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ANALYTICITY AND NONANALYTICITY OF SOLUTIONS OF
DELAY-DIFFERENTIAL EQUATIONS∗

JOHN MALLET-PARET† AND ROGER D. NUSSBAUM‡

Abstract. We consider the equation ẋ(t) = f(t, x(t), x(η(t))) with a variable time shift η(t).
Both the nonlinearity f and the shift function η are given, and are assumed to be analytic (that is,
holomorphic) functions of their arguments. Typically the time shift represents a delay, namely, that
η(t) = t−r(t) with r(t) ≥ 0. The main problem considered is to determine when solutions (generally
C∞ and often periodic solutions) of the differential equation are analytic functions of t; and more
precisely, to determine for a given solution at which values of t it is analytic, and at which values
it is not analytic. Both sufficient conditions for analyticity, and also for nonanalyticity, at certain
values of t are obtained. It is shown that for some equations there exists a solution which is C∞
everywhere, and is analytic at certain values of t but is not analytic at other values of t. Throughout
our analysis, the dynamic properties of the map t → η(t) play a crucial role.

Key words. delay-differential equation, Volterra integral equation, analytic solution, variable
delay, power series, rotation number

AMS subject classifications. Primary, 30B10, 34K06, 34K99, 45C05; Secondary, 34K13,
37E10, 40A05

DOI. 10.1137/13091943X

1. Introduction. We study analyticity properties of solutions of the differential
equation

(1.1) ẋ(t) = f(t, x(t), x(η(t)))

with a single variable time shift η(t). In the broadest setting, we assume the function
f(t, u, v) is analytic (that is, holomorphic) in some region U , with (t, u, v) ∈ U ⊆
R× CN × CN , and f : U → CN . (The time t is generally taken as real, although the
solution x(t) may be complex valued. Of course f extends to be analytic in a complex
neighborhood Ũ ⊆ C × CN × CN of each point (t, u, v) ∈ U .) We also assume that
η(t) is a given function that is analytic in t in an appropriate region. Our interest is
in the analyticity properties of solutions of (1.1). In particular, we shall show that
very often periodic solutions, and other globally defined and bounded solutions, can
fail to be analytic at certain points.

In practice the equations we consider will generally be delay-differential equations
with a variable delay r(t) ≥ 0, that is,

(1.2) ẋ(t) = f(t, x(t), x(t − r(t))).

However, we may consider p-periodic solutions x(t) of (1.2) when f(t, u, v) and r(t)
are p-periodic in t, and we note that such solutions are also solutions of (1.1) when
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η(t) = t− r(t) +mp for any integer m. In this fashion, it is natural to consider (1.1)
for which t− η(t) takes on both positive and negative values. As such, we shall study
solutions of (1.1) near points t0, where η(t0) = t0.

State-dependent problems, such as those of the form

(1.3) ẋ(t) = f(t, x(t), x(t − r)), r = r(x(t)),

are certainly of great interest, and provide motivation for studying the simpler prob-
lem (1.2); see, for example, [17] and the references therein. However, we do not
consider such equations in the present paper.

Classic results of one of the authors [23] show that for a broad class of equations
with analytic f , but with constant delays, many solutions are analytic. As a special
case, results in [23] show that if f : RN(M+1) → RN is analytic and rk ≥ 0 for
1 ≤ k ≤M are given constants, then any solution x(t) of

(1.4) ẋ(t) = f(x(t), x(t − r1), x(t− r2), . . . , x(t− rM ))

which exists and is bounded on some interval (−∞, t0] must be analytic in t. In fact,
these same conclusions also hold when x(t − rk) is replaced by a distributed delay,
namely, by ∫ 0

−rk

x(t+ s) dμk(s),

where μk is a given signed Borel measure; this case was the proximate motivation
for [23]. The methods of [23] allow for a straightforward extension to the case of a
nonautonomous periodic system such as

(1.5) ẋ(t) = f(t, x(t), x(t − r1), x(t− r2), . . . , x(t− rM )),

where f(t+ p, u0, u1, u2, . . . , uM ) = f(t, u0, u1, u2, . . . , uM ) holds identically for some
p > 0, but where again the delays rk are constant. (We shall study this, and other
extensions of the results of [23], in a forthcoming paper [18].) See also the works of
Murovtsev [19], [20], [21], in which analytic solutions are obtained in a very different
fashion using Dirichlet series.

Until now, however, there have been almost no results for systems with variable
delays. But we mention that analyticity and other properties of certain solutions of
the so-called pantograph equation

ẋ(t) =
M∑
k=1

(
akx(λkt) + bkẋ(λkt)

)

and its generalizations, where typically |λk| ≤ 1, have been studied, among others, by
Derfel and Iserles [5], Iserles [9], and Iserles and Liu [10], [11], [12].

We also mention an example shown to us and described in several public lectures
by Tibor Krisztin [15], namely,

ẋ(t) = f(x(t), x(t − r1), x(t − r2), . . . , x(t− rM )), rk = rk(x(·)),

where the state-dependent delays rk are determined implicitly by∫ t

t−rk

a(x(s)) ds = ρk
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for 1 ≤ k ≤M . Here a : R → R is a given analytic function with a(u) > 0 for all u, the
function f is real analytic in an appropriate region in RM+1, and ρk for 1 ≤ k ≤ M
are given positive constants. Again, solutions x(t) which exist and are bounded on
some interval (−∞, t0] must be analytic. We show here that this problem in fact can
be reduced to one of constant delays (although we note that Krisztin’s original proof
of analyticity used a different approach). First introduce the new time variable

t̃ =

∫ t

t0

a(x(s)) ds

and let y(t̃) = x(t) for t ≤ t0, equivalently, for t̃ ≤ 0. With x(t) a solution as indicated,
then

ẏ(t̃) = a(y(t̃))−1f(y(t̃), y(t̃− ρ1), y(t̃− ρ2), . . . , y(t̃− ρM )).

This is an equation with constant delays, and thus y(t̃) is analytic in t̃ by the classic
results in [23]. Reversing the change of variables, namely, letting

t = t0 +

∫ t̃

0

a(y(s))−1 ds,

which is an analytic change of variables, shows directly that x(t) is analytic in t.
In the present paper, we show that although there are situations where (1.1)

admits nontrivial analytic solutions (see Theorem 2.1), there are also many robust
situations where solutions fail to be analytic (see Theorem 4.2). The solutions x(t)
we consider are often defined for all t ∈ R, and in many cases are periodic in t, and
thus are C∞. In fact very often for such solutions, there can be a coexistence of points
of analyticity and of nonanalyticity, namely, for a given solution x(t), both the set
A ⊆ R of t at which this solution is analytic, and the complement N ⊆ R of that
set, can be nonempty. It turns out that certain dynamical properties of the mapping
t→ η(t) on R (or on S1 in the case of periodic solutions) are relevant to the problem
of determining the sets of analyticity and of nonanalyticity.

This paper is organized as follows. In section 2 we consider the (analytic) equa-
tion (1.1) with initial condition y(t0) = y0, where η(t0) = t0, and in Theorem 2.1 we
show, for the so-called contractive case |η̇(t0)| < 1, that there exists a unique local C1

solution which additionally is analytic. This result is extended there to the case of
a contractive periodic point, that is, ηM (t0) = t0 and |η̇M (t0)| < 1 for some M > 1.
(Here ηM denotes the Mth iterate of the function η and η̇M denotes its derivative.)
In section 3 we study the global mapping properties of the map η on the sets A and
N of analyticity and nonanalyticity. It is shown in Theorems 3.1 and 3.4 that under
mild conditions, and except for a discrete set of exceptional points, η maps A into A
and N into N . In section 4 we restrict ourselves to the scalar linear equation

ẋ(t) = a(t)x(t) + b(t)x(η(t)) + h(t)

with analytic coefficients a, b, and h, and time shift η, in the so-called expansive
case, where η(t0) = t0 and |η̇(t0)| > 1. For any initial condition y(t0) = y0 we
obtain a quantity w∞, depending on y0, such that this initial value problem has a
local solution which is analytic if and only if w∞ = 0; these results are found in
Theorems 4.2 and 4.5. In Theorem 4.4 we show that irrespective of the value of w∞,
the initial value problem in fact has an infinite-dimensional set of local solutions which



ANALYTICITY AND NONANALYTICITY IN DELAY EQUATIONS 2471

are C∞ and not analytic. Section 5 considers a class of examples of linear equations,
given as the integral equation

κx(t) =

∫ t

t−r(t)

x(s) ds, r(t) = −(λ− 1) sin t+ 2πm,

where κ is an eigenvalue to be determined as part of the solution. Under appropriate
conditions there exists a unique positive 2π-periodic solution x(t) (up to a scalar
multiple). It is shown in Theorem 5.2 that under additional conditions, w∞ �= 0 for
this solution at the expansive point t0 = 0 with η(t) = t + (λ − 1) sin t, and thus
x(t) is not analytic in any neighborhood of t = 0. (This entails rewriting the integral
equation as a differential equation.) In Theorem 5.4 we obtain further conditions
under which there additionally exists a contractive point t00, in the neighborhood of
which the solution is analytic; thus x(t), which is C∞ everywhere, is analytic at some
but not all values of t, so-called coexistence of analyticity and nonanalyticity. Finally,
in section 6 we mention several open problems arising from our investigations.

2. Contractive periodic points of η: Analyticity. Our first result is the
following, which gives conditions for the existence of a solution which is analytic in
t, at least for a certain range of t. One may describe conditions (2.1) and (2.2) by
saying that the fixed point or periodic point t0 of η is contractive.

Theorem 2.1. Consider (1.1), where f : U → CN is analytic in a neighborhood
U ⊆ R×CN ×CN of some point (t0, x0, x0), and where η : V → R is real analytic in
a neighborhood V ⊆ R of t0. Assume that η(t0) = t0 and that

(2.1) |η̇(t0)| < 1.

Then there exists a unique C1 solution of (1.1) with the initial condition x(t0) = x0
on some interval about t = t0. Moreover, this solution is analytic in t.

The corresponding result holds for periodic points of η instead of fixed points.
That is, assume for some M > 1 that there exist M distinct times tn ∈ R and M
points xn ∈ CN for 0 ≤ n ≤ M − 1, with (tn, xn, xn+1) ∈ U , with tn ∈ V , and with
η(tn) = tn+1, where tM = t0 and xM = x0; also assume that

(2.2) |η̇M (t0)| < 1,

where ηM denotes the M th iterate of the function η and η̇M denotes its derivative.
Then there exists a unique C1 solution of (1.1) with the simultaneous initial conditions
x(tn) = xn on some intervals about t = tn for each n. Moreover, this solution is
analytic in t.

Remark. We shall generally let ηn denote the nth iterate of the function η and
η̇n(t) = d

dtη
n(t), as in the above result. By contrast, η(n), as is used, for example, in

Theorem 3.4 below, denotes the nth derivative of the function η.
Proof of Theorem 2.1. In a standard fashion we write the differential equation in

integrated form

(2.3) x(t) = x0 +

∫ t

t0

f(s, x(s), x(η(s))) ds

and obtain a solution via a contraction mapping argument. In fact, we do this twice,
with two different Banach spaces, namely, the space

X =
{
x : Dδ(t0) → C

N | x(·) is analytic in Dδ(t0) and continuous in Dδ(t0)
}
,
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where Dδ(t0) = {t ∈ C | |t − t0| < δ}, and also the more standard space Y =
C([t0 − δ, t0 + δ];CN ). The supremum norm is taken for each space and the right-
hand side of (2.3) is regarded as a map in the ε-ball

BX
ε = {x ∈ X | ‖x− x0‖ ≤ ε} or BY

ε = {x ∈ Y | ‖x− x0‖ ≤ ε}.

In particular, the condition (2.1) ensures that if δ is small enough then |η(t) − t0| ≤
|t−t0| when |t−t0| ≤ δ, and thus η maps Dδ(t0) into itself and also maps [t0−δ, t0+δ]
into itself. Then letting K > 0 be such that

|f(t, u, v)|, |Duf(t, u, v)|, |Dvf(t, u, v)| ≤ K

all hold whenever t ∈ Dδ(t0) and also |u−x0| ≤ ε and |v−x0| ≤ ε, one checks that the
right-hand side of (2.3) maps BX

ε into itself, and also maps BY
ε into itself, provided

that Kδ ≤ ε. Further, this map is a contraction mapping (both in BX
ε and in BY

ε )
provided that 2Kδ < 1. Thus for appropriately chosen δ and ε one obtains unique
fixed points, namely, solutions of (2.3), in BX

ε and in BY
ε . The fixed point in BX

ε

gives an analytic solution, and this solution is unique among all elements of BY
ε , as

desired.
For the case when η has a periodic point, let

yn(t) = x(ηn(t0 + t)) for 0 ≤ n ≤M − 1.

Then (1.1) can be written as the system

(2.4) ẏn(t) =

⎧⎨
⎩

fn(t, yn(t), yn+1(t)) for 0 ≤ n ≤M − 2,

fn(t, yn(t), y0(η
M (t0 + t)− t0)) for n =M − 1,

now in a neighborhood of t = 0, with nonlinearities

fn(t, u, v) = η̇n(t0 + t)f(ηn(t0 + t), u, v).

This reduces the problem to the fixed-point case considered above, now with the fixed
point η̃(0) = 0 and | ˙̃η(0)| < 1, where η̃(t) = ηM (t0 + t)− t0.

If |η̇(t0)| > 1 in place of condition (2.1) in Theorem 2.1, then we have a fixed
point of η(t) which we may term expansive. As will be shown in section 4, a linear
equation with an expansive fixed point generally does not possess an analytic solution
through that point (although it has many C∞ solutions there). In fact, we shall show
that typically (in a sense to be made precise) no analytic solution exists about an
expansive fixed point, although there are exceptional equations which do possess one.

3. Mapping properties of η. Here we examine the role of the mapping t →
η(t) in determining regions of analyticity and nonanalyticity for solutions of (1.1).
Generally, if x(t) is such a solution which is defined for all t ∈ R, we define sets

(3.1)
A = {t0 ∈ R | x(t) is analytic for |t− t0| < δ, for some δ},

N = R \ A.

Clearly, A is an open set while N is closed. As Theorems 3.1 and 3.4 below show, the
dynamic properties of the map t→ η(t) are key, and in particular, the sets A and N
enjoy certain mapping properties with respect to η.
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The case of a periodic solution of (1.1) is certainly of great interest. Here one has

(3.2) x(t+ p) = x(t)

for all t ∈ R, for some p > 0, along with the conditions

(3.3) f(t+ p, u, v) = f(t, u, v), η(t+ p) = η(t) + p

for all t ∈ R on the differential equation. (Even in the case that f(t, u, v) is linear in
u and v, such solutions can arise naturally as Floquet solutions.) Here we may regard
η as a map η : S1 → S1 of the circle S1 = R/pZ onto itself.

The following elementary result for analytic differential equations shows that if a
solution x(t) is analytic at η(t0) for some t0 in its domain, then it is analytic at t0.

Theorem 3.1. Assume that η : V0 → R is analytic in some neighborhood V0 ⊆ R

of a point t0, and denote t1 = η(t0). Also assume for some neighborhood V1 ⊆ R

of t1 that x : V0 ∪ V1 → CN is a continuous function. In addition, assume that
f : U → CN is analytic in some neighborhood U ⊆ R×CN ×CN containing the point
(t0, x(t0), x(t1)), and that x(t) is C1 and satisfies the differential equation (1.1) for
all t ∈ R near t0. Then if x(t) is analytic in a neighborhood of t1, it is analytic in a
neighborhood of t0.

Proof. Assuming that x(t) is analytic in t in a neighborhood of t = t1, we have
that x(η(t)) is analytic in t in a neighborhood of t = t0. Upon regarding x(η(t)) as
a known function and (1.1) as an ordinary differential equation for x(t), it is then
immediate that the solution x(t) of this equation is analytic for t in a neighborhood
of t0, as desired.

Theorem 3.1 can be used to provide the following global result, involving iterates
of η.

Corollary 3.2. Consider (1.1), where f : U → CN is analytic in a region
U ⊆ R × CN × CN and where η : R → R also is analytic. Assume that x(t) is a
solution of (1.1) for all t ∈ R, satisfying (t, x(t), x(η(t))) ∈ U for all t. Also assume
there exists a point t0 ∈ R such that ηM (t0) = t0 and |η̇M (t0)| < 1 for some M ≥ 1,
let tk = ηk(t0) for 1 ≤ k ≤M − 1, and let

B =

M−1⋃
k=0

Bk, Bk =
{
t ∈ R | lim

n→∞ ηnM (t) = tk

}
,

which is the basin of attraction of the orbit of the periodic point t0 for the map η.
Then B ⊆ A, that is, x(t) is analytic at every point of B.

Suppose additionally for some p > 0 that the periodicity conditions (3.3) hold,
and that x(t) is p-periodic, namely, (3.2) holds for all t ∈ R. Also relax the condition
ηM (t0) = t0 to assume simply ηM (t0) = t0 (mod p), but keep the condition |η̇M (t0)| <
1. Similarly let B ⊆ S1 = R/pZ denote the basin of attraction of the orbit of t0 with
η : S1 → S1 considered as a map on the circle. Then again, B ⊆ A, that is, x(t) is
analytic at every point of B.

Proof. By Theorem 2.1 the solution x(t) is analytic in some neighborhood V ⊆ R

of {t0, t1, . . . , tM−1}. Let τ ∈ B, say τ ∈ Bk, where 0 ≤ k ≤M −1. Then ηnM (τ) ∈ V
for some integer n ≥ 0, thus x(t) is analytic in a neighborhood of ηnM (τ). It follows
by Theorem 3.1 that x(t) is analytic in some neighborhood of τ , and so τ ∈ A, and
thus B ⊆ A, as desired.

The time-periodic case is proved with minor modifications.
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Theorem 3.4 below provides a partial converse to Theorem 3.1, but requires addi-
tional conditions on f (for example, f(t, u, v) must have some nontrivial dependence
on v). Even in the scalar case N = 1 these conditions are rather intricate; we describe
them here. We first define polynomials Pn, for n ≥ 0, inductively by

(3.4)

P0(ζ0,0) = ζ0,0,

Pn({ζi,j}i+j≤n) =
∑

k+m≤n−1

(
Dζk,m

Pn−1({ζi,j}i+j≤n−1)

)

×
(
ζk+1,m + ζ0,0ζk,m+1

)
.

The scalar variables ζi,j , for nonnegative integers i and j in the range i + j ≤ n, are
the arguments of Pn, and thus Pn is a polynomial in 1

2 (n + 1)(n+ 2) variables. The
interpretation of the formula (3.4) is as follows. If x(t) is a solution of a scalar ordinary
differential equation ẋ(t) = h(t, x(t)), then upon repeated differentiation with respect
to t and substitution of the differential equation into the formula obtained, we arrive
at a formula for the derivative x(n+1)(t) which is a polynomial in the derivatives
Di

tD
j
xh(t, x(t)). The polynomial so obtained is simply Pn with the substitution of

ζi,j = Di
tD

j
xh(t, x(t)) for its arguments. In particular,

P1({ζi,j}i+j≤1) = ζ1,0 + ζ0,0ζ0,1

corresponds to the formula ẍ(t) = Dth(t, x(t)) + h(t, x(t))Dxh(t, x(t)), and

P2({ζi,j}i+j≤2) = ζ2,0 + ζ0,0ζ1,1 + (ζ1,0 + ζ0,0ζ0,1)ζ0,1 + ζ0,0(ζ1,1 + ζ0,0ζ0,2)

corresponds to the analogous formula for x(3)(t) (which we omit).
With this, we have the following lemma in the case of a scalar equation.
Lemma 3.3. Assume that f : U → C is analytic in some neighborhood U ⊆

R× C× C of a point (t0, x0, v0), and define the functions

Qn(v) = Dv

(
Pn({Di

tD
j
xf(t0, x0, v)}i+j≤n)

)

for v near v0, for n ≥ 0. Then there exists an analytic function x(t), for t near t0
and with x(t0) = x0, such that

(3.5) g(t, v) = ẋ(t)− f(t, x(t), v)

is the zero function in a neighborhood of (t0, v0), if and only if each of the functions
Qn(v) is identically zero in a neighborhood of v0.

Proof. Suppose first there exists an analytic function x(t) as in the statement
of the lemma. Then for every v near v0 this function satisfies the equation ẋ(t) =
f(t, x(t), v) with the initial value x(t0) = x0, and so

(3.6) x(n+1)(t0) = Pn({Di
tD

j
xf(t0, x0, v)}i+j≤n)

for each n ≥ 0, from the remarks following the definition of Pn above. The left-hand
side of (3.6) is independent of v, and so the derivative of the right-hand side, namely,
Qn(v), vanishes identically in a neighborhood of v0, as claimed.
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Now suppose that Qn(v) = 0 identically in a neighborhood of v0 for each n ≥ 0.
For v in a neighborhood of v0, let y(t, v) be the solution of the ordinary differential
equation ẏ(t, v) = f(t, y(t, v), v) with the initial value y(t0, v) = x0. Also let x(t) =
y(t, v0) and define g(t, v) as in (3.5). Then again from the definition of Pn

Dn+1
t y(t0, v) = Pn({Di

tD
j
xf(t0, x0, v)}i+j≤n)

for every n ≥ 0 and so

DvD
n+1
t y(t0, v) = Dv

(
Pn({Di

tD
j
xf(t0, x0, v)}i+j≤n)

)
= Qn(v) = 0

holds identically for v in some neighborhood of v0. Therefore, the quantityD
n+1
t y(t0, v)

is constant in v, and so it equals its value at v = v0, namely,

Dn+1
t y(t0, v) = x(n+1)(t0)

for every n ≥ 0. As both y(t, v) and x(t) are analytic in t, it follows they are equal as
they have the same Taylor series about t0. Therefore, for any (t, v) near (t0, v0) one
has

g(t, v) = ẋ(t)− f(t, x(t), v) = Dty(t, v)− f(t, y(t, v), v) = 0

and so g is the zero function, as claimed.
Theorem 3.4. Assume all the conditions in the statement of Theorem 3.1, except

for the final sentence. Also assume that x(t) is C∞ in a neighborhood of t1 and that
one of the following two conditions holds:

(1) N = 1 (a scalar equation), and there exists n ≥ 0 such that the function
Qn(v), with x0 = x(t0), is not identically zero in a neighborhood of v0 =
x(η(t0)); or

(2) f(t, u, v) = f0(t, u) +B(t)v in a neighborhood of (t0, x(t0), x(η(t0))), and the
function detB(t) does not vanish identically near t0.

Finally assume that there exists an integer m ≥ 0 such that

η(k)(t0) = 0 for 1 ≤ k ≤ 2m, η(2m+1)(t0) �= 0,

that is, either η̇(t0) �= 0 or else η̇(t) has a zero of even order at t0. Then if x(t) is
analytic in a neighborhood of t0, it is analytic in a neighborhood of t1.

Proof. Assume that x(t) is analytic for t in a neighborhood of t0. First suppose
that condition (1) holds, and define

g(t, v) = ẋ(t)− f(t, x(t), v), ν(t) = x(η(t)).

Then g(t, v) is analytic for (t, v) in a neighborhood of (t0, x(t1)), and g(t, ν(t)) = 0
identically for t in a neighborhood of t0. Lemma 3.3 implies that g(t, v) is not the
zero function, and this fact together with a straightforward application of Newton’s
polygon (see, for example, [3, section 2.8] or [6, Theorem 1.4, section 1.7]) implies
that ν(t) is given by a fractional power series

(3.7) ν(t) =

∞∑
j=0

νj(t− t0)
j/q
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for some integer q ≥ 1, which converges for t in some neighborhood of t0. However,
ν(t) is a C∞ function of t near t0, since x(t) is C

∞ near t1. Necessarily then, the only
nonzero terms in the power series (3.7) are those for which j = iq is a multiple of q.
That is,

ν(t) =

∞∑
i=0

νiq(t− t0)
i,

and we conclude that ν(t) is analytic for t in a neighborhood of t0.
Next, we have that η(t) = η(t0) + ((t− t0)θ(t))

2m+1 = t1 + ((t− t0)θ(t))
2m+1 for

some function θ(t) which is analytic in a neighborhood of t0 with θ(t0) �= 0. As the
function ν(t) = x(t1 + ((t − t0)θ(t))

2m+1) is analytic near t = t0, it follows via the
analytic change of variables t̃ = (t− t0)θ(t) that the function μ(t̃) = x(t1 + t̃2m+1) is
analytic in t̃ in a neighborhood of t̃ = 0. Writing

μ(t̃) =
∞∑
j=0

μj t̃
j,

which is a convergent series, we conclude that

(3.8) x(t) = μ((t − t1)
1/(2m+1)) =

∞∑
j=0

μj(t− t1)
j/(2m+1)

for t in a neighborhood of t1. Again, as x(t) is C∞, the only nonzero terms in (3.8)
are those for which j = i(2m + 1) is a multiple of 2m + 1. It follows that x(t) is
analytic for t in a neighborhood of t1, as desired. (In particular, the oddness of the
denominator 2m+ 1 implies the formula (3.8) is valid both for t > t1 and t < t1.)

In the case condition (2) is assumed in place of (1), the proof is similar. In
particular, the function ν(t) has the form

ν(t) = B(t)−1(ẋ(t)− f0(t, x(t)))

for t �= t0, with a possible pole at t = t0, and is thus a meromorphic function of t in
a neighborhood of t0. However, as ν(t) is continuous at t0, we have that in fact ν(t)
is analytic in t. The remainder of the proof follows as above.

Remark. For the case N = 1 in Theorem 3.4, condition (1) is sharp in the sense
that it gives necessary and sufficient conditions (as per Lemma 3.3) for the existence
of x(t) so that the function g(t, v) is identically zero. As a practical matter, the
condition for n = 0, namely, thatQ0(v) = Dvf(t0, x(t0), v) does not vanish identically,
or equivalently that f(t0, x(t0), v) has nontrivial dependence on v, should suffice for
many situations. And if Q0(v) does vanish identically, one could next require that

Q1(v) = Dv

(
Dtf(t0, x(t0), v) + f(t0, x(t0), v)Dxf(t0, x(t0), v)

)

does not vanish identically.
More generally, noting that Qn(v) = Qn(v; t0, x0) depends on the choice of

(t0, x0), one could (working in U = R× CN × CN for simplicity) define sets

Sn = {(t0, x0) ∈ R× CN |Qk(v; t0, x0) = 0 for every v ∈ CN and 0 ≤ k ≤ n},

S∞ =

∞⋂
n=0

Sn, T = {t0 ∈ R | there exists x0 ∈ C
N with (t0, x0) ∈ S∞}.
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One could then require that the set T ⊆ R be a totally disconnected (either discrete
or at least zero-dimensional) set, and observe that if t0 �∈ T then condition (1) of
Theorem 3.4 applies at every x0 ∈ CN . One would expect the theory of semianalytic
and subanalytic sets to play a role here.

Remark. It is not clear what are the appropriate conditions in place of (1) or (2)
in Theorem 3.4 for a general nonlinearity f(t, u, v) with N > 1. If N = 1 then the
necessary and sufficient condition on an analytic function g(t, v) in order to conclude
that any C∞ solution ν(t) to g(t, ν(t)) = 0 is analytic, as in the above proof, is that the
function g does not vanish identically. But for N > 1 this condition is not sufficient;
for example, if g(t, v) = Bv, where B is a constant matrix for which detB = 0 but
B �= 0, then there exist solutions ν(t) to Bν(t) = 0 which are C∞ but not analytic.
Necessary and sufficient conditions on g in order to conclude that ν(t) is analytic have
in fact been given by Neelon [22], and involve an iterated Jacobian ideal in the ring
of germs of analytic functions at (t0, v0). Neelon’s result uses in a crucial way the
so-called Artin approximation theorem [1], which states that if ν(t) is a formal power
series solution of g(t, ν(t)) = 0, where g(t, v) is analytic in (t, v), then for every n ≥ 0
there exists a true solution ν̃(t) which is a convergent power series which agrees with
ν(t) up to order n in powers of t.

One immediate consequence of Theorems 3.1 and 3.4 is the following result. Note
that in any case, the solution x(t) in this result is everywhere C∞ by virtue of its
existing for all time.

Corollary 3.5. Consider (1.1) where f : U → CN is analytic in a region
U ⊆ R × CN × CN and where η : R → R also is analytic. Assume that x(t) is a
solution of (1.1) for all t ∈ R, satisfying (t, x(t), x(η(t))) ∈ U for all t. Also assume
that at every t0 ∈ R either condition (1) of Theorem 3.4 holds (where n may depend
on t0) or else that condition (2) of Theorem 3.4 holds. Recall the sets A and N of
analyticity and nonanalyticity, respectively, in (3.1), and also define the set

M = {t0 ∈ R | there exists an integer m > 0 such that

η(k)(t0) = 0 for 1 ≤ k ≤ 2m− 1 but η(2m)(t0) �= 0}.

Then

η(A \M) ⊆ A, η(N ) ⊆ N ,

both hold. In particular, if for all t ∈ R one has

(3.9) η̇(t) ≥ 0, η(±∞) = ±∞,

then M = ∅ and

(3.10) η(A) = A, η(N ) = N .

In this case η(t0) ∈ A if and only if t0 ∈ A, and similarly for N , for every t0 ∈ R.
Proof. The results follow directly from Theorems 3.1 and 3.4.
If, in the periodic case (3.3) of the above result, the monotonicity condition (3.9)

holds for every t ∈ R, then the map η can be regarded as a homeomorphism of the
circle S1 = R/pZ onto itself. (The analyticity of η implies it is one-to-one.) Thus the
rotation number ω of η is defined, namely,

(3.11) ω = lim
n→±∞

ηn(t0)

np
,
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where the limit exists and is independent of the sign ± and the choice of t0. If ω is
rational then there exists a periodic point (modulo p) of the map η. If ω is an integer
then necessarily there exists a fixed point (modulo p) of η, and for generic such η
there exist both contractive and expansive fixed points. In case ω is irrational then
(following Yoccoz [26]) η is topologically conjugate to the rigid rotation η̃(t) = t+ωp
and every orbit {ηn(t)}n∈Z is dense in the circle. From this observation we have the
following result.

Corollary 3.6. Assume the conditions in the statement of Corollary 3.5, in-
cluding the monotonicity condition (3.9) for all t ∈ R. Also assume for some p > 0
that the periodicity conditions (3.3) hold, and suppose that x(t) is a solution of (1.1)
of period p, that is, satisfying (3.2) for all t ∈ R. Finally assume that the rotation
number ω in (3.11) is irrational.

Then either x(t) is analytic for every t ∈ R, or it is not analytic at any t ∈ R. In
any case, it is C∞ at every t ∈ R.

Proof. As noted earlier the solution x(t) is C∞ everywhere. Let A and N be as
in (3.1), and recall that these sets are open and closed, respectively. These sets are
also p-periodic, namely, that t0 ∈ A if and only if t0 + p ∈ A and similarly for N .
Suppose that N �= ∅ and take any point t0 ∈ N . Then by (3.10) in Corollary 3.5 and
by periodicity, we have that ηn(t0) +mp ∈ N for every m,n ∈ Z.

The fact that ω is irrational, together with the analyticity of η, implies by a result
of Yoccoz [26] that η is topologically conjugate to the rigid rotation t→ t+ωp. (This
result is classical [4]—see also [7]—if η is a diffeomorphism, that is, if η̇(t) > 0 for
every t ∈ R. However, this conclusion can fail even for C∞ homeomorphisms of S1

which are not diffeomorphisms; see Hall [8].) Thus the set of points ηn(t0) +mp is
dense in R. Therefore N is dense in R and so N = R as N is closed.

We thus conclude that either N = ∅ and A = R, or else N = R and A = ∅, which
is as claimed.

Remark. In [27] Yoccoz identifies a class H ⊆ R of irrational numbers with the
property that any analytic diffeomorphism η of the circle S1 with rotation number
ω ∈ H is analytically conjugate to a rigid rotation. That is, there exists an analytic
diffeomorphism σ : S1 → S1 such that σ−1(η(σ(t))) = t + ωp. The characterization
of H is sharp, namely, that for each ω �∈ H there exists an analytic diffeomorphism
η with rotation number ω which is not analytically conjugate to a rigid rotation.
Further, the set H properly contains all the Diophantine numbers, namely, numbers
ω for which there exist K > 0 and δ > 0 such that |nω−m| ≥ Kn−1−δ for all integers
m,n ∈ Z with n �= 0. It follows from this that in the setting of Corollary 3.6, if
ω ∈ H, then x(t) is analytic for every t ∈ R. Indeed, this is easily shown via the time
transformation t = σ(t̃) and letting y(t̃) = x(σ(t̃)). Then y(t̃) is a p-periodic solution
of the analytic equation

ẏ(t̃) = σ̇(t̃)f(σ(t̃), y(t̃), y(t̃+ ωp))

with a constant time shift ωp. (In case ωp > 0 one may reverse time t̃ → −t̃ and
transform this into a delay.) As noted, by a straightforward extension (see [18]) of
the results of [23], the solution y(t̃), and therefore also x(t), are everywhere analytic.

Whether or not the set H is sharp with respect to this property of analyticity
of periodic solutions is not clear. Namely, it is unclear whether or not there exists
an irrational number ω, with ω �∈ H, such that every solution x(t) in the setting of
Corollary 3.6 with this ω must be everywhere analytic.

It would be of great interest to find an example of an analytic equation with a
solution as in Corollary 3.6 which is everywhere C∞ but nowhere analytic.



ANALYTICITY AND NONANALYTICITY IN DELAY EQUATIONS 2479

4. Expansive fixed points of η: Nonanalyticity (usually). We next con-
sider the situation in which (2.1) fails; more specifically, we assume the case of an
expansive fixed point, namely, that η(t0) = t0 and

(4.1) |η̇(t0)| > 1.

We shall not consider the case of expansive periodic points. We shall also restrict
ourselves to the case of a scalar (N = 1) linear inhomogeneous system, which we
write as

(4.2) ẋ(t) = a(t)x(t) + b(t)x(η(t)) + h(t),

although we expect that analogs of our theorems should hold for expansive periodic
points, for systems, and for nonlinear equations. Thus we assume that a(t), b(t), h(t),
and η(t) are analytic in t in a neighborhood of t = t0, with η(t0) = t0 and (4.1)
holding.

A simple example which provides some insight into the general situation is the
equation

(4.3) ẋ(t) = a0x(t) + b0x(λt).

Here we take a0, b0 ∈ C with b0 �= 0 and η(t) = λt with |λ| > 1. We ask if, for a
given x0 ∈ C, (4.3) possesses a solution x(t) with x(0) = x0 which is analytic in a
neighborhood of t = 0. Such a solution would take the form

(4.4) x(t) =
∞∑

n=0

xnt
n

and one easily checks that the coefficients xn for n ≥ 1 are uniquely determined and
given by the formula

xn =

(
λn(n−1)/2bn0

n!

)
wn, wn = x0

n−1∏
k=0

(
1 +

a0
λkb0

)
.

Note that the limit

w∞ = lim
n→∞wn = x0

∞∏
k=0

(
1 +

a0
λkb0

)

exists and is finite. Certainly, if a0 + λkb0 = 0 for some k ≥ 0 then xn = wn = 0 for
every n > k, and (4.3) with x(0) = x0 possesses an analytic solution which is in fact
a polynomial. (Of course w∞ = 0 in this case.) On the other hand, if a0 + λkb0 �= 0
for every k ≥ 0 and if x0 �= 0, then w∞ �= 0. In this case

lim
n→∞ |xn|1/n = lim

n→∞

∣∣∣∣λ(n−1)/2b0
(n!)1/n

∣∣∣∣|wn|1/n = ∞,

and so the Taylor series (4.4) has zero radius of convergence and no analytic solution
exists. Note that Stirling’s formula

n! ∼ nn+1/2(2π)1/2e−n
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is useful in obtaining the above limit. Thus, roughly speaking, for “most” but not for
every choice of a0 and b0, (4.3) has no nontrivial analytic solution in a neighborhood
of t = 0.

Note that the above formula for w∞ bears an intriguing resemblance to the clas-
sical Dedekind eta function

η(z) = q1/24
∞∏
k=1

(1− qk), q = e2πiz.

Indeed, one has

w∞ = x0(ρ; q)∞ = x0

∞∏
k=0

(1− ρqk)

with the standard q-Pochhammer symbol (ρ; q)∞ of q-series, where ρ = −a0b−1
0 and

q = λ−1. Let us also note the recent work of Sokal [25] on the partial theta function,
which involves several formulas reminiscent of those above.

For the general equation (4.2) with a given initial condition x(t0) = x0, in The-
orem 4.2 we shall define a quantity w∞ analogous to the one above and show that a
necessary condition for an analytic solution in a neighborhood of t0 to exist is that
w∞ = 0. In Theorem 4.5 we show this is also sufficient; if w∞ = 0 then there does
exist such an analytic solution. We shall also show, in Theorem 4.4, that in any case
(either if w∞ = 0 or if w∞ �= 0) there exists an infinite-dimensional set of solutions
with x(t0) = x0 which are C∞ but not analytic.

In obtaining these results it will be useful to transform η(t) to the linear function
t0 + λ(t − t0), where λ = η̇(t0), in a neighborhood of t = t0. To this end, the
following one-dimensional version of the Hartman–Grobman theorem provides such a
transformation via a local analytic conjugacy σ(t).

Lemma 4.1. Let η : V → R be analytic in some neighborhood V ⊆ R of a point
t0. Assume that η(t0) = t0 and that |λ| �= 0, 1, where λ = η̇(t0). Then there exists a
function σ(t), real-analytic in a neighborhood of t = t0, such that

(4.5) σ(t0) = t0, σ̇(t0) = 1, σ−1(η(σ(t))) = t0 + λ(t− t0),

holds identically.
A proof of Lemma 4.1 may be found in [2, Chapter II, Theorem 2.1], at least

for 0 < |λ| < 1; the case |λ| > 1 is handled by simply considering η−1 in place of
η. We note that in fact this result was originally given by Koenigs over a century
ago [13]. We remark that the function σ is unique, not only among analytic functions,
but among all local C1 diffeomorphisms satisfying (4.5). In general σ(t) need not be
defined outside a neighborhood of t = t0, although if η(t) is an entire function of t
and |λ| > 1, then σ(t) is also entire. One sees this by applying σ to both sides of the
final equation in (4.5), and then repeatedly iterating.

Making the change of variables

(4.6) t = σ(t0 + t̃)

in (4.2), and denoting y(t̃)=x(σ(t0 + t̃)) for t̃ near zero, yields the pantograph-type
equation

(4.7) ẏ(t̃) = α(t̃)y(t̃) + β(t̃)y(λt̃) + γ(t̃)
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with coefficients

α(t̃)= σ̇(t0+ t̃)a(σ(t0+ t̃)), β(t̃)= σ̇(t0+ t̃)b(σ(t0+ t̃)), γ(t̃)= σ̇(t0+ t̃)h(σ(t0 + t̃)),

which are analytic in a neighborhood of t̃ = 0. It is certainly the case that x(t)
is analytic for t in a neighborhood of t0 if and only if y(t̃) is analytic for t̃ in a
neighborhood of zero. In what follows we shall use the Taylor series

(4.8) α(t̃) =
∞∑

n=0

αnt̃
n, β(t̃) =

∞∑
n=0

βnt̃
n, γ(t̃) =

∞∑
n=0

γnt̃
n,

of the coefficient functions. We note the bounds

(4.9) |αk|, |βk|, |γk| ≤ Cμk

for some C > 0 and μ > 0 and every k, due to the positive radius of convergence of
these functions.

The next result provides a sufficient condition for the absence of an analytic
solution to an initial value problem for (4.7). Observe that the condition β(0) = β0 �= 0
in this result is equivalent to b(t0) �= 0 in (4.2).

Theorem 4.2. Consider (4.7) with analytic coefficients α, β, γ : V → C in some
neighborhood V ⊆ R of t̃ = 0, and with |λ| > 1. Let y0 ∈ C be given and define
yn ∈ C, for n ≥ 1, to be the coefficient of t̃n in the formal power series for a solution
y(t̃) of (4.7) with initial condition y(0) = y0; that is,

(4.10) (n+ 1)yn+1 =

n∑
k=0

αn−kyk +

n∑
k=0

βn−kλ
kyk + γn

for n ≥ 0. Also assume that β(0) = β0 �= 0. Then upon defining wn ∈ C by

(4.11) wn =

(
n!

λn(n−1)/2βn
0

)
yn,

we have that the finite limit

lim
n→∞wn = w∞

exists. Further, if w∞ �= 0 then (4.7) with the initial value y(0) = y0 has no analytic
solution y(t̃) in any neighborhood of t̃ = 0.

Proof. Upon substituting (4.11) into (4.10), we obtain the recursion relation

(4.12) wn+1 =

(
1 +

α0

λnβ0

)
wn +

n−1∑
k=0

θn
θk

(
βn−k +

αn−k

λk

)
wk

β0
+
θnγn
β0

for the terms wn, where we denote

(4.13) θk =
k!

λk(k+1)/2βk
0

.

It follows from (4.9) and from (4.12) that

(4.14)

|wn+1 − wn| ≤ C

∣∣∣∣ wn

λnβ0

∣∣∣∣+ 2C
n−1∑
k=0

∣∣∣∣θnμn

θkμk

∣∣∣∣
∣∣∣∣wk

β0

∣∣∣∣+ C

∣∣∣∣θnμn

β0

∣∣∣∣
≤ C

|β0|

((
1

|λn| + 2
n−1∑
k=0

∣∣∣∣θnμn

θkμk

∣∣∣∣
)

max
0≤k≤n

|wk|+ |θn|μn

)
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for every n ≥ 0. We note that for every k ≥ 1

(4.15)

∣∣∣∣ θkμ
k

θk−1μk−1

∣∣∣∣ = μk

|λkβ0|
≤

⎧⎪⎨
⎪⎩

K1

2
for 1 ≤ k ≤ q,

1

2
for k > q,

for some quantity K1 ≥ 1 and integer q ≥ 1. Now fix a quantity δ satisfying |λ−1| <
δ < 1. Then there exists a constant K2 ≥ 1 such that

(4.16)

∣∣∣∣θnμn

θkμk

∣∣∣∣ =
∣∣∣∣ θnμ

n

θn−1μn−1

∣∣∣∣
∣∣∣∣θn−1μ

n−1

θkμk

∣∣∣∣ ≤
(

μn

|λnβ0|

)(
Kq

1

2n−k−1

)
≤ K2δ

n

2n−k

for 0 ≤ k ≤ n − 1, where K2 does not depend on n or k. With this, it follows
from (4.14) that

(4.17)

|wn+1 − wn| ≤
C

|β0|

((
δn + 2

n−1∑
k=0

K2δ
n

2n−k

)
max

0≤k≤n
|wk|+

K2δ
n

2n

)

<
Cδn

|β0|

(
1 + 2K2 +K2

)(
1 + max

0≤k≤n
|wk|

)

= K3δ
n

(
1 + max

0≤k≤n
|wk|

)
,

where the above equality serves to define K3. We claim that the sequence wn is
bounded, in fact, that

(4.18) |wn| ≤
(

n−1∏
k=0

(1 +K3δ
k)

)(
|w0|+

n−1∑
k=0

K3δ
k

)

for every n ≥ 0. The proof of (4.18) follows directly from (4.17) by induction. In-
deed, (4.18) holds for n = 0, where the empty sum and product here are taken to
be 0 and 1, respectively. Assuming (4.18) holds for all integers from zero to n, we
see that the right-hand side of (4.18), with n as given, is in fact an upper bound for
max0≤k≤n |wk|. Therefore from (4.17),

|wn+1| < |wn|+K3δ
n

(
1 + max

0≤k≤n
|wk|

)
≤ (1 +K3δ

n) max
0≤k≤n

|wk|+K3δ
n

≤ (1 +K3δ
n)

(
n−1∏
k=0

(1 +K3δ
k)

)(
|w0|+

n−1∑
k=0

K3δ
k

)
+K3δ

n

<

(
n∏

k=0

(1 +K3δ
k)

)(
|w0|+

n∑
k=0

K3δ
k

)
,

as desired. This establishes (4.18) for all n, and thereby provides a uniform bound

|wn| <
( ∞∏

k=0

(1 +K3δ
k)

)(
|w0|+

∞∑
k=0

K3δ
k

)
<∞

for the terms wn. With this, and from (4.17), it follows that wn is a Cauchy sequence
and thus the limit w∞ exists, as claimed.
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Finally, to show that no analytic solution exists if w∞ �= 0, we observe by (4.11)
that

lim
n→∞ |yn|1/n = lim

n→∞

∣∣∣∣λ(n−1)/2β0
(n!)1/n

∣∣∣∣|wn|1/n = ∞,

where, as before, Stirling’s formula is used.
Remark. For given coefficients α(t̃) and β(t̃) and for a given λ, one sees that the

quantity w∞ depends linearly on both the initial condition y0 and on the inhomoge-
neous term γ(t̃). More precisely,

w∞ = w∞(y0, γ) = whom
∞ y0 + winh

∞ (γ),

where whom∞ ∈ C is the value of w∞ that occurs with y0 = 1 and γ(t̃) ≡ 0 identically,
and where winh

∞ (γ) is the value of w∞ with y0 = 0 and γ as given. One may regard
winh

∞ : G → C as a linear map, where G is the vector space (with no topology imposed)
of all germs of analytic functions γ(t̃) at t̃ = 0. (Of course “hom” and “inh” stand for
homogeneous and inhomogeneous, respectively.)

An interesting question is whether for a given α, β, and λ, with β(0) �= 0 as in
Theorem 4.2, the map winh∞ is necessarily nontrivial, that is, winh∞ (γ) �= 0 for some
γ ∈ G. We conjecture it is always nontrivial, as it would seem highly unlikely that
winh∞ (γ) = 0 would hold for every γ ∈ G.

Remark. It is not clear how to extend Theorem 4.2 to the case of systems, that
is, where y(t̃) ∈ CN in (4.7). In such a case α(t̃) and β(t̃) are N × N matrix-valued
functions and γ(t̃) ∈ CN , and the difficulties arise from issues of commutativity.
Namely, upon making the change of variables (4.11), where one interprets βn

0 in
the denominator as β−n

0 , with β0 assumed to be a nonsingular matrix, it is not the
recursion equation (4.12) for wn that arises. Rather, one instead obtains

wn+1 =

(
I + λ−nβ−n−1

0 α0β
n
0

)
wn +

n−1∑
k=0

β−1
0 θn

(
βn−k + λ−kαn−k

)
θ−1
k wk + β−1

0 θnγn,

where the various factors in each term in the sum need not commute with one another,
and so the arguments of the above proof no longer apply.

Remark. In case w∞ = 0 in Theorem 4.2, there in fact does exist a (necessarily
unique) solution of (4.7) which is analytic in a neighborhood of t0; this converse to
Theorem 4.2 will be shown in Theorem 4.5 below. However, there also exist other
solutions through the same initial point which are only C∞ but not analytic, and in
fact there is an infinite-dimensional space of such solutions. This is the content of
Theorem 4.4. Thus w∞ = 0 is no guarantee that a particular solution of interest is
analytic, even though an analytic solution does exist.

An interesting open question is whether, for the original equation (4.2) with a(t),
b(t), h(t), and η(t) analytic and periodic, and with w∞ = 0 for some y0 at an expansive
fixed point t0 of η, there can exist a periodic solution with y(t0) = y0 which is not
analytic at t0.

Before proving Theorem 4.4 we require the following lemma. By a linear space
(in a Banach space), such as E in this lemma, we mean simply a vector space, which
need not be closed. By an affine space, such as E ∩Λ−1(a), we mean a translate of a
linear space. By an affine map we mean a map which is linear plus a constant.

Lemma 4.3. Let Λ : X → Cn be a continuous affine map whose range is all of
Cn, where X is an infinite-dimensional complex Banach space. Suppose that E ⊆ X
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is a dense linear space. Then for every a ∈ Cn, the set

E ∩ Λ−1(a) = {x ∈ E | Λ(x) = a}

is an infinite-dimensional affine space.
Proof. By considering the map x → Λ(x) − Λ(0), we may assume without loss

that Λ is a linear map. Let ΛE : E → Cn denote the restriction of Λ to E. Then
by the continuity of Λ, the range of ΛE is a dense subspace of Cn and thus all
of Cn. Therefore given any a ∈ Cn, there exists x0 ∈ E such that ΛE(x0) = a.
Thus it holds for any x ∈ E, that Λ(x) = a if and only if x − x0 ∈ ker(ΛE), where
ker(ΛE) = {y ∈ E |ΛE(y) = 0} is the kernel of ΛE ; that is, E∩Λ−1(a) = x0+ker(ΛE).
Thus it is sufficient to show that ker(ΛE) is infinite-dimensional. However, the range
Cn of ΛE is linearly isomorphic to E/ ker(ΛE) (in the algebraic sense as vector spaces,
with no topology imposed); and as E is infinite dimensional, it follows that ker(ΛE)
is also infinite-dimensional.

Theorem 4.4. Consider (4.7) with analytic coefficients α, β, γ : V → C in some
neighborhood V ⊆ R of t̃ = 0, and with |λ| > 1. Then there exists τ0 > 0 such that
the following holds. For every y0 ∈ C and τ ∈ R with 0 < τ ≤ τ0, the set{

y ∈ C∞[−τ, τ ] | y(0) = y0 and y(t̃) satisfies (4.7) for |t̃| ≤ |λ|−1τ
}

is an infinite-dimensional affine space. Further, all of these solutions y(t̃) share the
same (not necessarily convergent) Taylor series expansion about t̃ = 0.

Proof. Assume first that τ0 > 0 is small enough that the coefficients α, β, and γ
in (4.7) are analytic for |t̃| ≤ τ0; we reserve the right to reduce τ0 further. Let K > 0
be a common bound,

|α(t̃)|, |β(t̃)|, |γ(t̃)| ≤ K,

for these coefficients in this interval. Now fix τ satisfying 0 < τ ≤ τ0. Then any

ϕ ∈ C(I− ∪ I+), where I− = [−τ,−|λ|−1τ ], I+ = [|λ|−1τ, τ ],

may be taken as an initial condition for (4.7), wherein the solution may be solved in
steps to the right, from t̃ = −|λ|−1τ , and to the left, from t̃ = |λ|−1τ , toward t̃ = 0.
This yields a function y(t̃), continuous for t̃ ∈ [−τ, τ ] \ {0} and agreeing with ϕ on
its domain I− ∪ I+, and which is C1 and satisfies the differential equation (4.7) for
t̃ ∈ [−|λ|−1τ, |λ|−1τ ] \ {0}. In fact this solution is Cn for t̃ ∈ [−|λ|−nτ, |λ|−nτ ] \ {0}
for every n ≥ 1, as one checks inductively. Let us denote this solution by y(t̃;ϕ).

By a simple Gronwall argument one can show that this solution is bounded as
t̃→ 0, both from the left and from the right. Indeed, upon letting

ξ(t̃) = max
t̃≤|s|≤τ

|y(s;ϕ)|

then one has

ξ(t̃) ≤ ‖ϕ‖+
∫ |λ|−1τ

t̃

2Kξ(s) +K ds < ‖ϕ‖+K|λ|−1τ + 2K

∫ |λ|−1τ

t̃

ξ(s) ds

for 0 < t̃ ≤ |λ|−1τ , where ‖ · ‖ denotes the norm in C(I− ∪ I+). This in turn gives

(4.19) ξ(t̃) < (‖ϕ‖+K|λ|−1τ)e2K(|λ|−1τ−t̃),

which implies that y(t̃;ϕ) is bounded as t̃→ 0, both from the left and right. It follows
from the differential equation that the derivative ẏ(t̃;ϕ) also remains bounded, and
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thus both the left-hand and right-hand limits

Λ−(ϕ) = lim
t̃→0−

y(t̃;ϕ) = y(0−;ϕ), Λ+(ϕ) = lim
t̃→0+

y(t̃;ϕ) = y(0+;ϕ),

exist and are finite (although they could be different). The above formulas serve as
the definitions of the two functions Λ± : C(I− ∪ I+) → C, which are affine due to the
linearity of the differential equation. Also, the bound

|Λ±(ϕ)| ≤ (‖ϕ‖+K|λ|−1τ)e2K|λ|−1τ

holds by (4.19) and implies that Λ− and Λ+ are continuous functions.
It is further the case, as one sees by successively differentiating the differential

equation, that the derivatives have finite limits limt̃→0± y
(n)(t̃;ϕ) = y(n)(0±;ϕ) from

the left and right, for every n ≥ 1, and thus the solution y(t̃;ϕ) belongs to both
Cn[−|λ|−nτ, 0] and to Cn[0, |λ|−nτ ]. If additionally it is the case that Λ−(ϕ) = Λ+(ϕ),
then each pair of left- and right-hand derivatives is equal, and so the solution belongs
to Cn[−|λ|−nτ, |λ|−nτ ].

Now define Λ : C(I− ∪ I+) → C2 by

Λ(ϕ) = (Λ−(ϕ),Λ+(ϕ)).

Then the range of Λ is an affine subset of C2, namely, either a point, a (complex)
straight line, or all of C2. We claim it is all of C2 provided τ is small enough. To
prove this, first let ϕ ∈ C(I− ∪ I+) be a function with ϕ(t̃) ≡ c− ∈ {−1, 1} on
I− and ϕ(t̃) ≡ c+ ∈ {−1, 1} on I+. Then ‖ϕ‖ = 1, and with (4.19) we have that

|y(t̃;ϕ)| < (1 +K|λ|−1τ)e2K|λ|−1τ throughout [−τ, τ ] \ {0}. This in turn provides the
bound

|ẏ(t̃;ϕ)| < K

(
2(1 +K|λ|−1τ)e2K|λ|−1τ + 1

)

throughout [−|λ|−1τ, |λ|−1τ ] \ {0} via the differential equation, and it follows that

|Λ±(ϕ)− c±| = |y(0±;ϕ)− y(±|λ|−1τ ;ϕ)|

< K|λ|−1τ

(
2(1 +K|λ|−1τ)e2K|λ|−1τ + 1

)

≤ K|λ|−1τ0

(
2(1 +K|λ|−1τ0)e

2K|λ|−1τ0 + 1

)
≤ 1

3
,

where τ0 is chosen small enough that the final inequality above holds. Now consider
the three functions ϕ = ϕ1, ϕ2, and ϕ3 corresponding to the choices (c−, c+) =
(1, 1), (−1, 1), and (1,−1), respectively. It is enough to show that the two vectors
Λ(ϕ1)−Λ(ϕ2) and Λ(ϕ1)−Λ(ϕ3) in C2 are linearly independent to conclude that the
range of Λ is C2. We have Λ(ϕ1) = (1+ρ1, 1+ρ2), with Λ(ϕ2) = (−1+ρ3, 1+ρ4) and
Λ(ϕ3) = (1+ρ5,−1+ρ6), where |ρj | ≤ 1

3 for each j; thus Λ(ϕ1)−Λ(ϕ2) = (2+κ1, κ2)
and Λ(ϕ1)− Λ(ϕ3) = (κ3, 2 + κ4), where |κj | ≤ 2

3 for each j. And calculation of the
determinant of these two vectors gives

(2 + κ1)(2 + κ4)− κ2κ3 = 4 + 2(κ1 + κ4) + κ1κ4 − κ2κ3 �= 0,

which is nonzero since |2(κ1 + κ4) + κ1κ4 − κ2κ3| ≤ 2(23 +
2
3 ) +

4
9 +

4
9 = 32

9 < 4. Thus
the range of Λ is C2.
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Now let

E = {ϕ ∈ C∞(I− ∪ I+) | ψ(n)
1 (±|λ|−1τ) = ψ

(n)
2 (±|λ|−1τ) for every n ≥ 0,

where ψ1(t̃) = ϕ̇(t̃)− α(t̃)ϕ(t̃)− γ(t̃) and ψ2(t̃) = β(t̃)ϕ(λt̃)}.

One checks that the above solution y(t̃;ϕ) through any ϕ ∈ E is C∞ in neighbor-
hoods of t̃ = ±|λ|−1τ due to the compatibility conditions which define E. Thus, by
induction, y(t̃;ϕ) is C∞ throughout the set [−τ, τ ] \ {0}, and as noted, it is in fact
C∞ throughout [−τ, τ ] if Λ−(ϕ) = Λ+(ϕ).

The set E is a linear space which is dense in C(I− ∪ I+), and so by Lemma 4.3,
for any a = (a−, a+) ∈ C2 the set {ϕ ∈ E |Λ(ϕ) = a} is an infinite-dimensional affine
space. In particular, if we take a− = a+ = y0 for any given y0 ∈ C, then the elements
of {ϕ ∈ E | Λ(ϕ) = (y0, y0)} give the desired C∞ solutions y(t̃;ϕ) of (4.7) on the
interval [−τ, τ ].

The final sentence in the statement of the theorem, concerning the Taylor series,
follows directly by repeatedly differentiating (4.7).

The next result provides a converse of sorts to Theorem 4.2.
Theorem 4.5. Consider the setting of Theorem 4.2, and suppose y0 is such that

w∞ = 0. Then there exist constants A > 0 and ν > 0 such that

(4.20) |yn| ≤ Aνn

for every n ≥ 0. The quantities yn are therefore the coefficients of a solution of (4.7),
with y(0) = y0, which is analytic for t̃ in a neighborhood of t̃ = 0.

Proof. We shall show that there exist A > 0 and ν > 0 such that for every integer
n ≥ 0, we have the bound

(4.21) |wn| ≤ Aνm
∣∣∣∣ λnθn
λn−mθn−m

∣∣∣∣ whenever n ≥ m ≥ 0,

on the quantities given by the recursion (4.12). Thus taking m = n gives the bound
|wn| ≤ Aνn|λnθn| which is equivalent to the desired bound (4.20). As before, we
assume the bounds (4.9) on the coefficients for some C > 0 and μ > 0, and the
notation (4.13).

The inequality (4.21) will be established by an induction on m. Assuming that
limn→∞ wn = 0, let us first observe, from (4.9) and (4.12), that for every n ≥ 0

(4.22)

|wn| ≤
∞∑

k=n

|wk+1 − wk| ≤
∞∑

k=n

∣∣∣∣∣∣
α0wk

λkβ0
+

k−1∑
j=0

θk
θj

(
βk−j +

αk−j

λj

)
wj

β0
+
θkγk
β0

∣∣∣∣∣∣
≤ C

|β0|

∞∑
k=n

⎛
⎝∣∣∣∣wk

λk

∣∣∣∣+ 2

k−1∑
j=0

∣∣∣∣θkμk

θjμj

∣∣∣∣|wj |+ |θkμk|

⎞
⎠.

As wn is a bounded sequence, we may fix A ≥ 1 such that |wn| ≤ A for every n ≥ 0.
Let such A be fixed for the remainder of the proof. This establishes (4.21) for m = 0
and so begins the induction. The quantity ν will be chosen later, but of course it
must be independent of m and n.

We now proceed with the inductive step from m − 1 to m. Assume for some
m ≥ 1 that

(4.23) |wn| ≤ Aνi
∣∣∣∣ λnθn
λn−iθn−i

∣∣∣∣ whenever n ≥ i ≥ 0 and 0 ≤ i ≤ m− 1.
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That is, assume the inductive hypothesis up to m− 1. We must establish (4.21) for
m, in the range n ≥ m, as shown. For such n we have from (4.22) that

|wn| ≤
C

|β0|

∞∑
k=n

⎛
⎝∣∣∣∣wk

λk

∣∣∣∣+ 2

m−2∑
j=0

∣∣∣∣θkθj
∣∣∣∣μk−j |wj |+ 2

k−1∑
j=m−1

∣∣∣∣θkθj
∣∣∣∣μk−j |wj |+ |θk|μk

⎞
⎠

≤ AC

|β0|

∞∑
k=n

⎛
⎝νm−1

∣∣∣∣ θk
λk−m+1θk−m+1

∣∣∣∣+ 2

m−2∑
j=0

∣∣∣∣θkθj
∣∣∣∣μk−jνj |λjθj |

+2

k−1∑
j=m−1

∣∣∣∣θkθj
∣∣∣∣μk−jνm−1

∣∣∣∣ λjθj
λj−m+1θj−m+1

∣∣∣∣+ |θk|μk

⎞
⎠(4.24)

=
AC

|β0|

∞∑
k=n

⎛
⎝∣∣∣∣ θk

λk−m+1θk−m+1

∣∣∣∣νm−1 + 2

m−2∑
j=0

|λjθk|μk−jνj

+2
k−1∑

j=m−1

∣∣∣∣ θk
λ−m+1θj−m+1

∣∣∣∣μk−jνm−1 + |θk|μk

⎞
⎠.

Note in particular that for the range 0 ≤ j ≤ m− 2, in estimating |wj | we have used
the induction hypothesis (4.23) with i = j, while for m − 1 ≤ j ≤ k we have taken
i = m − 1. Note that the assumption A ≥ 1 was used in dealing with the final term
|θk|μk. Also, when m = 1 the sum from j = 0 to j = m− 2 by convention is zero.

We shall impose the requirement on the quantity ν (yet to be chosen) that ν ≥
2|λ|−1μ, and with this we have the estimate

2
m−2∑
j=0

|λjθk|μk−jνj < 2|λm−1θk|
(
μk−m+1νm−1

|λ|μ−1ν − 1

)

≤ 2|λm−1θk|μk−m+1νm−1 = 2

∣∣∣∣ θk
λ−m+1θ0

∣∣∣∣μk−m+1νm−1.

This quantity may now be incorporated into the final sum in (4.24) as the j = m− 1
term. Additionally, we have that

|θk|μk =

∣∣∣∣θkθ0
∣∣∣∣μk ≤

∣∣∣∣ θk
λ−m+1θ0

∣∣∣∣μk−m+1νm−1,

so this term also may be incorporated into the j = m− 1 term. With this we obtain

|wn| ≤
AC

|β0|

∞∑
k=n

⎛
⎝∣∣∣∣ θk

λk−m+1θk−m+1

∣∣∣∣νm−1 + 2

m−2∑
j=0

|λjθk|μk−jνj

+2

k−1∑
j=m−1

∣∣∣∣ θk
λ−m+1θj−m+1

∣∣∣∣μk−jνm−1 + |θk|μk

⎞
⎠

<
AC

|β0|

∞∑
k=n

⎛
⎝∣∣∣∣ θk

λk−m+1θk−m+1

∣∣∣∣νm−1 + 5

k−1∑
j=m−1

∣∣∣∣ θk
λ−m+1θj−m+1

∣∣∣∣μk−jνm−1

⎞
⎠.
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We require that this quantity be bounded above by the right-hand side of (4.21), that
is, we require that

(4.25)
C

|λβ0|

∞∑
k=n

⎛
⎝∣∣∣∣ θkθn−m

λkθk−m+1θn

∣∣∣∣+ 5
k−1∑

j=m−1

∣∣∣∣ θkθn−m

θj−m+1θn

∣∣∣∣μk−j

⎞
⎠ ≤ ν

hold for every n ≥ m. As such we seek an upper bound for |θkθn−m|/|θj−m+1θn|, and
to this end we first consider |θkθn−m|/|θk−mθn|, where k ≥ n ≥ m. From (4.13) we
obtain

θkθn−m

θk−mθn
=

(
k!(n−m)!

(k −m)!n!

)(
1

λ(k−n)m

)

after a short calculation. Next observe that

(4.26)
k!(n−m)!

(k −m)!n!
=

(
k!

(k −m)!

)(
(n−m)!

n!

)
=

m−1∏
i=0

(
k − i

n− i

)
≤ (k−n+1)m,

and also that

(4.27)
k!(n−m)!

(k −m)!n!
=

(
k!

n!

)(
(n−m)!

(k −m)!

)
=

k∏
i=n+1

(
i

i−m

)
≤ (m+ 1)k−n.

Both of these bounds will be used, the choice depending on the range of the indices.
We conclude from (4.26) and (4.27) that∣∣∣∣ θkθn−m

θj−m+1θn

∣∣∣∣μk−j ≤ min{(k − n+ 1)m, (m+ 1)k−n}
(

μ

|λ|(k−n)m

)∣∣∣∣ θk−mμ
k−m

θj−m+1μj−m+1

∣∣∣∣,
and therefore

(4.28)

∣∣∣∣ θkθn−m

λkθk−m+1θn

∣∣∣∣+ 5

k−1∑
j=m−1

∣∣∣∣ θkθn−m

θj−m+1θn

∣∣∣∣μk−j

≤ min{(k − n+ 1)m, (m+ 1)k−n}

×
(

μ

|λ|(k−n)m

)⎛⎝∣∣∣∣ θk−m

λkθk−m+1μ

∣∣∣∣+ 5

k−m∑
j=0

∣∣∣∣θk−mμ
k−m

θjμj

∣∣∣∣
⎞
⎠ .

(Note that we have shifted the index j in the final sum.) Now with K2 and δ as
in (4.15) and (4.16) in the proof of Theorem 4.2, with |λ−1| < δ < 1, we have
from (4.16) and (4.28) that∣∣∣∣ θkθn−m

λkθk−m+1θn

∣∣∣∣+ 5
k−1∑

j=m−1

∣∣∣∣ θkθn−m

θj−m+1θn

∣∣∣∣μk−j

≤ min{(k − n+ 1)m, (m+ 1)k−n}

×
(

μ

|λ|(k−n)m

)⎛⎝∣∣∣∣ β0
λm−1(k −m+ 1)μ

∣∣∣∣+ 5

k−m−1∑
j=0

K2δ
k−m

2k−m−j
+ 5

⎞
⎠

< min{(k − n+ 1)m, (m+ 1)k−n}
(

μ

|λ|(k−n)m

)(∣∣∣∣β0μ
∣∣∣∣+ 5K2δ

k−m + 5

)

≤ K4 min{(k − n+ 1)m, (m+ 1)k−n}
(

1

|λ|(k−n)m

)
,
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where K4 = |β0| + 5μ(K2 + 1). Also, there exist a quantity K5 > 0 and an integer
c ≥ 0 such that

k + 1

|λ|k ≤ K5 for every k ≥ 0,
k + 1

|λ|k ≤ δk for every k ≥ c.

Therefore

∞∑
k=n

⎛
⎝∣∣∣∣ θkθn−m

λkθk−m+1θn

∣∣∣∣+ 5
k−1∑

j=m−1

∣∣∣∣ θkθn−m

θj−m+1θn

∣∣∣∣μk−j

⎞
⎠

< K4

∞∑
k=0

min{(k + 1)m, (m+ 1)k}
(

1

|λ|km

)

≤ K4

c−1∑
k=0

(
m+ 1

|λ|m

)k

+K4

∞∑
k=c

(
k + 1

|λ|k

)m

≤ K4

c−1∑
k=0

Kk
5 +K4

∞∑
k=c

δkm ≤ K4

c−1∑
k=0

Kk
5 +

K4δ
c

1− δ
= K6,

where the final equality serves as the definition of the quantityK6. It follows now that
the required condition (4.25) holds as long as ν is large enough that ν ≥ CK6|λβ0|−1.
With the other required condition ν ≥ 2|λ|−1μ also holding, the proof of the theorem
is complete.

5. Coexistence of analyticity and nonanalyticity. One expects that typi-
cally (generically) w∞ �= 0, and that the case of w∞ = 0 is exceptional, of codimension
one in some sense. Here we shall present a class of examples which are linear equa-
tions with periodic coefficients, for which w∞ �= 0 is realized for a specific periodic
solution. In fact, we shall show there are periodic solutions for which η possesses
both a contractive fixed point and an expansive one with w∞ �= 0, which we may
term coexistence of analyticity and nonanalyticity. As such, the solution is analytic
for some values of t and not analytic for others. Equivalently, both the sets A and N
in (3.1) are nonempty for such a solution.

We consider a class of integral equations of the form

(5.1) κx(t) =

∫ t

t−r(t)

ρ(s)x(s) ds,

where we assume both analyticity and a periodicity condition, namely, that

(5.2)
r, ρ : R → R are analytic, and

r(t+ 2π) = r(t), ρ(t+ 2π) = ρ(t) for every t ∈ R.

Here κ is a parameter (an eigenvalue) to be found along with the solution x(t). Gen-
erally, we shall be interested in 2π-periodic solutions, that is, solutions for which
x(t + 2π) = x(t) for every t ∈ R. For any such solution for which κ �= 0, we obtain
the differential equation

κẋ(t) = ρ(t)x(t) − (1− ṙ(t))ρ(t− r(t))x(t − r(t))

upon differentiating (5.1). Note that any such periodic solution is C∞ everywhere.
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If x(t) is a periodic solution as above, with (5.2) holding, we observe that it also
satisfies the modified equation

(5.3) κẋ(t) = ρ(t)x(t) − η̇(t)ρ(η(t))x(η(t)), η(t) = t− r(t) + 2πm,

for any integer m. In fact it is to this modified equation that we shall apply our
theorems.

We begin by providing, in Theorem 5.1 below, a general existence-uniqueness
result for a broad class of periodic integral equations (5.1). The proof of this theorem,
which does not require analyticity, involves the Krĕın–Rutman theorem (see [14]) and
standard arguments, and we provide a proof for the reader’s convenience. We also
refer the reader to [24], which gives a detailed analysis of linear operators very closely
related to (5.1) using similar arguments.

We note in passing that even under the given hypotheses of Theorem 5.1, there
may exist other 2π-periodic solutions of (5.1) which take both positive and negative
values.

Theorem 5.1. Consider (5.1) where r : R → (0,∞) and ρ : R → (0,∞) are
continuous and positive functions, and satisfy r(t+2π) = r(t) and ρ(t+2π) = ρ(t) for
every t ∈ R. Then there exists a unique κ > 0 such that (5.1) possesses a nontrivial
nonnegative 2π-periodic solution and, moreover, this solution is strictly positive; that
is, x(t + 2π) = x(t) > 0 for every t ∈ R. Further, this solution is unique up to a
scalar multiple and we have the bounds

(5.4) min
t∈R

(∫ t

t−r(t)

ρ(s) ds

)
≤ κ ≤ max

t∈R

(∫ t

t−r(t)

ρ(s) ds

)

for the eigenvalue κ.
The following theorem is a main result of this section, providing a class of examples

for which w∞ �= 0 holds.
Theorem 5.2. Consider the equation

(5.5) κx(t) =

∫ t

t−r(t)

x(s) ds, r(t) = −(λ− 1) sin t+ 2πm,

where 1 < λ < 2πm + 1, with m an integer. Then there exists λ∗, independent of
m, such that the following holds. If λ ≥ λ∗ and m also satisfies 2πm ≤ 2λ + 1, and
x(t) is the unique positive 2π-periodic solution given by Theorem 5.1 with ρ(t) ≡ 1
identically, then x(t) is not analytic in any neighborhood of t = 0. In particular,
w∞ �= 0 for the quantity in Theorem 4.2, for the equation (4.7) obtained from (5.3)
by the transformation (4.5), (4.6) with t0 = 0.

Before proving the above results, let us observe that in the analytic case of The-
orem 5.1, and where η possesses an expansive fixed point t0, it is possible for x(t) to
be analytic for every t (and thus w∞ = 0 for the point t0). Indeed, let r : R → (0,∞)
and z : R → (0,∞) both be 2π-periodic and analytic, and suppose that

r(t0) = 2πm, |1 − ṙ(t0)| > 1,

for some t0 and positive integer m. Set

x(t) =

∫ t

t−r(t)

z(s) ds, ρ(t) =
z(t)

x(t)
.
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Then x(t) is the solution given in Theorem 5.1, with κ = 1, and it thus satisfies (5.3);
and certainly x(t) is analytic, and t0 is an expansive fixed point of this equation with
w∞ = 0.

For the reader’s convenience, in preparation for the proof of Theorem 5.1 we give a
statement of the Krĕın–Rutman theorem, and we remark upon certain subtleties which
are sometimes overlooked. Let X be a real Banach space. By a cone in X we mean a
convex set X+ ⊆ X such that τX+ ⊆ X+ for every τ ≥ 0, and X+ ∩ (−X+) = {0}.
(Generally we shall consider closed cones, namely, cones which are closed sets.) A
cone is called total if S is dense in X , where S = {x− y | x, y ∈ X+}, and it is called
reproducing if S = X . In infinite dimensions it may easily happen that a closed cone
is total but not reproducing. The Krĕın–Rutman theorem states that if L : X → X
is a compact linear operator such that L(X+) ⊆ X+, where X+ ⊆ X is a closed total
cone, and if also rad(L) > 0, where rad(L) denotes the spectral radius of L, then
there exists x ∈ X+ \ {0} such that Lx = rad(L)x. The assumption that rad(L) > 0
is crucial in infinite dimensions. Also, without further assumptions, the eigenvector
x need not be unique (up to a scalar multiple).

The Krĕın–Rutman theorem has been generalized in a variety of directions by
many authors. We refer to [16] for some references to the extensive literature on the
subject.

Proof of Theorem 5.1. Define an operator L : X → X by

(Lx)(t) =

∫ t

t−r(t)

ρ(s)x(s) ds

on the Banach space

X = {x : R → R | x(t) is continuous, and x(t+ 2π) = x(t) for all t ∈ R}

endowed with the supremum norm. Then (5.1) may be written as

(5.6) Lx = κx.

The operator L is compact (due to the Ascoli–Arzelà theorem) and is positive with
respect to the closed reproducing cone

X+ = {x ∈ X | x(t) ≥ 0 for every t ∈ R}

of nonnegative functions in X . Thus by the Krĕın–Rutman theorem, there exists
x0 ∈ X+ \ {0} for which (5.6) holds with x = x0 and κ = rad(L), provided that
rad(L) > 0.

To prove that rad(L) > 0 we shall establish the inequalities (5.4) with rad(L) in
place of κ. For any x ∈ X we have that

‖Lx‖ = max
t∈R

∣∣∣∣
∫ t

t−r(t)

ρ(s)x(s) ds

∣∣∣∣ ≤ max
t∈R

(∫ t

t−r(t)

ρ(s) ds

)
‖x‖

and so

rad(L) ≤ ‖L‖ ≤ max
t∈R

(∫ t

t−r(t)

ρ(s) ds

)
.

On the other hand, letting e ∈ X+ denote the constant function with e(t) ≡ 1
identically, we have that

(5.7) Kne ≤ Lne, where K = min
t∈R

(∫ t

t−r(t)

ρ(s) ds

)
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for every n ≥ 1, where ≤ denotes the partial ordering in X given by the cone X+.
Indeed, the inequality (5.7) is clear for n = 1, and is easily proved for n > 1 by
inducting on n. Taking norms and then nth roots now gives K = ‖Kne‖1/n ≤
‖Lne‖1/n ≤ ‖Ln‖1/n, and letting n→ ∞ gives

min
t∈R

(∫ t

t−r(t)

ρ(s) ds

)
≤ rad(L).

This establishes the inequalities (5.4) with rad(L) in place of κ, and also establishes
the existence of an eigenvector x0 ∈ X+ \ {0} with eigenvalue rad(L) > 0.

Further arguments are needed to show that x0 is the unique eigenvector in
X+ \ {0}, and the strict positivity of r(t) and ρ(t) is crucial here. Note first that
there exists m ≥ 1 such that Lm maps X+ \ {0} into the interior,

int(X+) = {x ∈ X | x(t) > 0 for every t ∈ R},

of the cone. Indeed, if r0 = mint∈R r(t), then whenever x(t0) > 0 for some x ∈ X+

and t0 ∈ R, we have (Lx)(t) > 0 for every t ∈ [t0, t0 + r0]. Now with r0 > 0, fix m
so that mr0 ≥ 2π; then Lmx ∈ int(X+) for every x ∈ X+ \ {0}. This immediately
implies that for any eigenvector in the cone, say for Lx = κx with x ∈ X+ \ {0} and
κ ≥ 0, we have that x ∈ int(X+) and κ > 0.

Suppose now that in addition to the eigenvector x0 with eigenvalue rad(L) ob-
tained above, we have another eigenvector y ∈ int(X+) with eigenvalue κ > 0. Define
quantities

(5.8) τ1 = sup{τ ≥ 0 | τx0 ≤ y}, τ2 = sup{τ ≥ 0 | τy ≤ x0},

both of which are positive. Then τ1x0 ≤ y and so by applying L we have that
τ1 rad(L)x0 ≤ κy. Thus τ1 rad(L)κ

−1 ≤ τ1 by the definition of τ1, and so rad(L) ≤ κ.
A similar argument with the second equation in (5.8) yields the opposite inequality,
and thus κ = rad(L). Now consider z = y−τ1x0. It is enough to show that z = 0, the
zero element of X , in order to establish the uniqueness of x0. Certainly Lz = rad(L)z
and z ∈ X+; thus by the remarks above, if z �= 0 then z ∈ int(X+). However, it is
clear from the definition of τ1 that z(t) = 0 for some t ∈ R and thus z �∈ int(X+). We
conclude that z = 0, and with this the theorem is proved.

In proving Theorem 5.2, we use the conjugacy σ(t) given by Lemma 4.1 applied
to the modified equation (5.3), where as noted

(5.9) η(t) = t− r(t) + 2πm = t+ (λ− 1) sin t.

Clearly this conjugacy depends on the choice of λ, and so it is necessary to show that
it is well behaved for large λ. Interestingly, σ becomes better behaved as λ → ∞ in
the sense that σ(t) → t uniformly on the disc |t| ≤ 1. The following lemma addresses
this point. Its proof follows the broad outlines of the proof of Lemma 4.1 in [2], but
it also provides some explicit estimates which will play an important role in the proof
of Theorem 5.2.

Lemma 5.3. Let σ(t) be as in Lemma 4.1, where η(t) is as in (5.9) with λ > 1
and t0 = 0. Then there exists λ∗∗ > 0 such that

(5.10) |σ(t) − t| ≤ |t|2
λ

for complex t with |t| ≤ 1,
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provided λ ≥ λ∗∗. Also, we have the bound

(5.11) |σn| ≤
1

λ
for n ≥ 2,

for the coefficients of the Taylor series

(5.12) σ(t) =

∞∑
n=1

σnt
n,

for such λ.
Proof. As in Lemma 4.1 we have that

(5.13) σ(t) + (λ − 1) sinσ(t) = σ(λt)

for t in a neighborhood of zero, following the final equation in (4.5). Let us denote
g(u) = u−1 sinu−1, which is an entire function of u with g(0) = 0, and as well denote
δ = λ−1. Also let us write σ(t) = t + tζ(t) where we require that ζ(t) be analytic
in a neighborhood of zero with ζ(0) = 0. Then after some manipulations, including
replacing t by δt, (5.13) takes the form

(5.14) ζ(t) = ζ(δt) + (1− δ)(1 + ζ(δt))g(δt + δtζ(δt)).

We shall in fact obtain a solution to this equation via a fixed-point theorem, for
sufficiently small δ. Define the Banach space

Z = {ζ : D1(0) → C | ζ(·) is analytic in D1(0)

and continuous in D1(0), with ζ(0) = 0},

where as earlier D1(0) = {t ∈ C | |t| < 1}, and where we take the supremum norm
for elements of Z. Then the right-hand side of (5.14) defines a continuous nonlinear
operator T : Z → Z by

(T ζ)(t) = ζ(δt) + (1− δ)(1 + ζ(δt))g(δt + δtζ(δt))

for |t| ≤ 1, as long as 0 < δ ≤ 1. (In fact, (T ζ)(t) is analytic for |t| < δ−1 and
continuous for |t| ≤ δ−1.) We claim that if additionally δ < 1 then T is compact, as
the following argument shows. Let such δ be fixed and let Bε = {ζ ∈ Z | ‖ζ‖ ≤ ε}
denote the closed ball of radius ε in Z. Also let G(ε) = sup|u|≤ε |g(u)|, noting that
G(ε) is a continuous function with G(0) = 0. Then by the Schwarz maximum principle

|ζ(t)| ≤ ‖ζ‖|t| ≤ ε|t| for |t| ≤ 1,

for any ζ ∈ Bε, and so for such ζ

|(T ζ)(t)| ≤ εδ|t|+ (1− δ)(1 + εδ|t|)G(δ|t|(1 + εδ|t|))

≤
{
ε+ (1 − δ)(1 + ε)G(1 + ε) = ε0 for |t| ≤ δ−1,

εδ + (1 − δ)(1 + εδ)G(δ + εδ2) = ε1 for |t| ≤ 1,

where the above formulas serve as the definitions of εi = εi(ε) for i = 0, 1. Note
in particular that T ζ ∈ Bε1 . A bound for the derivative of (T ζ)(t), for |t| ≤ 1, is
obtained from the Cauchy integral formula, namely,∣∣∣∣ ddt (T ζ)(t)

∣∣∣∣ =
∣∣∣∣ 1

2πi

∫
|s|=δ−1

(T ζ)(s)
(s− t)2

ds

∣∣∣∣ ≤ ε0δ
−1

(δ−1 − 1)2
,
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and so the image of Bε under T is an equicontinuous set. Thus T is a compact map
from Bε into Bε1 . If in fact ε1 ≤ ε, that is, if εδ + (1 − δ)(1 + εδ)G(δ + εδ2) ≤ ε or,
equivalently, if

(5.15) (1 + εδ)G(δ + εδ2) ≤ ε,

then by the Schauder fixed-point theorem there exists a fixed point of T in Bε. Such
a fixed point satisfies the desired equation (5.14) and provides the bound |σ(t)− t| =
|tζ(t)| ≤ ε|t|2 for the conjugacy. The desired bound (5.10) is obtained by taking
ε = δ = λ−1. Here (5.15) becomes

(5.16) (1 + δ2)G(δ + δ3) ≤ δ,

and observing that g′(0) = 0, we see that G(u) = O(u2) as u → 0. Thus the
inequality (5.16) holds for all sufficiently small δ, that is, for all sufficiently large λ,
as desired.

Finally, the bound (5.11) on the coefficients follows from the integral formula

σn =
σ(n)(0)

n!
=

1

2πi

∫
|s|=1

σ(s) − s

sn+1
ds

for n ≥ 2, using (5.10).
Proof of Theorem 5.2. We have a unique (up to positive scalar multiple) positive

periodic solution x(t) with eigenvalue κ, by Theorem 5.1. Also, we note that

∫ t

t−r(t)

ρ(s) ds = r(t)

and thus by (5.4) we have the bounds

(5.17) 0 < 2πm− λ+ 1 ≤ κ ≤ 2πm+ λ− 1

for the eigenvalue. The differential equation (5.3) takes the form

κẋ(t) = x(t)− η̇(t)x(η(t)),

with η(t) as in (5.9). We now apply the conjugacy of Lemma 4.1 at the point t0 = 0.
Letting t = σ(t̃) and y(t̃) = x(σ(t̃)) for t̃ near zero, we obtain the equation

κẏ(t̃) = σ̇(t̃)y(t̃)− σ̇(t̃)η̇(σ(t̃))y(λt̃),

and noting that η(σ(t̃)) = σ(λt̃) and hence σ̇(t̃)η̇(σ(t̃)) = λσ̇(λt̃), we rewrite this
equation as

κẏ(t̃) = σ̇(t̃)y(t̃)− λσ̇(λt̃)y(λt̃).

With the Taylor series of σ(t̃) given by (5.12), we have

αn =
(n+ 1)σn+1

κ
, βn = − (n+ 1)λn+1σn+1

κ

for n ≥ 0, for the Taylor coefficients of α(t̃) and β(t̃) as in (4.7), (4.8). Using the
above formulas for αn and βn, we proceed as in (4.10) and write a recursion formula
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for yn+1 in terms of yk for 0 ≤ k ≤ n and of σk for 1 ≤ k ≤ n + 1. Equation (4.11)
thus takes the form wk = ξkyk, where

ξk =
(−1)kκkk!

λk(k+1)/2
.

(The quantity ξk is related to, but slightly different from, the quantity θk in (4.13).)
We note that the assumption β0 �= 0 in Theorem 4.2 holds by virtue of the fact that
σ1 = σ̇(0) = 1, by (4.5). After substituting for yk in terms of wk in the formula for
yn+1, one sees after some manipulation that the resulting formula (4.12) for wn+1 in
the proof of Theorem 4.2 takes the form

(5.18) wn+1 =

(
1− 1

λn+1

)(
wn +

n−1∑
k=0

ξn
ξk

(n− k + 1)σn−k+1wk

)
.

We now obtain estimates for the quantities wn and thereby for w∞ much as in the
proof of Theorem 4.2, but with some differences. Let us first observe that

κ ≤ 2πm+ λ− 1 ≤ 3λ

by (5.17) and the choice of m as in the statement of the theorem. It follows that

∣∣∣∣ ξkξk−1

∣∣∣∣ = κk

λk
≤ 3k

λk−1
≤

⎧⎨
⎩

3 for k = 1,

1

2
for k > 1,

where we assume that λ is large enough that 6k ≤ λk−1 for every k > 1. (More
precisely, λ ≥ 12 suffices here.) Therefore,∣∣∣∣ξnξk

∣∣∣∣ =
∣∣∣∣ ξnξn−1

∣∣∣∣
∣∣∣∣ξn−1

ξk

∣∣∣∣ ≤
(

3n

λn−1

)(
3

2n−k−2

)
≤ 18

(
2k

λn−1

)

for 0 ≤ k ≤ n − 1. It now follows from this, from (5.18), and from the bound (5.11)
in Lemma 5.3, that

|wn+1 − wn| ≤
|wn|
λn+1

+ 18

n−1∑
k=0

(
2k

λn

)
(n− k + 1)|wk|

≤
(
2

λ

)n
⎛
⎝1 + 18

∞∑
j=1

j + 1

2j

⎞
⎠ max

0≤k≤n
|wk| =

(
2

λ

)n

K max
0≤k≤n

|wk|

for every n ≥ 0, with the above equality defining the constant K. In fact, for n = 0
a stronger bound is available, as one sees from (5.18) that

|w1 − w0| =
|w0|
λ
,

and so in any case we have

(5.19)

|wn+1 − wn| ≤ Hn(λ) max
0≤k≤n

|wk|,

where Hn(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1

λ
for n = 0,(

2

λ

)n

K for n > 0.
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It follows, much as in the proof of Theorem 4.2, that

|wn| ≤
(

n−1∏
k=0

(1 +Hk(λ))

)
|w0| ≤

( ∞∏
k=0

(1 +Hk(λ))

)
|w0|,

and so using this bound in (5.19) gives

|wn+1 − wn| ≤ Hn(λ)

( ∞∏
k=0

(1 +Hk(λ))

)
|w0|.

Upon summing we obtain

(5.20) |w∞ − w0| ≤ Ω(λ)|w0|, Ω(λ) =

( ∞∑
n=0

Hn(λ)

)( ∞∏
k=0

(1 +Hk(λ))

)
,

with the above formula serving as the definition of Ω(λ). We note in particular that
the infinite sum and product in this formula have finite positive values as long as
λ > 2.

If Ω(λ) < 1 then our desired conclusion, that w∞ �= 0 if w0 �= 0, follows
from (5.20). Indeed, this is the case for all large λ, as follows directly from the
fact that limλ→∞Hn(λ) = 0 monotonically for every n ≥ 0. With this, the theorem
is proved.

We end this section with the following result, which shows that for certain λ and
m, the periodic solution considered in Theorem 5.2 is analytic for certain values of
t. More precisely, in addition to the expansive fixed point t0 = 0 at which, by Theo-
rem 5.2, analyticity fails, there is also a contractive fixed point t00 in a neighborhood
of which the solution is analytic. Thus one has both N �= ∅ and A �= ∅.

Theorem 5.4. Consider the integral equation (5.5) where 3 < λ < 2πm+1, with
m an integer. Suppose further that there exists an integer n satisfying

(5.21)

(
(λ − 1)2 − 4

)1/2

< 2πn < λ− 1.

Then there exists some t00 ∈ R such that the unique positive 2π-periodic solution x(t)
of (5.5) is analytic for t in some neighborhood of t00. More precisely, one has that
η(t00) = t00 and |η̇(t00)| < 1, where η(t) = t− r(t) + 2π(m− n), as in Theorem 2.1.

Proof. Let

t00 =
π

2
+ τ, τ = arccos

(
2πn

λ− 1

)
,

with 0 < τ < π
2 . Then noting from (5.5) and from the statement of the present

proposition that η(t) = t+ (λ − 1) sin t− 2πn, it follows that

η(t00) = t00 + (λ− 1) sin t00 − 2πn = t00 + (λ− 1) cos τ − 2πn = t00.

Further,

η̇(t00) = 1 + (λ− 1) cos t00 = 1− (λ− 1) sin τ = 1−
(
(λ− 1)2 − (2πn)2

)1/2

,

and one sees immediately from (5.21) that |η̇(t00)| < 1. The desired conclusions now
follow directly from Theorem 2.1.
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6. Open questions. Many open questions remain. For a given solution of inter-
est, very generally one wishes to determine the set A of analyticity and its complement
N . Toward this end, one open problem is to extend the results on expansive fixed
points, such as Theorems 4.2 and 4.5, to the case of systems (that is, with x ∈ CN ) and
to the case of expansive periodic points (that is, with ηM (t0) = t0 and |η̇M (t0)| > 1);
and further, to extend such results from linear to general nonlinear equations (1.1).
As noted in one of the remarks following the proof of Theorem 4.2, the proof of that
result does not carry over to linear systems due to commutativity issues with the
matrix-valued coefficients. In dealing with periodic points of η, one naturally encoun-
ters the system (2.4) as in the proof of Theorem 2.1, so the commutativity problem
arises there also.

Another issue is that even in the case of an expansive fixed point in a scalar
linear system, if w∞ = 0 then by Theorem 4.4 there is no assurance that a solution
of interest is analytic at the point in question. One might ask what other conditions
are sufficient to give analyticity under such circumstances.

Questions remain in the case of points t0 which are neither periodic for the map
η, nor are in the basin of attraction of a periodic point. This includes time-periodic
systems for which η is a homeomorphism of the circle S1 with an irrational rotation
number, but it also includes more general cases in which the orbit ηn(t0) of some
t0 exhibits a chaotic character. As noted at the end of section 3, it would be inter-
esting, even for linear equations with periodic coefficients, and where η : S1 → S1

is a homeomorphism with an irrational rotation number, to find an example with
a nowhere analytic but everywhere C∞ periodic solution. A characterization of the
set of rotation numbers for which this is possible is also of interest. One could also
consider the case of quasi-periodic and almost periodic systems, and it would not
be unreasonable to expect issues involving small divisors to occur in their analysis.
Additionally, one might consider analyticity properties of solutions on the unstable
manifold of an equilibrium or periodic orbit.

A very basic problem is to extend the results herein to equations with multiple
delays, such as (1.5), where rk = rk(t) for 1 ≤ k ≤ M are given analytic functions
of t. (Of course the nonlinearity f is also analytic.) A related issue is the paucity
of results on the existence of interesting solutions (for example, periodic solutions) in
equations with multiple delays, although there typically exist Floquet solutions for
linear equations of the form (1.5).

One might also consider more general classes of equations, for example integral
equations such as

(6.1) x(t) =

∫ t

t−r(t)

f(t, s, x(s)) ds.

In contrast to the integral equation (5.1) considered in section 5, differentiating (6.1)
does not lead to a differential equation to which our results can readily be applied.
Another interesting problem is to obtain analyticity results for equations with almost
constant delays r(t) = r0+εr1(t). A perturbation analysis in this spirit would be quite
natural for (5.1) with the periodicity conditions (5.2), with r0 = 2πm and r1 of period
2π, where we note that for the unperturbed problem with ε = 0, the eigenfunction
would be a constant x(t) ≡ 1.

A still unsolved question raised in [24] concerns the equation

κx(t) =

∫ t

t−r

ρ(s)x(s) ds,
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where here r > 0 is a given constant and ρ : R → (0,∞) is analytic with
ρ(t + 2π) = ρ(t) for all t ∈ R. Let κ = κ(r) and x(t) = x(t, r) = x(t + 2π, r) > 0
denote the eigenvalue and eigenfunction given by Theorem 5.1, normalized so that,
say, x(0, r) = 1. It has been proved in [24] that κ(r) is a C∞ function of r, and the
results in [23] for problems with constant delays imply that x(t, r) is analytic in t for
every fixed r. However, it is not known whether κ(r) is analytic in r for any range of
r, and similarly for x(t, r).

A very significant problem, and which in a sense is partly the motivation for the
present study, is to understand analyticity properties of solutions of equations with
state-dependent delays. One of the simplest such systems would take the form (1.3),
although many other methods of incorporating state-dependent delays (for example,
implicitly defined delays) are possible. Note that the “linear” version of this equation,
namely, (4.2) with η(t) replaced with t−r(x(t)), is of course not linear at all, in general.
In any case, if x(t) is a solution of such a state-dependent problem with x(t0) = x0
and with t0 − r(x0) = t0 holding, that is, r(x0) = 0, then one could still distin-
guish contractive from expansive fixed points via the magnitude of | ddt (t− r(x(t)))| =
|1 − r′(x(t))ẋ(t)| at t = t0, and one could still expand x(t) about this point to ob-
tain uniquely determined Taylor coefficients xn. However, the implementation of the
Hartman–Grobman result Lemma 4.1 is not clear, as one does not know a priori
whether the map t → t − r(x(t)) is analytic; and the resulting recursion relation for
the coefficients xn, while well defined, would be much more complicated than (4.10).

A somewhat technical problem is to extend Theorem 4.2 to the case when β(0) =
β0 = 0. Even with simple examples, such as

ẏ(t) = tmy(λt), y(0) = 1,

where m > 0 and |λ| > 1, one encounters new issues. In particular, from the recur-
sion (4.10) it follows that yn = 0 if n �≡ 0 (mod m + 1), while for n = (m + 1)k one
has

y(m+1)k =
λ(m+1)k(k−1)/2

(m+ 1)kk!
.

One sees that limn→∞ |yn|1/n does not exist, although the lim sup of this quantity is
∞, and so no analytic solution exists.

Another technical issue is to obtain sharp conditions on f , in Theorem 3.4, in
the system case N > 1, as noted in the remarks following the proof of that result.
One requires some sort of nontrivial dependence of f on the delay term v; however,
such conditions, as condition (1) of that theorem for the scalar case, should be broad
enough to allow for a nonlinear dependence on the delay term more general than the
linear dependence of condition (2). Quite possibly, algebraic techniques from ring
theory in the spirit of Neelon’s work [22] would be helpful.

Many questions involving the quantity w∞ in Theorem 4.2 present themselves.
One can regard w∞ as a function of the coefficients α, β, γ, of η, and of the initial
condition y0, and we may ask how w∞ varies with respect to these. Some pertinent
questions are: Does w∞ vary continuously with respect to these data, in an appropri-
ate norm? Does it vary smoothly, or even analytically? Is it the case that generically
(namely, for a residual set of data α, β, γ, η, and y0) one has w∞ �= 0 or, more simply,
does w∞ have a nontrivial dependence on these data? (See in particular the question
posed in the remark following the proof of Theorem 4.2.) Studying specific simple
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systems such as

ẏ(t) = (1 + zt)y(λt), y(0) = 1,

where z ∈ C and |λ| > 1, might provide some insights. Here one has w∞ = w∞(z, λ) as
a function of z and λ, and both theoretical and numerical studies could be undertaken.
Finally, what (if any) relation is there between w∞ and the Dedekind eta function
and its generalizations from modular function theory, as mentioned in section 4?

More broadly, many questions on analyticity remain even for problems with
constant delays. Suppose that x(t) is a periodic solution of a system (1.4) where
f : RN(M+1) → RN is analytic and the delays rk ≥ 0 for 1 ≤ k ≤ M are given
constants; one may think of well-known systems such as Wright’s equation

ẋ(t) = −αx(t− 1)(1 + x(t)),

or the Mackey–Glass equation (with analytic g)

αẋ(t) = −x(t) + g(x(t− 1)),

which have periodic solutions for a range of the parameter α. Then as noted, from [23]
the solution x(t) is analytic, at least for real t. However, virtually nothing is known
about the analytic continuation of this solution into the complex plane, that is, for
complex t.

Analyticity issues arise in parameterized systems with constant delays. Consider
such an autonomous system

ẋ(t) = f(x(t), x(t − r1), x(t− r2), . . . , x(t− rM ), α),

with the nonlinearity f : RN(M+1) × R → RN analytic in all its arguments, and
suppose for some parameter value α = α0 there is a periodic solution x0(t) of period
p0. Suppose further that this periodic solution is hyperbolic, that is, all of its nontrivial
characteristic multipliers μ satisfy |μ| �= 1. Then for all α near α0 one has a nearby
periodic solution x(t, α) of period p(α) near p0, obtained in a standard fashion as
the Poincaré continuation of x0(t). Certainly x(t, α) is analytic in t for each fixed α.
However, whether or not x(t, α) and p(α) depend analytically on the parameter α is
not known.
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