l − 1 where l is the genus of M . (Natayani, Morabito).
As a Corollary, we have the following

Corollary: For each positive odd integer k, there exists a solution
to the Allen-Cahn equation in R3 with Morse index k.



Moduli Space of Solutions

The solutions in Theorem 5.1 depends, for fixed ε, on m
parameters. Taking into account the constraint

∑m
j=1 βj = 0 and

the rescaling parameter ε, this gives m− 1 independent parameters
corresponding to logarithmic twisting of the ends of the level sets.
Thus, besides the trivial rigid motions of the solution, translation
along the coordinates axes, and rotation about the x3 axis, this
family of solutions depends exactly on m− 1 “independent”
parameters. Our second result is that the bounded kernel of the
linearization of equation (AC) about one of these solutions is made
up exactly of the generators of the rigid motions, so that in some
sense the solutions found are L∞-isolated, and the set of bounded
solutions nearby is actually m− 1 + J-dimensional.



Corollary. The set of the solutions constructed in Theorem 5.1
form a m− 1 + J-dimensional analytic space

A result parallel to this one, in which the moduli space of the
minimal surface M is described by a similar number of parameters,
has been obtained by Perez and Ros (1996)



Family of Morse index 1 solutions

The catenoid gives Morse index 1 solution to (AC)

Theorem
(Agudelo-del Pino-Wei 2013)
There exists an axially symmetric solution with nodal set made up
of two components Γ± which are graphs of two functions

ϕ±(r) ∼ ±2 log(1 + εr)± log
1
ε

as r → +∞. This solution has Morse index 1.

role of Liouville Equation

∆f + ef = 0 in R2



Towards a classification of finite Morse index solutions

Understanding bounded, entire solutions of nonlinear elliptic
equations in RN is a problem that has always been at the center of
PDE research. This is the context of various classical results in
PDE literature like the Gidas-Ni-Nirenberg theorems on radial
symmetry of one-signed solutions, Liouville type theorems, or the
achievements around De Giorgi conjecture. In those results, the
geometry of level sets of the solutions turns out to be a posteriori
very simple (planes or spheres). More challenging seems to be the
problem of classifying solutions with finite Morse index, in a model
as simple as the Allen-Cahn equation. While the solutions
predicted by Theorem 1 are generated in an asymptotic setting, it
seems plausible that they contain germs of generality, in view of
parallel facts in the theory of minimal surfaces. In particular we
believe that the following two statements hold true for a bounded
solution u to Allen-Cahn equation in R3.



Open Question One

(1) If u has finite Morse index and ∇u(x) 6= 0 outside a bounded
set, then each level set of u must have outside a large ball a finite
number of components, each of them asymptotic to either a plane
or to a catenoid. After a rotation of the coordinate system, all
these components are graphs of functions of the same two
variables.

Analogue results for minimal surfaces: Osserman, Schoen



Open Question Two

(2) If u has Morse index equal to one. Then u must be axially
symmetric, namely after a rotation and a translation, u is radially
symmetric in two of its variables. Its level sets have two ends, both
of them catenoidal.

Analogue results for minimal surfaces: Schoen



Open Question Three

An interesting question is the classification of Morse index 1
solutions.

Question 3.1: Are the two family of the solutions, one with single
catenoid ends, another one generated by Liouville equation

∆u + eu = 0 in R2

connected?

The main problem is the compactness of solutions with catenoid
ends

a log |x|+ b



Open Question Four

The Morse index 1 solution is generated by Liouville equation in
R2: (∆f + ef = 0 in R2) which is a special case of Toda system
in R2





∆u1 + 2eu1 − eu2 = 0 in R2,
∆u2 + 2eu2 − eu1 − eu3 = 0 in R2,
.....
∆uk + 2euk − euk−1 − euk+1 = 0 in R2,
....
∆uN + 2euN − euN−1 = 0 in R2∫
R2 eui < +∞, i = 1, ..., N

A complete classification is given by Lin-Wei-Ye (2012)

Conjecture: All solutions of Toda system can be emedded into
solutions to (AC) with finite Morse index.



6. Beyond De Giorgi’s Conjecture–Solutions with Infinite
Morse Index

Next we study solutions with infinite Morse index

m(u) = +∞
First we consider the two-dimensional case. Recall that given any
finite Toda system

c∗q′′i = e
√

2(qi−1−qi)−e
√

2(qi−qi+1), i = 1, ..., k, q0 = −∞, qk+1 = +∞
there is a corresponding finite Morse index solution to (AC).
How about infinite Toda lattice equation?

c∗q′′i = e
√

2(qi−1−qi) − e
√

2(qi−qi+1), i ∈ Z. (38)

It admits the following set of one traveling soliton solution

qi (t) =
1√
2
Sk (i− αt) , i ∈ Z. (39)

Sk (t) = ln
cosh k

(
t− 1

2

)

cosh k
(
t + 1

2

) .



scaling

By the scaling symmetry admitted by the Toda lattice, the
following family of functions, which has ε as its parameter, are also
solutions to the infinite Toda system

qi,ε (t) := qi (εt)−
√

2i ln ε, i ∈ Z. (40)



Theorem (Kowalczyk-Liu-Wei 2013) For each ε > 0 small, there
exists a singly periodic solution uε to the Allen-Cahn equation in
R2, whose zero level set is close to the one-soliton solution qi,ε of
the infinite Toda lattice:

c∗q′′i = e
√

2(qi−1−qi) − e
√

2(qi−qi+1), i ∈ Z. (41)

Moreover, it satisfies

uε (z) = uε (−z) ,

uε (z) = −uε (z + eε) ,

for suitable vector eε ∈ R2 depending on ε. The Morse index of uε

is +∞.



Solutions with Infinite Morse Index in R3

Theorem
(Agudelo-del Pino-Wei 2013)
There exists an axially symmetric solution with nodal sets Γ1, Γ2

made up of two components diverging logarithmically from a
largely dilated catenoid, ε−1Γ0, one inside, the other outside.
graphs for r > 1

ε of functions

ϕ1(r) ∼ 4ε−1 log(rε) + 2 log r, ϕ1(r) ∼ 4ε−1 log(rε)− 2 log r

This solution has Morse index growing to infinity with ε → 0

The role of Jacobi-Toda system

∆Γfi + |A|2fi = efi−1−fi − efi−fi+1



7. Beyond de Giorgi Conjecture: Parabolic De Giorgi
Conjecture

Next, we move on to the parabolic Allen-Cahn equation
parabolic Allen-Cahn equation (parabolic AC)

ut = ∆u + u− u3 in RN × R .

Parabolic De Giorgi Conjecture:
Consider eternal solutions of parabolic Allen-Cahn equation

ut = ∆u + f(u), (x, t) ∈ RN × R. (42)

Assuming their monotonicity in the xN direction:

∂xN u > 0, lim
xN→±∞

u(x′, xN , t) = ±1, t ∈ R

then u is one-dimensional.



This conjecture is false even in dimension N = 2.

I In 2007 Chen, Guo, Hamel, Ninomiya, Roquejoffre showed the
existence of solutions to (42) of the form
u(x′, xN − ct) = U(r, xN+1 − ct), r = |x′|, N ≥ 1. Functions
U have paraboloid-like profiles of their nodal sets Γ .

I U satisfies the traveling wave Allen-Cahn

(AC)TW ∆u + u− u3 + cuxN = 0 in RN .

I the asymptotic profiles of the fronts are given:

lim
xN→+∞

(x′,xN )∈Γ

r2

2xN
=

N − 1
c

, if N > 1.

I When N = 1 the ends of the fronts become asymptotically
parallel.



Traveling Wave De Giorgi Conjecture

Let u be a bounded solution of equation

(AC)TW ∆u + u− u3 + cuxN = 0 in RN .

which satisfies

xN u > 0

Then, u must be axially symmetric in x
′
.



Parabolic Allen-Cahn Equation and Mean Curvature Flow

Consider the mean curvature flow for a graph xN+1 = F (x):

∂F

∂t
=

√
1 + |∇F |2∇(

∇F√
1 + |∇F |2 ) (43)

Mean Curvature Solitons: Graphs which are translated by the
mean curvature (MC) flow with constant velocity (say 1) in a fixed
direction satisfy:

∇(
∇F√

1 + |∇F |2 ) =
1√

1 + |∇F |2 . (44)



Rotationally symmetric eternal solution to the MC flow

Altschuler-Wu, Clutterbuck-Schnurer-Schulze (CVPDE 2003).
There exists a unique radially symmetric solution F of (44):

F (r) =
r2

2(N − 1)
− log r + 1 + O(r−1), r À 1. (45)

The first term in this asymptotic behavior coincides with the
asymptotic behavior of the nodal set of solutions to (AC-TW)
found by Chen, Guo, Hamel, Ninomiya, Roquejoffre.



Bernstein Type Conjecture for MC Solitons

Let F be a solution of

∇(
∇F√

1 + |∇F |2 ) =
1√

1 + |∇F |2 in RN . (46)

Then F is rotationally or cylindrically symmetric.

A natural critical dimension seems to be N = 8. However

X-J Wang , Annals Math., showed that the existence of non-radial
eternal convex graphs when N ≥ 3.



Revised Traveling Wave De Giorgi Conjecture

Let u be a bounded solution of equation

(AC)TW ∆u + u− u3 + cuxN = 0 in RN .

which satisfies

xN u > 0

Then, u must be axially symmetric in x
′
, at least when N ≥ 3.



8. Beyond De Giorgi Conjecture: Allen-Cahn Systems

Consider the following Bose-Einstein competition system

−∆u + αu3 + Λv2u = λ1u in Ω,

−∆v + βv3 + Λu2v = λ2v in Ω,

u > 0, v > 0 in Ω, (47)

u = 0, v = 0 on ∂Ω.

Asymptotic Behavior when Λ → +∞
•• Wei and Weth (2007): uj,Λ is uniformly equicontinuous
•• Noris-Tavares-Terracini-Verzini (2009): uniform Hölder
convergence.



Phase Separation

VU



Lotelra-Voltera system:





−∆ui = uiui −
k∑

j=1

j 6=i

αijujui in Ω,

u1, . . . , uk > 0 in Ω,

u1 = · · · = uk = 0 on ∂Ω.

Dancer and Du (2000), Conti, Terracini and Verzini 2007) and
Caffarelli and Lin (2009)
Limiting Elliptic System

∆U = UV, ∆V = V U

∆(U − V ) = 0



Phase Separation

VU



Limiting System

Let xΛ ∈ Ω be a point where uΛ and vΛ meet, i.e.,
uΛ(xΛ) = vΛ(xΛ) = mΛ.
Then as Λ → +∞, xΛ → x0 ∈ {u0 = v0 = 0}. Suppose x0 ∈ Ω
and we do the following scaling

ũΛ(y) =
1

mΛ
uΛ(mΛy + xΛ), ṽΛ(y) =

1
mΛ

vΛ(mΛy + xΛ). (48)

Then (ũΛ, ṽΛ) satisfies

−∆ũΛ + m4
Λαũ3

Λ + mΛΛ4ṽ2
ΛũΛ = m2

Λλ1ũΛ in ΩΛ, (49)

−∆ṽΛ + m4
Λβṽ3 + mΛΛ4ũ2

ΛṽΛ = m2
Λλ1ṽΛ in ΩΛ. (50)

where ΩΛ = Ω−xΛ
mΛ

.



Limiting Elliptic System

Letting Λ → +∞ and assuming that

m4
ΛΛ → C0 > 0 (51)

we derive formally the following system of equations (after
rescaling)

∆U = UV 2, ∆V = V U2, U, V ≥ 0, in RN . (52)



Limiting System





∆U = UV 2 in RN ,

∆V = V U2 in RN

U > 0, V > 0



Complete Analysis in One-Dimensional Case
First, we completely classify the one-dimensional solutions, using
the method of moving planes.
Theorem (Berestycki-Lin-Wei-Zhao 2009) Let N = 1 and (U, V )
be a solution to (52).
(1) (Symmetry) There exists x0 ∈ R such that

V (y − x0) = U(x0 − y). (53)

(2) (Asymptotic behavior) The following alternatives hold: either

{
U(−∞) = 0, U ′(−∞) = 0, U ′ > 0, U ′(∞) =

√
T∞,

V (∞) = 0, V ′(∞) = 0, V ′ < 0, V ′(−∞) = −√T∞,
(54)

or
{

U(∞) = 0, U ′(∞) = 0, U ′ < 0, U ′(−∞) = −√T∞,

V (−∞) = 0, V ′(−∞) = 0, V ′ > 0, V ′(∞) =
√

T∞.
(55)



(continued)
(3) (Nondegeneracy) (U, V ) is nondegenerate, i.e., the solution to
the linearized equation

ϕ
′′

= V 2ϕ + 2UV ψ, ψ
′′

= U2ψ + 2UV ϕ, ϕ, ψ are bounded (56)

is given by (ϕ,ψ) = c(U
′
, V

′
).

(4) (Uniqueness) There exists a unique solution (U, V ), up to
translation and scaling
(Berestycki-Terracini-Wang-Wei 2012)



New De Giorgi Conjecture
New De Giorgi Conjecture: Under the following monotone
condition

∂U

∂yN
> 0,

∂V

∂yN
< 0, (57)

the solutions to the system

∆U = UV 2,∆V = U2V, U, V > 0 in RN

are one-dimensional.

Farina (2013): If |U |+ |V | has polynomial growth, then

∂U

∂yN
> 0 =⇒ ∂V

∂yN
< 0



New Stability Conjecture

For a solution (U, V ) to the limiting system, we say it is stable if

∫

RN

|∇ϕ|2 + |∇ψ|2 +
∫

RN

V 2ϕ2 + U2ψ2 + 4UV ϕψ ≥ 0, (58)

for any compactly supported smooth functions ϕ, ψ.
New Stability Conjecture: The stable solutions to the system

∆U = UV 2,∆V = U2V, U, V > 0 in RN

are

one− dimensional.
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Results

•• Berestycki-Lin-Wei-Zhao (2011): Let N = 2. De Giorgi
Conjecture holds if U and V has linear growth.

•• Berestycki-Lin-Wei-Zhao (2011): The one-dimensional solution
is stable.

•• Berestycki-Terracini-Wang-Wei (2012): Let N = 2. Stability
Conjecture holds if U and V has linear growth.



Saddle Solutions: Entire Solutions with Polynomial
Growth

∆U = UV 2, ∆V = V U2, in RN

For Allen-Cahn equation, u is bounded between −1 and +1. On
the other hand, the system (52) has unbounded one-dimensional
solutions with linear growth. Is there a growth estimate for (52)

U(x) + V (x) = O(|x|)???
Answer: NO
Result: For any harmonic function with polynomial growth, there
exists a solution (U, V ) with

U(x) + V (x) ∼ |x|d
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For any d ≥ 1, define the harmonic polynomial Φ as

Φ := Re(zd).

Note that Φ has some reflectional symmetry. That is, take its d
nodal lines L1, · · · , Ld and denote the corresponding reflection
with respect to these lines as T1, · · · , Td, then

Φ(Tiz) = −Φ(z). (59)



Theorem (Berestycki-Terracini-Wang-Wei 2012):There exists a
solution (u, v) to the problem (52), satisfying

1. u− v > 0 in {Φ > 0} and u− v < 0 in {Φ < 0};
2. u ≥ Φ+ and v ≥ Φ−;

3. ∀i = 1, · · · , d, u(Tiz) = v(z);
4. ∀r > 0,

N(r) :=
r
∫
Br(0) |∇u|2 + |∇v|2 + u2v2

∫
∂Br(0) u2 + v2

≤ d

and in fact the Almgren frequency exponent

N(r) → d as r → +∞

5. ∃C > 0, for all z ∈ R2,

u(z) ≤ Φ+(z) + C(1 + |z|) d−1
2 , v(z) ≤ Φ−(z) + C(1 + |z|) d−1

2 .



v>0
u=0

u>0
v=0

u>0
v=0

v>0
u=0
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