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Suppose that (S, u) and (7, v) are given measure spaces with u(S)<oc and
wWT) <. If ke L*(Sx T) is a nonnegative function and xe L(S) and fe LYT)
are positive almost everywhere, the so-called DAD problem (k, %, f§) asks whether
there exist f€ L'(S) and ge LY(T), f/ and g positive almost everywhere, with

f J(s) k(s, ¢) g(e) v(dt) = afs), u almost everywhere, and
T

J. S(sYk(s, 1) g(r) u(ds) = B(1), v almost everywhere.
N

Such a pair (f, g), if it exists, is called a solution of the DAD problem (k, «, ff). We
present here essentially sharp conditions under which the DAD problem (k, «, §)
has a solution. We also give results concerning the uniqueness (to within positive
scalar multiples) of solutions (f, g), iterative schemes for approximating solutions,
and continuous dependence of solutions on (ka, k). Methods of proof involve a
mixture of variational methods (entropy minimization) and fixed point theory;
Hilbert’s projective metric also plays a useful role. As corollaries of our results we
obtain generalizations of a variety of earlier DAD theorems. We are also able to
discuss limiting behaviour of sequences of matrix DAD problems, where the dimen-
sions of the matrices approach infinity.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Suppose that A =(a;) is a nonnegative mxn matrix (so a;>0 for
I1<i<mand 1 <j<n)and aeR™ and e R" are vectors whose entries «,
and B, are positive. The so-called matrix DAD problem for (4, a, §) asks
whether there are vectors fe R™ and geR", whose entries f; and g; are
positive, and which satisfy

n m
Y fia;g=uofor 1<i<m  and Y fiayg;=pfor1<j<n
j=1 i=1
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If f and g exist, we say the DAD problem (A4, o, §) has a solution (f, g).
Alternatively, the DAD problem (A4, «, f) is equivalent to finding positive
diagonal matrices D, =diag(f,, f5, .. fm) and D,=diag(g,, g1, .- &)
such that D, AD, has specified row sums «, and column sums f;; and this,
of course, explains the terminology. Obviously, a necessary condition for a
solution to exist is that

but if @, =0 for some i and j, this condition may not be sufficient.

If (f, g) is a solution of the DAD problem (4, a, ) and 1>0, (A7, ig)
is also a solution. We say that the solution (f, g) is unique if every other
solution is of the form (A7'f, ig) for some A>0. Aside from finding
conditions which insure existence and uniqueness of solutions to a DAD
problem (4, a, ), it is clearly also important to determine convergent
iteration schemes for finding a solution (f, g).

Matrix DAD problems have been studied for over 30 years. DAD
problems arise in diverse applications, e.g., in statistics and telecommuni-
cations; sometimes, as in [30], a DAD problem appears in a slightly
disguised, but equivalent, form. We refer the reader to the references at the
end of this paper, and in [13, 15, 19, 27, 30, and 36], for some indication
of applications and the extensive literature on the subject. If A is a square
n x n matrix all of whose entries are strictly positive and v e R" denotes the
vector all of whose components equal one, Sinkhorn [33] first proved that
the DAD problem (A, u, u) has a unique solution, so there are unique (to
within positive scalar multiples) positive diagonal matrices D, and D, with
D, AD, doubly stochastic. Subsequently Sinkhorn and Knopp [34] and
Brualdi et al. [7] independently gave necessary and sufficient conditions
for the DAD problem (A, u, u) to have a solution when 4 is a square non-
negative matrix. This problem is far more subtle than the case a,; >0 for all
i and j. Other work on the doubly stochastic case (x = § = u) can be found
in [6, 11, 12, 16, 20, 297.

For a general matrix DAD problem (A4, %, f), Menon and Schneider
observed in [23] that there is a fairly obvious set of necessary conditions
which must be satisfied for the DAD problem to have a solution. They
proved that if these necessary conditions are satisfied, then the DAD
problem (A, «, f) has a solution. As we note in Section 4 below, the
Menon-Schneider result [20] can be used to recover the theorems of
Sinkhorn and Knopp [34] and Brualdi e7 al. [ 7] for the doubly stochastic
case.

We consider here the following generalization of matrix DAD problems:
(S, 1) and (T, v} are measure spaces with p(S)< oo and v(T) < co. We are
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given functions ke L*(Sx T), e L'(S), and Be LY(T), with k(s, 1)>=0,
a(s) >0, and f(¢) > 0 almost everywhere. We want functions /'€ L'(.S) and
ge LY(T) which are positive almost everywhere and satisfy

j Sf(s) k(s, 1) g(2) v(dt) = afs) u almost everywhere, and
! (1.1)
J S(s) k(s, 1) g(1) u(ds) = B(1), v almost everywhere.

We refer to the problem of finding solutions f and g of (1.1) as the DAD
problem for (%, a, B} and call (f; g) a solution of the DAD problem. A
solution (f, g) is called unique if every other solution is of the form
(A7'f, Ag) for some positive constant i. Obviously, a necessary condition
for the DAD problem (k, a, §) to have a solution is that

L als) p(ds) = L jT F(s) k(s, 1) gl2) u(ds) v(dr) = jT () v(dr). (1.2)

However, just as in the matrix case, if k vanishes on a set of positive
measure, there may be other necessary conditions: see Definition 2.13 in
Section 2 below and [20].

If there exists 6 >0 such that k(s, #) > é almost everywhere and if (1.2)
is satisfied, Hilbert’s projective metric can be used as in Section 4 of [27],
not only to given a unique solution (f, g) of the DAD problem (4, «, §) but
also to provide a geometrically convergent iteration scheme for finding f
and g. (We note in passing that Hilbert’s projective metric was inde-
pendently used in matrix DAD problems by Franklin and Lorenz [15],
although the applicability of Hilbert’s projective metric was noted earlier in
[25], pp. 233-234.) With somewhat less generality and with & bounded
above and below by positive constants, related results can already be found
in [16] and [35]. However, if £ is only nonnegative (a case which is
important for applications), the DAD problem (k, «, 8) becomes much
harder, and the literature in the non-matrix case is sparse. The Hilbert’s
projective metric approach is no longer directly available. When
§=7T=[0,1], p=v=Lebesque measure, a=f=1, and k(s, ¢) is a non-
negative continuous function such that k(s, t)=k(¢, s) for all s and ¢ and
k(s,s)>0 for 0<s<1, Nowosad [24] and later Karlin and Nirenberg
(18] have shown that the DAD problem (%, «, §) has a solution (f, g) with
f=g If one removes the symmetry assumption that k(s, 1) =k(s, 5), the
Karlin—Nirenberg approach does not seem to generalize. A different
method, using ideas of Csiszar [11], was employed in Section 4 of [27] to
prove that the DAD problem (k, «, §) still has a solution (f, g) in this case.
In recent work, Borwein et al. [5] consider (as a special case) a continuous

580/115/1-4
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nonnegative function ke C([0,1]x [0, 1]) with k(s,5)>0 for 0<s<1
and a function «€ L'(S), « positive almost everywhere, and show that the
DAD problem (k,«, «) has a unique solution (f, g) which can be
approximated by a geometrically convergent iteration scheme.

In this paper we obtain a nearly best-possible theorem for the existence
of a solution to the general DAD problem (k, «, ). We find necessary
conditions for the solution of the DAD problem (%, «, 8) and show that,
with a few added mild technical assumptions, these necessary conditions
are also sufficient: see Theorems 2.26, 2.30, and 3.9 below. Our results can
be viewed as direct generalizations of the matrix results of Menon and
Schneider [23]. We derive several new DAD theorems as consequences of
our general results and we show that a range of earlier theorems also can
be obtained from Theorem 2.30 or Theorem 3.9.

Solution of the DAD problem (%, «, ) is equivalent to finding fixed
points of a certain map F: ¢, - €,, where €, denotes the interior of the
cone of nonnegative functions in L™(S). The map F is order-preserving and
homogeneous of degree one. A general theory of such maps is developed in
[267 and can be used to obtain uniqueness (to within positive scalar multi-
ples) of fixed points and geometrically convergent iteration schemes for
finding fixed points. However, an irreducible analytical difficulty is always
to prove the existence of a fixed point of F in the interior of a cone, and
that is precisely what we do here for our special F.

This paper is long, so an outline may be in order. In Section 2 we use
the well-known fact that finding a solution of the DAD problem (k, «, §§)
is equivalent to finding a fixed point in C, of a certain map F: C, - C,.
Unlike the finite dimensional case in [22] and [23], we note in Section 2
that F does not in general extend continuously to C,. Nevertheless, we are
able in Theorem 2.26 and 2.30 to use fixed point arguments to obtain sharp
results about the existence of solutions of the DAD problem (k, a, ). The
major drawback is that we must assume that either 4,: L™(S)— L=(T) or
A, L™(T)— L™(S) is a compact linear map, where A, and A4, are defined
by

(A,u)(t)=L k(s, 1) a(s) u(s) u(ds) and

(4;0)s) = K(s, 1) B(r) o) ve)

Both 4, and A4, will be compact if k is continuous, but one can easily give
ke L*(S x T) for which neither 4, nor A4, is compact.

Section 3 treats the general case when neither 4, nor 4, is known to be
compact. Here we use results of Csiszar [11] as clarified and sharpened in
[5]. Finding a solution of the DAD problem (k, «, 8) is equivalent to
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minimizing an “entropy” functional subject to certain constraints. By com-
bining Theorem 2.30 with results on entropy minimization [5], we prove
a result (see Theorem 3.9) about the DAD problem (%, «, ) in which com-
pactness of A4, or A, no longer plays a direct role. The variational
approach and the fixed point approach have been applied separately to
DAD problems; here we combine the methods to obtain a complete
answer.

There is a necessary condition which must be satisfied in order for the
DAD problem (%, 2, §) to have a solution. We call this the compatibility
condition for (k, «, §) in Definition 2.13 below. To apply Theorem 2.30 or
Theorem 3.9 it is necessary to verify the compatibility condition, and this
may be nontrivial even in the matrix case. In Remark 3.14 and in Section 4
we present various cases in which the compatibility condition can be
verified. Combining these results with Theorem 2.30 or Theorem 3.9 we
obtain new existence theorems for DAD problems and generalize earlier
results of Nowosad [247], Karlin and Nirenberg [18], Nussbaum [27,
Section 4] and Borwein er al. [§, Section 5].

As already noted, once one proves an existence theorem for a DAD
problem (%, «, ), theorems in Sections 2 and 3 of {26] provide informa-
tion about uniqueness of solutions and convergent iteration schemes. This
is indicated in Theorem 4.19 of Section4. If a given DAD problem
(ko, %0, Bo) has a solution (f,, go), one can ask whether “nearby” DAD
problems (k, o, B) necessarily have solutions (f, g) which vary smoothly
with (k, o, §). With the aid of Theorem 4.19, an answer to this question is
given in Theorem 5.9 of Section 5. Theorem 5.9 has a number of conse-
quences. We particularly mention Remark 5.14, which discusses whether a
sequence of matrix DAD problems (A”, a”, B”) (where p is a superscript, 4”
is an m,xn, matrix, and lim,_., m,=w =lim,_ . n,) has solutions
(f?, g”) which converge in an appropriate sense as p — o0. To answer this
question rigorously one is necessarily led to our general framework, even
in one is only interested in matrix DAD problems. The reader may also
find interest in Remark 5.13, where a rapidly convergent numerical scheme
for approximating solutions of DAD problems is suggested.

2. DAD THEOREMS WHEN (s, ¢) (1) DETERMINES
A CompacT LINEAR OPERATOR

We study in this section the DAD problem (1.1} when & is continuous
or, more generally, when the integral kernel k(s, ) 5(¢) defines a compact
linear map from L=(T) to L™(S). We begin by establishing some standard
notation and hypotheses. We always make the following assumptions
about Sand T
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HyprOoTHESIS 2.1. (S, ) and (T, v} are measure spaces with u(S) < oc and
W T) < co. Subsets of sets of measure zero in (S, y) or (T, v) are measurable.

We frequently assume more about S and T

HypOTHESIS 2.2. Hypothesis 2.1 is satisfied. Furthermore, S and T are
compact metric spaces and u (respectively, v) is a regular Borel measure of
Sfull support on S (respectively, on T).

By “full support on S” we mean that the z measure of any nonempty
open set in S is positive.
We always assume the following about the functions &, o, and § in (1.1):

HyroTHEeSIs 2.3.  Hypothesis 2.1 is satisfied. The function k is an element
of L*(SxT), and k is nonnegative almost everywhere; o.e L'(S) and
Be L (T) and o and B are strictly positive almost everywhere.

If Hypothesis 2.3 is satisfied, suppose that there exist functions e L'(S)
and ge LY(T) such that f and g are positive almost everywhere and

_[ f(s) k(s, 1) g(2) v(dt) = a(s), u—almost everywhere, and

J f(s) k(s, t) g(2) plds) = B(2), v—almost everywhere.

If f and g satisfy these conditions, we say that “the DAD problem (&, «, )
has a solution (f, g)” or “the DAD problem (1.1) has a solution (f, g).”

The arguments of this section do not directly apply to general functions
ke L*™(Sx T). We consider DAD problems for general ke L*(S x T) in the
next section. Here we restrict attention to those ke L™ (S x T) for which
the integral kernel kf gives a compact linear map from L>™(7T) to L™(S).
To describe this case more precisely we need some definitions.

DEerINITION 2.4. Assume Hypothesis 2.1. £ and F are linear subspaces
of L'(S x T) defined by

E= {ceLl(Sx T): llell z :=ess S}np (j le(s, 1) u(ds)) < oo} (2.5)
and

F= {ceL'(Sx T): ¢l f:=ess S;lp (f le(s, t)] v(dt)) < oo}. (2.6)
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By using Fubini’s theorem one can easily see that £ and F are well-
defined. We leave to the reader the exercise of showing that (E, ||-{| ;) and
(F, |-l r} are Banach spaces.

We define linear subspaces V and W of E and F, respectively, by

V= {ceEl c(s, )=y, f,(s) g:(1) almost everywhere,

i=1

where m=m(c)< o and f,e L'(S)

and g,e L*(T) for 1 Sism} (2.7)
and

W={ceE| e(s,1)="3 fi(s) g:(r) almost everywhere,

i=1

where m=m(c) < o0, f;€ L™(S),

and g,e L'(T) for lsism}. (2.8)

DEFINITION 2.9. Assume Hypothesis 2.1. L'(S)® L*(T) denotes the
closure in the norm ||-| ; on E of the linear subspace V' of E given by (2.7),
and L™(S)® L'(T) denotes the closure in the norm ||-|| - on F of the linear
subspace W of F given by (2.8).

If ce L'(SxT), it is not hard to prove that ce L*(S)® L'(T) if and
only if there exists a set N = § with u(N)=0 such that {c(s,-)| se S— N}
has compact closure in LY7). A similar statement holds for
LY (S)® L™(T). If ce W and c(s, t)=3"_, fi(s) g:(t) with f,e L*(S) and
g,€ L'(T), then ¢ defines bounded linear operators L.: L™(T)— L*(S)
and A.: L'(S)— LY(T) by

L(z)=

||[\/]§

( [ 2020 v(dz)) £, and

ALy)

II
|M3

3 ([ 760 56 st ) .

It is not hard to show that L. = (A4,)*, the Banach space adjoint of 4_; and
if |4, and ||L.| denote the operator norms of 4, and L_ as bounded
linear operators,

lellr= L) = 4.
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Thus the maps ¢ L, and ¢— A, are isometric imbeddings of W
into Banach spaces of bounded linear operators and L™(S)® LY(T) is
isometric to a closed linear subspace of compact linear operators in
B(L™(T), L*(S)) and to a closed linear subspace in B(L'(S), L'(T)).
(Here B(X, Y) denotes the Banach space of bounded linear operators from
a Banach space X to a Banach space Y.) A similar statement holds for
LY{S)® L=(T). Since we shall not need most of these results, we omit the
proofs.

Our immediate reason for introducing the spaces E, F, L'(S)® L*(T),
and L™(T)® L'(S) is simple. First, if ¢, € E, we can define a linear map
A L™(S)— L™(T) by

(433)(0)= [ ei(s, 1) x(s) u(ds),
and we have

I, =ess sup (4, x)(0)| <ess sup ( [ 1ests. 01 1l u(dS))

<lleale xl,

which shows that [|4,] <|e¢,|lz. The same argument shows that if c,€ F
and we define a linear map A4,: L*(T)— L*(S) by

(42 0)(5) = | exls, 1) y(1) v(dr),

then A4, is a bounded linear operator and | A,| < lc,lf p-

If ¢,e V (V as in (2.7)), the linear map A4, has finite dimensional range
and hence is compact. In general, if ¢, e L'(S)® L™(T), there exists a
sequence ¢, € V such that |lc,,—c | —0. If 4,,: L=(S)— L*(T) is the
linear operator corresponding to ¢, and A,: L=(S) — L>(T) is the linear
operator corresponding to ¢;, we have

“Al _Aln“ < ”C] —Cln“E'

This shows that A, is the limit in the operator norm topology of a
sequence of compact linear operators, so A,; is compact. The same
argument shows that if c,e L™(S)® L'(T), then the linear operator
A, L*(T) - L*(S) determined by ¢, is compact.

Of course L™(Sx T) is a linear subspace of both E and F. However,
even when S=T= [0, 1] and u=v=Lebesque measure, it is not hard to
show that L>=(S x T) is not contained in L*(S)® L'(T) or L'(S)® L=(T):
see Remark 5.6 of [5], where a function ce L*(S x T) is given such that
the corresponding operator A,: L*(7T) — L™(S) is not compact.
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Define a linear subspace U of L*(§x T) by

U= {keL“’(Sx T):k(s, t)= Z f:(s) g,(t) almost everywhere,

i=1

where m=m(k) < o0, f,€ L*(S),

and g,e L=(T) for 1<i<m}. (2.10)

DerINITION 2.11.  Assume Hypothesis 2.1. L*™(S)® L*™(7T) denotes the
closure in the norm on L*(S x T) of the linear subspace U (U as in (2.10)).

If ke L*(S)® L>(T) and B,: L'(T)— L™(S) and B,: L'(S)—~ L™(T)
are defined by

(B;v)(l)=j' k(s, 1) v(s) u(ds) ~ and (BZW)(S)=j k(s, 1) w(z) v(dr),

the same sort of argument used in discussing 4, and 4, shows that B, and
B, are compact linear operators. If Hypothesis 2.2 is satisfied and
k:Sx TR is continuous, it is known (and not hard to prove with a
partition-of-unity argument) that ke L>(S)® L>(T). Thus there are many
examples of functions in L”(S)® L*(T). We leave the proofs of these facts
to the reader.

If ke L*(S)Y®L>™(T), xe L'(S), and Be L'(T), it is not hard to prove
that kae L'(S)® L™=(T) and kB e L*(S)® L(T). However, one can give
examples of functions k with ke L*(SxT), ke L'(S)® L*(T), and
ke L*(S)® LY(T), but k¢ L=(S)® L™(T). For instance, if S=T=1[0, 1]
and p=v=_Lebesque measure and k(s,t)=1 for s>t and k(s, 1)=0 for
s<t, k is such an example. The only tricky point to verify is that
k¢ L=(S)® L™(T). However, this follows because the map B,: L'(S)—
L™ (T) determined by k is not compact, as one can see by using the Ascoli~
Arzela theorem. This observation and later applications are, in fact, our
motivation for introducing L'(S)® L*(T) and L*(S)® L'(T).

There may be necessary conditions other than (1.2) which must be
satisfied by (k, a, /) in order for the DAD problem (1.1) to have a solution.
These conditions are well known in the matrix case {see [23]), and the
arguments for necessary conditions carry over to our situation. Thus
suppose that Hypothesis 2.3 is satisfied and that fe L'(S) and ge LY(T)
are functions which are positive almost everywhere and satisfy (1.1). Define
k by

(s, 1)=f(5) k(s, 1) g(1).
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Assume that /< .S and J< T are measurable sets of positive measure and
that k(s, t) =0 for almost all (s, r)e I’ xJ', where I’ is the complement of

I and J' the complement of J (in general, we will always write 4 for the
complement of a set 4). Then, we have

j{ a(s) p(ds) =j1 fT R(s, 1) v(dt) u(ds)

= L L k(s, t) v(dt) p(ds) + fl J.J' k(s, 1) v(dr) p(ds),
and

L (1) v(dt) = L L K(s, 1) v(dt) u(ds) + j] L K(s, 1) v(dr) u(ds)

= L L E(s, 1) v(dr) u(ds).
It follows that
L a(s) ,u(ds);ff B(1) v(dt) (2.12)

and that strict inequality holds in (2.12) whenever & | I x J is positive on a
subset of Ix J of positive measure.

DerFniTION 2.13. Suppose that &, o, and f satisfy Hypothesis 2.3. We
say that “(k, a, f) satisfies the compatibility condition” if

[ ats) utas) = [ Bry vian),

and whenever /= § and J< T are measurable sets with u(/)>0 and
v(J)>0 and k(s,1)=0 for almost all (s,1)el'xJ’, it follows that
inequality (2.12) is satisfied and that strict inequality holds in (2.12) if k is
positive on a subset of 7 x J of positive measure. If Hypothesis 2.2 and 2.3
are satisfied and k& is continuous and

[ as) ptds) = | By vian),

we say that “(k,«, f) satisfies the weak compatibility condition” if,
whenever I« § and J< T are nonempty open sets and k(s, £) =0 for all
(s, t)elI'xJ’, (2.12) is satisfied and strict inequality holds in (2.12) if
k(sg, ty) > 0 for some (sq, to)elxJ.
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As we have noted, it is necessary that (k, o, #) satisfy the compatibility
condition for (1.1) to have a solution.

Note that if (k, a, B) satisfies the compatibility condition and k(s, t)=0
for almost all (s, t)e I’ x J' and almost all (s, t)e (I, J), then (taking T=1'
and J=J') we obtain

J, 5 utds) > [ o) viany

Combining this with (2.12) and recalling that

|ty i) = [ Bty wan,
N T

we find

| #oads=] poyvan and | als)utds)=] By vidn),

We also need the analogue in our setting of the idea of an “indecom-
posable matrix.”

DEeriNITION 2.14.  Suppose that S and T satisfy Hypothesis 2.1 (respec-
tively, Hypothesis 2.2) and that ke L™(Sx T) is a nonnegative function
(respectively, ke C(Sx T) is a continuous, nonnegative function). We say
that &k is “indecomposable” (respectively, “weakly indecomposable™) if
whenever I« S and J< T are measurable (respectively, open) sets of
positive measure with k(s, 1) =0 for almost all (s, t)e I’ xJ' (respectively,
k(s,1)=0 for all (s, t}e I’ xJ'), it follows that there i1s a set E<IxJ such
that E has positive measure and k(s, 1) >0 for almost all (s, 1) e E.

Of course our definition here is a direct generalization of the definition
of an m x n indecomposable nonnegative matrix.

To solve the DAD problem (1.1) in the matrix case, it is clearly necessary
that the matrix have no zero row sums and no zero column sums. We shall
use a condition on k& which generalizes the matrix assumption.

HypoTHESIS 2.15. Hypothesis 2.1 is satisfied and ke L*(SxT) is a
nonnegative function. There exists 6 >0 with

J k(s, t) u(ds) =9, v almost everywhere, and
Y

J k(s, t) v(dt) = 6, U almost everywhere.
T
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Remark. If Hypothesis 2.15 is satisfied and k(s, 1) < M for almost all
(s, 1), Fubini’s theorem implies that for u almost all s, k(s, 1)< M for v
almost all ¢. Similarly, for v almost all ¢, k(s, 1) £ M for u almost all 5. For
o as in Hypothesis 2.15, select ¢ >0 with

V(T)<()6  and  cu(S)< (D).
For se S and te T define E, and F, by
E={t|k(s,t)zc} and Fo={s|k(s, t)=c}.

It follows that for almost all s,
1
é <J kis, t)v(dt) s MW(E,)+ cv(T— E))< Mv(E,) + (—) 4,
T

SO

Similarly, we find that
wWF)Y=é,, v almost everywhere.

There is one situation in which Hypothesis 2.15 is clearly satisfied.

LEMMA 2.16. Suppose thar Hypothesis2.2 is satisfied and that
ke L*(Sx T) is nonnegative almost everywhere. For each s€ S assume that
there exist a positive constant ¢, an open neighborhood U, of s, and a
measurable set V,c T of positive measure with

k(a,t)=2c¢ Sor almost all (6,1)eU,x V,.

s

Similarly, for each t e T assume that there exist d, > 0, an open neighborhood
H, of t, and a measurable set G, of positive measure with

k(o,7)2d, for almost all (o,1)eG,x H,.

Then k satisfies Hypothesis 2.15.

Proof. By compactness of S and 7, we can find 5, S, 1 <i<m, and
t,eT, 1 <j<n, such that
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If we define c=min{c,d;:1<i<m, 1<j<n} and n=min{v(V,),
w(G,): 1<i<m, 1<j<n}, we see that Hypothesis 2.15 is satisfied with
o=cn. |

If k is continuous and nonnegative on Sx7 and Hypothesis 2.2
is satisfied, Lemma 2.16 implies that k satisfies Hypothesis 2.15 if and only
if

fk(s, )v(d)>0foralls  and Jk(s, 1) u(ds) >0 for all 1,

which is the exact analogue of the matrix condition.

Our approach in this section to solving (1.1) will be to reduce to an
equivalent fixed point problem. Define X'=L>*(S) and Y=L>*(T) and
(throughout this paper) let C, be the cone of nonnegative functions in X’
and C, the cone of nonnegative functions in Y. As usual, C; denotes the
interior of C,. If Hypothesis 2.3 is satisfied, define linear operators
A;:X—>Yand 4,: Y- X by

(Alv)(l)=f k(s, 1) a(s) v(s) u(ds)  and
(2.17)

(Azw)(s)= [ kls, 1) Blr) wlt) vid).

It is easy to see that A4, and A, are bounded linear operators and that
l4 <tk Iy, and 45l <kl 181,

Furthermore we see that A,(C,)cC, and A,(C,)c= C,. Similarly, we
can define bounded linear operators B,: L'(S) - L™(T) and B,: LY(T)—
L”(S) by

(B, )0 =[ ks, 1) f(s) u(ds)  and  (Bog)(s) = K(s, 1) glr) v(dn)

LeEmMMA 2.18.  Assume that Hypotheses 2.3 and 2.15 are satisfied. Then it
Sollows that A(C,)c Cy and A,(C,)c C,, where A; is defined in (2.17).
Furthermore, if fe L'(S) is positive, u a.e., and ge L'(T) is positive, v a.e.,
then B,(f)e C, and B,(g)eC,.

Proof. Because 2 and f are positive almost everywhere and
B,(av)=A,(v) and B,(Bw)= A,(w), it suffices to prove that B,(f)e C, if
feL'(S) is positive almost everywhere and B,(g)eC, if geL(T) is
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positive almost everywhere. We restrict attention to B,, since the proof for
B, is the same. Let M = ||k| -,

V={xeL”(S): x|, <M} and
V,= {x eV: f x(s) u(ds) = é and x(s) =0, p almost everywhere},

where d is a constant as in Hypothesis 2.15. The Banach—Alaoglu theorem
implies that V is compact in the weak* topology, and since V| can be
written as the intersection of weak* closed subsets of V, ¥V, is closed in V
and compact in the weak* topology. If fe L!(S) is positive, u a.e., then
because (L'(S))* = L>(S)), the map @: V, - R,

O(x)= [ X(5) f(5) lds),

is continuous in the weak* topology on V. Since @ is positive on V;, there
exists k >0 with

D(x)=zkK for all xel.

However, Hypothesis 2.15 implies that for almost all 1e T, x(s)=k(s, t)
yields an element of V;, so

f k(s, 1) f(s) w(ds) =k, v ae.

It follows easily that B, feC,. |
We can define J,: C, - C, (k=1,2) by

1
(sz)(r)=<_—>. (2.19)
;(r)

Assuming that Hypotheses 2.1, 2.3, and 2.15 are satisfied, we define
F: Cl band él by

F=A,J,4,J,. (2.20)

LeMMA 2.21.  Assume that Hypotheses 2.3 and 2.15 are satisfied and that
| o(s) u(ds)=| B(t) v(dr). The DAD problem (k, «, B) has a solution (f, g)
(see (1.1)) if and only if there exist xe C, and A >0 with

F(x)=ix.

If xe €, and 4> 0 exist, then it is necessary that i =1.



ENTROPY MINIMIZATION AND SCALING KERNELS 59

Proof. Suppose that F(x)=Ax for some xeC,, and .>0. By
Lemma 2.18, y=A4,J,xe C,, so if we define f and g by

_2) )
fo=15  and ="

felL(S), geL'(T), and f and g are positive almost everywhere. The
definition of y gives

[ &) k(s 1) f(s) wtas) = pl1), v ae,

Because F(x)= ix, we have that 4,J, y=4Ax and

j‘g(t) k(s, t) f(s)v(dt) = Aa(s), uae.

However, we also see that

ja(s)p ds) = U 2(0) k(s, 1) f(s) v(dr) u(ds) jﬂ(z ) v{d),

and we assume that

[ ats) utas) = [ ptry vian),

so we must have 4=1.
Conversely, suppose that fe L'(S) and ge L'(T) are positive almost
everywhere and solve (1.1). If we define x and y by

x(s):J‘k(s,t)g(t)v(dI) and y(z)=jk(s,z)f(s)p(ds),

we obtain from (1.1) that

F5)=52 and g0y =2

5) ()

Lemma 2.18 implies that xe €, and ye C,. Thus, for almost all re T, we
have

almost everywhere.

(41, )0 = [ ks, 1 ( )(s)=jk(s,z)f(s)u(dv)

B0,
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Similarly, for almost all se T, we have

(A:0 y)(s) = fk(s,z)ﬂ“ ()= [ ks, 0) g(o) vid)
(o)
_als) _
_f(s)_x(s)a

so Flx)=x. ]

Note that the proof of Lemma 2.21 also shows that if the DAD problem
(k, o, ) has a solution (f, g), then /= a/x and g = §/y for some x e C, and
yEe

Of course the idea (at least in the matrix case) that solving (1.1) is
equivalent to finding a fixed point of a certain operator F goes back to the
earliest work on DAD problems: see [20] and [22] for example. In
addition, in the matrix case Menon and Schneider [23] have observed that
F extends continuously to C,. This observation has been extended to a
larger class of maps .# in [27, Sect. 2]. In general, however, it is not hard
to see that F may not extend continuously to all of C,. To see this, take
S=T={0, 1] with 4 = v=Lebesque measure. Take x=ff=1and k=1 on
S x T. If we assume that F extends continuously to C, and if xe C, and
x(s)=0 for s in a set of positive measure, it is easy to see that F(x)=0.
Thus, if ¢,>0 and lim, _, .. ¢, =0 and if we define x,,e C, by

\/S—E,,, HSSSI
X, (s)=

0, 0<s<e

we must have F(x,)=0. On the other hand, if x(s) = \/;, it is not hard to

see that
1 1 -1
F(x):c:(f (——)ds) > 0.
W

Since lim, _,  x,=x in C,, we see that F cannot be continuous.

Our strategy now will be to replace F by a nicer operator F,, ¢>0,
prove that F, has an eigenvector x,e C,, and show (under appropriate
assumptions) that there exists a sequence ¢;,—~ 0" such that x, - xe ¢, in
the L*(S) norm. Proving convergence of x, to a point in ¢, will be the
difficult point.

Before proceeding further we need to recall some facts about Hilbert’s
projective metric. We refer to Sections 1 and 2 of [26] or to [8] for more
details and references to the literature. Recall that a cone C in a Banach
space X is a closed convex subset of X such that (a) tC < C for all 1 >0 and
(b) xe C— {0} implies that —x ¢ C. A cone C induces a partial ordering
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by x<yif y—xeC. A cone C is called “normal” if there exists a constant
M such that 0 < x <y implies x| <M {y|. If ue C~— {0}, we shall denote
by C, the set

C,={xeC|3a>0 and b>0 such that au < x < bu}.
If C has nonempty interior € and u e C, note that
c,=C.
If ue C— {0} and x, ye C,, we define
M(y/x)=inf{p>0| y<bx} and
m(y/x)=sup{a>0|ax<y}.

If b= M{(y/x) and a = m(y/x), we define d(x, y), Hilbert’s projective metric,
by

d(y, x)=log (g)

If C is a normal cone, ue C— {0}, ¥ is a continuous linear functional
which is strictly positive on C,, and = {xe C, | ¢ (x)=1}, it is known
that d restricted to 2 x 2 makes (2, d) a complete metric space and the
topology on 2 is the same as the norm topology. (See Sect. 1 of [26] for
references to the literature.)

Next suppose that C is a cone in a Banach space X and D is a cone in
a Banach space Y. Suppose that L: X — Y is a bounded linear map and
that, for ue C— {0} and ve D — {0},

L(C,) < D,.

Let d, denote Hilbert’s projective metric on C, and d, Hilbert’s projective
metric on D, and define

A(LY=sup{d,(Lx, Ly): x, yeC,}.
If A(L)< o0, and if we define
k=tanh(} 4(L)) <1,

where tanh denotes the hyperbolic tangent, Birkhoff [2, 3] has proved that
for all x, ye C,,

dy(Lx, Lyy< k d,(x, y}.
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The inequality holds with k=1 even if 4(L)=occ. Summaries of closely
related material and further references to the literature can found in [26,
pp. 42-45].

If Hypotheses 2.3 and 2.15 are satisfied and ¢ >0, define 4, .: L*(T) —
L™(S) by

(A . w)(s) :j [k(s, 1) +¢] B(z) w(t) v(dt) (2.22)
and define F.: ¢, - C, by
Fo=A, J,AJ,. (2.23)

LEMMA 2.24. Assume that Hypotheses 2.3 and 2.15 are satisfied and that

[ as) utas) = | Btey van).

If €>0 and F, is given by (2.23), F, has an eigenvector x,€ C,
Fs(xz:) = )"ﬁxlz’

and Ai,>1. The eigenvector X, is unique to within scalar multiples. If
v:C, — R* is defined by

Y(x) = [ x(s) plds)

and if, for ve C,, v, is defined by

Fi(v)

N £

Y F)Y

then v, converges geometrically in norm to the unique eigenvector x, of F,
such that y(x,)=1 and x,eC,.

Proof. 1f, for ve C,— {0}, we define
5=f B(1) v(1) v(dr) >0

and if M= |k+e¢|,, it is clear that

80 < (A4, ,v)(s) < Mo, u almost everywhere,
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If u denotes the function in C, identically equal to one, we have (where d;
denotes Hilbert’s projective metric on C))

d\(A, v, 0u)=d (A, v, u)<log(M/e).

It follows by the triangle inequality for d, that for any v, v,e C,— {0}

M
dl(Az,svl,Az‘svz)<210g<?) and

M
A(Az,n)g 2 log (—g—>
The previously mentioned result of Birkhoff [2, 3] implies that

di(A, v, Ay W) K dy(v, W) for all v, weC,,

k =tanh(34(4, ) < 1.
It is easy to see that for all x, ye C,,

dil(Jix, Jy y) =d,(x, y),
and we have already noted that

d{A,x, A, y)<d(x, y) for all x, yeC,.

It follows that for all x, ye C,,

d\(F.x, F.y) <k d(x, y)

If we define = {xe C, :¥(x)=1} and define &,: Z — X by

F(x)
Y(F.(x))

then the basic properties of d, imply that

PD(x)=

di(®@.(x), P(y))<Kkd(x,y) forall x, yelZ.
Because (X, d,) is a complete metric space (and because F, is homogeneous

of degree one), the contraction mapping principle implies that for any ve &2
(and hence for all ve C,)

o F)
Jm, P = Jm (W:u»»)""“

580/115/1-5
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where x, is the unique fixed point of @, in X. It follows that
FB(xE) = ;"st’ ;"EI = ll’(}:‘ﬁ(’xlS))'

The uniqueness (to within scalar multiplies) of an eigenvector of F, in €,
follows from the above remarks and the homogeneity of F,.
It remains to prove that A, > 1. If we define f,(s) and g,(z) by
a(s) B(1)

f=Tms =) and gl)=

the argument in Lemma 2.21 shows that

[ 8t ks, 1) fs) wids) = B2), v ae,

and
[ 20)kts, N +e) fis) Wdr) = Aoas),  pae
It follows that

3o [ a(s) uds) = [[ gu0)(k(s, 1)+ &) £.05) (dt) ptds)

>ﬂ g.(1) k(s, 1) f.(s) v(dr) ul ds)_f B(1) v(dr),
SO
5ﬁ(t)v(dt)>
PR PRAGALLIN Py
- (I a(s)uidsy) =

Remark 2.25. 1t is important to note that, under the hypothesis of
Lemma 2.24 and for 0 <¢ < 1, there exists a constant M, independent of ¢,
with

A<M

To see this, observe that by the homogeneity of F,, we can choose x, € C,
with |x,/, =1 and

FE(XE) = Aﬁxﬂ‘
If y,=(A4,J,)(x,) we have

a(s)
x,(5)

ye(t)=.[k(s, y(ds)>j (s, ) als) ulds), v ae.
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Lemma 2.18 implies that 4,(C,) < C,, so there exists a positive constant «
J k(s, t) a(s) u(ds) = x, vae.

It follows that

B(1)

A,x,(5) < j (k(s, 1)+ ¢) (T) wdi), uae

There exists a constant M, independent of ¢ for 0 <s< 1, with

J (k(s, 1)+5) (M) vidt) < M, uae.

K

Since x| . =1, it follows that i, <M for 0 <e< 1.
Note that the above argument also shows that

(y.(1))"'<k " '<o, valmost everywhere.

We are now in a position to prove our first theorem.

THEOREM 2.26. Assume that Hypotheses 2.3 and 2.15 are satisfied.
Suppose also that k is indecomposable (Definition 2.14) and that (k,a, f§)
satisfies the compatibility condition (Definition 2.13). If A,: L™(T) > L>™(S}
and A,: L=(8)— L™(T) are defined by (2.17), assume that either A,
or A, is compact. (Recall that A, is compact if kae L'(S)® L™(T), as in
Definition 2.9, and A, is compact if ke L*(S)Q L' (T). In particular A,
and A, are compact if ke L*(S)® L*(T) or if Hypothesis 2.2 is satisfied
and k is continuous.) Then there exist xe C, (the interior of the cone of
nonnegative functions in L=(S)) and yeC, (the interior of the cone of
nonnegative functions in L™(T)) so that if f(s)=a(s)/x(s) and g(t)=
B()/y(t), (f, g) is a solution of the DAD problem (k, o, B).

Proof. By symmetry in the roles of § and 7, we can assume that A4,
is compact. If kfe L*(S)® L(T), we have already remarked that A, is
compact. If ke L*(S)® L*(T) or if Hypothesis 2.2 is satisfied and % is
continuous, we have also already noted that ke L*(S)® L'(T), so A4,
is compact in this case too.

Let F,, ¢>0, be defined by (2.23), and by Lemma 2.24 select A,>1 and
x,€Cy, llxll o =1, with

FE(‘xﬁ) = 2’6x5'
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We already know (see Remark 2.25) that there exist positive constants M
and x, independent of ¢ for 0 <& <1, with

A’F<M and “JZ(.Vl)ll o <K¥]a
where y,=A,J,x,. Since
Fs(xz) = AZ, sJZ(yf:) = j‘nxc

and J,(y,) is bounded in L*(T), the compactness of A, and the bounded-
ness of 4, imply that there exists a sequence ¢,| 0, xe C,, and 4> 1 with

lim [2,—4/=0 and  lim Jx,—x], =0.
J— ot

jor oo

Furthermore, because z, = J,(y, ) is bounded in L™(T), by taking a further
subsequence, which we continue to label ¢, we can assume that z,
converges to z in the weak* topology on L*(T7),

e,
& owe

It is easy to see that z(¢) >0, v a.e. For notational convenience, we write
X;=X,, V;=VY, ;=Z,, and ./1_,:2,;]. o
For each s€ S, k(s,-) B(-) is a function in L'(T), so

Ax(s) = lim 7,x,(s)= lim [ (k(s, 1)+ 2,) B(1) z,(¢) v(do)

m
=f k(s, 1) B(e) 2(1) v(dr),  p ae.
Here we have used the fact that
tim [ 6, (1) 2,(0) ) =0

because |z,|| is bounded uniformly in j.
We define measurable sets / and J by
I={seS:x(s)>0} and J={teT:z(1)=0}.

(Of course I and J are only defined to within sets of measure zero.) We
know that u(7)>0, because |x||,=1. If v(J)=0, z is positive almost
everywhere and Lemma 2.18 implies that xe C,, where

ix(s)=f k(s, 1) B(1) z(0) v(de),  pae.
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However, if xe C,, the fact that x; approaches x in L*(S) norm implies
that

jlin'alr ”Jx(xj)— Jl(x)” oo T

Using this, it is easy to argue that

ix=lim F,(x;)= F(x),

Jr®

and Lemma 2.21 then yields our theorem.

Thus we assume that »(J) >0 and try to obtain a contradiction. We also
know that v(J') > 0, since otherwise x(s)=0 almost everywhere. We claim
that

jl a(s) p(ds)>L B(r) v(dr). (2.27)
If u(I'y=0, we have
j{ a(s) u(ds) = L als) p(ds) = jr B(1) v(dt) > L B(1) v(dr).

Thus, for the purposes of proving (2.27), we can assume that u(/')> 0. For
almost all sel’, we have

0= Ax(s) =j (s, 1) B(1) (1) v(dr).

Since z{7)>0 for almost all teJ’, it follows that for almost all se/l’,
k(s, 1)=0 for almost all re.J'. By using Fubini’s theorem, we conclude that
k(s, t)=0 for almost all (s, 1)e I’ x J'. Since k i1s indecomposable, it follows
that k| IxJ is positive on a set of positive measure. The compatibility
condition for (k, o, ) now implies that (2.27) is satisfied.

For almost all te J’, we have that

y 0= ks, (ffs ’)) u(ds)
f (“( )) p(ds),

because k& vanishes almost everywhere on /' x J'. It follows that

j ﬁz)v(dz)—j j(f‘{:) k(s )(“‘(SD u(ds) v(dr).  (2.28)
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Let x, denote the characteristic function of J. Because z; is bounded in
norm uniformly in j and z;——> z, we have

.

Jim j (k(s, 1) +2,) 1,(t) B(t) 2,(2) v(dr)

Jr

= tim [ k(s ) £,06) B0 2,(0) v(d)

= [ Kls. 1) 2,(0) B(1) 2(0) w(dr) =0,

(Recall that z vanishes almost everywhere on J.) It follows that for almost
all sel,

he(s)= lim [ k(s, ) 2,00) Bl0) 2,(0) vid)

J—

+ lim f k(s, 1)(1 — x.,(t)) B(t) z,(¢) v(dt)

j—
= lim [ k(s 1) B(r) 2,(2) vldh).
J— oo
For almost all se I, it follows that

3 = h _l(.s_)_ M y
Aa(s)—jliri <xj(s)) L k(s, ) <yj(t)> v{dt).

From (2.28) and Fatou’s lemma we obtain

;j a(s) ds—fl lim [(%) f,, k(s, 1) (ﬁ(( ))> (dt):l s(ds)

ﬁ( )
jl—l'oo f L X; (s) (1 )V(dt) u(ds)

=f B(1) v(dt).
)

Since 4321, this contradicts (2.27). It follows that our assumption that
v(J)> 0 is wrong, and the theorem is proved. ||

As we see in Section 4, the condition of indecomposability may be
important. However, we now prove that for the pure question of existence
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which is treated in Theorem 2.26, indecomposability is irrelevant. Our
strategy is to show that k can be written as a finite direct sum of kernels
which are indecomposable. This will follow by exploiting Hypothesis 2.15.

LEMMA 2.29. Assume that (S, u) and (T, v) are finite measure spaces and
that ke L*(S x T) is a nonnegative function which satisfies Hypothesis 2.15.
Then there exist pairwise disjoint measurable sets S;c S, 1<i<m, and
pairwise disjoint measurable sets T,c T, 1 <i<m, such that u(S;)>0 and
WT)>0 for 1 <i<mand

(1) §=UL, Siand T=U7L, T,

i=1
(2) k| S,x T, is indecomposable for 1 <i<m, and
(3) k(s,t)=0 for almost all (s,t)e(SxT—-UT, S;xT)).
Proof. For se S and 1€ T and ¢ >0 define E, and F, by
E={t|k(s,t)=c} and E={s|ki(s,t)y=c}.

As noted in the remark following Hypothesis 2.15, there exist ¢>0 and
4, >0 with

wWE,) =6, and u(F) =4, almost everywhere.

Now suppose that k is not indecomposable, so there exist measurable sets
Ic S8 and J= T with y(I)>0, v(J) >0, and

k(s,1)=0 for almost all (s, )e(IxJ)u (I'xJ").

It follows from Hypothesis 2.15 that u(/')>0 and v(J')> 0. Furthermore,
if se I’ we see that E. < J, so

W) 2 WE,) =6,
Similarly, if se I, E,<J’, so we have
vWJ)ZVWE)=0,.
The same sort of argument shows that
wl)=0, and ul'y=9d,.

Define, for the moment, S, =1, S,=1, T,=J, and T,=J' and consider
k|S, xT,.If k| S,xT, and k| S, x T, are indecomposable, we are done.
If not and if k| S, x T} is not indecomposable, the same argument used
above shows that we can find pairwise disjoint subsets S, and S, of S, and
T, and T, of T, (all sets of positive measure) such that

5,=5u8, and T,=T 0T,
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and
k(s,t)=0  for almost all (s, t)e (S, x T\)— (S, x T))u (S, x T).
The crucial observation is that our previous argument shows that
wSHy=6,, wS)=s,, wTHzé,, and v(T)=4,,

where &, is the same constant as before. If we change our notation, we have
shown that

S=1) S, and T={ T,

where m1 =3, the sets S; are pairwise disjoint, the sets 7; are pairwise
disjoint,
w(S;)=é, and (T} =24, for 1<i<m,

and

k(s,1)=0  for almost all (s, 1)¢ |} (S,x T;).
i=1
If k] S;xT; is indecomposable for 1<i<m, we are done. Otherwise,
we can repeat the procedure and increase m by one. However, our
construction issues that at any step in the procedure

us)1=u( U 5)= % uisyzms,.

i=1 i=1

where §, is independent of m. It follows that
m<(3,) 7" u(S),

and at some point we must have k| S;x7; indecomposable for
I<ism. |

As a direct consequence of Lemma 2.29 we see that the assumption of
indecomposability in Theorem 2.26 is unnecessary.

THEOREM 2.30. Let assumptions be as Theorem 226 except do not
assume that k is indecomposable. Then (see (1.1)) the DAD problem (k, o, )
has a solution (f, g). If (f, g) is a solution of the DAD problem (k, a, ),
there are positive constants ¢, and ¢, (dependent on [ and g) with

(s) Bl

Kc,and ey £ —<c, almost everywhere.

1(s) g(1)
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Proof. The final assertion of Theorem 2.30 follows from Lemma 2.18, so
it suffices to prove f and g exist.

By Lemma 2.29 there exist pairwise disjoint, measurable sets S;c S,
1<i<m, and pairwise disjoint, measurable sets T, 7, 1<i<m, with
u(S;)>0and W(T)>0for 1<i<m, S=Y7., S, T=U", T, k(s,1)=0
for almost all (s, )¢ U7, (S;x T;} and k,=k | (S;x T;) indecomposable
for 1 <i< m. The reader can verify that all the conditions of Theorem 2.26
are satisfied for k;,, o;=«| S, and f,=f1| T;. Thus there exist functions
f,e L'(S,) and g,e L'(T,) with f, and g, positive almost everywhere on S,
and T, respectively, and

J Ji(s) k(s, 1) g;(¢) v(dt) = a(s), uae on S, and

L fi(s) k(s 1) g.(1) u(ds)=P(1),  vaec. on T,

If we define f(s)=f;(s) for seS; and 1 <i<<m, and g(t}=g;(¢) for re T,
and 1 <i<m, one can check that f and g give a solution of (1.1). |§

The main difficulty in applying Theorem 2.30 is to verify that (k, 2, )
satisfles the compatibility condition. If k has the same zero set as a
kernel k and the DAD problem (k, «, ) has a solution, this difficulty is
circumvented.

COROLLARY 2.31. Assume that (k,a, B) satisfies Hypotheses 2.3 and
2.15 and that either A, or A, is a compact linear map, where A, and A,
are defined by (2.17). Assume that keL*(SxT) (k, 2, B) satisfies
Hypothesis 2.3, and that the DAD problem (k, a, f) has a solution. If, for
almost all (s, t)e Sx T, k(s, t}y=0 if and only if k(s, t}=0, then the DAD
problem (k, a, B) satisfies the compatibility condition and has a solution
(/. g) as in Theorem 2.30.

Proof. Because the DAD problem (E, 2, ) 1s assumed to have a
solution, (k, o, f) must satisfy the (necessary) compatibility condition
(Definition 2.13). It follows that (k,«, f) satisfies the compatibility
condition, and Theorem 2.30 implies that the DAD problem (k, «, f) has a
solution. [

Theorem 2.30 is applicable when & is continuous, but we want to prove
that it suffices to assume that (k, o, B) satisfies the weak compatibility
condition and that a/f and B/g are positive continuous functions.

LeEmMMA 232, Assume Hypotheses 2.2, 23, and 215 and that
Is o(s) plds) = jr B(1) v(dt). Assume that k is continuous. If (k, , B) satisfies
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the weak compatibility condition, then (k,«, §) satisfies the compatibility
condition. If k is weakly indecomposable, k is indecomposable.

Proof. Assume first that (k, a, f) satisfies the weak compatibility
condition. Suppose that /= § and J< T are measurable sets of positive
measure and that k| I’ xJ' =0 almost everywhere. (Here A’ denotes the
complement of a set 4 and A its closure). We have to prove that

s ut)= ] poyvid, (233)

with strict inequality if & is positive on a subset of 7 x J of positive measure.

Our first claim is that, by modifying [ and J on sets of measure zero, we
can assume k(s, t)=0 for all (s, t)el’'xJ’. We can suppose that I’ and J’
have positive measure or it is immediate that strict inequality holds in
(2.33). By Fubini’s theorem, there exists a set N = J’ of measure zero such
that for reJ — N, k(s,1)=0 for almost all se/’. Because J'— N is a
separable metric space, select a countable dense set of points ¢, j> 1, in
J'—N. For each j>1, let E;>I be a measurable set with u(I’—E[)=0
and k(s, t;)=0 for all se E;. If we define E= ), E, it follows that E> [,
u(I'—E')=0, and k(s,t,)=0 for all seE" and j>1. If we define
F'=J — N, we conclude from the continuity of k that k(s, t)=0 for all
(s, e E'xF', Eol, FoJ, W(E—I)=0, and v(F—J)=0. Using this, we
see that to prove (2.33) it suffices to prove

J}‘ a(s) u(ds)?_[ By v(dr),

E F

with strict inequality if k is positive on a set of positive measure in E x F.

The continuity of k implies that &(s, t)=0 for all (s, e (E YV x (F). If
G=(F') and H=(F'), G and H are open sets, Gc E, Hc F, and
k(s,1)=0 for all (s,)eG'xH" If G or H is empty, we contradict
Hypothesis 2.15. Thus G and H are nonempty open sets, and the weak
compatibility condition implies that

J, o) uds)= | By i),

with strict inequality holding if k(sq, f) >0 for some (sq, t5)e G x H.
It follows from the above inequality and the fact that G £ and Hc F
that

J oo utds)> [ poy vian)



ENTROPY MINIMIZATION AND SCALING KERNELS 73

and that strict inequality holds if w(F—G)>0 or w(F—H)>0 or
k(sy, 15) > 0 for some (s, ¢,) € G x H. Thus we have strict inequality unless
WE—G)=0, f{(F— H)=0, and k(s, 1)=0 for all (s, r)e G x H. However,
the latter conditions imply that k(s, t) =0 for almost all (s, 1) e E x F. Thus
(k, 2, B) satisfies the compatibility condition.

Suppose now that k is weakly indecomposable and that /, J, E, F, G, and
H are as above. To prove k indecomposable, we must prove that k is
positive almost everywhere on a set of positive measure in I xJ, and this
is equivalent to proving that k is positive almost everywhere on a set of
positive measure in E x F. We know that G and H are nonempty open sets
and that k(s, t)=0 for all (s, 1)e G’ x H'. Weak indecomposability implies
that k(s,, ty) > O for some (s, to) € G x H, and continuity of k implies that
there exists an open neighborhood U of (s, t5) with Uc G x H< Ex F and
k(s, ¢)>0 for all (s, t)e U. Since U has positive measure, we have proved
k indecomposable. |}

We can now give a stronger version of Theorem 2.30 for k& continuous.

THEOREM 2.34. Assume Hypothesis 2.2 and 23 and suppose that
k: Sx T — R is continuous and that (k, x, B) satisfies the weak compatibility
condition (Definition 2.13). Assume that

j k(s, ) v(dt)>0 for all s and j k(s, t) u(ds) >0 for all 1.

Then there exist positive, continuous functions xe C(S) and ye C(T) such
that if f(s)=ua(s)/x(s} and g(t)=P(2)/y(t), (f, g) gives a solution of the
DAD probiem (k,a, f) (see (1.1)).

Proof. Lemma 2.32 implies that (k, «, §) satisfies the compatibility
condition. It is an easy continuity and compactness argument to prove that
Hypothesis 2.15 is satisfied. Thus Theorem 2.30 and Lemma 2.21 imply that
(for F as in (2.20)) there exists xe C,, the interior of the cone of non-
negative functions in L*(S), with F(x)=x. If A, and 4, are as in (2.17),
one can see from the continuity of k and Lemma 2.18 that A(C)) e
(C(T)n C,) and A,(C,) < (C(S)n C,). It follows that x is continuous and
positive and that y=(A4,J,)(x) is continuous and positive. The theorem
now follows from Lemma 2.21. |

3. DAD THEOREMS FOR GENERAL ke L*(Sx T)

The arguments of the previous section depend strongly on the assump-
tion that either 4, or A4, is a compact linear map, where 4, and A, are
defined as in (2.17). Actually, if hypotheses are as in Theorem 2.26 or 2.30,
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but 4, and 4, are not assumed compact, one can still prove Theorem 2.30
if one can prove (in the notation of Theorem 2.26) that there exist x; >0
and x,>0 with

) <, (5) <1y (3.1)
for almost all s and all j>1. However, proving (3.1) directly appears
difficult.

It is not hard to show that for general k e L*(S x T), neither 4, nor A4,
need be a compact map: see Remark 5.6 in [5]. Thus there is a gap
between the results of Section 2 and the case of general ke L*(Sx T).
To handie the general case we shall combine some results on “entropy
minimization” from [5] with theorems from the previous section. We
could also use theorems from a paper by Csiszar [11], but the underlying
optimization problem (which we prefer to emphasize) is hidden in [11]
and some of the derivations seem obscure (see for example, paragraph 2,
p. 154, in [11] and remarks in [4]).

We begin by describing results from [5] which we need. Suppose that
(S, 1) and (7, v) are finite measure spaces and that ke L'(Sx T, uxv)is a
nonnegative function. Assume that a e L'(S, i) and fe L'(T, v) are positive
almost everywhere and

L a(s) p(ds) = jT B(1) v(dr).

We obtain a measure o on Sx T from & by
o(E)=| | Kis. 1) uids) vy, (3.2)

and we write do=Kk(s, t) u(ds) v(dt). We are interested in a slight
generalization of our previous DAD problem: Do there exist maps /2 S — R
and g: T — R, positive almost everywhere, such that if u(s, 1) = f(s) g(1),
then ue L'(Sx T, 6) and

f u(s, t) E(s, 1) v(dt) = afs), u a.e., and
(3.3)

J u(s, t) k(s, 1) u(ds) = (1), v ae.
If £ and g as above exist we say that (f, g) is a generalized solution of the

DAD problem (k, «, ). Note, however, that even if Hypothesis 2.3 is
satisfied and (f, g) is a generalized solution of the DAD problem (%, a, 8),
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it does not a priori follow that f is u-measurable or fe L'(S, ). Such facts
must be derived from further assumptions.
Define a convex continuous function ¢: [0, «c}— R by ¢(0)=0 and

o(u)=ulog(u) —u.

If ue L'(SxT,0) and u(s, t) =0, o ae., define
L= [ otuts, 0) E(s, 1) u(ds) vidr). (34)
SxT

Of, course, we may have [, (u)=cc. Define K to be the set of
ue L'(Sx T, o) with u(s, 1) >0, 6 ae., I,(u) < cc and

f u(s, 1) B(s, 1) v(dt) = a(s),  p ae. and
(3.5)
j u(s, ) k(s, 1) u(ds) = (1), v ae.

If ue K, we say that u is “feasible.” If X is nonempty, it is not hard to show
that K is convex and there exists a unique u, € K such that
I,(ug) = inf I (u).
ue K
See Corollary 2.2 in [S]. If there exists ue K with u(s, 1) >0, ¢ a.e., then it

is proved in Section 3 of [5] that uy(s, 1) >0, ¢ a.e,, and that there exist
functions f(s) and g(¢), with f(s)>0, u a.e., g(z)>0, v a.e, and

ugls, ) ks, t)=f(s) g(t) k(s, 1), uxvae.

Thus, if there exists ue K with 4> 0, ¢ a.e., one obtains a generalized
solution of the DAD problem (k, a, f) (see (3.3)). However, it is not even
immediately apparent that f is p-measurable and g is v-measurable.

If A and B are subsets of S x T, define

AAB=(A~B)u (B— A).

Say that 4 < Sx T is a measurable rectangle if there exist measurable sets
I< (S, u) and J<= (T, v) such that

(uxv)(A44(IxJ))=0.
If k is as before, define £ by

3={(s,1): k(s, 1) >0},

58G/115/1-6
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so (2 is defined to within a set of measure zero. If £ is a countable union
of measurable rectangles, one can prove as in [5] that the function f is
ju-measurable and g is v-measurable.

The previous remarks reduce finding a generalized solution of the
DAD problem (k, a, ) (see (3.3)) to the problem of finding ve K with
u>0, g a.e. We approach this problem by using Theorem 2.30 from Sec-
tion 2.

For technical reasons it will be convenient to give a strengthened version
of Hypothesis 2.15.

HypoTHESIS 3.6. (S,u) and (T,v) are finite measure spaces and
ke L*(SxT) is nonnegative (uxv) almost everywhere. There exist a
constant ¢ > 0 and measurable sets E,c Sand F,c T for | <i<mand G,c S
and H,= T for 1 < j<n such that

(1) wE)v(F)>0 for 1 <i<m and p(G)v(H,)>0 for 1 <j<n,
(2) pw(S—-UL, E})=0and (T—-Uj_, H;)=0, and

(3) k(s,t)y=c for almost all (s,t)e(JT_, (E;xF)) and almost all
(S’ t)eujzl (GJXHJ)

LEMMA 3.7.  Assume Hypothesis 2.3 and suppose that the DAD problem
(k, «, B} has a generalized solution (f, g). If 2 :={(s, 1)e Sx T | k(s, t}>0},
suppose that there is a sequence of measurable rectangles I, xJ,<Q, p>1,
with W(S—U;. 1,)=0 and v(T—-U;_, J,)=0. Then f is y-measurable
and g is v-measurable. If Hypothesis 3.6 is satisfied, then fe L'(S, u) and
ge L' (T, v), and there exist positive constants ¢, and ¢, with

a<fs)als) ey pae, o, <(g)/P(1))<cy, vae.

Progf. Define u(s, t) = f(s) g(t), so we know uke L' (Sx T, uxv). Our
assumptions imply that wk | (I,xJ,) is integrable, so Fubini’s theorem
implies that u(-, t) k(-, )| I, and k(-, 1) | I, are y-measurable for v almost
all e J,. Because g is positive almost everywhere on J, and k is positive
almost everywhere on I,xJ,, there exists (assuming, as we can, that
v(J,)>0) t,eJ, with g(1,)>0, k(s,t,)>0 for almost all sel,
u(-, t,) k(-, t,) | I, is measurable, and k(- 1,) | [, is measurable. It follows
that

SV = (g, DG, e ) gle,) kGt ) |,

is measurable. It follows that f is measurable on S, and the proof that g
is measurable is analogous.
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If Hypothesis 3.6 is satisfied, we immediately obtain sets 7, and J, as
above and f and g are measurable. If we use the notation of Hypothesis 3.6
we find that for almost all se E,, 1 <i<m,

S5 | 80 V)< f(s) | kis, 1) gle) v(dr) = o).

We know that f and g are measurable and positive almost everywhere, so
the above inequality implies that

0<d, :=f (1) v(dr) < oo and
F

i

f(s) < (ed;) ' als) for almost all s F,.

We conclude from Hypothesis 3.6 that there is a constant ¢,=
max, _;_,, (cd;)~' with f(s)<c,a(s), u a.e. By symmetry in the roles of f
and g, the same argument also gives (possibly increasing ¢,) g(1) < ¢, f(¢),
v a.e. It follows that fe L'(S, u), ge L'(T, v), and

SOV AL . gl = als), u ae., and
() kil I1S11y = B(2), v ae.

We deduce from the above inequalities that there exists ¢, >0 with
fsyzeius), pae, and  g(t)zc f(1), vae |

If (k, 2, B) satisfies Hypothesis 2.3 and the DAD problem (k, o, §) has a
generalized solution (f, g), suppose that Q= {(s, )| k(s, ) >0} actually
equals a countable union of measurable rectangles 7,xJ,, 1<p<cc.
Then it follows that u(S—U;_, 1,)=0 and v(T—-U;_, J,)=0. To see
this let E={seS|s¢U;_,1,} and note that k=0 ae. on ExT
Because

O=L JT u(s, t) k(s, 1) v(dt) u(ds):J.E a(s) u(ds)

and x>0 a.e., it follows that u(E)=0.

We can now substantially weaken the assumption in Theorem 2.30 that,
for A, and 4, as in (2.17), A, or A, induces a compact linear operator. To
do this we introduce a technical condition which we later show is easily
verified.
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HyroTHEsIs 3.8. Hypothesis 2.3 is satisfied by (k, a, ). There exists a
nonnegative function k,e L*(SxT) with the following properties: (1) if
G: L=(S)—> L™(T) and G,: L*(T)— L*(S) are defined by

(G, 0)(1) = [ kals, 1) als) v(s) pu(ds) and

(Gow)(s)= [ Kils, 1) Bty w(r) vidn)

G, or G, is a compact linear operator. (2) k,(s,t)>0 for almost all
(s, )€, where Q :={(s,1)| k(s,1)>0}. (3) There exists a constant M
such that k (s, 1)< Mk(s, t) for almost all (s,t)e SxT.

Of course property (1) in Hypothesis 3.8 is satisfied if k,ae L'(S)®
L=(T)or k,Be L=(S)Q L (T).

THEOREM 3.9. Assume Hypotheses 3.6 and 3.8 and suppose that (k, o, f)
satisfies the compatibility condition ( Definition 2.13). Then the DAD problem
(k, o, B) has a solution (f, g) (see (1.1)). There exist positive constants with

¢ ofs) < f(s)< e u(s), u ae, and )< g(t)<c,p(2), v ae.

Proof. If notation is as in Hypothesis 3.6, let y, denote the charac-
teristic function of R=U7., (E;xF,)ul)j_, (G,x H;) and define k,=
ki +cxg- Since yge L*(S)® L*(T), we know that the kernel y o defines
a compact linear map from L*(S) to L*=(T) and yxfB gives a compact
linear map from L>=(T) to L*(S). Thus &k, defines a compact linear map
from L*(S) to L*(T) or k,f defines a compact linear map from L*(T) to
L*(S). One can also see that k, >0 almost everywhere on Q and &, <
(M + 1)k, almost everywhere. In addition, k, satisfies Hypothesis 3.6 and
hence Hypothesis 2.15. Because {(s,?)|k,(s,#)>0}=2 and because
(k, o, B) satisfies the compatibility condition, (k,,a, f) satisfies the
compatibility condition. Theorem 2.30 thus implies that there exist
functions xe C, (the interior of the cone of nonnegative functions in
L*(S)) and ye C, with

_[ (a(s)/x(s)) ko(s, ) B()/y(e)) v(dt)=n(s),  pae,and

f (a(s)/x(s)) kao(s, YB())/¥(1)) ulds)=B(z), v ae.
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We now apply our previously mentioned results on entropy minimiza-
tion. Define £ and u by

ks, H=als) k(s, t) B(1) and

NERVCNEN Ly
“s 0= <x(s)>( k(s, 1) )(y(,)) S ”<x(s)><y(z))‘
Note that Q= {(s, ) : k(s, 1)>0}, ue L*(Sx T, uxv), ke L'(Sx T, ux v),
u>0on 2, and

f u(s, t) k(s, 1) v(dt) = a(s), u a.e. and

j u(s, t) E(s, t) u(ds) = p(r), v a.e.
If p(u)=ulogu—u for u>0, ¢(0)=0, we also see that
1¢(u)=j o(u(s, 1)) k(s 1) u(ds) v(dt) < .

It follows from the entropy minimization results that there exist functions
f:8— R and §: T— R, positive almost everywhere, with fkge L'((Sx T),
uxv) and

[ 7). 0 g van=u(s),  pae,

[ 7). 0) g0y utds) =par, v ae.

If we define f=of and g= g we find that fkge LY(SxT,uxv), and f
and g are positive almost everywhere, and

jf(s)k(s, 0 gt vd)=als), pae

[ A5y Kis, 1) () wds) = (), v ae.

Lemma 3.7 now implies that f and g are measurable and satisfy the
conditions of Theorem 3.9. |}

The interest of Theorem 3.9 lies in the fact that simple assumptions imply
Hypothesis 3.8.
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HypoTHESIS 3.10. Hypothesis 2.3 is satisfied. There exist a sequence of
measurable sets E,c SxT, j=1, and a sequence of positive reals €; with
m,_,  &=0 such that (1) k(s,1)>¢; for almost all (s,t)eE;, (2) E,
is a countable union of measurable rectangles, and (3} Q:={(s,1)]
k(s, )>0}=U>", E,.

J=1"

Lemma 3.11.  If Hypothesis 3.10 is satisfied, Hypothesis 3.8 is satisfied.

Proof. We must construct a function &, as in Hypothesis 3.8. By our
previous remarks, if k,e L™(S)® L™(T) the linear maps G, and G,
in (3.8) will both be compact, so it suffices to find a nonnegative
ke L¥{(SY® L™(T) which satisfies conditions (2) and (3) in
Hypothesis 3.8. By modifying E, on a set of measure zero, we can write
E,=U,;_, (I,xJ,), where I, is p-measurable and J, is v-measurable for
peN. We know that k(s, t) > ¢; for almost all (s, 1) € E;, and @ differs from

721 E; by a set of measure zero. Let y,, denote the characteristic function

of (I,,xJ,,). For fixed j define

o

Fils, 0)= 3 &2 Ty,(s, 1)

p=1
If we define f, by

n

f}n: Z 8,;'2'7PZ,',,»

=1
we see that f,eL™(S)®L™(T) and | f,—fil..—0, so f,eL™(5)®
L=(T). By construction we have
Jfi(s, 1)>0for (s, 1) e E| and fi(s,1)=0for (s, 1) ¢ E,.

Since k(s, t)>e¢;, almost everywhere on E, we see that f,<k almost
everywhere. If we define &k, by

k=Y 27,
j=1

we see that k, € L™ (S)® L™(T) (because 3.7_, 2 /f,€ L*(S)® L*(T) and

j=1

lim Ik, =X, 27fll . =0). We also know k,>27’/,>0 on E,, so

n— oo j=1

k;>0on )2, E; and k, >0 almost everywhere on . Finally, we have

ky=1Y 27,<3 27%=k  almost everywhere,

i=1 i=1

so Hypothesis 3.8 is satisfied. |
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Remark 3.12. If Hypothesis 2.3 is satisfied and k is a nonnegative
function in L*(S)® L>™(T), then Hypothesis 3.10 is satisfied. For reasons
of length, we omit the proof.

CoROLLARY 3.13. Assume Hypothesis 3.6 and 3.10 and suppose that
(k, a, B) satisfies the compatibility condition (Definition 2.13). Then the DAD
problem (k, a, B) has a solution (f, g) (see (1.1)).

Proof. Lemma 3.11 implies that Hypothesis 3.8 is satisfied, so
Corollary 3.13 follows from Theorem 3.9. |

It may be that Hypothesis 3.8 is an artifact of our argument and that
Theorem 3.9 remains true without Hypothesis 3.8 and with Hypothesis 2.15
replacing Hypothesis 3.6.

Remark 3.14. Suppose that (k, «, f§) satisfies Hypothesis 3.6 and 3.8. In
addition suppose that there is a nonnegative function ke L*(S x T) such
that k(s, 1)> 0 if and only if k(s, 1)> 0. If the DAD problem (k, a, ) has
a solution, then the DAD problem (k, o, f) has a solution. The argument
is the same as in Corollary 2.31.

4. VERIFYING THE COMPATIBILITY CONDITION FOR (k, %, f§)

It remains for us to give concrete conditions under which the hypotheses
of Theorems 2.30, 2.33, or 3.9 are satisfied and the DAD problem (%, a, f§)
has a solution. This problem reduces to finding conditions which imply
that (k, a, ) satisfies the compatibility condition (Definition (2.13)). Even
in the matrix case this may be nontrivial. Corollary 2.31 provides some
information but we prefer a more constructive approach. We consider
several cases. If S=7, u=v, and « = f5, we give natural hypotheses which
imply the compatibility condition. Our results imply classical theorems
about scaling nonnegative matrices to doubly stochastic matrices (see [7]
and [34]), yield a theorem of Nowosad [24] and Karlin and Nirenberg
[18], and also give a generalization and different proof of the theorems in
[5] and [27]. We also show that for certain ke L*(Sx T), verifying
the compatibility condition for (k,a, f) is equivalent to verifying the
compatibility condition for an associated matrix DAD problem. In this way
we obtain direct generalizations to an infinite dimensional framework of
matrix DAD theorems.

We begin with some useful generalities.

PrROPOSITION 4.1. Assume Hypothesis 2.3 and suppose that (k, o, f3)
satisfies the compatibility condition and k is indecomposable (Defini-
tion 2.14). Assume that k€ L™ (S x T) is nonnegative and that, for almost all
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(s,0)e Sx T, k(s,1)=0 implies that k(s, t)=0. Then (k, o, B) satisfies the
compatibility condition and k is indecomposable.

Proof. Suppose that /< S and J< T are measurable sets of positive
measure and that k | I’ x J' =0 almost everywhere. Our assumptions imply
that k| I'xJ =0 almost everywhere. Since k is indecomposable, k is
positive on a set Ec IxJ of positive measure, so k is positive on E and k
is indecomposable. Because (%, a, ) satisfies the compatibility condition for
(1.1), it follows that

J, oo utds)> | B0y vian),

and (%, o, B) satisfies the compatibility condition. ]

Proposition 4.1 is false if k& is not indecomposable, even for 2x2
matrices, so it is important to determine when k is indecomposable.
Assuming Hypothesis 2.3, define nonnegative functions c¢,,: Sx.S—- R,
mz1, by

e\(s, cr)=L k(s, t) k(a, 1) B(t) v(dt) and (4.2)

enlrs)=[ eilr,0) en_ (0, 5) tlo) pldo),  m>1.  (43)
S
If A, and A, are defined by (2.17), one can check that

((A24,)" (w))(s) = L s, o) a(o) wla) uldo). (4.4)

PropoSITION 4.5.  Assume Hypotheses 2.3 and 2.15 and let ¢, be defined
by (4.3). Assume that there exists m = 1 such that c,,(r, s)>0 for almost all
(r,s)e Sx 8. Then k is indecomposable.

Proof. Assume, by way of contradiction, that there exist measurable
sets /< S and J < T of positive measure with k | IxJ=0and k | I' xJ' =0.
If (s,0)eIx I or (s,6)e ' xI we obtain from (4.2) that

euls, a)=fj k(s, 1) k(a, 1) B(t) v(di) + L k(s, 1) k(a, 1) B(1) v(dr) = 0.

Assume, by way of induction, that

;| I'xI=0and ¢;[IxI'=0 for 1<j<n
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Using (4.3) and integrating over / and [’ separately, we find that
c, | I'xI=0 and c¢,[IxI'=0. It follows that ¢,{I'x/=0 almost
everywhere for all n. This contradicts the assumption that ¢,,(s, 1)>0 ae.,
uniess u(f')=0. But if u({’) =0, we contradict Hypothesis 2.15. |

From Proposition 4.5 we see that it is important to have conditions
which insure that ¢,, >0 a.e. on §x S. It is easy to give such conditions; we
mention two results which are proved in Lemmas 5.10 and 5.12 of [5] or
can be proved by the reader.

PropPosITION 4.6 (See Lemma 5.10 in [5]). Assume Hypotheses 2.2 and
2.3 and let c,, be defined by (4.3). Assume the following condition:

There exists a positive integer m so that for any two points
r=s,€S8 and s=35,€ S8 there are nonempty open sets G,,
0<i<m, with reGy, se€G,,, and ¢ (u, v) = d(r, s)>0 for
almost all (u,v)eG;xG,.;, 0<i<m. (4.7)

Then there exists & such that c,, 2 6 almost everywhere on S x S.

ProprosiTION 4.8 (See Lemma 5.12 in [S5]). Assume Hypotheses 2.2 and
2.3 and suppose that S is connected. For every s€ S assume there exists an
open neighborhood U, of s, a set V< T of positive measure, and 3,> 0 with
k>0, almost everywhere on U ,x V,. Then there exists m=1 such that
condition (4.7) is satisfied, so c,, =6 ae. on §x 8.

The crucial step in the proof of Proposition 4.8 is actually the following
result.

PropPOSITION 4.8° (See Lemma 5.12 in [5]). Let S be a compact,
connected metric space and u a regular Borel measure of full support on S.
Assume that g, is a nonnegative function in L™ (S x S) and that for each se S
there exists an open neighborhood U, of s and d,> 0 so thar g (s, 1) 2, a.e.
on U x U, If g, is defined inductively by

8,05, )= £1(5,7) gu_ (1. 1) i),

then there exists m2= 1 and 6 >0 so that g,, = 6 almost everywhere on Sx S.

If, in Proposition 4.6, we weaken condition (4.7) by assuming only that
¢y(u,v)>0 ae. on G, x G, for 0<i<m, we conclude that ¢,, >0 a.e. on
S x 8. Similarly, if we weaken Proposition 4.8 by allowing 6, =0, we find
that there is an integer m with ¢,, >0 a.e. on §x S.
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If we exploit the idea of indecomposability and use Propositions 4.1 and
4.5, we can generalize our basic existence result, Theorem 3.9, concerning
solutions of the DAD problem (1.1).

THEOREM 4.9. Assume that (k, x, B) satisfies Hypotheses 2.3 and 3.6, that
(k, a, B) satisfies the compatibility condition (see Definition 2.13), and that k
satisfies Hypothesis 3.8 or 3.10. If c; is defined by (4.3) for j= 1, assume that
there exists m with c,,>0Q a.e. on §x 8. Suppose ke L*(SxT) is a non-
negative function, that k satisfies Hypothesis 3.6 and Hypothesis 3.8 or 3.10,
and that for almost all (s, 1)e Sx T, k(s, t) =0 implies that k(s, t)=0. Then
the DAD problem (k, a, B) has a solution (f, §).

Proof. Proposition4.5 implies that 4 is indecomposable, and
Proposition 4.1 implies that k is indecomposable and (4, «, ) satisfies the
compatibility condition. The conclusion now follows from Theorem 3.9. |

We now consider the case that S=7 and a=pf. For convenience we
isolate an assumption which will play an important role.

HyroTHESIS 4.10. Hypothesis 2.3 holds, (S, p)=(T,v), and z=f. If
I< S is any measurable set such that k | IxI"=0Q ae., thenk | I'xI=0 ae.,
where I' denotes the complement of I.

THEOREM 4.11.  Assume Hypothesis 4.10 and Hypothesis 3.8 or 3.10.
Assume that there exist 8 > 0 and measurable sets of positive measure G, < S,
Jor 1<i<m, with S=)7_, G, and k|G, xG; =20 ae. Then the DAD
problem (k, a, o) has a solution (f, g). There exist positive constants x, and
Ky with kK,a(s) < f(s) < k,o(s) and k, 2(t) < g(t) < k,2(t) almost everywhere.,

Proof. Our assumptions imply that all hypotheses of Theorem 3.9 are
satisfied except possibly the compatibility condition for (k, «, «). To verify
compatibility, assume that /< S and J= S=7T are measurable sets of
positive measure with k | /' xJ =0 a.e. We have

(I'xJ YN (G,xG,)=(I'nG)x(J' nG;):=U,

and k= 0d ae. on U;and k=0 a.e. on U, so u(U,)=0. It follows that for
1<i<m,

wl'nG,)=0 or wJ'nG,)=0. (4.12)

Our assumptions on G, give

1’mJ’=<U G,mI’)m(U GjnJ’)=U (G:nG,nI'nT)
i J if
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and (4.12) implies
wGENGnl'nd)=0 for all 4, j.
We conclude that pu(I' nJ')=0 and
J <IuN, and I'cJUN,,

where N, and N, have measure zero. If u(/—J') >0, it follows that

J, ats) utdsy> | Boy widny = ats) utds)

If u(I—J')=0, we obtain

Ja(s)y(ds fﬁ uldr) fa(s)u(ds).

However, in this case k| I'xI=0 a.e., so Hypothesis 4.10 implies that
k| IxJ=k|IxI'=0, ae. Thus the compatibility condition for (%, o, «) is
satisfied. |

It remains to give conditions which imply Hypothesis 4.10. If
Hypothesis 2.1 is satisfied, (S, pu)=(7,v) and kelL”(SxS) define
die L*(SxS), j=1, by

d(r, s)=j k(r, 1Y K(1, s) p(dr) (4.12)
d(r, s)=j dr, 0y d, (6, s)u(dr), n>1L (4.13)

COROLLARY 4.14. Assume Hypothesis 3.8 or 3.10, and assume
Hypothesis 2.3 holds, with (S, p)= (T, v) and a = f§. Assume that there exist
3>0 and measurable sets G, =8 for 1<i<n, with S={J7_, G, and
k|G, xG; =20 ae, for | <i<n. Assume there exists m=1 such that d,,> 0
ae. on Sx S, where d,, is given by (4.13). Then the DAD problem (k, a, o)
has a solution (f, g) and there exist k,>0, k;>0, with kK, 2(s)< f(s5) <
Koa(s) and x o(t) < g(t) < x,2(t) almost everywhere. If Hypothesis 2.2 is
satisfied and k is continuous, there exist positive continuous functions x and
v in C(S) with f=ua/x and g =a/y.

Proof. By Theorems 234, 3.9, and 4.11, it suffices to verify
Hypothesis 4.10. Thus it suffices to show that if /< S is measurable and
u(fy>0and p(f')>0, then & | Ix [’ is positive on a set of positive measure.
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If not, there exists /= § with u(/)>0, and &k | IxI'=0 a.e. For almost all
(r,s)e Ix I we see that

d,(r, 5) =f[ k(r, 1) k(1, s) p(dt) + L k(r, 1) k(t, s) u(dt)=0.

If we assume by induction that d; | I/ xI'=0 a.e. for 1 < j<n, we conclude
by the same argument used for 4, that d,]IxI'=0 ae. For n=m this
gives a contradiction. ||

COROLLARY 4.15. Assume Hypothesis 3.8 or 3.10 and suppose that
Hypotheses 2.2 and 2.3 hold, with (S, u)= (T, v) and o = f. Assume that S is
connected. Assume that there exist 6 >0 and nonempty open sets G, < S for
I<igsm with S=U7., G; and k(s, 1) =6 for almost all (s,1)e(G,%xG,),
1<i<m. Then the DAD problem (k, o, o) has a solution (f, g). If k is
continuous, there exist positive continuous functions x and y with [ =o/x and

g=a/y

Proof. By Corollary 4.14, it suffices to prove that d,,>0 a.e. on Sx §
for some m = 1. For almost all (r, s) e G, x G, we obtain from (4.12) that

d(r, s)>L k(r, 1y k(1, 5) uldt) = 8°u(G,).

It follows from Proposition 4.8’ that there exists >0 and m>=1 with
d(r,s)=2nae on SxS. |

Corollary 4.14 generalizes Theorem 5.16 in [5], where a more restrictive
condition than d,,>0 a.e. on $§x S is given. Corollary 4.15 is essentially
Corollary 5.17 in [5].

If we take S=T=[0,1], yu=v=Lebesque measure, x=f, and k is a
nonnegative continuous function with k(s, s) >0 for 0 <s< 1, we find, by
applying Corollary 4.15, that the corresponding DAD problem (%, «, o) has
a solution (f, g) with f=a/x and g = f/y and x and y positive continuous
functions. If one assumes in addition that « = =1, this result was proved
in Section4 of [27], but the argument in [27] does not extend to
general a.

Assume Hypothesis 2.3 and 2.15 and suppose that

j a(s) u(ds)zj B(1) v(dr). (4.16)

Let C, (respectively, C,) denote the cone of nonnegative functions in
L™(8) (respectively, L™ (T)) with interior ¢, and let F be defined by {2.20).
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Recall (Lemma 2.21) that the DAD problem (1.1) has a solution if and
only if F has a fixed point in C,. Define a linear functional y on L*(S) by

Y(x) = [ x(s) u(ds). (4.17)

Define G: €, - C, by
G(x) = F(x)/y(F(x)). (4.18)

The homogeneity of F implies that if F has a fixed point in C,, then F has
a fixed point x, with Y(xg) =1 and G(x,) = x,.

Once one proves existence of fixed points of F in €, as in Theorem 3.9
and Lemma 2.21, there are powerful theorems (see [26]) for proving
the uniqueness of fixed points (to within scalar multiples) and for
approximating fixed points. The following result is Theorem 5.3 in [5].
Theorem 5.3 in [5] is stated slightly less generally but the same argument
applies. It is obtained by using Theorems 2.7 and 3.2 in [26] (see pp. 78
and 93), linear theory outlined in Theorem 2.4 and Remark 2.4 on p. 44 in
[26], and an argument on pp. 50-52 in [26].

THEOREM 4.19 (Theorem 5.3 in [5]). Assume Hypotheses 2.3 and 2.15
and suppose (s a(s) u(ds)= [ ; B(t) v(dr). If F is defined by (2.20) and C, §
ard G are as above, assume that the DAD problem (k, a, B) has a solution,
50 there exists xo€ C, with

Xo = Fl(x,) = G(x,), Y(xo)= 1.

If ¢, is defined by (4.3) assume that there exists 6>0 and m>=1 with
en(r,$)=0 ae. on SxS. Then every fixed point of F in C, is a positive
scalar multiple of xq. If the DAD problem (k, a, ) has solutions ( f,, g,) and
(f1, g1), there is a positive constant u>0 with fi=uf, and g,=p"'g,. If
xe C,, there exists A(x)>0 with

lim [[F/(x)— A(x) xp|l .. =0.

Jo
Also, one has that for each x e ¢ 1>

lim [|G/(x)—-x,l . =0,

J—=
and the convergence is geometric. If Y = {xe L*(S) : y(x) =0}, I— G'(xy)| ¥
is one—one and onto Y, where G'(x,) denotes the Fréchet derivative of G at
xo and I is the identity map.
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Remark 4.20. Let notation and assumptions be as in Theorem 4.19,
select any functions &, €, and n, € ¢, and define ky(s, t) by

kols, 1) = (Z ((Ss))> ks 1) <f ((tz))>
[0 0

Multiply kq(s, 1) by yo(7) such that | yo(¢) ko(s, 1) u(ds) = f(¢) a.e., and then
multiply 70(¢) ko(s, £) by d¢(s) such that | do(s) yo(r) kols, 1) v(dt) = afs) a.e.
Thus we alternately rescale k, so that first its “columns” integrate to f§ and
then its “rows” integrate to o. If we define k| by k,(s, 1) = 74(7) d¢(s) ko(s, 1)
we find

ko (s, 1) =28 x(s) k(s 1) p(2)

&,\(s) my

where nlel(Jléo) and &, =F(&,). If we find k,(s, t) by this proce-
dure, and ks, 1) = (a(s)/E,.(5)) k(s, )(B(t)/n,.(r)) select v, (t) such that
[y mt) ks, £) u(ds)=B(t) ae. and §,(s) so that [ &,(s) (1) k,(s, 1) v(dt)
= a(s) It is easy to see that

ki1 (85 1) = 0,,(8) 7,u(t) k(1) = (é a(s) )) k(S,t)( ﬂ([) >,

m+](s '1m+1(f)

Where 'lm+ 1= A l(‘ll ém) and ém +1= F(ém) It fOHOWS that ’7m+1 = Al(‘]l 6m)
and ¢, ,,=F"*'(&), so Theorem 4.19 implies that there exist x e él and
yE ¢, with

lim (¢, —xll,.5=0 and lim i, =yl =7 =0

m— oo n — o

Thus we see that the procedure of alternating making “rows” and
“columns” of the kernel integrate to « and f respectively gives a convergent
scheme: (xf) 'k, converges in L*(SxT) to an integral kernel
ce L*(8 xT), where

(s, 1) = (T::}) k(s, 1) (;(%) for some xe ¢, and ye C,,

and [ a(s) c(s, t) Br) v(dr) = a(s) ae. and [ a(s) c(s, 1) B(1) u(ds) = P(r) ae.
This observation generalizes earlier results of Smkhorn (34] and Sinkhorn
and Knopp [35].

With the aid of Theorem 4.19 one can prove that for & symmetric and
o = f there is a solution of the DAD problem with f=g.
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COROLLARY 4.21. Assume Hypothesis 2.3 and Hypothesis 3.8 or 3.10.
Suppose that (S, )= (T, v), =, and k(s, t) = k(t, 5) almost everywhere on
S x S. Assume that there exist >0 and G, as in Theorem 4.11. Assume that
if ¢; is defined as in (4.3), there exists §,>0 and m>1 so that c,(s, t) = 0,
almost everywhere. Then the DAD problem (k, a, %) has a unique solution
(f, ). If k is continuous, there exists a positive continuous function x € C(S)
with f=oa/x.

Proof. Because k is symmetric, Hypothesis 4.10 is automatically
satisfied and Theorem 4.11 implies that the DAD problem (k, o, ) has a
solution (f|, g,). The symmetry of k implies that (g,, f;) is also a solution
of the DAD problem (4, «). Because c¢,, =38, almost everywhere,
Theorem 4.19 implies that f, and g, are unique to within scalar multiples
and there exists u>0 with g, =uf,. If we define f=\/;_zf,, we have the
desired result. The existence of x when & is continuous is Theorem 2.34. |

COROLLARY 4.22. Assume Hypotheses2.2 and 2.3 and suppose that
(S, uy=1(7,v), a=P, k is continuous, k(s, t)y=k(t,s) for all (s,t)e Sx S,
and k(s,s)>0 for all se€S. Assume that S is connected. Then the DAD
problem (k, a, a) has a unique solution (f, f) and there exists a positive
continuous function x e C(S) with f=a/x.

Proof. Because k is symmetric, the same argument given in the proof of
Corollary 4.15 (using Proposition 4.8’) shows that there exists ¢, >0 and
mz1 so c¢,{s, 1)=38, almost everywhere. Corollary 4.15 implies that the
DAD problem (k, a, «) has a solution (f;, g,), and uniqueness and the fact
that one can take f; = g, follows as in Corollary 4.21. |}

In the special case S=7=1[0, 1], u=Lebesgue measure, and a = f =1,
Corollary 4.22 implies a theorem of Nowosad [24]. A more elegant proof
of a generalization of Nowosad’s theorem was given by Karkin and
Nirenberg [18].

Remark 4.23. Theorem 2.33 and the results of this section give all the
classical DAD theorems for matrices. We briefly describe the connection. If
S and T are finite sets with m and » elements, respectively, and
Hypotheses 2.2 and 2.3 hold, & can be considered an mx n matrix and
(k, o, f) has a solution (f, g) if and only if there are positive diagonal
matrices D, = diag(f;, />, .., f,,) and D,=diag(g,, g5, .., £,) and the ith
row of D kD, sums to a; and the jth column of D kD, sums to f,. For
¢; as in (4.3), the condition that ¢ (r, s)>0 for all (r, s)e Sx S and some
p = 1 is just the assumption that (kk*)*” has all positive entries. If S = T and
d, is given by (4.13), d,(r, s)>0 for all (r,s)e Sx § and some p> 1 if and
only if k% has all positive entries.
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Classical DAD theorems consider the special case that S=T=
{ieN:1<ig<n} and a=f=1, so k is an n»xn nonnegative matrix.
A nonnegative square matrix k is called “irreducible” if ¢* has all positive
entries. It is known (and easily proved) that if ¥ has a positive main
diagonal (so k,>0 for 1 <i<n) and is irreducible, then there exists m > 1
such that & and (kk*)" have all positive entries. It follows from
Corollary 4.14 and Theorem 4.20 that if £ is a nonnegative, irreducible
square matrix with positive main diagonal, the DAD problem (k, «, ) has
a solution ( f; g) which is unique in the sense of Theorem 4.20. In particular
there are square positive diagonal matrices D, and D, which are unique to
within scalar multiples and are such that all rows and columns of D, kD,
sum to one.

A nonnegative square matrix & is called “fully indecomposable” if there
exist permutation matrices P and Q such that PkQ is irreducible and has
a positive main diagonal; see Lemma 2.3 in [7]. In general, if &k is a non-
negative square matrix and the DAD problem (k, 1, 1) has a solution, then
for any permutation matrices P and @, the DAD problem (PkQ, 1, 1) has
a solution. For if (k, 1, 1) has a solution, there are positive diagonal
matrices D, and D, such that all rows and columns of D,&kD, sum to one;
and PD,P~':= D, and Q" 'D,Q := D, are positive diagonal matrices and
all rows and columns of D,(PkQ) D,= P(D,kD,)Q sum to one. By using
these remarks we see that if k£ is a nonnegative square matrix and k is a
direct sum of fully indecomposable matrices, there exist positive diagonal
matrices D, and D, such that all rows and columns of D kD, sum to one.
This is the classical DAD theorem.

The previous results of this section mostly treat the case = . We now
describe some results which, when combined with Propositions 4.1 and 4.5,
allow one to establish the compatibility condition for (%, «, ) by reducing
to an equivalent matrix case.

HyprOTHESIS 4.24. Hypothesis 2.3 is satisfied. There exist measurable
sets of positive measure S, S, 1<i<m, and T,cT, 1<j<n, with
S=UL, 8. T=Ui_ T, u(S;n8))=0 for all i1 and (T, T)}=0 for

all js1. For each (i, j) with 1 <i<m and 1< j<n, either k(s, t)>0 for
almost all (s, 1)e S, x T, or k{(s, t)=0 for almost all (5, 1)e S;x T,.

3 Assuming Hypothesis 424 holds, define $= {ieN|1 sism}A and
= {je N1 <j<n}, and let 4 and ¥ be the counting measures on $ and
T. Define ke L*(Sx T) by

0, if k(s,t)=0ae. on S;xT;

1, if k(s,1)>0ae on S, xT,. (4.25)

kG, j)= {



ENTROPY MINIMIZATION AND SCALING KERNELS 91

Obviously & can be identified with an m xn nonnegative matrix k whose
i—j entry is k(i, j). Define de L'(S) and e LY(T) by

o‘c(f)=js_a(s)u(ds) and  f(j)= jrﬁ(t)v(dz), (4.26)

so that & and § can be identified with vectors. It makes sense to ask if
(k, &, B) satisfies the compatibility condition (Definition 2.13). The matrix
DAD problem (k, 4, ) satisfies the compatibility condition if and only if

Y ai=3Y B (4.27)
i=1 j=1

and A for _every nonempty set JcS and nonempty Jc T with
k1) x(J)=0,

Yan= Y By (4.28)

ief Jje(dy

with strict inequality holding in (4.28) if k(i, /) > 0 for some (i, jye [x J.

PROPOSITION 4.29. Assume Hypothesis 4.24 for (k, o, f) and let k, &, and
f be defined by (4.25) and (4.26). Then (k, «, B) satisfies the compatibility
condition if and only if the matrix DAD problem %, 4§ satisfies the
compatibility condition, and k is indecomposable if and only if k is
indecomposable. If ke L*(SxT) is nonnegative and k(s, t)=0 implies
k(s, t)=0 for almost all (s, 1), then if k is indecomposable and (%, 4, £
satisfies the compatibility condition, (k,a, B) satisfies the compatibility
condition and % is indecomposable.

Proof. If (k,a, B) satisfies the compatibility condition (or is indecom-
posabie) it is easy to see that (&, 4, f) satisfies the compatibility condition
(or is_indecomposable). To prove the other implication, assume that
(k, d, ) satisfies the compatibility condition. Let /=S and J=T bg
measgrable sets of positive measure such that £ | /' xJ' =0 a.e. Define /,
and J, by

L={ie§|uS;nI')>0} and
Jy={jeT\WT,nJ)>0}

By using Hypothesis 4.24 we see that

I'sl’c( |J (S;xT))UN,  (uxv)(N)=0.

ieh, jeh

580;1(5/1-7
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Also, if ief, and jeJ,, k(s, 1)=0 ae. on (S,nI') x (T;xJ'), which is a set
of positive measure, so Hypothe31s424 implies k| S;x7T,=0 ae. and
k(i, j)=0. Define [, = (£,), J,=(J,),

=S, ad J={ T,
iel jei
so Il and JoJ,. Because k|(f)'x(J,)’=0, the compatibility
condition for (k, &, f) gives

L d)=[ s ud)> 3 U= Boan, (430

ieh jeldy

and strict inequality holds in (4.30) if & is posmve on a set of positive
measure in I, x J, (so k(i, j)> 0 for some (i, j)e I, x J,). It follows that if
uw(I—1)>0 or v(J—J,})>0 or k is positive on a set of positive measure in
1, xJ,;, then

f als) ulds) > j B(£) v(dr).

7 J’

If none of these possibilities occurs, k| I xJ=0 a.e. and (4.30) gives
[ atoyutdsr= | pyvian.
7 J’

This shows that (k, «, B) satisfies the compatibility condition.

If k& is indecomposable, k(i,j)>0 for some (i j)el,xJ,, and
Hypothesis 4.24 implies that & is positive almost everywhere on S, x T,
Ix J and k is decomposable.

The final statement of Proposition 4.29 follows immediately from
Proposition 4.1. |

5. APPROXIMATION OF SOLUTIONS AND DEPENDENCE OF
SoLuTiONS ON (&, a, )

Theorems 2.30, 2.33, and 3.9 (and the results of Section 4 concerning the
compatibility condition for DAD problems) provide an essentially complete
answer for the question of existence of solutions of the DAD problem
(k, a, ). Thus we now assume that a DAD problem (kg, 2, fo) has a
solution (fy, g0), and we show how Theorem 420 and ideas from
Sections 2 and 3 of [26] can be used to obtain existence and continuous
dependence of solutions for nearly DAD problems (k, «, ). Our techniques
also give rapidly convergent iteration schemes for finding solutions of DAD
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problems and provide information about matrix DAD problems for large
matrices.

We begin by recalling some notation. Let £ and F denote Banach spaces
as in Eqgs.(2.5) and (2.6). Assume Hypothesis 2.1 and denote by C,
(respectively, C,) the interior of the cone C, (respectively, C,) of non-
negative functions in L*(S) (respectively, L*(T)). Define J,: C,—C,,
i=12, by

(Jix)(r)y=(x(r))~". (5.1)

Define A,: L*(S)x E— L™(T)and A,: L*(T)x F— L*(S) by
(Al(u,hl))(t)=f (s, 1) u(s) plds) (5.2)
and

(Ax(v, ha))(s) = [ s, 1) o(0) v(de) (53)

We leave to the reader the verification that 4, and A, are continuously
differentiable maps. Define sets U< E and V < F by

U= {h € E| h(s, 1) =20 a.e. and there exists 6 =3, >0 so that

j h(s, 1) u(ds) = 6 for almost all z}. (5.4)
and

V= {heFl h(s, t) =0 a.e. and there exists 6 =4, >0 with

f h(s, t) v(dt) = 6 for almost all s}. (5.5)

Recall (see Lemma 2.18) that if (k, a, f) satisfies Hypotheses 2.3 and 2.15
then kaeU and kfeV. If ueC, and h,eU, one can see that
A,(u, h,)eC,; and if ve, and h,e V, one has A.(v, h,)e C,. Further-
more, if uge ¢, and hye U, there exists §>0 such that 4,(u, h)e C, for
all ue L™(S) and he E with jlu—uyl| <@ and ||h—hgllg <8 A similar
statement holds for 4,(v, #}). We leave the elementary verifications of these
facts to the reader.
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Define maps @,: C, x E— L*(T) and @,: C,x F— L*(S) by
D(u, h)=A,(J,u, hy) and Dy(v, hy) = Ay(J10, hy). (5.6)

If (1, h)e C,x U, then @,(u, h)e C,. Also, given (uy, hy)e C, x U, there
exists >0 so that &,(u, h)eC, for all ue &, with |Ju—u,ll <6 and all
he E with |h— hyl| g < 0. Similar statements hold for &,.

If (u, hy, h,)e C,x Ux V, define @: C, x Ux V- C, by

D(u; hyy hy) = PP ((u, hy), hy). (5.7)

For any (up, fy, 86)€C, x Ux V, there exists 8 =0(u,, fo, go)>0 such
that @, (u, f)eC, and D(u; f, g)e C, if lu—upl <8, |f—foll <O and
lg—goll <8. Thus @ can be defined on an open neighborhood of
¢, x Ux V and still map into C,. Also, by using the fact that 4,, 4,, J,,
and J, are C! maps and that the composition of C! maps is C', one can
prove that @ is defined and C' on an open neighborhood of &, x Ux V. In
fact, @ is C* on an open neighborhood of €, x Ux V. If i is the linear
functional defined by equation (4.18) (i.e., integration over S), we define
G:C,xUxV—-C, by

G(u, by, hy)=D(us hy, b)) Y(B(u; by, 1)), (5.8)

The map G extends to an open neighborhood of €, xUx ¥V and is
continuously differentiable there.
With these preliminaries we can state our main result.

THEOREM 5.9. Assume that (ky, 2o, Bo) satisfies Hypotheses 2.3 and 2.15
and that the DAD problem (ky, oy, Bo) has a solution (fy, go), so (for G as
in (5.8)) there exists xq€ C, with G(xy; kqotg, koBo) = xo. If ¢, is defined by
Egs. (4.2) and (4.3) (with (ky, 2y, Bo) replacing (k, a, ) in (4.2) and (4.3)),
assume that there exist m= 1 and 6 >0 with c,(s, r) = 0 almost everywhere.
Then there exist 8 >0 and a C' function x,

x: {(hy, h)) e EXF| |hy —koaoll <8 and (hy—kofoll <6} — él’
with
G(x(hy, h2)s by, hy) = x(hy, hy) and x(kotg, kofo) = Xo.

In particular, if ke L*(SxT), aeL'(S), el (T), llka—koool <8,
kB —koBoll <0, and | au(ds)=] Bv(dr), then for x = x(ka, kB)e C,,
y=®,(J,x,ka)eC,, f=a/xeL'(S), and g=p/yeL'(T) we have a
solution of the DAD problem (k, a, B):

jf(s) k(s, t) g(t) v(dt)=a(s) ae. and J.f(s) kis, 1) g(t) w(ds)=p(t) a.e.
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Proof. By our previous remarks, there exists 6,>0 such that
if  W={(x,hy,h)eC,x ExF||x—=xol <8, [k —kotollz<8,, and
lhy —koBoll - < 8y}, then G is defined and C' on W. If ¢ is given by (4.18)
define

Yo={ze L*(S)| ¢(z)=0}
and
Wo=1{(z,hy, h))e Yo Xx EXF|
Izl < 8o, Ik —koooll £ < 8o and | h; —koBoll r < bo}.
Define H: W, — Y, by
H(; by, hy)=xo+v—G(xo+1; Ay, hy),

so H is a C' map. Theorem 4.20 implies that the Fréchet derivative of the
map v — H(v; kyag, koBo) at v=0 is one-one and onto Y. It follows from
the implicit function theorem that there exist >0 and a C' function v,

vl {(hl, hy))e Ex F| |h —koxoll <8, ”hz_koﬁo”F<0} - Yy,

with v(kqag, koBo) =0 and H(v(h,, h,); h,, h,)=0. If we define x(h,, h,) =
xq+ v(hy, h,), we have the desired function.

The final part of Theorem 5.9 follows by the same argument used in
Lemma 2.21, and the proof is left to the reader. |

Remark 5.10. Note that it may happen in Theorem 5.9 that k, a, or §
is negative on a set of positive measure.

Remark S5.11. Let kg, oy, By, and x, be as in Theorem 5.9, assume
¢, 20 ae, and define k,(s, t)=ky(s, 1)+ ¢ for ¢>0. The same argument
used in Lemma 224 shows that for each &>0 the equation
x = G(x; k o, k,Bo) has a unique solution x,e C,. Theorem 5.9 implies
that the map &— x, is continuous for ¢>0. It follows that there exist
positive constants «, and «, such that for 0<e<1

Ky < x,(8) <xey almost everywhere. (5.12)

The reader will recail (see the remarks at the beginning of Section 3) that
the estimate (5.12) would provide a direct proof of Theorem 3.9. If the
hypotheses of Theorem 3.9 are satisfied and c,,(r, s)> >0 a.e. (for ¢; as in
(4.3) and some m > 1), Theorems 3.9 and 5.9 imply that (5.12) is satisfied.
It would be interesting to find a direct proof of (5.12) with explicit
estimates for «, and «,, but, when k is not bounded below by a positive
constant, the only such results of which we are aware require
k(s,t)=k(t,s)ae. and a=pf:see [5] and [18].
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Remark 5.13. Theorem 5.9 suggests a numerical procedure for solving
the DAD problem (k,a, f) —assuming the problem has a solution.
Suppose that Hypotheses 2.3 and 2.15 hold for (k, «, #) and that there exist
mz1 and 6 >0 with ¢,,(r,s) = ae. For hy =ka and h,=%kf and G as in
(5.8), define I': ¢, — C, by

Huy=G(u; hy, hy).

Take ue C,. If £, is the unique fixed point of I, we know that I(u)
converges at a geometric rate of convergence to £: see Section 2 of [26].
For j large, define «, = I'/(u). The choice of j would depend on some kind
of stopping condition, perhaps | //(u)—I/*!'(u)| <&, where ¢ is given.
Define a map 4: Y, — Y, by

Aw)=u,+v—TI(u,+v).

We know that A'(¢ —u,) is one—one and onto Y, so if u, is close enough
to £, Newton’s fixed point iteration method will give a sequence of points
v,, v;=0,

UVprt =Up— A’(Up)(/l(l)p))

which will converge at a quadratic rate to v, u, + v, =¢.

Remark 5.14. Theorem 5.9 can also be used to discuss the limiting
behaviour of a sequence of matrix DAD problems. Indeed, this is a possible
motivation for studying general DAD problems (£, a, f§), even if one is only
interested in matrix DAD problems. Thus let 47 be an m, x n, nonnegative
matrix with entries @] > 0. The letter “p” denotes a superscript here. Let «”
denote an m, x 1 column vector with positive entries o7 and f” a 1 x n, row
vector with positive entries 7. Assume that

np

mip
Y oaf= ) B
i=1

J=1

We are interested in the limiting behaviour of the matrix DAD problems
{47, a%, 7): Do solutions exist for all large p and do these solutions
converge in an appropriate sense?

Let S=T=1{0,1] and u=v = Lebesque measure on [0, 1]. For p>1,
define intervals 17, 1<i<m,, and J?, 1 <j<n,, by
I’=[{i-1)m,, iim,) and JE=1(—-VD/n,, jn,). (515)

¢ J

We abuse notation slightly and define «”e L'(S) and 7€ L'(T) by

o’(s)=al/n, for self, L<i<m,, (5.16)
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and
Br(t)=B?/m, for teJ? 1<j<n,. (5.17)
Define k" e L~(Sx T) by
k?(s, 1) = af, for (s,0)elf{xJ?. (5.18)

One can easily check that

mp np
[ 5 uld) = (mpm) = 3 af=(mym,) " Y B = Bres) v

i=1 j=1
If the DAD problem (A”, o”, 7} has a solution, there are positive reals, /7,
I<i<m,, and gj’.’, 1<j<n,, with

n, mp

Y frajgr=af 1<i<m, and Y flatgl=fL 1<j<n, (519)

ji=1 i=1

If f7(s)=/7 on I? and g”(1)= g7 on J?, one can check that (f”, g7} is a
solution of the DAD problem (k”, «*, 7). Conversely, if the DAD problem
(k”, aP, B?) has a solution (f7, g”), one can see that f” is constant on each
interval 17, 1 <i<m,, and g” is constant on each interval Jr It follows
that if /7= f”(s) on {7 and g7 = g”(s) on J#, we obtain a solution of (5.19)
and the DAD problem (47, «f, §7). Thus the DAD problems (k% a”, f7)
and (A%, «®, B7) are equivalent.

Now suppose that there exist x e L'(S), « positive ae., fe L(T), >0
a.e., and ke L™(S x T), such that

lim |kPo? —kal =0 and lim [kPB7 — kBl =0,

p—x p

where ||z and |-|| - are given by (2.5) and (2.6). If (k, a, ) satisfies the
hypotheses of Theorem 5.9, the DAD problem (k, o, #) has a solution
(a/x, B/y), where x, y e C,. Furthermore, the DAD problem (k”, o”, B”) has
a solution (a”/x*, p?/y?) for all p sufficiently large and

Jlim x? — x| = 0= lim 7yl .

Note that (k, «, §) will satisfy the conditions of Theorem 5.9 if, for example,
ke C([0,1]x[0,1]), k=0, k(s,5)>0for 0<s<1, a=Be L' ([0,1]) and
a>0 ae.
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Conversely, suppose that ke C([0,1]x[0,1]) is nonnegative and
k(s,5)>0 for 0<p<1. Assume that a=8eL'([0,1]) and «>0 ae.
Define m,=n,=p, E[=17xJ? for 1 <i, j<p, and

af_;,:pzj k(s, t)dsdt and ax’,?=pj a(s)ds=B?.
£ 7

i

If k# =af; on E and «” =of on I{, one can prove (we omit the proof) that

lim ||kPa? —ka)z=0 and lim |[k?a” — kol =0.

p— % p—

It follows from Theorem 5.9 that the solution of the DAD problem
(k?, af, a”) approaches the solution of (k, o, a) as p — oc.
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