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We live in a world where the ambient space within 
which data lies is often extremely high (infinite) 
dimensional.  

Data that can be accessed, processed, and used in a 
timely fashion must lie on much lower dimensional 
spaces, but these spaces and/or the actions on these 
spaces can be highly nonlinear.

Algebraic topology is the mathematical tool for 
studying global nonlinear structures and maps. 
Homology is the most computationally accessible
part of algebraic topology.

Philosophy



Lecture 1 
   

Nonlinear Dynamics:  
A  

combinatorial 
algebraic topological 

paradigm

Motivation:  why do we need a new approach to dynamics?



Differential Equations 
and  

Exact Solutions



	
  The	
  2	
  Body	
  Problem: miq̈i =
2X

i=1

Gm1m2(qj � qi)

kqi � qjk3
i = 1, 2

1.  G, q and m are well defined and can be measured 
accurately.

2.  Applications of this equation involve approximations,
point masses, 2-body vs. n-body, etc.

3.  We accept the quantitative predictions.

Tycho	
  Brahe	
  
1546-­‐1601

Johannes	
  Kepler	
  
1571-­‐1630

Isaac	
  Newton	
  
1643-­‐1727
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Urbain Le Verrier 1859  - rate of precession disagree’s with
Newtonian prediction by 38 arcsec/Julian century

Planet Vulcan was proposed to exist between Sun and Mercury

Amount (arcsec/Julian century) Cause

5028.83 ±0.04 Coordinate (due to the precession of the equinoxes)

530 Gravitational tugs of the other planets

0.0254 Oblateness of the Sun (quadrupole moment)

42.98 ±0.04 General relativity

5603.24 Total

5599.7 Observed

−3.54 (−0.0632%) Discrepancy

Sources of the precession of perihelion for Mercury

wikipedia

Perihelion of Mercury: a serious challenge to Newtonian gravity



Growth of population of 
Paramecium caudatum

Explicit solution given initial population x0 at time t = 0

is

x(t) =

x0e
rt

� x0 + x0e
rt

ẋ =
dx

dt

= rx(� x)
(logistic equation)

r is the birth rate  is the carrying capacity of environment

A mathematical model:



Georgyi Frantsevitch Gause,  1910-19861.  What do we mean by b and K?
How precisely can we measure them?

}

2.  My interpretation of this model is that it represents 
a Platonic ideal as opposed to a physical reality.

http://www.ggause.com/Contgau.htm

http://www.ggause.com/Contgau.htm


Precision Modeling for Orbit Determination 

High overhead, more than 20,000 kilometers above 
Earth, GPS satellites race by at speeds approaching 
3800 meters per second. The movements of these 
spacecraft are generally described by the laws of 
planetary motion developed by Johannes Kepler almost 
400 years ago—but they are by no means certain or 
simple. Each satellite must contend with diverse forces 
that constantly nudge and pull it from its desired orbit. 
Yet in spite of this, the positions of GPS satellites must 
be known at all times with exceptional accuracy. 
Modeling these orbits is a complex affair. Here are just 
a few of the many issues that must be considered.

http://www.aero.org/publications/crosslink/summer2002/04.html

How important is mathematical theory (I)?



United States Flu Activity  

United States data
 Google Flu Trends estimate

Influenza estimate

How important is mathematical theory (II)?

http://www.google.org/flutrends/about/how.html

http://www.google.org/flutrends/about/how.html


Dynamical Systems: 
Qualitative Theory 

of 
Differential Equations



The 3-body Problem  ≈1890

3.  Invented Algebraic Topology.
Jules	
  Henri	
  Poincare	
  

1854-­‐1912

1.  Closed form solutions need not exist.

2.  Chaotic dynamics exists.
Understanding the solution of an 
single initial value problem is not 
sufficient.

' : R⇥ Rn ! Rn

(t, x) 7! '(t, x)

Flow:

initial
condition

time
value of solution

at time t

S ⇢ Rn
is an invariant set if '(t, S) = S for all times t.

Need to consider all solutions: dx

dt

= g(x), x 2 Rn

Map: f : Rn ! Rn

x 7! f(x) := '(⌧, x)

⌧ > 0 is a fixed time.



Steven	
  Smale	
  
1930-­‐

f : X ⇥ ⇤ ! X continuous

(x,�) 7! f�(x)

A set S ⇢ X is invariant if f(S) = S.

The objects of interest:

The equivalence relation:

Two maps f : X ! X and g : Y ! Y are topologically conjugate if

there exists a homeomorphism h : X ! Y such that h � f = g � h.

�0 2 ⇤ is a bifurcation point if for any neighborhood U of �0 there

exists �1 2 U such that f�0 is not conjugate to f�1

The places of change:

differentiable

Given a family of dynamical systems (differential equations), what types  
of dynamical structures does one expect to see typically?

Examples: equilibria, periodic orbits,  
heteroclinic orbits, strange attractors



Anthony R. Ives, Árni Einarsson, 
Vincent A. A. Jansen and Arnthor 
Gardarsson, 
High-amplitude fluctuations and 
alternative dynamical states of 
midges in Lake Myvatn, 
Nature, vol. 452 (7183) pp. 84-87

Modeling via Data



Biological background of Myvatn ecosystem:

Lake Myvatn is a shallow, naturally eutrophic lake in northern Iceland.

Eutrophic:  Having waters rich in mineral and organic nutrients that promote a proliferation 
of plant life, especially algae, which reduces the dissolved oxygen content and often causes 
the extinction of other organisms. 

Midges, Tanytarsus gracilentus, are the dominant herbivore/detritivore.

1.  Two non-overlapping generations per year (first in May, second in late July early August)

2.  Statistical evidence suggests that fluctuations in midge populations are driven by consumer–
resource interactions, with midges being the consumers and algae/detritus the resources, as 
opposed to predator–prey interactions with midges being the prey.

3.  Population levels of midges have been 
collected since 1977.  



Making a mathematical model:

x2 x3

x1midges

algae detritus

x1(t+ 1) = f1(x1(t), x2(t), x3(t),�)

x2(t+ 1) = f2(x1(t), x2(t), x3(t),�)

x3(t+ 1) = f3(x1(t), x2(t), x3(t),�)

Non-overlapping generations ⇒ Map

Gompertz log-linear model.

xi(t+ 1) = exp

0

@
3X

j=1

�ij lnxj

1

A

Lotka-Volterra model

xi(t+ 1) = rixi(t) exp

0

@
1 +

3X

j=1

bijxj(t)

1

A

� =

2

4
+ + +
� + 0
� + 0

3

5



x1(t+ 1) = r1x1(t)

✓
1 +

x1(t)

x2(t) + px3(t)

◆�q

x2(t+ 1) = r2
x2(t)

1 + x2(t)
� x2(t)

x2(t) + px3(t)
x1(t+ 1) + c

x3(t+ 1) = dx3(t) + x2(t)�
px3(t)

x2(t) + px3(t)
x1(t+ 1) + c

• r1 is the intrinsic population growth rate for midges

• r2 is the intrinsic population growth rate for algae

• q density dependence parameter

• p quality of detritus for midges in relation to algae

• c is influx rate of algae from environment

• d retention rate of detritus in environment

Proposed model (IEJG):

How can
 we 

jus
tify

 thi
s 

mode
l ov

er 

oth
ers?



Fact:  There exist parameter values of IEJG model which exhibit 
multiple basins of attraction.  This is not true for other models.

x1(t+ 1) = r1x1(t)

✓
1 +

x1(t)

x2(t) + px3(t)

◆�q

x2(t+ 1) = r2
x2(t)

1 + x2(t)
� x2(t)

x2(t) + px3(t)
x1(t+ 1) + c

x3(t+ 1) = dx3(t) + x2(t)�
px3(t)

x2(t) + px3(t)
x1(t+ 1) + c

r1 = 3.873, r2 = 11.746,
c = 10�6.435, d = 0.5517,
p = 0.06659, q = 0.9026

x1(t+ 1) = r1x1(t)

✓
1 +

x1(t)

x2(t) + px3(t)

◆�q

e

✏1(t)

x2(t+ 1) =


r2

x2(t)

1 + x2(t)
� x2(t)

x2(t) + px3(t)
x1(t+ 1) + c

�
e

✏2(t)

x3(t+ 1) =


dx3(t) + x2(t)�

px3(t)

x2(t) + px3(t)
x1(t+ 1) + c

�
e

✏3(t)

�1 = 0.3491, �2 = �3 = 0.7499



A striking biological conclusion from the model is the sensitivity of the 
amplitude of midge fluctuations to very small amounts of resource input; the 
resource input sets the lower boundary of midge abundance and hence the 
severity of population crashes. Thus, even though resource input might be six 
orders of magnitude less than the abundance of resources in the lake in most 
years, this vanishingly small source of resources is nevertheless critical in 
setting the depth of the midge population nadir and the subsequent rate of 
recovery. This sensitivity to resource subsidies might explain changes in midge 
dynamics that have apparently occurred over the last decades.  Although 
Myvatn has supported a local charr (salmonid) fishery for centuries, this fishery 
collapsed in the 1980s, coincident with particularly severe midge population 
crashes. Over the same period, waterbird reproduction in Myvatn was also 
greatly reduced during the crash years. These changes might have been caused 
by dredging in one of the two basins in the lake that started in 1967 to extract 
diatomite from the sediment. Hydrological studies indicate that dredging 
produces depressions that act as effective traps of organic particles, hence 
reducing algae and detritus inputs to the midge habitat. Our model predicts 
that even a slight reduction in subsidies can markedly increase the magnitude of 
midge fluctuations. Such slight environmental changes can then have seriously 
negative consequences for fish and bird populations.



x(t+ 1) = rx(t)(1� x(t)) logistic map

The challenge of Bifurcations



Assume the logistic map 

is a perfect model for population growth of an insect.

Assume I can perform perfect numerical simulations of 
the model.

It is still possible that with high probability the 
conclusions will be wrong!

f(x) = rx(1� x)



Any computation probably suggests the wrong dynamics!

Assume the field biologist can measure birth rate to within 
one decimal place.

Smale, Newhouse, ...  
Invariant sets can change on parameter sets of positive measure  



Technology is changing science:
1.  We can collect enormous quantities of data. Scientists are relying 

more on data sets to characterize phenomena as opposed to 
mathematical theories.

2.  We can perform large scale numerical studies of nonlinear 
systems.

3.  We are studying multiscale systems (biology, economics, medicine, etc) 
for which nonlinearities and parameters are not known.

Summary Remarks

Remarks:

 1.  There are too many invariant sets so we require a new concept for 
`solving’ differential equations/dynamical systems.

2.  Should be compatible with Classical Theory, i.e. we can relate 
back to invariant sets.



Some Simple Observations: 
Towards  

A  
New Framework

Charles	
  Conley	
  
1933-­‐1984



Let V : Rn ! R be a smooth function. The associated

gradient system is

ẋ = �rV (x)
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Dynamics is “simple”.  Invariant sets made up of

Equilibria
Heteroclinic Orbits

Simple Dynamics
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There are special heteroclinic orbits that
characterize the qualitative features of the 
global dynamics.

Seeing the dynamics 
of these orbits 
directly is hard!
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These regions are
easily observed from
the dynamics.

Attracting Neighborhoods



unstable
equilibrium

(origin)

stable
equilibrium

non-recurrent
dynamics

unstable
equilibrium

stable
period 2

orbit

non-recurrent
dynamics

non-recurrent
dynamics

unstable
equilibrium

(origin)

Complicated Dynamics
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x
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origin

fixed pt
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period 4

With fixed precision it is 
impossible to identify every 

invariant set

Conley defined the concept of a Morse decomposition to 
deal with this problem

what
dynamics?



Attractors

Coarse Measurements 
(large noise)

What type of dynamics
is happening

inside the regions?

Fine Measurements 
(little noise)



Develop a combinatorial/algebraic topological theory of 
nonlinear dynamics that is

1. rich enough to capture and identify significant 
structures of nonlinear dynamics.

2.  robust with respect to measurement and modeling 
 imprecisions.

3.  computationally tractable.

Goal



Purely Combinatorial Dynamics 
(the information that a computer can process)



Strongly connected 
path components

Node = States 
Directed Edges = Dynamics

Goal: Results should be robust with respect to 
measurements, noise and modeling.

If we do not know the exact current state, then we 
cannot know the exact next state. 

Remark: For interesting systems the number of 
states is enormous! We need to simplify.

Basic decomposition of dynamics:

Recurrent

Nonrecurrent

vs.

Directed Graph

Multivalued Map
F : X �⇥⇥X



Strongly connected 
path components

p1 p0

p2

p3

P
O
S
E
T

Simplifying the DynamicsMultivalued Map
F : X �⇥⇥X

Directed Graph

Morse Graph 
of the Directed Graph

F : X �⇥⇥X



p1 p0

p2

p3

P
O
S
E
T

Morse Graph M

Join Irreducible

J_(O(M))

Birkhoff’s Theorem implies that 
the Morse graph and the lattice 
of Attractors are equivalent.

What is observable? A � X is an attractor if F(A) = A

;

p1 p0

p1, p0

p2, p1, p0

p3, p2, p1, p0

Lower Sets O(M)

Co
mp
ut
ab
le

Ob
se
rv
ab
le

L
A
T
T
I
C
E



From  
Continuous Dynamics 

to 
Combinatorial Dynamics 

(approximation/reconstruction)



More natural to view as a Parameterized Dynamical System

F : X � �⇥ X � �

F (x,�) = (f�(x),�) = (f(x,�),�)

�0 � �Given             denote the restriction of     to             by X � �0F

F�0 : X � �0 ⇥ X � �0

Assume:  There exists a continuous (deterministic) model for the 
dynamics

f : X ⇥ ⇤! X

Notation

X

⇤

state space
parameter space

I am not assuming that   is explicitly known!f



A grid on a compact metric space X is a finite collection

X of nonempty compact subsets of X satisfying:

1. X =

S
⇠⇥X �

2. � = cl(int(�)) for all � � X

3. � ⌅ int(��) = ⇤ for all � ⇥= �� � X

A grid in R2

dia
mete

r

Theorem: For any � > 0 there exists a

grid X of X such that diam(X ) < �

W. Kalies, K.M., R. Vandervorst



Building the Multivalued Map 
(given  and       )Q ⇢ ⇤f

FQ(�) := {�0 � X | �0 ⌅B� (f(�, Q)) ⇥= ⇤}

Numerical Error� 7! B� (f(�, Q))

⇠

Grid X that covers X

f(�
, Q)

f(⇠, Q) ⇢ int(|FQ(⇠)|)FQ : X �!!X is an outer approximation of   if f



Building the Multivalued Map 
(from time series)



Proposition: Let f, g : X ! X be continuous maps. Let X be a grid for X.

If F : X �!!X is an outer approximation for f and if g is su�ciently close

to f , then F is an outer approximation for g.

Remark: Assume that I can use F : X �!!X to obtain a result about the

dynamics of f . The the same result is true for the dynamics of g.

This implies that we have a robust description of the dynamics.



Recovering Dynamics 
(Combinatorial Information)



Dynamics that we have Captured 

The associated SCPC M = {M(p) ⇥ X | p ⇤ (P,�)}

M(p0)M(p1)

M(p2)

M(p3)

Outer approximation (numerical/data analysis) F : X �!!X

The Morse graph of M = {p | p ⇥ (P,�)}

p1 p0

p2

p3

F

The attractor lattice grid elements 

Attractor lattice plus 
Birkhoff’s theorem 
proves that the 
dynamics of f 
cannot go against 
the directions 
indicated by the 
Morse graph.
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Morse Graph

Warning:  we have not shown that there are orbits that correspond 
to the arrows, but if there is no path in the Morse graph then there 
is no orbit in the dynamics.



N1

N2
N3

f(N1)
f(N2)

f(N3)

Let f : X ! X be continuous. A nonempty isolated in-

variant set S ⇢ X is a T -cycle set if there exist T disjoint

compact regions N1, . . . , NT such that N = [T
i=1Ni is an

isolating neighborhood for S and

f(Ni) \N ⇢ Ni+1, i = 0, . . . , T (N0 = NT )

S is an attracting T -cycle set if f(Ni) ⇢ Ni+1, i = 0, . . . , T

Describing Recurrent Dynamics



Recovering Dynamics 
(Algebraic Topology)



ẋ = f(x) Fixed point (saddle)
Nonempty 1 cycle set

Exit 
Set

Exit 
Set

Topology of neighborhood different from topology of exit set



Simple Examples MagnetoElastic Ribbon

K.M., M. Mrozek, J. Reiss, A. Szymczak, PRL (1999)

↵1

↵2

↵3

↵4

fP,1 =

2

664

0 1 1 0
0 0 0 1
0 1 1 0
1 0 0 0

3

775 : Z4
2 ! Z4

2


