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We introduce a new technique based on algebraic topology for quantifying spatio-temporally
chaotic dynamics. The technique is illustrated using the FitzHugh-Nagumo equations.

INTRODUCTION

It is well established both numerically and experimen-
tally that nonlinear systems involving diffusion, chemo-
taxis, and/or convection mechanisms can generate com-
plicated time-dependent patterns. Specific examples in-
clude the Belousov-Zhabotinskii reaction, the oxidation
of carbon-monoxide on platinum surfaces, slime mold,
and excitable media. Because this phenomenon is global
in nature, obtaining a quantitative mathematical char-
acterization that to some extent records or preserves
the geometric structures of the complex patterns is dif-
ficult. In this paper we propose a new technique aimed
at this problem. More precisely we show that using alge-
braic topology, in particular homology, we can measure
Lyapunov exponents that imply the existence of spatial-
temporal chaos and suggest a tentative step towards the
classification and/or identification of patterns within a
particular system.

Since the emphasis of this paper is on the presentation
of the technique, we have chosen to work with a well-
studied system in two dimensions. However, the tech-
nique is system and dimension independent. Consider
the particular form of the FitzHugh-Nagumo equations

ut = ∆u + ε−1u(1 − u)(u − v+γ
α

)
vt = u3 − v

(1)

with Neumann boundary conditions on the domain Ω =
[0, 80] × [0, 80]. In all of what follows we fix α = 0.75,
γ = 0.06 and vary the parameter ε.

We numerically solved (1) using code of Barkley [1–
3]. The dynamics of the patterns of the variable u is
most easily observed by producing a movie. Since the
FitzHugh-Nagumo system is meant to model an excited
media, a standard technique is to threshold the data. In
particular, a point (xi, yj) is declared to be excited at
time tk if u(xi, yj , tk) ≥ 0.9 and is shaded light gray.
The dark gray pixels correspond to the quiescent region
(u ≤ 0.1), and black corresponds to the reaction zone
(0.1 < u < 0.9). Figure 1 shows some snapshots of such
a movie.
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FIG. 1: Wave patterns generated by (1). The light gray (red)
region corresponds to excited points (u ≥ 0.9), dark gray
(blue) to the quiescent region (u ≤ 0.1), and black to the
reaction zone (0.1 < u < 0.9). In the top left figure we used
1/ε = 14 (in which case the pattern consists of a single spiral
wave), and in the other three 1/ε = 12 was used. Sampling
times are shown.

An important point is that this thresholded movie pro-
vides the input data for the technique we are about to
describe. Thus, in principle this method can be applied
in exactly the same manner to a thresholded movie pro-
duced from experimental as opposed to numerical data.

EXCITED SPACE-TIME GEOMETRY

As indicated above, our goal is to understand and
quantify the spatial and temporal geometry of the pat-
terns generated by (1). For this purpose it is useful to
think of the excited media as a subset of Ω× [0, τ ] where
the third direction represents time and τ is the length of
the movie. To be more precise, as indicated above, the
excited media is defined to be the set of light gray pixels.
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Since we are now working with a subset of R
3, we view

each pixel as a voxel, i.e. a three dimensional cube. Thus
the excited media is now represented by a set E in R

3

consisting of a finite union of voxels. If we let Vi,j,k denote
the voxel corresponding to the pixel (xi, yj) for the kth

frame of the movie, then E = {Vi,j,k | u(xi, yj , tk) ≥ 0.9}.
Observe that viewed as a finite collection of voxels E pro-
vides for a combinatorial representation of the excited
media. At the same time we can consider E to be a sub-
set of Ω × [0, τ ] that approximates the geometry of the
excited media in both space and time.

In the next section we will discuss how algebraic topol-
ogy can be used to measure the complexity of the geom-
etry of the patterns. Before doing so, recall that we are
trying to quantify both the spatial structures of the pat-
terns and how they change with time. Conceptually, the
simplest way to do this is to compute the topology of
each frame of the movie and then measure the change.
Unfortunately, this approach cannot measure the global
interactions between the fronts of the patterns that oc-
cur at different points in time. The other extreme is to
consider the topology of E itself. However, if the dynam-
ics of the original system is chaotic, then it is recurrent,
and hence for large τ much of the structure should be
redundant.

For these reasons we introduce the notion of a time

block Tn,b := {Vi,j,k ∈ E | n ≤ k ≤ n + b}. Observe
that Tn,0 represents the nth frame of the movie. For
fixed b, Tn,b captures the geometry of the pattern in-
teractions over a given time range. We can see how this
evolves by studying a sequence of time blocks of the form
{Ta(m−1),b | m = 1, 2, . . . , M}.

COMPUTING HOMOLOGY

Algebraic topology is employed to measure the topo-
logical complexity of the excited patterns. In particular
we make use of the fact that to any topological space
X one can assign homology groups Hi(X), i = 0, 1, 2, . . .
(see [4]). Clearly, this is not the venue in which to discuss
homology theory, however there are two issues that need
to be considered: the geometric information that these
groups contain and how they can be computed.

Returning to the very restricted setting of this paper,
for any time block Tn,b, Hi(Tn,b) ∼= Z

βi where Z is the
group of integers. The nonnegative integer βi is called
the ith Betti number of Tn,b. A simple argument shows
that βi = 0 for i ≥ 3. The remaining Betti numbers give
the following geometric information: β0 equals the num-
ber of connected components that make up the space, β1

indicates the number of tunnels, and β2 corresponds to
the number of enclosed cavities.

To compute the Betti numbers we make use of the
fact that homology remains invariant under scaling and
translation. For each Vi,j,k ∈ E define Qi,j,k := [i, i+1]×

[j, j + 1] × [k, k + 1]. Let Tn,b := {Qi,j,k | Vi,j,k ∈ Tn,b}.
Then Hi(Tn,b) ∼= Hi(Tn,b). Because Tn,b is the union
of unit cubes defined in terms of an integer lattice, it
is a cubical set. Algorithms for the computation of the
homology of cubical sets can be found in [5, 6], and their
implementation can be found at [7].

BENCH MARK RESULTS

As was mentioned in the introduction we will use the
existence of a positive Lyapunov exponent to conclude
the existence of spatial-temporal chaos. Since our ap-
proach is new, we feel it is important to compare it
against the following more standard Lyapunov exponent
computation.

Consider a time series {sn ∈ R | n = 0, . . . , N} ob-
tained from some nonlinear dynamical system. We make
use of the following algorithm (see [8]) to compute the
maximal Lyapunov exponent. Let

S(k) =
1

N

N
∑

n0=1

ln

[

1

|Bn0
|

∑

yn∈Bn0

|yn0+k − yn+k|

]

(2)

where yn = (sn, sn+1, . . . , sn+d−1) is a vector in the
d-dimensional reconstructed space, and Bn0

is a η-
neighborhood of yn0

. If S(k) exhibits a linear increase
with identical slope for k greater than a given k0 and for
a reasonable range of η, then this slope can be taken to
be an estimate for the maximal Lyapunov exponent.

Returning to the system being considered in this paper,
we fixed (i, j) such that (xi, yj) = (11.4286, 21.4286) and
produced a time series {u(xi, yj , tk) | k = 0, . . . , K} by
numerically solving (1). Applying the above mentioned
method, using the TISEAN package [9], we obtained esti-
mates for the maximal Lyapunov exponents as indicated
in Figure 2. We obtained essentially the same result for
several grid points (xi, yj).

From these computations we conclude that, for those
values of ε at which the maximal Lyapunov exponent is
positive, (1) exhibits temporally chaotic dynamics. How-
ever, it is important to observe that this computation
completely ignores the spatial complexity of this system.

TOPOLOGICAL RESULTS

To produce a time series that incorporates the spa-
tial structure, we computed the Betti numbers of various
Tn,b. More precisely, we computed {H∗(T10(m−1),1000) |
m = 1, 2, . . . , 10,000} and hence obtained the Betti num-
bers βi(m) for Hi(T10(m−1),1000).

Our first observation was that β2(m) ≡ 0 and that
β0(m) is piece-wise constant taking on a limited num-
ber of fairly small values. However, the time series
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FIG. 2: Maximal Lyapunov exponents, as a function of 1/ε,
from the time series generated by fixing the point (xi, yj) =
(11.4286, 21.4286) in the domain and solving (1) for 30,000
time steps (stars). The diamonds and the squares are the
Lyapunov exponents of time series of Betti numbers B(10,1000)

computed using different initial conditions. For points where
(2) did not show a clear linear increase, the Lyapunov expo-
nents were set to zero.

B(10,1000) := {β1(m) | m = 1, 2, . . . , 10,000} proved to
be quite interesting. Typical plots for various values of ε
are indicated in Figure 3.
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FIG. 3: Plot of the time series {β1(m) | m = 1, 2 . . . , 10,000}
of Betti numbers, for 1/ε = 11.5 (top) and 1/ε = 12 (botton).

Using the method described in the previous section, we
computed the maximal Lyapunov exponent for the time
series B(10,1000). Figure 2 provides a plot of the max-
imal Lyapunov exponent as a function of 1/ε. There
are three important points to be made. The first is
the near agreement between the ranges of ε on which
the maximal Lyapunov exponents are positive and zero.
This suggests computing the Lyapunov exponent from

homological data is an acceptable approach. The second
is that we can now conclude that the system exhibits
spatial-temporal chaotic behavior. This follows from the
fact that this chaotic time series is defined in terms of
the Betti numbers β1, since β1(m) 6= 0 implies that the
topology of Tm,1000 is non-trivial and β1(m) 6= β1(m

′)
implies that the topology of Tm,1000 differs from that of
Tm′,1000. The fact that the Lyapunov exponent from the
homological data goes to zero sooner than that computed
from a single point can be explained by the fact that the
latter measures temporal chaos only and the homologi-
cal data measures spatial structures as well. Thus it is
possible that the spatial-temporal chaos disappears be-
fore the purely temporal chaos does. The third point is
the observation that, as in the case of a fixed (xi, yi), the
maximal Lyapunov exponent appears to be essentially
constant as a function of 1/ε until it drops to zero. This
implies that Lyapunov exponents do not provide a useful
measurement for characterizing the value of ε at which
the simulation is being performed. On the other hand
plotting the average value of β1 as is done in Figure 4
results in an almost monotone curve. Thus, in principle
by computing the average of the Betti numbers we can
determine the parameter value ε at which the simulation
is being performed. Computing the average of the Betti
numbers is much cheaper than computing the maximal
Lyapunov exponent, because, as is indicated in Figure 4,
it can be computed with a shorter time series.
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FIG. 4: Mean values of the time series B(10,1000) used to com-
pute the Lyapunov exponents in Figure 2 (squares), and the
mean values of the time series B100,1000 = {β1(m) | m =
1, 2, . . . , 100} (dots), as functions of 1/ε.

COMPUTATIONAL COMMENTS

The above mentioned results depend upon the choice
of b and a for the time blocks Ta(m−1),b. For the examples
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presented in this paper a = 10 and b = 1000 seems to be
a satisfactory solution. However, we cannot at this point
in time suggest useful heuristics for a particular choice.
The principal issues are as follows. If b is small, then
β1 is small. Since the Betti numbers are integers this
implies that we do not have enough significant figures to
compute Lyapunov exponents. If b is large then the cost
of computing H1(Tn,b) becomes impractical. Since the
system is chaotic, choosing a too large results in decorol-
lation of subsequent Betti numbers. On the other hand
if a is too small the local change in the Betti numbers
is insignificant. It should be noted that for computing
the mean value of the Betti numbers we were able to use
a = 100 because strong correlation is not necessary.

The typical running time for generating one of the
10,000 point time series is about 12 CPU hours or 52
wall time hours in a Beowulf cluster with 30 Pentium 4,
2.4GHz processors. On the other hand each data point
in Figure 4 (using 100 points time series) requires only
0.12 CPU hours or 0.5 wall time hours.

The homology algorithm [6] used for these computa-
tions takes advantage of the fact that homology can be
determined by means of local spatial computations. The
code makes use of a binary tree data structure to store
the data into memory, and this data structure is imple-
mented in such a way that it is not necessary to read
the whole data set into memory at once. In this way
it is possible to compute with data sets that do not fit
into memory. This feature is of particular importance in
higher dimensional problems.

The numerical method used to solve (1) consists of
a semi-implicit finite difference algorithm, on a equally
spaced grid {(xi, yj) | i, j = 0, . . . , N} covering Ω. We
used N = 280 in the computations of Lyapunov expo-
nents for a fixed grid point (xi, yj), and N = 140 in
all the other computations. This algorithm uses the
fact that if the solution at a point (xi, yj) is small, it
will remain small in the next step to speed up the algo-
rithm. So there is a small numerical parameter δ such
that u(xi, yj , tk+1) = 0 if u(xi, yj , tk) < δ. A implemen-
tation of this algorithm, EZ-Spiral, can be found at [3].
In this paper we use a modified version of this program.
We used δ = 10−4, and the time step ∆t = 0.0653. Given
the coarse grid (with N = 140) this method can not be
guaranteed to accurately solve (1). On the other hand
sample calculations at slightly finer grids did not result
in qualitatively different results. In part this is due to the
fact that homology is fairly robust with respect to small
perturbations. Therefore, small numerical errors are not
expected to lead to changes in the homology groups.

CONCLUSION

We have proposed the use of computational homology
to measure the spatial-temporal complexity of patterns.
In addition we have shown that this technique can be
used as a means of discriminating different patterns at
different parameter values. Furthermore, although it is
computationally expensive to measure spatial-temporal
chaos, the computations necessary to do such discrimi-
nation are relatively cheap. One important feature of the
proposed method is that it is fairly automated and can
be applied to experimental data.
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