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Boundary layer phenomena for differential-delay
equations with state dependent time lags: II

By John Mallet-Paret*) at Providence and Roger D. Nussbaum?) at New Brunswick

We study the limiting shape of solutions of the singularly perturbed differential-delay
equation

(1 ex(t) = f(x (1), x(t=n), r=r(x()

as ¢ = 0. More precisely, we take a sequence x"(t) of solutions of (1) for £ = g" — 0, and
consider the set 2 < R? defined as the limit, in the Hausdorff sense, of the corresponding
sequence of graphs I'" < R?. Using the geometry of 2, we make precise the sense in which
points (t*, £¥) e Q satisfy the difference equation

2) 0=/f(E, &Y, =1 —rH,
thereby providing a means for determining Q.

In the particular case that x"(¢) is a sequence of slowly oscillating periodic solutions
and f'and r satisfy appropriate hypotheses, we use this theory with subtle scaling arguments
to show that Q #+ R x {0}, or equivalently, for the sup norm,

3) liminf || x*}]|>0.

n-* o
Despite its pedestrian appearance, (3) is the crucial first step in determining Q2 exactly.

We also prove generally that it the delay function r (x) is not constant on any x-interval,
and if f(x,y) is piecewise monotone in its first argument, the set Q is almost a graph.
More precisely, for all but a countable set of 1 € R the vertical slices @, = {(r, ) e Q| v = 1}
are single points. This is in marked contrast to the case of a constant delay, where it is
possible for ©, to be a nontrivial interval for all real «.

1) Supported in part by NSF-DMS-93-10328, ARO-DAAH04-93-G-0198, AFOSR-F49620-88-C-0129,
and ONR-N00014-92-J-1481.
) Supported in part by NSF-DMS-91-05930.
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1. Introduction

This paper continues our study, initiated in [MP-Nu4], of singularly perturbed delay
differential equations with state-dependent delays. Equations with history-dependent
terms arise in many models in a variety of areas of science; see for example [Bé-Mack 1],
[Lo], [Lo-Mil], [Lo-Mi2], [Lo-Mi3], [Ma], [Mack-Gl], [Mack-adH], [Mack-Mi1],
[WC-La], and also the references in [MP-Nu1] and [MP-Nu4]. After a long period
following the pioneering work of Driver [Dr1], [Dr2], [Dr3], [Dr4], [Dr-No], and later
work of Nussbaum [Nu] and Alt [Al1], [Al2], there has recently been a resurgence of
interest in models in which the delay itself depends on the state (solution) x(¢) of the
system. While a great deal is known about the constant time-lag case, very few theoretical
results are known about the case of such a state-dependent delay.

Our basic objective is to obtain detailed information about solutions of equations
such as

1.1) ex(t) =f(x@),x(t—r), r=r(x@®))
for small ¢ > 0 through an analysis of the implicitly defined difference equation
(1.2) 0=f(x"x""Y, t"=t""14r(x"),

obtained as a formal limit of (1.1). While the difference equation (1.2) itself can itself
possess a rich and complex structure, it is essentially a low-dimensional object amenable
to a concrete analysis, which one hopes can shed light on the infinite-dimensional dynamical
system generated by (1.1). Indeed, the introduction of the singular parameter ¢ provides
a concrete mechanism with which one can analyze and understand the dynamics of such
a differential-delay equation, just as an analysis of the Hopf bifurcation (see, for example
[Fr-St], [St1], [St2]) does so in another region of parameter space. While the ultimate
goal of a complete understanding of the attractor and its bifurcations will probably never
be realized (and indeed, such a goal is still quite remote even for the much-studied Wright’s
equation

()= —ax(t—1)({1+ x(1);

see [Wr], [Hal-VL]), studies for various ranges of parameters provide at least a partial
view of the complete picture.

The singular perturbation approach has been pursued by a number of authors (see

[Iv1], [Iv2], [1Iv-Sh], [La-Mi], [MP-Nul], [MP-Nu2], [MP-Nu3], [P’e-Sh]) in the case
of equations with a constant delay, where the equation

(1.3) ex(t) = —x(t) + f(x(t— 1))
has been studied in relation to the difference equation
(1.9 x"=f(x""1).

The results of these studies clearly show that great care must be taken. For example, robust
dynamical structures in (1.4) such as stable periodic orbits need not give rise to analogous
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structures in (1.3) even for small ¢; see [MP-Nu2], [MP-Nu3]. On the other hand, many
periodic solutions of (1.3) do exist and correspond in a natural way to periodic points of
(1.4).

Slowly oscillating periodic solutions (SOPS’s), namely solutions satisfying

x(0) = x(¢") = x(¢*) =0,
x(t)>0 for0<t<gq!,
x(H)<0 forgql<t<gq?,

x(t+¢q*) =x(t) forallreR
for quantities ¢*, g2 satisfying
g'>r(0)>0 and ¢*—g!>r(0)

are the most important class of solutions of (1.1). Indeed, for reasons which remain in-
completely understood (although results in this direction are found in [MP]), even in the
constant time-lag case the SOPS’s frequently exhibit strong global stability properties, at
least numerically. If f satisfies a negative feedback condition x/(x) <0 for x % 0, and an
instability condition f7(0) < —1 at the origin, along with technical conditions of smoothness
and boundedness, then the existence of SOPS’s of equation (1.3) for small ¢ was proved
in [Had-To], [MP-Nu1]. Analogous existence results for equation (1.1), with

[y =—x+7(»,

were proved in [MP-Nu4]. In [MP-Nu1] there was given a precise description, in terms
of transition (boundary) layers, of the asymptotic shape of SOPS’s of the constant delay
problem (1.3) as ¢ —» 0.

The present paper achieves three main objectives. The first is to develop a general
theory of so-called “limiting profiles” and transition layers for solutions of singularly
perturbed delay differential equations. Beginning with any bounded sequence of (not
necessarily periodic) solutions x"(¢) of (1.1), for ¢ =¢" — 0, we take the limit I'" — € of
the graphs I'" < R? of x"(-) in the appropriate Hausdorff sense. The set Q, termed the
limiting profile, can contain vertical line segments and so need not be the graph of a
function. Subsets 2* = Q corresponding to transition layers are identified, and the relation
to the difference equation (1.2) is made precise. This theory, which is developed in Section
2, is presented in enough generality to include systems (so x € R¥) with multiple delays of
the form

ex() =f(t,x(t), x(t—ry), ..., x(t — 1)),

(1.5)
Ie = r(tx®), 15k=M.

Such a degree of generalization is in fact needed in our later application of the theory to
SOPS’s of (1.1).
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The second main objective of this paper is to prove, in a precise sense, that solutions
of the state-dependent equation (1.1) with non-constant delay r generally are simpler than
solutions of the same equation

(1.6) ex(t) = f(x(1), x(t = 1))

with a constant delay. By “simpler” we mean that the limiting profile Q2 of a state-depen-
dent delay problem is almost a graph, in a sense described in Corollary 3.2. This notion
is indeed paradoxical, as state-dependent problems are generally regarded as more techni-
cally complex than those with constant delay. A philosophical interpretation of our result
is that the state-dependent problem (1.1) is more generic, or robust, than the problem (1.6)
with constant delay. We believe this result, and the theory of Section 2, will in the long
run provide a powerful tool for the analysis of solutions of the system (1.5) under quite
general conditions.

Our third objective provides initial steps in the direction of such an analysis. We use
the theory of Section 2 to describe, at least partially, the asymptotic shape of SOPS’s of
(1.1) as ¢ — 0. Specifically, we show for any sequence x"(-) of SOPS’s that

1.7) lim inf || x"|| > 0

n-— o

where || x"|] denotes the sup norm of x"(-), with e = ¢" — 0, and fin (1.1) satisfies conditions
guaranteeing existence of such solutions as described above. The proof of the result (1.7)
is by no means trivial; it employs delicate scaling arguments in which our theory of limiting
profiles is used extensively. These are given in Section 5 and 6, following some modest
generalization of existence and monotonicity results of [MP-Nu4] given in Section 4.

A complete description of the asymptotics of SOPS’s of (1.1) is beyond the scope of
this paper, but will be addressed in a subsequent paper [MP-Nu5]. Our results here, in
particular (1.7), are the necessary first step to such a rigorous description. Nevertheless it
is amusing to note that the equation (1.1) can easily be explored numerically. With a simple
home computer and a program of no more than 20 lines of BASIC, the interested reader
will observe a wide variety of limiting profiles. Moreover, much of the shape and structure
of the limiting profile can often be discerned at moderate values of ¢, that is, & need not
be taken too small before a pattern emerges. The simplest nontrivial example of a limiting
profile is perhaps furnished by the choice

fO,p)=—x—ky, r(x)=1+cx

of nonlinearity and delay, with constants k> 1 and ¢ > 0. In this case one observes a
“sawtooth” limiting profile comprised first of the two line segments

k

1
(t,x)|t=0and — —Sx< -
4 c
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{(I, x)

which is then extended in the (¢, x) plane to be periodic of period k + 1 in ¢.

and

t—1
x=——c—for0§t§k+1},

In a subsequent paper [MP-Nu5] a broad class of equations, including the above
sawtooth example, will be analyzed, and their limiting profiles rigorously determined. The
inequality (1.7), to be established in the present paper, will provide a crucial element in
determining such limiting profiles. We in fact expect that the proof of (1.7) given herein
contains the bulk of the technical arguments needed for the complete analysis of (1.1) in
[MP-Nu5].

2. The limiting profile 2

In this section we develop a geometric theory for describing the asymptotic shape of
solutions of singularly perturbed delay differential equations. Typically, this description
involves a finite dimensional map associated with the differential equation. In the simplest
case of a scalar equation with a single constant delay, this map is one-dimensional. In the
case of current interest, a scalar equation with a state-dependent delay, the map is two-
dimensional.

We are interested in sequences
2.1) e"x"(t) = f"(x"(), x"(t = "), " =r"(x"(t)),
of delay differential equations, where

f":R*> R and r":R— R are continuous,
2.2)
e">0 and ¢"—0.

Here x"() is a sequence of solutions satisfying (2.1) for ¢ e R with the boundedness con-
dition

(2.3) [x"()]| £ C=C({) foralln and tel,
for each compact interval I £ R, for some constant C(/). In addition,

(2.4) lim f"(x,y) =f(x,y) and lim r(x) = r(x)

exist uniformly on compact subsets of R? and R respectively, where f: R? - Rand r: R —» R
are continuous.

In studying systems of the above form, the sequence of solutions x"(-) is assumed
given, having been obtained beforehand. In specific cases of interest, of course, the non-
linearities /" and r" will satisfy additional properties (such as smoothness, feedback condi-
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tions for /", and nonnegativity of r"), as will the solutions x"(-). However, these properties
are not needed for the general theory of this section, so are not assumed.

In fact, to develop some of the theory of this section, in particular to define the
limiting profile Q of a sequence x"(-) and to establish some of its elementary properties,
it is not necessary at all to assume that x"(-) is the solution to a differential equation. All
that is needed for much of this theory is that each x": R —» R is a continuous function
and that the boundedness property (2.3) holds. We take this as a basic assumption
throughout this section.

Standing assumption. Throughout this section, unless stated otherwise, we assume
that x"(-) is a sequence of continuous functions x": R — R, satisfying the bound (2.3) for
each compact interval 7 £ R, for some constant C(J).

We do eventually assume all of the conditions (2.1) through (2.4) later in this section,
in order to fully develop the theory of limiting profiles. However, we shall explicitly note
in this section any assumptions made beyond the above standing assumption, or any
deviation from it.

We shall also show how our theory extends to more general classes of equations, the
most important of which (for our present purposes) is to systems of equations. For simplicity
of exposition, we present in full only the case of scalar x; at the end of this section we de-
scribe the easy modifications needed to consider the case of vector x e R", as well as
generalizations in other directions, such as multiple delays.

Let I'" < R? denote the graph

re={(t, x"(t)) e R?|te R}

of the function x"(-), and define the limit set Q = R? of the sequence x"(-) by

2.5) Q= () |J I'"={peR?|there exists p" e I'"" with p" — p,
m=1 n=m

for some subsequence n' — o0} .

The set ©, and its geometrical properties, are our central objects of study, and we shall
refer to Q as the limiting profile of the sequence x"(-). Also define

Q={(1,8)eR|teS} =Qn(SxR)
for any subset S < R, and denote simply

Q =Q,

for any 1€ R.

Proposition 2.1. If S is closed then S is closed. If S is compact then Qg is compact.
If S+ 0 then Qg+ 0, so in particular Q, % O for each 1€ R.
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Proof. We omit the elementary proof, save to note the uniform bound (2.3) is
used. O

We recall here the Hausdorff metric on compact sets. Let (X, d) be a metric space,
and let

A ={K< X|K+0is compact}
be the set of nonempty compact subsets of X. Define

d(K', K*) = max {6(K*, K?),5(K?, K"}
where

O(K', K?) = sup d(¢, K?)
EekK!

with d(&, K?) denoting the usual distance from a point to a set. Then (; d) is a metric
space. Moreover, (¥, d) is compact if the space (X, d) is compact; see [Mi], Theorem 4.2
and [Vi].

Definition. The sequence of functions x"(-) is called regular if there exist compact sets
Kl__c_Kzg ng
with

Ki=R?,
1

.6)

18

i

where K denotes the interior of K7, such that for each j the sequence {I'"n K’}_, con-
verges in the Hausdorff metric. (We assume for each j that I'"n K’ % § for all large n.)

Remark. If x"(-) is a regular sequence, and K is as in the above definition, then
denote

2.7 Q)= lim I'"nK’

n— o

as the limit in the Hausdorff metric. It is not in general the case that Q/=Qn K’. For
example, with x"(¢) = arctan((t — 2)/¢") and K/ = [—j,j] X [—J,j], the set 2 K? con-
tains the line segment {2} x [ —=/2, n/2], while Q? contains {2} x [ —=/2, 0] but does not
contain {2} % (0, n/2]. Quite generally, we have the following result.

Lemma 2.2. Let x"(-) be any sequence of functions, and let K< R* be compact.
Assume that either the limit lim I'"n K = § exists in the Hausdorff metric (with "N K %

n— o

for large n), or else that T" K =0 for all large n. In the latter case set @ =0. Then

2.8) QnKgdcQnk.

Proof. Observe that one only need prove £ ~K < @ to establish the first inclusion
in (2.8), as £ is closed. To do this, take any p e 2~ K. Then by the definition (2.5) of 2,
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there exist pomts pel™, for some subsequence ', with p™ — p. Without loss p™ e I'"'n K
for each n, and so d(p™ Q) — 0. Thus d(p, @) =0, hence pe G as Q is closed.

Now assume p € §. Then as d(p, " K) — 0, there exist points p” e I'" ~ K such that
p" — p. Thus pe Qn K by the definition of €, and because K is closed. This establishes
the second inclusion in (2.8). O

Proposition 2.3. Every sequence x"(-) of functions, as above, has a regular subse-
quence.

Proof. Let K/’=[—j,j]1x[—j,j]. Then in light of the bound (2.3) there exists
Jo such that I'"~K’/=+ @ for all n if j = j,. For any fixed j 2 j,, each subsequence of

{r"nK’}2., has a further subsequence which converges in the Hausdorff metric; this
follows from the compactness of the space

= {Kg K| K+ is compact} .
An elementary diagonalization argument thus produces a single subsequence n' — o0, such
that for each j = j, the sequence {I'""' n K/}, converges. This implies that x™(:) is a
regular subsequence, as required. O

Lemma 2.4. Let x"(-) be a regular sequence. Assume for some subsequence n' = oo
that there exists p™ € I'™ such that p» — p € Q for some p. Then there exists p" € I'" for each
n 21 such that p" — p, where { p™'} is a subsequence of {p"}. That is, the subsequence {p"'}
can be extended to a full sequence {p"} which still converges to the point p.

Proof. By (2.6), there exists j such that pe I%j, where peQ is as in the statement
of the lemma. Let this j be fixed for the remainder of the proof, and let the compact set
Q7 < R? be defined as the limit (2.7) in the Hausdorff metric. Then, as

el K cI™nK!
for all sufficiently large n', it follows that p e /. Therefore, (2.7) implies that one may
choose for each n 21 a point p"e I'"N K/ = I'" such that p" — p; moreover, without loss
p" can be chosen so that {p"} is a subsequence of {p"}. This completes the proof. O
Remark. Lemma 2.4 implies that
2.9 Q = {p € R?|there exists p" e I'" with p" - p}

if x"(-) is a regular sequence.

Proposition 2.5. Ler x"(+) be a regular sequence, and let I< R be an interval or a
single point. Then the set 2, is connected. In particular, for each 1€ R

(2.10) Q= {1} x[x(1), X(7)]

Sfor some quantities x(t) £ x(1).



Mallet-Paret and Nussbaum, Differential-delay equations: 11 137

Proof. First observe that it is sufficient to consider the case when I is a compact

w0

interval. This follows from the fact that any interval [ can be written as a union I = U U
j=1
of nested compact intervals /' < I> < ---. Having established the connectedness of Q;,

the connectedness of the nested union Q; = | J 2/, is immediate.
j=1
We therefore assume I = [7', 2] is a compact interval (or a point). Fix
M=C(t'-1,t2+1]),

where C is the bound (2.3), and for each m let
1 1
rmm= F"n([rl— —, 12 + -—] X[-M,M]).
m m

Then there is a subsequence {n'} such that for each m the limit lim I'"*™ = Q™ exists. The
i~ o
set Q™ so defined is compact and connected, being the limit of a sequence of compact
(oo
connected sets. Moreover as Q' 2 Q222 ---, the intersection Q% = ﬂ Q™ is also con-
nected. m=1

Clearly Q™ < Q for each m, hence 2* < Q; in fact one sees 2% g 2,. To complete
the proof of the proposition we show Q, € Q. Let p € Q,; then (2.9), which follows from
the regularity of the sequence x"(-), implies there exist p"e I'* with p" — p. For each m
we have p" e I'™™ for sufficiently large n, hence p e Q™. Thus pe 2*. O

Remark. The functions x and x defined by (2.10) are lower semi-continuous and
upper semi-continuous respectively; this is equivalent to the fact that Q is a closed set,
given that each Q. has the form (2.10).

With x and % given by (2.10), we shall denote

x(r) = [x(1), x(7)].

Thus x is a set-valued function, and provided x"(-) is regular we have

Q ={t}xx(1).

Let us also denote

(2.11) x(t°+0) = liminfx(r), %(t:°20)= limsup %(1),
t=10% t—10%
(2.12) ¥(1°+0) = [x(:°+0), x(z° + 0)],

and

(2.13) Quoio= {1 x2(z°+0).
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Lemma 2.6. Let «: R — R be a lower semi-continuous function which is bounded
above on compact intervals. Then {1 € R|a is continuous at t} is a dense ¥, set. The corre-
sponding result for an upper semi-continuous function f: R — R which is bounded below on
compact intervals also holds.

Remark. Recall that a % set in a topological space X is a set G € X which is a count-

able intersection G= () G™ of open subsets G™ < X.

m=1

Proof. We consider only the case of the lower semi-continuous function «. Define
J:R - [0,00) by

j(r) = (lim sup a(t)) —a(t)

e=20 |r—¢l<e

and observe that j(t) =0 if and only if « is continuous at 7. Also observe that the function
J is upper semi-continuous. (Both observations are easily proved using the lower semi-
continuity of «.) Therefore, for each integer m =1 the set

i 1
Jj(@) =2 ;}

is closed. To prove the lemma it is sufficient to prove for each m that the set F™ is
nowhere dense; for then

Fm= {‘CER

() (R\F™) = {r e R|a is continuous at 1}

m=1

is a dense %; set.

Suppose some F™ is not nowhere dense, and so contains an interval [t} ,t2] < F™
with ¢! < 2. Then for each te[t!,1?] and &> 0, there exists ¢’ with |t'— 7| <& and
a(t’) — a(t) 2 1/(2m). Therefore, it is possible to choose a sequence "€ (1!, 12) with
lim a(z") = co. But this contradicts the boundedness of «, and completes the proof. ©

n— o

Proposition 2.7. Suppose there exists a set Q < R? such that whenever x™ (-) is a
regular subsequence of x"(-), then I'"' — @ (in the sense of (2.5), but with n' replacing n and

Q replacing Q, that is, Q= () |J I'™). Then x"(-) is in fact a regular sequence, and so
Q= Q m=1i=m

Proof. As there does exist a regular subsequence x" () (by Proposition 2.3), the
set Q enjoys property (2.10) for some locally bounded functions x, X: R - R, which are
lower and upper semi-continuous respectively. If ¢ <t both belong to the set

G = {te R| both x(-) and x(-) are continuous at ¢},

and if M>C([ag,7]) with C as in (2.3), then one easily sees the compact set
K=[o,1] x[—M, M] satisfies
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(2.14) OnK=0nK+0.

Let K< R? be any compact set satisfying (2.14); we claim that I'"~ K + ¢ for large
n, and that

(2.15) lim I'"nK=9QnK.

n-r o

In order to prove this claim, it is enough to show that for any subsequence {n'}, there
exists a further subsequence {n’} < {n'} such that '~ K # @ for large j, and

lim I"AnK=0nK.

j= o

Therefore, let {n'} be a given subsequence. If I'"'~ K & @ for infinitely many /, then, as
A is compact, there exists a subsequence {n’} < {n'} such that I'"'n K + @ for all large j,
and lim '™~ K = Q exists. But Lemma 2.2 and (2.14) imply that @ = QN K, as desired.

j=r o
If on the other hand I'"' K =@ for all large i then Lemma 2.2, with @ =@, implies
QN K =0, a contradiction. This now establishes the claim (2.15).

To complete the proof of the proposition, observe that by Lemma 2.6 the set G is
dense. Therefore there exist quantities ¢/, 1/ e G with ¢’ < 14, and M’ > C([¢/,7']), such
that 6/ - — oo and ©/, M/ - 0 as j - o. Let K/ = [67, 1/} x [— M/, M?]. Then for each
Jj the limit lim '~ K/ exists, and so the sequence x"(+) is regular. O

n-* o

Up to now we have only used the standing assumption, and have not needed to
assume that the x"(-) satisfy differential equations, or even that they are smooth. We now
wish to identify and describe certain subsets 2% and Q* of Q, and to this end we need
the smoothness of x"(+). The sequence of positive numbers ¢" > 0 also participates.

Assumption. For the remainder of this section, unless otherwise stated, we assume
in addition to the standing assumption that x": R — R is C?, and that ¢"> 0 is a given
sequence of positive numbers. We also assume that x"(-) is a regular sequence.

Although our principal interest is in singularly perturbed equations, in which ¢" — 0,
we do not assume this limit holds unless explicitly stated. Also, in light of Proposition 2.3,
the assumption that x"(-) is regular is not a significant restriction.

Define for each n the continuous function

" r"-> R
on the graph I'" of x"(-) by
6"(p) = e"x"(t) where p = (¢, x"(1)) .

Now define three subsets of €2 as follows:
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Q" = {peQ|liminf 8"(p") > 0 for every sequence p" e I'" with p" — p},
Q™ = {peQ|limsup 8"(p") < 0 for every sequence p" e I'" with p" — p},

Q*=\(QTu Q).
The sets QF, Q~, and Q* are clearly pairwise disjoint, and their union is Q.

Remark. Observe that the inequalities in the definition of 2 and Q™ are required
to hold for every sequence p” — p, not merely for subsequences, or for a particular sequence.
Consider for example the sequence of functions

(2.16) x"(t) = e~ WM
with any &” > 0 satisfying ¢” — 0. One sees that (2.16) is regular, and that the limiting profile
Q= (Rx{0}) v ({0} = [0,1])
contains a vertical “spike,” namely {0} x [0, 1]. Points p = (0, &) on this spike with 0 < £ <1
have limiting sequences p"” — p for which 8"(p") approaches a positive limit, as well as

other sequences g" — p for which 0" (g") approaches a negative limit. Such p belong neither
to Q* nor to Q7. In fact, Q" = Q™ =0 and so Q= Q*.

The following two theorems are concerned with the fundamental geometric proper-
ties of the three subsets Q% and Q*, and their relation to the limit functions f and r in
(2.4). In Theorem 2.9 we assume the full set of conditions (2.1) through (2.4), although
this is not needed in Theorem 2.8.

Theorem 2.8. (a) If p=(t,&) e Q7, then there exists an open set U < R? containing
p, and 6 > 0, such that

QNU=Q " "nU={t} x(¢—5,¢+9).
The same conclusion holds for pe Q.

(b) The sets Q% and Q™ are relatively open subsets of Q. The set Q* is closed. For
eachteR

(1, x(1) eQ* and (1,%(1)eQ*.

(c) Let p=(1,&) € Q™. Then the set Q\{p} has precisely two connected components,
namely

QH(p) = Q- .9 ({1} X [2(1), ),

QR(P) = ({T} x (é’ X(T)])Ug(t,uo) .

(2.17)
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If p =(1,&) € Q7, then the set Q\{p} has precisely two connected components, namely
QL) = Qo n v ({1} ¥ (&, 2(x)]),
Q% (p) = ({1} x [x (0, )V Q. o) -
Here x(t) and x(t) are as in (2.10).
Theorem 2.9. Assume each x"(-) satisfies a differential equation of the form (2.1),
where f": R* - Rand r": R — R are continuous, and " — 0, and where the limits (2.4) exist

uniformly on compact subsets of R* and R respectively, for some continuous f: R* - R and
r:R-R. Let p=(t,¢) € Q. Then there exists q = (0, () € Q such that

oc=1—-r()

and such that

(2.18) £fED>0 if (1,0 e,

while

fEGO=0 if(r,H)eQ*.
Definition. Given a sequence of differential equations
(2.19) e"x(t) = f"(x(0),x(t—r"), r"=r(x(),

where /", r", and ¢" are as in the statement of Theorem 2.9, we call the difference equation
0=/(x®,xt—r), r=r(x@®)
the formal limit of (2.19).
Remark. Suppose for each e R that f(£,() is strictly monotone as a function of
{. Then the equation f(&, {) = 0 has, for £ in an open set V' = R, a unique solution { = g(£),

where g: V' — R is continuous. (Here V is the set of ¢ € R such that f(£,{) =0 for some
{ € R.) Define the function ¢: R x V' — R? by

P, &) = (c—r(8),8(0).
Then Theorem 2.9 implies, in particular, that
Q*<RxV and ¢(R2*)cQ.

Remark. Assume for each £ € R that f(&, () is strictly decreasing as a function of
{. Then for each p = (1, £) e 2%, the point @ (p) lies above some point g € 2 in the sense that

®(p) = (0,8(¢)) and g=(0,{) with g(&)>{.

10 Journal fiir Mathematik. Band 477
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Similarly @ (p) lies below some point g € Q, for each p e Q7. (In case ¢ ¢ ¥, we make the
natural interpretation g (&) = + oo when + f(&,{) > 0 for all { e R.) Roughly speaking,

@ (Q27) lies above Q, and &(27) lies below Q.
In case f(£,{) is increasing in {, analogous conclusions hold.

Remark. Under quite general conditions (as proved in [MP-Nu4]) equation (2.1)
possesses solutions x"(-) for which the function

n"(t) =t —r(x"(n))

satisfies
(2.20) 7" (t)>0 forall ¢

(here we assume all delay functions r"(x) = r(x) are the same, and are C?). In this case,
the locations of the sets 2 and Q7 are severely restricted. If p = (7, &) € Q7, for example,
then necessarily r'(£) < 0. If not, then with p" — p as in the definition of 2% we have

e =) _ &

0"(p") = 80" = s < iy O

hence lim sup " (p") £ 0, a contradiction. In fact, the form of 7, as a vertical open line
n—w

segment in the plane as given in Theorem 2.8, ensures that ' (&) < 0 for all & near ¢, and
hence

(r,&)e Q" implies feint{xeR|r'(x)<0};
similarly

(r,£)e 2~ implies eint{xeR|r'(x)20}.

In case r’'(x) > 0 for all x then Q* = 9; and r’'(x) <0 for all x implies 2~ = § (provided
of course (2.20) holds).

Proof of Theorem 2.8. Weconsider only the case p € 2, asthecase p € Q7 is similar.
Let p=(1,&) e Q7. We first claim there exists a neighborhood U of p, a quantity y > 0,
and an integer N such that if p" e I'"n U for some n = N, then 8" (p") 2 7. Indeed, we may
choose

(2.21) Us=(1—8,t+8)x(E—6,E+0)

for some 6 > 0. The proof of this claim is by contradiction: if the claim were false, then
immediately one would obtain for some subsequence n’ — oo points p™ e I'"" with p™ — p,
and liminf 6™ (p"") £0. By Lemma 2.4 we could in fact assume this was a full sequence

p"eI'" with p" — p and lim inf 6" (p") < 0; but this would imply p ¢ Q7, a contradiction.

n—w

This now establishes the claim, with U given by (2.21) for some 6.
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Recalling the definition of the function 6", we may restate the above claim as

x"(t)yz whenever |[t—1|<d, [x"(t)—¢&|<6, and n=N.

Tl

We know moreover that there exist points
Pr=({"x"") - p=(1,8).

Therefore, for all large n there exist u" < " < v" such that

(2.22) x"()S¢é—-8 fort—06=5t5u”,

(2.23) [x"(1) =&l £6 forpu"st1<v",

(2.24) x"(t)zE+6 forviZt<Lt+4,
and also

(2.25) (1) 2 3- for ' <1<V,

with v" — u" < 248¢&"/y; hence
(2.26) uvt = 1.
Now define subsets of R?

At =((—o0,7—=8]1xR)u((—0,17) X (—0,¢ - 8]),
A% = ([t +8,00) X R) U (1, 0) X [ + 8, ),

A% = (1} xR,

A=A0 AU AR,

Properties (2.22), (2.23), (2.24), and (2.26) immediately imply Q2 € 4, and hence
(2.27) Q" AUSRAUSANU={1} x((—-6,(+9).

But properties (2.22) through (2.26), including (2.25), together imply that
(2.28) {t}x(¢-d8,¢+0)cQ",

so (2.27) and (2.28) together imply (a) in the statement of the theorem.

The claim (b) follows directly from (a) and from the definition of the set Q*.
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To prove (c) first observe that

QE(p)U QR (p) = Qi ({7} x [x(2), &) U ({} X (&, x(2)])
=Q\{p} = A\{p}.

Below we shall prove that QL(p) and Q% (p) are connected. This is sufficient to establish
(c), since A\{p} contains exactly two connected components: one component of A\{p}
contains A* and hence contains Q% (p) (since AL Q*(p) #+ @), and the other component
of A\{p} contains Q&(p).

We now prove Q%(p) is connected, omitting the proof for Q%(p), which is similar.
We first note that Q" (p) is the union (2.17) of the connected sets Q,_ , ., and {t} X [x(1), &),
hence is itself connected if we have

(229) 'Q(—oo,t)n ({T} x ['X(T)’ é)) * (D .

Take any sequence (7, ¢') € Q% (p), with 7' < 1, and 1’ — 1; assume also (by taking a sub-
sequence) that the limit & — £ exists. Thus (r,£®)eQ_, ,,. As (1}, &) e A%, we have
& < & — 9 for large i, hence £€* < & — 3. Of course ¢* 2 x(1). Therefore, (z, £*) belongs
to the intersection (2.29) as desired. This completes the proof. O

Proof of Theorem 2.9. Fix p=(1,¢{) e Q, and consider any sequence
P = () er
with p" — p. Then s" - o where we denote
s"=t"—r"(x"(t")) and o=1—r(¢).

The sequence x"(s") is bounded. Let {n'} be any subsequence such that x™ (s") converges
and denote the limit x™ (s"") — {. Then the point ¢ = (g, {) belongs to Q. Moreover, from
the differential equation (2.1)

(230)  07(p") =) = M), X)) - £

Now if p e 27, then the limit (2.30) is positive; similarly if p € Q~ then this limit is negative.
This establishes (2.18).

Suppose then p e Q*. Since p ¢ Q7, we have liminf 6"(p"*) < 0 for some sequence

p"t as above, and hence there is a subsequence for which the limit (2.30) satisfies
f(&, () £0.Since also p ¢ Q7, there exists another sequence p”~, with a subsequence whose
limit satisfies f(&,{~) = 0. Here both the points ¢ = (6,{*) and ¢~ = (6,{ ") belong to
Q, and have the same first coordinate ¢ = 7 — r(&). Therefore both {*,{ € Q,, and as Q,
is a connected set, there exists { € Q,_ such that f(&,{) = 0. The point g = (o, {) € 2 therefore
satisfies the required conditions. This completes the proof. O
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In a natural way the above results extend to nonautonomous equations, to equations
with multiple delays, and to systems of equations, with the most technically difficult exten-
sion being that to systems. Consider, quite generally, a sequence of continuous functions
x":R — R" satisfying the bound (2.3). Using subscripts to denote the coordinates in R¥
(so that x"(£) = (x1(¢), x3(¢), ..., x4 (£))), consider separately the graph

I ={(x1()eR?|re R}

of each coordinate function, and each corresponding limit set

as in (2.5), for 1 £j < N. We define x"(-) to be a regular sequence if x7(-) is regular for
each j, in the sense already defined.

Of course the obvious analogs of Propositions 2.1 and 2.5 for the sets 2; g and Q, ;
hold, and the analog of Proposition 2.3 is easily established. For the generalization of Pro-
position 2.7 one assumes the existence of sets Q; < R?, for 1 < < N, such that I} - &,

whenever x"'(+) is a regular subsequence of x"(-), and concludes that x"(-) is regular.
Lemma 2.2 applied to each coordinate is used in proving this.

In defining the sets QF (where the smoothness assumption following the proof of
Proposition 2.7 is taken), only convergence of points p} in the coordinate of interest (the
j™) is required. That is, we define for each j

Q' ={p;eQl li,l,llinf 67 (pj) > 0 for every sequence p; e I with p/ — p;}

and analogously define Q;, where 6] is the obvious analog of 6" before. Note in particular
that no assumption is made about the convergence of the remaining coordinates py, for
k ¢j, where

(2.31) x"("y = (x7("), x2 ("), ..., x5 (")
= (p1,P3s - PR EI X I X oo XIY
for some ¢". With this definition Theorem 2.8 holds essentially as stated, except that Q,
Q*, QL(p), ... are replaced by @, 2}, 2 (p;), ..., for each j. The proof of this theorem
relies on the appropriate generalization of Lemma 2.4, in which one assumes, for some j,
the convergence p]'." — p; € 2, for points p!" € I}"", and concludes the existence of a sequence

p;eI}, of which p}’ is a subsequence, where pj — p;. In this generalization of Lemma
2.4, no claims are made as to the convergence of the other coordinates pjy, with & 3.

Remark. With N =2, consider the sequence x"(¢) = (x](¢), x3(¢)) where

x1(r) = arctan(¢/¢") and xj(f) = arctan ((r — ") /")
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where both ¢" —» 0 and " — 0, but |t"/¢"| = o0 and (—1)"t" > 0. Then the sequence x"(-)
is regular, with Qf = Q7 = {0} x (—=/2,n/2). Note, however, that if p] eI} is any
sequence such that p} — (0,0) € Q7, then the corresponding sequence pj € I}, as in (2.31),
does not converge.

Remark. A philosophical difficulty with above approach to vector-valued functions
x": R — RN is that the analysis is wedded to a particular coordinate system in R¥. One
might be tempted to consider instead only the graph

r"={(t,x"(1)eR¥* e R}

in R¥*1, and to take its limit (or more precisely, the limits of intersections I'"n K/, for
appropriate sets K!< K2< --- = R¥*1) to obtain a set Q< R¥*!. With this approach
one sees in particular in the example of the previous remark, that the limit of I'*~ K in
the Hausdorff metric does not exist for any compact K < R? containing a sufficiently large
neighborhood of the origin: the sequence x"(-) ought not, therefore, to be considered
regular. We have not followed this coordinate-free development, as it is by no means clear
how to define analogs of the sets 2% and Q*, and what should be the generalizations of
Theorems 2.8 and 2.9.

Suppose now that the functions x": R — R satisfy differential equations of the form

X" () = f"(t, x"(t), x"(t = r1), ..., x"(t = 1),
(2.32)
rn=ri(t,x"(1), 1SksM.
Assume ¢” >0 and ¢" — 0, and that x"(-) is regular and satisfies the bound (2.3). Also
assume f": Rx R¥™*1D  R¥ and r7: Rx RY - R are continuous, and where f” and r}
(for each k) converge uniformly on compact subsets of Rx R¥™*1 apnd R x R¥ respec-
tively, to functions f and r,. With this we may define the formal limit of (2.32) in the
obvious way, generalizing the definition given earlier. A generalization of Theorem 2.9

can be given for the system (2.32), however, its statement and proof require somewhat
more care than the generalizations of other results in this section. For this purpose denote

2(1) =[x, (1), % (D] X [x,(7), %, (D] % -+ % [xn(0), Xy (D] = RV
where Q; = {1} ¥ [x;(1), X;(r)] defines the functions x; and %;.
Theorem 2.10. Assume x": R — RY satisfies (2.32), for some continuous
T RxRNM*D L RY gnd rl:RxRY - R,
with f" and 1y ( for each k) converging uniformly on compact sets to functions f and r,. Also

assume g" > 0 with ¢" — 0, and assume that the sequence X" () is regular. Let p; = (1, §;) € Q;
for some j. Then there exist £, € R, for 1 < k < N with k * j, such that

(2.33) §=(61,83 .-, SN €X(D),

and for 1 £k £ M there exist
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(2.34) Ce= (1) Ch20 o r Cin) € X(0)), where o, =1 —1,(7,&)

such that
(2.35) +/(0, 8000, . 0) >0 ifpjeQ;—'.
(2.36) [i(0 8008 ) =0 ifpeQf,

where = (fy, fas -\ fy)-

Before presenting the proof of Theorem 2.10, we give the following technical lemma.

Lemma 2.11. Let B and C be topological spaces, and assume B is connected. For each
be B let I'(b) be a nonempty, connected subset of C. Assume also that I'(b) varies upper-
semicontinuously in b, that is, for each by € B and each neighborhood U < C with I'(by) < U,
there exists a neighborhood by € V & B such that I'(b) < U whenever b e V. Then the union

S= ) I

beB

is a connected subset of C.

Proof. Assume S is not connected. Then there exist open sets U,, U, € C such that
S;=SnU; %0 fori=1,2, and S=S,US, and S, S, =0. The connectedness of I'(b)
implies that either I'(A)nU, =@ or I'(b)n U, =0 for each be B, hence I'(b) < U, for
some i =i(b). Let B,= {be B|I'())<c U;} for i=1,2. Then B= B, U B, and B,n B, =0.
The upper-semicontinuity of I'(+) implies that both B, and B, are open. Therefore, as B
is connected, either B, = @ or B, = @. But this implies that S < U, for some i, contradicting
the fact that both S, @ and S, + 0. O

Proof of Theorem 2.10. With j and p; as in the statement of the theorem, consider
any sequence of points pj' = (e, x}'(t")) e I'" such that p} — p;. One easily sees that for
some subsequence n' — oo, we have convergent sequences

xp (") = & elx (1), % (1] for 1 Sk <N with k#7,

- r,"'i(t"i, x"i(t"i)) - 1—1,(r,&)

i i i i i i - } for1§k§M,
(=@, X" () - e x(ay)

where (2.33) holds, and a, is given by (2.34). Moreover, we may assume without loss the
limit

07 (pf) - 6,eR
of e" %' (1"') as i — co, where in fact

f_;'(T’éaClaCz’""CM):Bj,

which follows directly from the differential equation.
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If p;e Qf then +6,> 0 follows from the definition of Q. This establishes (2.35),
and we are done.

If on the other hand p; e QF then, as in the proof of Theorem 2.10, there exist two
possible sequences p/*. From this one proves existence of two points ¢* € X(z), with
¢ =& =¢;, and of points {} e X(6f) with 6f =17 —r,(z, ¢%), such that

(2.37) + 0 EE L, L G 2 0.
Consider, for our fixed 1, the set

S, ={t.60,0, .., L) e RXR¥M*D £ e (1) and {, € X(0})

where 6, =1 —r(1,¢), for 1 Sk S M}

and the restriction f;: S, - R of the continuous function f. In light of (2.37), all that is
needed is to prove the connectedness of S, to establish the desired conclusion (2.36) of
the theorem. But

M

S,= | S.. where S,,={t}x{&}x [] 2(r—n(1,9).

Eex(n) k=1

The semicontinuity properties of the functions x, and %, imply the connected set S, , varies
upper-semicontinuously as ¢ varies throughout the connected set (7). By Lemma 2.11,
therefore, the union S, is connected. O

3. Simplicity of €2 for non-constant delays

The results of this section say that under very general conditions — essentially that f
should have only a bounded number of sign changes as a function of its first argument,
and that the delay r should not be constant on any interval — the set  is almost like the
graph of a function. Namely, at each 7 € R the left- and right-hand limits of points in £,
with ©/ — 1, exist; moreover, for all but countably many values of 7 the cross-section €,
is a single point.

More generally, we obtain an upper bound on the number of oscillations a solution
may have in a given region. This bound is expressed in terms of the range of the delay

function r: the closer r is to a constant, the more oscillations a solution may have.

Before giving precise statements of our results, we define the number of sign changes
sc of a function. Let «: I - R, where 7 is an interval. We set

sc a(x) = sup {m = 1] there exist xX° < x' < .-+ <x™in [
xel

such that a(x' " Ha(x)) <0for 1<i<m}.

We have the following result.
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Theorem 3.1. Assume that x"(-) is a regular sequence of solutions to the equations
(2.1), where (2.2) holds, where (2.3) holds for some C(I), for each compact interval I, and
where the limits (2.4) hold uniformly on compact sets for some f and r. Also assume each
r': R — R is locally lipschitz, and that there exists an integer N such that

sc f"(x,y) <N foreachnand yeR.
xeR

Suppose for some 1° € R that Q,, o is a nontrivial interval, that is, as in the notation (2.11),
(2.12), and (2.13),

Qoo = {t°} X £(z° +0)
= {%} ¥ [x(z° + 0), (z° + 0)],
with the strict inequality
x(1°+0)<x(t°+0).
Then the limit function r is constant on the interval X (t° + 0). Moreover, for each & € x(t° + 0),
;h(ir:::s(’)i;ts {ex (1% —r° +0), such that f(&,{) =0, where r° is the constant value of r on

The analogous result holds for the set Q. _, obtained from the left-hand limit.

The following corollary is a direct consequence of Theorem 3.1; we prove both these
results later in this section.

Corollary 3.2. Assume the hypotheses of Theorem 3.1. Also assume the function r is
not constant on any interval. Then for every 1° € R the left-hand limits

3.1 lim x(t)= lirgl x(1)

exist and are equal, and the right-hand limits

(3.2) lim x(z)= lim ()

T 0+ o0+

exist and are equal (although in general the left- and right-hand limits are different). More-
over, for each k > 0 the set

3.3) {t°e R} %(1°) — x(z°) > k}

contains no cluster point, and hence its intersection with any finite interval is a finite set.
Thus for all but countably many values of t° the set Q is a single point, that is,

34 x(1%) = 2(«%).

Remark. Theorem 3.1 and Corollary 3.2 fail dramatically in the case of a constant
delay. Consider the equation
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3.5) ex(t) = f(x(1), x(t - 1))

and suppose, for some (not necessarily small) ¢ =¢° > 0, that x°(-) is a non-constant
periodic solution of (3.5). (Many such solutions are known, for a wide variety of nonline-
arities; typical are the slowly oscillating periodic solutions, which we discuss more fully in
Section 4.) Let T > 0 denote the period of x°(-), and for each n =1 define

x"(t) = x°(u"t), where p"=1+nT.

As noted originally by K.Cooke, x"(-) is a solution of (3.5) with £=¢", where
g" =€/ u" — 0. One sees easily that x"(+) is a regular sequence, and that

Q=Rx[x° %°]

where x° < x° are given by

x%=minx°(#), x°= maxx°(r).
te® te®

Remark. If Q. ., is a nontrivial interval, and the other hypotheses of Theorem 3.1
hold, then 2, _,0, , is also a nontrivial interval unless there exists { such that f(£,{) =0
for all £ e (r° + 0). Indeed, this result has powerful implications for the shape of Q as
the following corollary illustrates.

Corollary 3.3. Assume the hypotheses of Theorem 3.1, and in addition that £ (0,0) = 0.
Also assume there exist positive quantities C and D such that whenever

SOy =,y =0

for distinct points (x',y')e [~ D, C]x[—D, C], then either x° < x' and y° > y*, or else
x°=x' and y°<y'; and assume that whenever f(z° z')=f(z!,2)=0 with all
z'e [— D, C], then either z°€ {—D,0,C} or else |z%| < |z°|. Finally assume r is lipschitz
and nonnegative in [ —D, C], and that for some 6 > 0 the function r is not constant in any
subinterval of [0,0]. Then if Q is the limiting profile of any regular sequence of solutions
satisfying —D < x"(t) £ C, the conclusion of Corollary 3.2 holds.

Remark. Among the nonlinearities f satisfying the hypotheses of Corollary 3.3 are
the classic non-linearities

fxy) =—x+f(,

where f satisfies a negative feedback condition with an instability at the origin, has a
unique period-two orbit, and is monotone in y.

Remark. Of particular interest in our result is the possibility that the delay r may
be constant on [ — D, 0] and still satisfy the conditions of Corollary 3.3, provided only the
local hypothesis in the interval [0,d] holds. This is significant in the study of problems
with piecewise linear f and r.
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Theorem 3.1, which will be proved below along with Corollaries 3.2 and 3.3, is a
consequence of the following general proposition. This result relates the number of oscil-
lations of a solution over an interval with the range of the delay function r, and concerns
a single equation

(3.6) M) =f(x@,x(t—=r), r=r(x@),
rather than a sequence of equations as above.

Proposition 3.4. Assume f: R?> - R is continuous and r: R — R is locally lipschitz.
Also assume there exists an integer N such that

3.7 sc f(x,y)<N foreachyeR.

xeR

Let x(1) satisfy equation (3.6) for te R, and suppose there exist quantities a°® < a' and
1° <t <o <N such that

(3.8) x(tHY<a® foreveni, and x(t')=a' for oddi,
for 0 i< N+ 1. Then

(3.9) max r(-)— min r(-) < 3(¥ 1 - 19).

[ao,al] [ao‘al]
The same result (3.9) holds if in (3.8) the words even and odd are reversed.

Before proving Proposition 3.4, and then Theorem 3.1 and Corollaries 3.2 and 3.3,
we need the following lemmas.

Lemma 3.5. Let w:[a, B] — R be absolutely continuous. Then w(Q) is measurable
for each measurable set Q S [a, B], and

meas (w(Q)) < [ [W(1)]d1.
Q

In particular, if
0 = {te[a, B]Iw(2) exists and equals 1}
then
meas (w(Q)) < meas (Q).
Proof. If Q is an interval the result is easily proved. If Q is a countable union of
disjoint intervals then again the result is easy. In particular, if Q is a relatively open set

in [, ] then we have the result.

Now suppose Q is any measurable set. For each n there exists a (relatively) open set
G" = [a, B] with

(3.10) Q<= G™ and meas(G"\Q) £

S| =
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We have

(3.11) meas* (w(Q)) < meas(w(G")) £ | [w(?)|dt
Gn

where meas* denotes outer measure. From (3.10) and (3.11) we conclude that

meas* (w(Q)) < { | w(2)|dt.

Q

To complete the proof of the lemma we must show w(Q) is measurable. For each n
there exists a compact set K" with

S| =

K" QO and meas(Q\K") <
Applying (3.11) to Q\K" gives

(312)  meas*(w(Q)\w(K") S meas*(W(Q\K") = | |w()]dt~0,
Q Kk~

where the limit in (3.12) follows from the absolute continuity of the integral.

Now | w(K™) is a countable union of compact sets, hence is measurable. This union
is a subset of w(Q), and the difference w(Q)\ ) w(K") has outer measure zero, by (3.12).
It follows then that w(Q) is measurable. O

Remark. It is well known that there are continuous functions w: [a, ] — R and
measurable sets Q < [«, f] for which w(Q) is not measurable.

Lemma 3.6. Suppose for some N =0 there are quantities

3.13) Wl<plsal<pls - <a¥"< BN and a’<at
and functions
(3.14) u':[of, p'] » [a% a'] for0<i<N,

v:[a%a'] - R,
such that each u' is C', and v is lipschitz, and such that
(3.15) W) = ai™2 and u(f) = gt imea
and

(3.16) max v(-) — min v(-)>ﬂ”—a°+2i (Bi—a’).

[a®, al] [a®,a'] i=0
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Then there exist quantities y' € [, B'] and c € R such that for each i
3.17 (=Did'(y)>0,
(3.18) P =o(@G)) =c,

and such that either

(3.19) w0 <u'(H < <u¥eY),
or else
(3.20) w0 >ut(yhH > - > u ).

Proof. First define for each i

sup u'(+) if i is even,
3.21 ="
(3:21) WO =90 W) if fs odd,
[af, 1]
and set
wi(t) = t—v(ui(t), o'(t) =t—v(y'(@)).
Also define sets

Pi={reld, f'IIH () 4’ ()},

Q' = {te[a', B]| W' () exists and equals 1},
R = o' (PY),
St = wi(Q)).

Note that P’ is open, that the function y' is constant on each connected component of
P’ and hence ' is a linear function with slope 1 on each such component. Therefore

(3.22) meas(R') £ meas(P) < Bi—a'.
One also has from Lemma 3.5, using the fact w' is lipschitz, that
(3.23) meas (S%) < meas(Q') < pi—a'.
Finally, define
$° = min v(-), b'= max v(:).

[a®,a'} [a%, al]

Now consider the set T defined as

T= [ﬂ”—b‘,a°—b°]\( U R")\( S*’).
i=0 i=0

C=
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We have

N
meas(T) = b' —b° — (¥ —a®) — ) meas(RY) — % meas (S?)
i=0

i=0 =
N . .
2b =~ (N —a%) -2 ) (B—a)
i=0
>0
from (3.13), (3.16), (3.22), and (3.23), and hence T+ §. Fix any ceT, and also let
d°, @ e [a° a'] be such that v(a*) = b’ for i = 0,1. For definiteness assume d° < 4* (in the
case 4° > a' one modifies the following proof appropriately), let & < f* be such that
o' < @' < B < Bt with
(3.24) pho g fi] - [a%a'],
and
(325) #l(d'l) — &imodZ, #l(ﬁl) —_ dl—imodZ ,
and note that
(326) wi(&i) = & ~_bimodz’ wi(ﬁi) — ﬁ‘i_ pl—imod2
Observe from (3.26) that c is in the range of ' on [&', §*]. Indeed, if i is even we have
(3.27) W' (BYSP —b' L2’ -0 0 (@),
with a similar calculation for odd i. For each i let y'e [&', ] be such that
(3.28) o' =c
and such that

(3.29) wi(t)+c ford t<y’, ifiiseven,

o' (ty+c fory'<t<fi, ifiisodd.
We first claim that
(3.30) poO) <ptoH << o).

We in fact prove only u‘(y') < u'*'(y**') for even i, as the proof for odd i is similar.
Suppose that p'(y') = u'**(y**?) for some even i. Then considering the function u’ on the
interval [&',y'], noting (3.24), (3.25), that

pr@)=a’ sttt S eGY,
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implies that u'(y*) = u'*1(y**?) for some y* e [&',y']. Therefore

W' (%) =y* —o (') = y* —o(u T GY)

=Y*—'}’i+1+wi+1('yi+1) =’))*—’))i+1+C<C.

But (&) = ¢ by (3.27), hence w'(y*) = ¢ for some y* € [&',y*) < [&', y"). This contradicts
(3.29). Thus (3.30) is proved.

To complete the proof of the lemma, we note that the choice ¢ ¢ R' implies from
(3.28) and the definition of R, that y' ¢ P'. Thus u'(y") = u'(y%), and therefore

(3.31) (=D ()20,
from (3.21). One also now sees that (3.18) and (3.19) hold, from (3.30).

All that is left, then, is to prove the strictness of the inequality (3.31). Suppose
that 4(y") = 0; then, as v is a lipschitz function, we have w!(y) =1. Thus y'e Q', so
¢ = w'(y") € S°. But this contradicts the choice of ¢ in T, and so completes the proof. O

Proof of Proposition 3.4. This is a direct application of Lemma 3.6. First note there
exist quantities o' and g as in (3.13), with r'e[p !, o] for 1<i< N, and 1% £ «° and
tN*1> BN such that (3.14) and (3.15) hold, where we set

u(t)=x(t) fora'<t< B,

Now suppose (3.9) fails; then, setting v(x) = r(x), we have

max v(-) — min]u(~) >3V -9 =2 3(pN - a9

[a°,a1] [ao.ax
N . .
2 f¥—a®+2 ) (o)
i=0

as in (3.16). Let y' be as in Lemma 3.6. Then from (3.18)
() =f(x () x(G = r(x()) = £ (x ¢, x(9)) ,
hence from (3.17)
(3.32) (=D f(x(¢Y), x(c)) >0 for0<i<N.
As either (3.19) or (3.20) hold, x(7%) is a monotone sequence. Thus from (3.32)

sc ]f(z,x(c))zN,

ze[a®,al

contradicting (3.7) and completing the proof. O



156 Mallet-Paret and Nussbaum, Differential-delay equations: 11

We can now prove the main result of this section.

Proof of Theorem 3.1. We prove only the results for right-hand limits. Let a° < a!
be such that

xt°+0)£a’<a' £ x(x°+0).

Fix § > 0. By assumption x"(-) is a regular sequence, so there exists #n° such that for each
n 2 n° there exist points

<0< la o <N <04 5
such that (3.8) holds. Therefore, from Proposition 3.4,

max r"(-)— min r"(-) <381 -19 <36,

[aO’al] [00,01]
which implies the limit
max r(-)~ min r(-) £36.

[a®,a1] [a®,a!]

As 6 >0, and a° and a! are chosen arbitrarily as above, we conclude that r is constant
on x(7°+ 0), as claimed.

Let r° denote the constant value of r on x(z°+ 0), and fix any £ e x(z° + 0). We
wish to produce { as in the statement of the theorem. In fact, to this end, it is enough to
do this when ¢ is in the interior of £(z° + 0), that is

(3.33) x(t1°+0)<E<x(t°+0).

We first observe that

(3.34) Qn (%0 +8)x {E}) =0

for each positive d. If (3.34) were false, then the connectedness of .0 .0, 5 would imply
that either

(3.35) Qo045 S (%104 8) X (—0,8)
or else
(3.36) Qo045 S (1%, 104+ 8) X (¢, 0) .

In either case this would contradict (3.33) (as we recall the definitions (2.11)).
We next refine (3.34) and show that both

(3.37) @*UR%) A (%0 +8) x {£}) + 0
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and
(3.38) Q*u Q)N ((z% 1%+ 9) x HEY)

hold. We prove only (3.38); if it is false for some 4, then in light of (3.34) and the structure
of Q as described in Theorem 2.8, there exist ' < 72 in the interval (°, 7% 4+ ) such that

(3.39) (7, &eR fori=1,2,
Qo (') x{¢}) =90.

As above, (3.39) implies either (3.35) or (3.36), but with ' and 12 replacing t° and 7° + §
in these formulas. For definiteness suppose

(3.40) Qi S (@, 1) X (— 0, 8).

Denoting p' = (1, ¢), consider the connected set Q% (p') which is the union of two disjoint
subsets as in (2.17) of Theorem 2.8. We shall show the intersection of the closures of the
two subsets is empty:

(3.41) (T > [ExE@E)]) N Qi = 0.

This will provide a contradiction to the connectedness of Q%(p!) and establishes (3.38).
Indeed, (3.40) implies that the only possible point in the intersection in the left-hand side
of equation (3.41) is the point (z',&). However, (a) of Theorem 2.8 implies that
(t', &) ¢ Q1. o), and thus (3.38) holds. The proof of (3.37) is similar.

Now (3.37) and (3.38) together imply there exists a sequence p' = (¢/,¢) — (z°, &),
with ©'*! < 1! for each i, and moreover, with p'e Q* UQ* for even i, and pPeQ*uQ”
for odd i. Theorem 2.9 guarantees the existence of a sequence ¢° = (¢' — r°, {*) € Q such that

(3.42) (-DifEHzo.

It follows now from (3.42) and the connectedness of the set €i+1_,0 .i_,0, that there
exists a point

qi = (ai9 Cl) € Q[t" + 1= p0 i —p0]

such that f(&,() =0. Upon taking the limit of a subsequence of §’, we obtain a point
g=@"—r%0)eQo_,0., for which f(& () =0. With this, the theorem is proved. O

We now prove the corollaries which follow Theorem 3.1.

Proof of Corollary 3.2. Certainly we have the existence of the limits (3.1) and (3.2)
by Theorem 3.1. It follows immediately from this and the uniform bound (2.3) on solutions
that the set (3.3) contains no cluster point, and hence that (3.4) holds for all but countably
many t°%. O

Proof of Corollary 3.3. We only prove (3.2), as the proof of (3.1) is similar, and the
proofs of the remaining claims follow as in the proof of Corollary 3.2.

11 Journal fiir Mathematik. Band 477
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Suppose then (3.2) fails for some 7°. Denote 7° = x(z° + 0) and let r® denote the
constant value of r on I°, as in Theorem 3.1. We attempt to define inductively

Ti+1=1'.l_rl, Ii+1=2(ri_rt+0)’

and let ¥ *! be the constant value of r on the nontrivial interval 7' **. Indeed, that this is
the case follows from the fact that for fixed ye [— D, C], one cannot have f(x,y) =0
identically for x in any subinterval of [ — D, C].

Now take £°e 19N (—D, C) with £° # 0; then by Theorem 3.1 one has inductively
the existence of &' e I with (&%, £:* 1) = 0 for each i. We may assume moreover, by adjusting
the choice of ¢ in the open interval I° n(— D, C) if necessary, that ¢! e (— D, C). It now
follows easily from our assumptions that £'e (— D, C) and ¢! < 0 for each i, and also
that | &% 2| < |&| for each i. Therefore the limits £2' - £* and £2'*! - ¢¥ both exist, and

fE* &M =f(¢% 8 =0.

Necessarily then é* = £¢* = 0, and we conclude that &/ € (0, 8) for some j. Thus I/ (0, )
1s a nontrivial interval on which r is constant; but this is a contradiction. 0O

4. Existence and monotonicity properties of solutions

In this section we consider results on existence and monotonicity of solutions in the
spirit of those first obtained in [MP-Nu4]. In fact we shall make some modest extensions
of the results in [MP-Nu4], in which we refine and sharpen the proofs to cover somewhat
more general equations.

Throughout this section we assume f: R* - R and r: R —> R are continuous. We are
often concerned with solutions x: R —» R of the equation

@.1) #(0) = f(x(0), x(t =), r=r(x(®)
which are defined for all 1 € R; of particular interest are slowly oscillating periodic solu-
tions, although our results often apply to more general solutions. At other times we assume

x(+) is a solution only on some interval in R; often it is the solution of an initial value
problem.

Before stating our results we introduce some notation and terminology. We shall
always denote

“4.2) ) =t—r(x@).

If I, J = R are intervals with 7 < J, then we say that x(-) is a solution of (4.1) on (7, J) if
x:J — R is continuous, is C* on I, satisfies

n()eJ whenevertel,
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and is such that (4.1) holds for all te I. (If ¢ is an endpoint of I, then by x () we always
mean the appropriate one-sided derivative.)

The left- and right-hand upper Dini derivates of a function a are defined, respec-
tively, as
D+ a(x) = lim sup 2 —alx—h)

h=0 h ’
h>0

a(x + Ay —a(x)

DR+ q(x) = lim sup
h-0 h

h>0

The lower Dini derivates D'~ «(x) and D®- «(x) are defined by the same formulas except
with lim inf in place of lim sup.

Now assume f(&, 8) = 0 for some (&, 8) € R2. We say that f and r satisfy condition
E(¢, 0) if the following both hold:

(a) If { > ¢ is such that f({,6) 2 0, and also r(x) < r({) for all xe [¢£,{), we have

1
S&0)

(b) If { < & is such that £({,68) <0, and also r(x) < r({) for all xe ({, ], we have

(4.3) D'-r(() <

1

D r()> 0

If f£({,0) =0 in either (a) or (b) above, then we interpret

| o in (a)
(4.4) o = .
S 0) —o0 in(b).

Remark. Although the above condition seems rather technical, it holds for a wide
variety of equations of interest. In particular, if f is strictly decreasing in its first argument
then conditions (a) and (b) are satisfied (vacuously), so E(¢, 8) holds whenever f(&,6) = 0.
This is the case, for example, for the much-studied equation

i) =—x@)+f(x@t—=r).

If instead we have that xf(x,0) < 0 for all x % 0, then f(0,0) =0, and E (0,0) holds
vacuously, since the conditions { > 0 and f({,0) 2 0 in (a) can never simultaneously hold
(and similarly with the corresponding conditions in (b)).

Finally, if we have that xf(x,0) < 0 for all x € R, then again f(0,0) = 0. In this case
E(0,0) holds provided also that r is locally lipschitz everywhere. Indeed, if { > 0 is such
that £({,0) = 0 asin (a), then necessarily f({,0) = 0. Thus (4.3) holds with the interpretation
(4.4), since D"~ r({) < oo by the lipschitz condition. One argues similarly for { <0.
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Proposition 4.1. Assume f(0,0) =0, and that E(0,0) holds. With x(-) a solution on
(1,J) for some intervals I < J, assume x(q*) = x(q?) = 0 for some q* € J and q* € I satisfying

q*—q'>r(0).
Then
n®)>q* forallte[q? o)nI.

Proof. Assume the result is false. Then, as n(g?) = g2 — r(0) > ¢*, it follows there
exists 7 € (g2, ) NI such that

4.5) n(t)>q' forallrelg?1), n()=gq'.
For t € [q?,t) we therefore have
(4.6) r(x(®) =t—n@) <t—n) =r(x())

hence x(r)#+ x(t). In particular, choosing ¢ = g* shows that x(7) # 0; for definiteness
assume this quantity is positive and denote it by

4.7) {=x(1)>0.
One concludes therefore from (4.6) and (4.7) that
(4.8) r(x)<r() forall xe[0,(),
4.9) x(t) < x(r) forall re(q? 1);
moreover the differential equation (4.1), and (4.9) yield
(4.10) x(1)=/(020.

Consider now t =t — h for h > 0 sufficiently small; define £ > 0 by x(¢) =x(1) — k.
Then from (4.5)

N0=n@ 1=t r(x@)—rx@)

@11) 0 ; ; :
i (rE=R-r@Q\k
k h

_ rQ) = r =R\ (x@ = x@—h

- () ()

and this implies, upon slightly rearranging the formula then letting # — 0, that

1

1
L- L
DOz =760
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However, this violates the inequality (4.3) in condition E(0,0), which holds in light of
(4.7), (4.8), and (4.10). With this contradiction the proof is complete. O

Remark. The above result is particularly relevant to the study of slowly oscillating
solutions, that is, solutions on R for which

g>—q'>r(0)>0
for any ¢* < ¢* which satisfy x(g') = x(g?) = 0. Typically the negative feedback condition
yf(0,y)<0 forall y+0
is assumed when one considers slowly oscillating solutions.
We introduce here classes of slowly oscillating solutions which are periodic.

Definition. Assume r(0) > 0 and yf(0,y) <0 for all y +0. Let m > 0 be an integer.
A slowly oscillating P, ,, solution (SOP,,, S) of equation (4.1) is a slowly oscillating solution
for which there exist quantities {¢"} . _ such that for all n
qn+1_qn > r(O),
x(¢g") =0,
(—~1D"x(t) >0 forallte(q"q"*")
x(t+T)=x(t) forall teR

where T = ¢g*™ — ¢°.
Remark. A slowly oscillating P, solution is usually called a slowly oscillating periodic
solution (SOPS).

Remark. From the negative feedback condition one has x(g") + 0 for all n, for an
SOp,,,S.

n+1
b4

Remark. If the assumptions of Proposition 4.1 hold then 5(¢) > ¢" forallt =2 g
for an SOP,,,S.

Proposition 4.1 can be used to obtain monotonicity properties of periodic slowly
oscillating solutions; the basic result is a sufficient condition for such solutions to possess
Property M. Below we present a definition of Property M which, though equivalent to the
definitions given in [MP-Nu1] and [MP-Nu4], is stated in a different and perhaps clearer
fashion.

We first present some definitions which will be needed here, and also in later sections.

Definition. Let o: I = R where I is an interval. Then the index of monotonicity of
a on [ is defined to be



162 Mallet-Paret and Nussbaum, Differential-delay equations: 11

(4.12) mon a(r) = sup{m = 1{there exist <! < --- <™ with all e,
tel

such that (a(#' ") —a(f)) (@ () —a(f 1)) <0 for1<ism—1}.

The index of monotonicity is either a positive integer or infinity; it is simply a count
of the number of monotone pieces of « on 1.

Definition. Leta:R — R, and let C > 0 and D > 0. We say that « possesses Property
M between — D and C if

(a) whenever a(g) = 0 then the derivative d(q) # 0 exists and is nonzero; and
(b) if IS R is an open interval such that «(¢) £ 0 and «(¢) e (— D, C) for eI then

(4.13) mon a(t) < 2;

tel

also, if equality occurs in (4.13) then there exist ° < ¢! < ¢2 in I with {a(¢})] > |a ()], for
i=0,2.

We present another useful definition.

Definition. A function «: R — R satisfies Property MM if it satisfies Property M
between — D and C for every C >0 and D > 0.

Remark. If x(-)is an SOP,,, S solution which satisfies Property MM, and T > 0 is
its minimal period, then for any ye R

2m< mon x(t)E£2m+1.
tel[y,y+ T}

The following generalization of the index of monotonicity will be useful later when
applied to limiting profiles of solutions.

Definition. Let F < R? be any finite nonempty set, and let
€(F)={o=(1,):R—->R*|F<a(R) and 7: R - R is nondecreasing} .

Define

monF= min mon &(s).
(r,$)e€(F) seR

Definition. Let G < R? be any nonempty set. Define

monG = sup monF.
8+FcG,
Fisfinite

It is the case that for any regular sequence x"(-), the value of mon is no larger
than the limiting value (more precisely, the lim inf) of the index of monotonicity of the
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functions in the sequence. We prove this below in Proposition 4.5, following three technical
lemmas.

Lemma 4.2. Suppose d: I — R for some interval I. Let points s' < s < --- < s* with
each s'e I be given, and denote X' = d(s'). Also let quantities x'€ R be given, and suppose
that

(4.14) x'<x/ implies X<,

for 1 <i,j< k and i % j. Then there exists a function o.: I — R such that o(s') = x' for each
i, and for which

(4.15) mon x(s) < mon &(s).

sel sel

Proof. Leta:I— R denote the continuous function which is linear in each interval
[s,s'* '] for 1 £i < k —1, is constant on the interval (— oo, s*] 7 and also on the interval
[s*,00) N1, and takes the values a(s’) = x’ for 1 <i< k. Then it is easy to see that the
supremum m, = mon a(s) in the definition (4.12) (which without loss we assume is finite)

sel

can be achieved with a choice of points {¢°, ¢, ..., 1™} < {s', s, ..., s*} taken from among
the s, that is, (a(t' 1) — a(t)) (x(t)) —a(t'*)) <0 for 1<i<my,—1. But (4.14) now
implies that (&(¢!™1) — &(¢")) (a(¢") — &(¢+'**)) < 0 for such i, and hence m, < mon &(s).
From this we conclude (4.15). sel

Lemma 4.3. Let FS R® be a finite set. Then there exists y > 0 such that if Fc Rr?
is a finite set with the same number of elements as F, and if also d(F, F) <y where d denotes
the Hausdorff distance between sets, then

mon F £ mon F.

Proof. One easily sees that there exists y > 0 such that if F is any set as in the
statement of the lemma, then there exists a labeling of the points of F and of F such that

~

F={p'p>....p", p'=(\x), F={p'.p>. .. p*}, p'=@, %),
and such that both
(4.16) i<t implies i<’
holds for 1<, j £ k, and also that
4.17) xi< x’ implies % <%/
holds for 1<, j < k. Now let ¢ = (£, &) e ¢(F) be such that

(4.18) mon £ = mon £(s),
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as in the definition of mon F, and let s* € R be such that ¢ (s*) = 5*. Observe that by relabel-
ing the points §' and also the points p’, we may assume without loss that s! < s < --- < gk,
and still maintain the implications (4.16) and (4.17).

By Lemma 4.2, using the implications (4.16) and (4.17), there exist functions 7: R - R
and ¢: R — R such that 7(s) = ¢ and £(s') = x* for each i, and such that

mon 7(s) < mon£(s), and mon é(s) < mon &(s).
seR seR seR seR

However, 7(+) is nondecreasing since (, &) € € (F), and hence mon 7(s) = mon (s) = 1.
seR seR

This implies that t(-) is either nondecreasing on R, or is nonincreasing on R. By replacing
7(s) and £(s) with 1(—s) and &(—s) if necessary, we may assume without loss that 7(-)
is also nondecreasing. Denoting ¢ = (1, £), we see that since o (s') = p* for each i, we have
that o € ¥ (F). Thus

4.19) mon F < mon &(s) £ mon &(s),
seR seR

and (4.19) together with (4.18) imply the result. O

Lemma 4.4. Let o: I - R for some interval I < R, and let G = R? denote the graph
G ={(t,a(t)|te I} of this function. Then

mon F < mon a(t)
tel

for any finite subset F< G.

Remark. Associated to the function :/ — R in Lemma 4.4 are two quantities,

mon «(¢) and mon G, which are a priori different. An immediate consequence of Lemma
tel

4.4 is the inequality

(4.20) mon G < mon a(t).
tel

Of course, one expects equality in (4.20). However, we do not need such a result, and so
do not prove it here.

Proof. There exist points s! < s? < --- < s* with each s'e I such that
F={(sa(sH))[1Zisk)}.

Define the function ¢ = (1, &) : R — R? by setting t(s) = s and &(s) = a(s) for se [s',s*],
and taking the constant values o (s) = a(s') for s < s' and o(s) = a(s*) for s = s*. Then
clearly o0 € ¥(F), and so mon F £ mon £(s), from the definition of mon F. But one easily
sees that sem®
mon é(s) = mon ¢(s) < mon a(s),
I

seR se[st, sk] se
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and this implies the result. O

Proposition 4.5. Suppose x": R — R is a sequence of continuous functions satisfying
the bound (2.3) for some C(I), for each interval I, and suppose in addition that the sequence
x"(+) is regular. Let Q denote the limiting profile of x"(-), and let I" = R be a sequence of
intervals such that I"< I"** and | ) I" = R. Then

4.21) mon 2 < liminf mon x"(¢).

n— o teln
Proof. Let m =1 be any integer such that m £ mon Q. Then there exists a finite set

F < Q such that m < mon F. Let G" = R? denote the set G" = {(¢, x"(¢£))|t € I"}. Then for
any finite subset F & G" we have mon F < mon x"(f) by Lemma 4.4. Thus it is enough to

tel™

find, for each sufficiently large n, a finite set F" < G" such that

4.22) mon F < mon F",
in order to establish (4.21).

For every point p € F there exists a sequence p”" € G" such that p" - p as n - co.
This holds in particular because the sequence x"(-) is regular. Thus for each » there exists
a finite set F" < G" with the same number of elements as the set F, such that d(F, F") — 0.
Thus (4.22) follows from Lemma 4.3 for large n, and this completes the proof of the
proposition. O

We present one more definition before stating Theorem 4.6.

Definition. Let p’ = (x', ") for i =1, 2 be two points in the plane. We say

p° < p'in case x° < x'and y° < p',
and

p° << p'in case x° < x' and y° < y'.
The relations > and >> are defined analogously.
Theorem 4.6. Assume there exist quantities C >0 and D > 0 such that

(a) if the point p®e(—D,C)x(—D,C) satisfies f(p°)=0, and p'eR* satisfies
+(p' —p° >0, then +f(p') <0;

(b) for each x € (— D, C) there exists y € (— D, C) such that f(x,y) =0,
(©) yf(0,y)<0 forall y +0;
@) if f(x°, x1) = f(x", x2) =0 and x° € (— D, C)\{0}, then | x*| <|x°|; and

(€) r is locally lipschitz, and r(0) > 0.
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Then every SOP,, S of equation (4.1), for every m =1, satisfies Property M between — D
and C.

Remark. IfinTheorem 4.6 the function f is strictly monotone in its second argument
(condition (a) only implies monotonicity which may not be strict), then for each
xe(—D, C), the point y e (— D, C) in condition (b) is unique (see the remark following
the statement of Theorem 2.9). Denoting y = g(x), we see that condition (d) is equivalent
to the condition | g(g(x°))| < |x°| for all x° e (—D, C)\{0}.

We present a lemma before giving the proof of the above theorem.

Lemma 4.7. Assume conditions (a), (b), and (¢) as in the statement of Theorem 4.6.
Then if f(x,y) = 0 we have either

(4.23) xy<0 or x=y=20.
Moreover if xe (—D,C) then

4.249) ye(—D,C).
If condition (d) also holds, and if

(4.25) J.P)=f(32)=0
for quantities x, 7, y, and z satisfying

(4.26) xe(—D,C) and |y|=Z|J|, with xy=0,
then either x =0 or

(4.27) |z] <|x}.

Proof. Assume f(x,y)=0. From (c) we have that y =0 if x =0; also, f(0,0)=0,
and so (4.23) easily follows from (a), with p° = (0, 0).

To prove (4.24) suppose f(x,y) =0 with xe(—D, C), but y ¢ (— D, C); for defini-
teness assume y = C. Fix any x° € (— D, x) and let y° € (— D, C) be such that £ (x°, y°) = 0;
such exists from (b). But now (x°,»°) < (x,y), and so f(x,y) < 0 by (a). This is a contra-
diction.

Now assume (4.25) with (4.26) holding; also assume x 0. Let 7 be such that
f (7, £) = 0; such exists from (b), as je (— D, C) since x e (—D, C). Then (a) implies (with
(4.25) and (4.26)) that |z| <£|Z|, and hence

(4.28) lz| = 12] <|x]

with the strict inequality in (4.28) following from (d). This gives (4.27), as desired. O
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Proof of Theorem 4.6. First observe that the hypotheses of Proposition 4.1 hold as
xf(x,0) <0 for all x+ 0, by (a). Also observe that xf (x, x) < 0 for all x 0.

Assume that x(-) is a slowly oscillating solution which possesses a bi-infinite set
{¢"}e of zeros, with ¢" < ¢"*! and (—1)"x(¢) > 0 in (¢", ¢"*!). We claim that n (1) <1

for all 7 € R. Certainly this is true at each ¢ = ¢", so assume there is a first time ¢ € (¢", ¢"* !)
at which n(c¢) = o, that is, r(x(s)) = 0. Assume without loss that n is even, so x(¢) > 0;
then 0 < x(¢) < x(o) for 1e(q",0) as ¢ is the first time at which r(x(¢)) =0, and so
X(c) = 0. But

x(a) = f(x(0), x(n(a))) = f (x(0), x(0)) < 0,
a contradiction. This proves the claim.

Next consider any 7 such that x(z) = 0; say te(¢",¢"*'). Proposition 4.1 implies
that #(t) > ¢" !, and n(z) < ¢"*! from above. Moreover, f(x(z), x(n(z))) =0 from the
differential equation, hence x(z) and x(n(z)) have opposite signs by Lemma 4.7. Thus

n(xye (g ' q").

Now assume x(-) is an SOP,,,S, as in the statement of the theorem. Following the
proofs of Theorem 3.1 in [MP-Nu1] and Theorem 2.2 in [MP-Nu4], we consider the sets

(4.29) T={teR|x(r) =0, with 1€ (¢", ¢" ') for some n,
such that there exist 7%, 12 € (¢", ¢"*!) with
t'<t<t?and [x(1)| <|x(z)| fori=1,2},

and

S={x(t)|1eT}.

As in [MP-Nu1], it is sufficient to prove Sn(—D,C) =9 in order to conclude that
Property M holds between —D and C. In this direction, first note that

(4.30) SNn(—6,0)=0

for some & > 0, since x(-) is periodic and all its zeros are simple. We shall prove that for
each

(4.31) teSn(—D,C)
there exists

(4.32) (eSNn(—D,C)
such that ¢ < 0 and

(4.33) [¢] £ 18] for some { such that f(¢, 5y=0.
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We first show that it is enough to find such { for each & in order to prove the theorem.
Indeed, it follows from the existence of such { that beginning with any (e Sn(—D, C),
one can construct a sequence ¢e S (—D,C) such that E¢*1 <0 and {&+! <&
for some & *! satisfying f (&%, £ 1) =0. Lemma 4.7 now implies |¢'* 2| < |¢}| for each i,
and hence the limits £2/ — £* and £21*! — £¥ exist as these sequences are monotone. The
limits £2! — &* and £2i*! - &* also exist, as these sequences too are monotone, by (a).
Therefore, in the limit,

fELEH =8 =0

with |E*| < |E*| and &*E* < 0, implying either £* = 0 or | £*| < |£*|, by Lemma 4.7. But
|E*| < |E*| by construction, and so necessarily é* = 0. Similarly £* = 0, and so

(4.34) Es 0 asi— .
But as ‘e S, the limit (4.34) contradicts (4.30).

It follows therefore, that to complete the proof of the theorem, all that is needed is
to show that (4.32) and (4.33) hold for some {, with £{ <0, given ¢ as in (4.31).

Assume then that ¢ satisfies (4.31), say £ = x (1) where 1 € T; for definiteness assume
x(1)>0. Let g"<t! <t<1?<g"*! be as in the definition (4.29) of T. Without loss we
may assume x(-) achieves its minimum in [, t?] at the point 7, and that is the rightmost
such point in that interval. For if not, we could replace t with the rightmost point t° e (t%, t?)
at which the minimum is assumed. By setting £° = x(t°), we would have that ¢° < ¢ and
hence that [{°| £ |7 for points { and ° at which f(£°,{)=0 and f(&° {)=0. Upon
obtaining a point {®e SN (—D, C) satisfying £°{° < 0 and |{°| £ |{°|, we would see that
[£°] <&} also holds, and we could thus set { = {° to obtain (4.33) exactly as stated for ¢.

We therefore assume without loss that
x(t) £ x(@) forre[rt,1?],

with strict inequality at ¢ =1t! and for all € (r,7%], and attempt to find { and { as in
(4.32) and (4.33).

We also claim that without loss we may assume

x(tH 20 and x(t)e(—=D,C) fori=1,2

and
n(@h) <n(@) <n(z?).

For 12 this is easily seen: as x(t) = 0, we have % (1) = 1, hence n(t?) > n(z) for all 1? > ¢
sufficiently near 1. And certainly there exist such point t? with x(t2) 2 0, and with the
strict inequality x(t?) > x(1).

More care is needed in choosing 7. First let t* € (¢", t) be a point where x () achieves
its maximum in that interval; note that x(t*) > x(z). Consider any quantity &* satisfying
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& < &* < x(t*), and let ' be the leftmost point in (¢", t*) for which x(z!) = £*. Then cer-
tainly x(z!) = 0; and

(4.35) n(@) —n() =1—1"— (1) —r(£*)
>r—1*—(r(§) —r(g").
It follows from (4.35) that if £* is chosen sufficiently near &, then (z) > n(z'), as desired.

We now have
4.36)  f(x(@,x(n(®)) = x(x) =0, f(x(),x(n()) =x()20,

so property (a) and Lemma 4.7 imply that x(7(z)) and x(1(z%)) are all negative, and
(4.37) lx(n@)| < [x(nE)] fori=1,2,

and
(4.38) x(n(z)) e (=D,C).

Necessarily 7(z') < ¢" as x(n(z%)) < 0. Upon observing that condition E (0,0) holds (since
xf(x,0) <0 for all x # 0, by condition (a); see the remark preceding Proposition 4.1), we
have from Proposition 4.1 that (") > ¢" ! and so x(¢) <0 for all

ten@), @)@ . q").

Let = x(n(2)), let o € (n(z"), n(z*)) denote a point at which | x(-)} assumes its minimum
in that interval, and set { = x(¢). Then certainly (4.32) follows from (4.37) and (4.38).
Also, (4.33) holds as (&, {) = 0 by (4.36). This completes the proof of the theorem. O

Corollary 4.8. Assume the hypotheses of Theorem 4.6 except that condition (a) need
only hold for p*e [~ D, C]x [~ D, C], condition (c) need only hold for y e [— D, C]\{0},
and r need only be lipschitz in [— D, C], with r(0)> 0. Let x(-) be an SOP,,,S which satis-
fies —D = x(t) £ C for all t. Then x(-) satisfies Property MM.

Proof. 'We show x(-) satisfies Property M between — D and C by suitably modifying
f and r outside the sets [ ~D,C]x[—D, C] and [— D, C] respectively so that Theorem
4.6 applies. Indeed, let

(4.39) Foop) =f(x@x),x(») and F(x)=r(x(x))

where
—D for x< -D,
(4.40) K(x)=4x for —DE£x=<C,
C for x> C.
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Then x(-) satisfies (4.1) with f and 7 replacing f and r, and one easily sees that this modified
system satisfies the conditions of Theorem 4.6. O

The following result is suited to solutions of small amplitude.

Corollary 4.9. Suppose that

sgn f(x,y) = sgn(—x + h(y))

Sfor all (x,y) in some neighborhood of (0,0) for some (not necessarily strictly) monotone
decreasing function h which also satisfies

yh(y) <0 and [h(h())|>|y| fory=+0,

Sfor all y near 0. Assume also that r is lipschitz in some neighborhood of the origin, and that
r(0) > 0. Then there exists § > 0 such that any SOP,, S satisfying |x(t)| £ 6 for all te R
possesses Property MM,

Proof. Choose any C > 0 sufficiently small, and set D = —h(C). Note that
h(=D) = h(h(C))> C.

One easily checks now that the hypotheses of Corollary 4.8 hold. In particular (b) holds
as (—=D,C)< h((—D,C)), so that for each xe(—D,C) there exists ye(—D, C) with
x = h(y), hence f(x,y) = 0. Thus it is enough to choose 6 < min{C, D}. O

Remark. The following result was proved in a less general form in [MP-Nu4] as
Theorem 2.1; we include it here for completeness although it will not be needed for our
current work. We present also Corollary 4.11, which is in some sense the analog of Pro-
position 4.1 for critical points rather than zeros of a solution.

Proposition 4.10. Assume condition E(&,8) holds whenever f(&,0) = 0. Also assume
the function r is locally lipschitz. Then, with x(-) a solution on some (I, J) we have

(4.41) n(@)>n(t) forallte (r,00)nl
whenever 1€ I and x(1) =0.

Proof. We first claim that if Xx(7) =0 then the function # is strictly increasing in
some neighborhood of 7 in the interval I. To see this, let X > 0 be a local lipschitz constant
for r, in a neighborhood of the point x(z), and consider points ¢! < ¢t? both in I, in a
sufficiently small neighborhood of 7, so that {x(¢)| £1/(2K) for all ¢ between ¢! and 12.
Then

n@?) —n(eh) =1 ="' = (r(x(t?) - r(x(1"))

22— —Kix(t)—x()| 22—t =2 =11 /2>0

as required. This proves the claim.
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We next note that, as in the proof of Theorem 2.1 in [MP-Nu4], in order to prove
the proposition it is sufficient to prove only

n(t)>n(r) forallre(r, o]

where x(7) =0 and ¢ > 7 is any point in / such that x(z) # 0 for all 7€ (z,0). We prove
this by contradiction, assuming for some ¢ > 7 that

n(®)>n(r) forallre(z,a), n(o) =n(r),

and for definiteness
(4.42) x(t1)> 0 forallte(r,0).
The remainder of the proof now closely follows that of Proposition 4.1. Denote

¢ =x(t)and { = x(0),and let 0 = x(n(1)). Then x(t) = f (£, 6) = 0. From (4.42) we conclude
that { > £ and x(0) = f({,0) = 0. An estimate similar to (4.6) allows us to conclude

r(x)<r({) forall xe[¢,0).

Finally, by letting ¢ = ¢ — & for small 4 > 0 and x(t) = x(¢) — k (where k£ > 0), and con-
sidering the quotient

0=

as in (4.11), we conclude that

1
L-
b r(C)gf(C,H)'

This however contradicts condition E(&, ), and completes the proof. O
Corollary 4.11. Assume that
(4.43) + f(p') < 0 whenever +(p' —p°)>0and f(p°) =0,

and that yf(0,y) <0 for all y 0 (so in particular f(0,0) = 0). Also assume the function r
is locally lipschitz. Let x(*) be a solution on some (I,J) such that

0<|x() <|x(@)| forte(z,q%,

and such that |x(-)| is nonincreasing in (z,q°) with %(1) = 0, where [1,q°) S I, with either
g°eland x(q°) =0, or q° = . Then there exists q* € J such that ¢* > n(t) and

4.44) 0<|x(®)|<|x(n@)| forte(n(x)q*),
and

(4.45) x(g*)=0.
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If the second inequality in the hypothesis (4.43) is changed from > to >, but we still
assume that xf (x,0) <0 for all x % 0, then the second inequality in the conclusion (4.44) is
changed from < to £.

Remark. Corollary 4.11 is of particular interest when x(-) is a solution possessing
Property MM. Suppose in fact that x(-) is a slowly oscillating solution having Property
MM; let {¢"} denote the successive zeros of this solution, and let " € (¢”, ¢" * ') denote the
rightmost point in (¢”, ¢" *!) at which | x ()| attains its maximum in (¢", ¢" *!). Then under
the conditions (4.43) we have 5 (") 2 "~ !; in fact, the conditions of Proposition 4.10
always hold, and so

n@®>n(x) =21~ forallt>1".

Proof. We first note that the hypotheses of Proposition 4.10 hold, and hence so
does the conclusion (4.41).

Next, assuming for definiteness that x(r) > 0 and noting that x(#(r)) <0, since
f(x(@), x(n(r))) =0, we show that

(4.46) x(n()) > x(n(zx)) forall te(t,q°).

Indeed, if (4.46) failed at some point, then as x(¢) < x(t), it would follow that
x(1) = f(x(@, x(n(®)) > f(x(), x(n (1)) = %(1) =0,

a contradiction.

We finally note that if ¢° < oo, then

02 x(¢°) = (0, x(n(¢”))

hence x(n(¢°)) 2 0, and it follows immediately from (4.41) and (4.46) that there exists
g* € J such that (4.44) and (4.45) hold. If on the other hand ¢° = oo, then x(¢) and hence
x(n(2)) are positive for all large ¢. Again there exists g* as in the statement of the corollary,

as desired.

The proof of the final sentence in the statement of the corollary follows the same
lines as above, except that the inequality in (4.46) is not strict. O

We now examine the question of existence of SOPS’s, again in the spirit of [MP-Nu4].
We reintroduce the parameter ¢ > 0 and consider

(4.47) ex(t) =f(x(t),x(t—r), r=r(x@).

For the rest of this section ¢ is best regarded as a bifurcation parameter rather than a
singular parameter, as we consider a range of values &, not necessarily small.

We shall first need to consider the existence and uniqueness questions for solutions
of initial value problems of (4.47). In fact we must consider the system
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(4.48) ex(1) = fe(x(0), x(t - r®)

with a parameter ¢ € [0, 1] which serves to make a homotopy to a constant delay problem.
Here f? and r? are as follows. To define f* first let

u: [_D9 C:] x [_Da C:] - [Oa 1]
be a lipschitz function satisfying

u(x,y)=0 if and only if xe{—D,C} and xf(x,y) 20,

and
u(x,y) =1 for all (x,y) near (0,0).

Also let f:[—D,C] - [—D,C] be a C! function satisfying y7(y) <0 for all

ye[—'Da C]\{O}a

and f7(0) = — B, and set f(x,y) = —Ax + f(y), where 4 and B are positive constants to
be given later. Let
(1—20+20u(x,») f(x,) if ge[0,1/2],

4.49 tx,y) =
( ) fex,y) {(2—2g)y(x,y)f(x,)")+(2Q_1)f(x’y) if pe[1/2,1].

The delay r? is defined as

{r(x(t)) if 0€[0,1/2],

(4.50) re = :
Q=20 r(x())+QRe—1r©0) if oel1/2,1].

We first present the following result, whose proof, at least for uniqueness, is not
entirely standard. We note the quantities C and D need not be positive, although this will
surely be the case later. We denote the space of lipschitz functions

Ly[-R,0]={peC[—-R,0]|-D= o)< Cforall 0e[—R,0], and lip(¢) £ K}

for any K > 0, where lip(¢) denotes the lipschitz constant of ¢. Endowed with the usual
metric of C[— R, 0], the set L[ — R, 0] is a compact space.

Proposition 4.12. Let — D < C, assume R satisfies

(4.51) 0<r(x)SR if xe[-D,C],
and f satisfies

(4.52) f(Cy)=0 ifyeHk, f(=D,y)20 ifyeSp,
where

& =

X

{[——D, C]l ifr(x)>0,
{x} if r(x)=0.

12 Journal fiir Mathematik. Band 477



174 Mallet-Paret and Nussbaum, Differential-delay equations: 11

Then if e C[—R,0], with —D < (0) < C for all 0e [~ R, 0], there exists a solution
x(-) of (4.48) on (1,J) with I = [0,00) and J = [ — R, ), and with x|;_p o; = @ satisfying

(4.53) —D=<x()EC forall t=0.

If f and r are locally lipschitz and ¢ € L[ — R, 0] for some K > 0 then this solution is unique
in the class of solutions (4.53), and moreover varies continuously as a function of

(1, @, 8,0) €[0,00) X L[~ R, 0] X (0, 00) ¥ [0,1] .

Proof. 1t is enough to prove the existence and uniqueness in the case ¢ = 0, that is,
for the original f and r; this is because the assumptions (4.51) and (4.52) hold true for 1@
and r? as well, due to the form (4.49), (4.50) of the homotopy.

To prove existence we note that if / and r are replaced with f and 7 as given in (4.39)
and (4.40), then the initial value problem for this modified system possesses a unique
solution X(¢) for £ =0 by the existence theory in [Hal-VL]. It is a simple matter, using
the inequalities (4.52), to show that X(-) in fact satisfies (4.53), hence x(¢) = %(¢) is a
solution of (4.47).

To prove the claim of uniqueness assume %(¢) is another solution of (4.47) with the
same initial condition ¢, also satisfying (4.53). Without loss assume K is also a lipschitz
constant for ¢! f (in each argument) and r in [ — D, C], and as well an upper bound for
le=1f(x,y)| for x,ye[—D,C] and hence a lipschitz constant for x(-) and x(-). Let
y(t) =|x(¢) — x(¢)| and let  be as in (4.2). Then

y(0) = e f(x(@), x(t = r(x(@))) — f (&), (e = r (D))
< Ky(O) + K|x(t = r(x(0)) = x(t = r(z(0))I
S Ky(@) + K|x(t = r(x(®)) — x(t = r(x®))|
+ K| 2(t = r(x(0)) = %(t = r(x))]
= Ky(t) + Ky(n () + K|x(t = r(x(1)) = 2(¢ = r(2(1)))]
< Ky(t)+ Ky(n) + K>y(1),

hence with z(¢) = rlr(lﬁic y(*) we have
YOS [0+ K03+ Ky (n(9) s
< (K*+2K) jt' z(s)ds < (K> + 2K)j'z(s)ds
V] 0
provided t = t. Maximizing y(t) above over [0, 7] yields

z(1) < (K3—+—2K)_|Ez(s)ds
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which implies z(t) = 0 for all 7 2 0, as desired. This proves uniqueness.

The final claim of continuous dependence is proved in a standard fashion by consi-
dering sequences (¢", &",0") = (¢, ¢,0) in L[ —R, 0] x (0, 0) x [0,1], and obtaining by
Ascoli’s theorem a subsequence x™ (¢) — x(¢) converging uniformly on compact sets to a
limiting solution. Using the uniqueness of the limiting solution, one shows in fact
x"(t) = x(t) compact-uniformly for the full sequence; this implies continuous depen-
dence. 0

The next result is needed to define the appropriate cone map as in [MP-Nu4]. For
this purpose we denote

P[—R,0]={peLg[—R,0]|¢(0)=0 and ¢(0) 20 forall 0e[—R,0]},
Uc[—R,0]={pe P[RR, 0]{¢(0) >0 for some e [—r(0),0]}.

Proposition 4,13.  Assume the functions f and r are locally lipschitz, and that 0 < ¢ < g*
for some quantity e*. Also assume there exist positive quantities C, D, and R such that

(a) r satisfies the inequalities (4.51), with r(0) > 0;
(b) f satisfies the inequalities (4.52);

(c) yf(0,y) <0 for all ye [—D,C]\{0}; and

@) xfxe,»)<0if x,y [-D,C] and xy>0.

Let ¢ € P [ — R, 0] for some K> 0, let g€ [0,1], and let x(-) denote the unique solution of
(4.48) through ¢ satisfying (4.53).

If ¢ Ug[—R,0] then x(t) =0 for all t 20. If on the other hand ¢ € Uy[ — R, 0],
then there exist q° € [0, r(0)) and q* € (¢° + r(0), 0], and also qg* € (¢* + r(0),0] if ¢* < 0,
such that

(4.54) x(t)=0 for0£t<q°,
(4.55) x(1)<0 forg°<t<gq?,
(4.56) x(t)>0 forq'<t<gq® ifq'<ow,

and also x(q") > 0 and %(q?) < 0 provided q*, respectively q*, are finite. Also
4.57) x()>0 forq®+R<t<gq',
(4.58) X()<0 forg'+R<t<g?,

provided g° + R < ¢, respectively q* + R < q?, and the relevant quantities are finite.
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Finally, there exists a continuous functiony : [2 R, 00) — (0, o0), withy(t) - 0ast — oo,
such that for i =0 or 1

(4.59) Ix(D1 £ 9(t—q") forg +2R<t<gqg'*!
provided ' + 2R < g'**. The function y depends on e*, but is independent of ¢, K, ¢, and .

Proof. First observe that conditions (a) through (d) hold for f2and r?, for0 < p £ 1,
by the form (4.49), (4.50) of the homotopy.

If 9 ¢ Uy —R, 0], that is, ¢ vanishes identically on [ —r(0),0], then the uniqueness
of solutions in Proposition 4.12 ensures x(t)=0 on [0,00). If on the other hand
¢ e Ug[—R,0], then either ¢ vanishes identically on [—r(0), —r(0) + ¢°] for some
g° € [0, r(0)) but for no larger quantity §° > g°, or else ¢ (—r(0)) > 0; in the latter case
set ¢° = 0. Then an easy argument using the uniqueness in Proposition 4.12 and the nega-
tive feedback condition (c) shows (4.54) holds for this ¢°, but not for any g° > ¢°.

Let g* €[¢°, q° + r(0)] be any point in that interval such that x(g*) = 0. We claim
this implies that

(4.60) x(t) £0 for t> ¢g* sufficiently near g*
if g* < ¢° + r(0), and also that
(4.61) x(t)20 for ¢t < g* sufficiently near g*

if g* > q°. The claims (4.60) and (4.61) follow directly from the observation that y = x(¢)
satisfies the ordinary differential equation y = g(z, y), where

g(t,y) =fe(y, x(t—re(»))
satisfies

g(t,0)=1¢(0,x(t—r°(0)) S0 forg°<1=<4°+r(0),

from the negative feedback condition (c). Having now established (4.60) and (4.61), one
sees immediately that (4.60) implies x(z) £ 0 for all 7€ [¢°, ¢° + r(0)]. This fact, together
with (4.61), implies that if x(g*) = 0 for some g* € (¢°, ¢° + r(0)], then x(¢) = 0 for ¢ < ¢*
sufficiently near ¢*, and hence for all te[¢° ¢*]. However, this would contradict the
choice of ¢°. Thus we conclude that x(-) does not vanish anywhere in (g°, g° + r(0)], that
is, x(¢) < 0 for all e (g°, ¢° + r(0)]. This now yields (4.55) for some q* € (¢° + r(0), ],
as claimed. This inequality, and (c), imply x(q') > 0 if ¢ < co.

The proofs of (4.56) and the simplicity of the zero ¢? if ¢g*> < oo follow similar
lines.

The monotonicity properties (4.57) and (4.58) follow immediately from (d), and from
these in turn we conclude that if g° + 2 R < ¢* then x(t — r®) < x(?) for ze [¢° + 2R, ¢*).
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Define

g(y)= min  min f%y,2)
0s¢=<1l -Dszsy

for =D <y =0;then g(y)> 0 for —D =<y <0 and g(0) =0. We have now
(@0 = U x(0), x(1—r9) 2 'g(x(0) 2 (%) g (x(0)

forte[q°+ 2R, q"), and hence x(¢) 2 y_(t — q°) for such ¢, where y_: [2 R, ) — (— 0, 0)
is the unique solution of

j-=(*)""g(r-), y-QR)=-D.

Clearly y_(¢) —» 0 as ¢ — c0. In a similar fashion one has an upper bound x(¢) £y, (t — ¢")
in [¢'+ 2R, ¢%), with y, () > 0 as t - co. Upon setting y(¢) = max {|y_(¢)|, 7+ (¢)}, we
obtain the uniform decay estimate (4.59). This completes the proof of the proposition. 0O

In the same fashion as in [MP-Nu4], the existence question of SOPS’s may be
converted into an equivalent fixed point problem. Fix any ¢* > 0 and consider only ¢ > ¢*.
{(We work here in the setting of Proposition 4.13 with the homotopy of Proposition 4.12.)
For such ¢ the quantity

(4.62) K=(*"1' max o | f(x, )]

x,ye[— D,

is a lipschitz constant (at least in the range of ¢ where the differential equation (4.47) holds)
for any solution with range in [ — D, C]. We define a map

(4.63) T P.[—R,0]%[e*,00)x[0,1] » P[—R, 0]

by setting
T(p.e.0)=v

as follows. Let x(¢f) denote the solution of (4.48) through ¢ satisfying (4.53). If
@€ Ug[—R,0] and ¢* < o0 and ¢* < co, then set

x(g?+6) for8e[—R,0]n[q"'—q%0],
w(0) = 1 2.
0 fore[—R,0]n(—0,q" —q°];

otherwise let y be the zero function. Then just as in [MP-Nu4] the map 4 is continuous,
and there is a one-to-one correspondence between nontrivial fixed points ¢ of 4 and
SOPS’s of (4.48). In particular, the uniform decay estimate (4.59) is used to prove continuity
of 7 at those ¢ for which ¢' = w0 or g2 = co. Also, E(0,0) holds by the remark preceding
Proposition 4.1, since xf(x,0) £0 by (d) in the statement of Proposition 4.13, and r is
locally lipschitz. We note this fact since as in [MP-Nu4], Proposition 4.1 is needed to
prove the correspondence between nontrivial fixed points of 4 and SOPS’s.

The next lemma shows that any bifurcation of an SOPS from zero must occur at
the value ¢ = ¢° corresponding to an SOPS of the linearized equation.
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Lemma 4.14. Assume f and r are locally, lipschitz and satisfy conditions (a) through
(d) of Proposition 4.13 for some positive quantities C, D, and R. Also assume f is differentiable
at (0,0), with

(4.64) Df(0,0) = (—A,—B), with0<A<B,

and set

r(0)(B? — A%)/?
arccos (—A/B)

(4.65) g0 =

where 1 /2 < arccos(— A/B) < n. Fix ¢* < &%, let K be as in (4.62), and set

€= {(¢58’Q)6PK[—R’0]X [8#’w)x [0,1]'.7—((0,8,Q)=(0 anquEFO}

Then
% = €U ({0} x {c°} x[0,1]).
Proof. We clearly have € = % u ({0} x [¢*,o0) x [0,1]). Take (¢", ¢", ¢") € ¥ with
(@™, &" 0") — (0, e*,0*) for some ¢* and g*. We must show that ¢* =¢° As described
above, we have a corresponding sequence x"(¢) of SOPS’s of (4.48), with (¢, 0) = (¢", ¢").
The continuous dependence results of Proposition 4.12 and the monotonicity properties
(4.57), (4.58) imply that
Il 0 where ||x"[| = sup | x"(1)].
€
Let y"€ R denote a point where the maximum
x" (™M = llx"]}
is achieved, and denote " = || x"||. Without loss assume x"(y") > 0, and set
W"(I) — (oz")_ lxn(t + '}’") ,
so that |w"(#)}| <1 for all ¢, and w"(0) = 1. Also note that as x"(-) is slowly oscillating,
there exists an interval I" of length greater than r¢(0) = r(0), and containing the origin,

such that x"(¢) > 0 for all te I".

The scaled function w"(+) satisfies the equation

(4.66) W (1) = fZ (W (@), W't — &), r&=ri(w" (1)
where
. _fa7'f%ax,ay) fora >0,
JEx,y) = —Ax— By fora =0,

ré(x) = ré(ax) for all a,
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where we note the derivatives 4 and B of f© at the origin are independent of g. An easy
application of Ascoli’s theorem to (4.66) produces a solution w(-) satisfying the limiting
equation

(4.67) e*Ww(t) = —Aw(t) — Bw(t— r(0))

for te€ R, and such that jw(#)| £1 for all ¢, with w(0) = 1 (so w(-) is nontrivial), and also
such that

w()=0 forall rerl*

for some interval 7* of length greater than or equal to r(0). It now follows from standard
arguments and well-known results about linear autonomous equations (see, for example
[Be-Co], [MP-Nu1]) that the characteristic equation of equation (4.67) possesses a purely
imaginary root, with imaginary part in the interval (0, n/r(0)). This in turn implies that
e* = ¢° and completes the proof. 0

We now state the basic existence theorem for SOPS’s; this result directly generalizes
Theorem 1.1 of [MP-Nu4].

Theorem 4.15. Assume the hypotheses and notation of Lemma 4.14. Consider SOPS’s
x(+) of (4.47), normalized so that

(4.68) x(0)=0 and x(0)<0,

and let
& = {(p,e)e C[—R, 0] x (0, 0)] there exists an SOPS x(-)

of (4.47) satisfying (5.53) and (4.68), with x|,_g o) = ®}.

Then
F=20{0,¢%},

and for each ¢ <¢® there exists (¢,e) € & on the connected component of &% containing
(0, %).

Proof. With £° as in (4.64) and (4.65), fix ¢* < ¢° and let K be as in (4.62). Also,
for each ¢ # ¢ in [e¥, 00) let § = 3(¢) > 0 be such that the map J (-, ¢, ¢) in (4.63) has no
nontrivial fixed points in the closed ball B; < F[— R, 0], where B; is the open ball of
radius J centered at zero in B[ — R, 0]. The existence of such J follows from Lemma 4.14.

Now, as in [MP-Nu4], Theorem 1.1, a more or less standard application of the fixed-
point index to the map (-, ¢, 0) at the homotopy value ¢ = 0 shows there exists a con-
nected set

L {(0,e)e B[R, 0] x [e*,0)| T (¢,¢,0) = ¢ and ¢ % 0}
of fixed points such that (0, %) e #*°, and such that for each ¢ e [¢*, °) there exists some

(o, &) € #**. Indeed, the existence of the set &¢" follows directly once one computes the
fixed-point index
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0 fore*<e<e,

T (- —_
(469) l('/ ( » & 0)9 B&) - {1 for £> 80 ,

and recalls that i (7 (-, ¢,0), P.[—R,0]) = 1.

The formula (4.69) follows directly from the homotopy property of the index, which
implies that

i('g-("gsg)aBé)=i(9-(‘98,0),B6) foroéggl

provided ¢ # £°, and from the fact that one knows from [MP-Nu4], Lemma 1.7, the value
of the index

0 fore*<e<e,

i(7(-,8,1),B;) =
7 Coe 1), By) {1 fore > ¢°,
at g =1.
To complete the proof of the theorem, one considers the union

L¢= U y"gC[—R,O]X(O,oo),

0<e*<el

observing that the closure of & is connected and contains the bifurcation point (0, £°).
Each point in & corresponds, in a one-to-one fashion, with an SOPS, and this yields the
set ¥ as in the statement of the theorem. This completes the proof. 0O

5. A lower bound for || x ||: part I
In this and the next section we obtain a uniform lower bound
x|l 2 x>0
for all SOPS’s of the equation
(5.1) ex() =f(x(t),x(t—r), r=r(x(@®),

for sufficiently small ¢ > 0. In particular, the quantity x does not depend on (small) &. We
denote here

llx]l = sup [x(D)I,
teR
and of course impose appropriate conditions on f and r.

We always assume f: R? - R and r: R - R are continuous. In addition, the follow-
ing hypotheses will be needed for our lemmas and Theorem 5.1 below. We shall always
state precisely which hypotheses are assumed at any time.

H1. The conditions on f and r as in the statement of Corollary 4.9 hoid.

H?2’. The function fis differentiable at (0, 0), with derivative Df(0,0) = (— A, — B),
where A > 0 and B > 0; we denote k = B/ A.
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H2. Hypothesis H2' holds, and in addition, 4 < B.
H3’. Hypothesis H2 holds, and in addition
r(x)—r@©@)=0(x") asx—-90
for some real number v 2 1.

H3. Hypothesis H3' holds, together with

. r(x)—r(0)
lim “0 -0 e
R T T
where either 0*>k™*|Q | or Q™ > k™*|Q"|.

Remark. If fis C! and r is lipschitz, both in some neighborhood of the origin, then
H1 and H2 hold if and only if f(0,0) =0 and r(0) > 0, and 0 < A < B where

Remark. Observe the conditions on the delay r in Hypothesis H3 include
r(x)y=r)+ Qx"
where either v is an odd integer and Q =+ 0, or else v is even and @ > 0. It does not include,
however, the case of v even and Q < 0. Although we believe Theorem 5.1 is valid without
any restrictions on Q%, other than (Q*, 07) # (0, 0), our arguments do not extend to all
cases. We hope to return to this point in a future paper.

Our goal in this and the next section is to prove the following result.

Theorem 5.1. Assume Hypotheses H1 and H3. Then there exist ¢, >0 and k > 0
such that if 0 < ¢ < ¢, then all SOPS’s of equation (5.1) satisfy ||x|| 2 k.

The key to the proof of Theorem 5.1 is an appropriate scaling argument. Let x(-)
be any SOPS with (minimal) period T> 0, and define ¢ > 0 by

(5.2) T=2(r(0)+0).
Choose quantities a, 8,y € R with a > 0 and > 0, and define functions
(5.3) y@=a"'x(r-B1), z(x)=a 'x(y+r0)+0c-B1).
One now easily verifies that
7150 = (3@, 2t —0p7 + "B, (y(D)))

(5.4)
eB12(0) = —f,(z(@),y(r1— 0B+’ q,(2(7)),
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where the function f, and g, are defined by

i y)=a7 f(ax,ap), q,(x)=0a7"(r@x)-r(0)),

with v fixed (and to be chosen later as in Hypothesis H3’). Note the existence of the limits

Jo(x,y) = —Ax— By,

Q%x", x20,

9o (¥) = {Q‘!xl”, x<0,

of the above functions as a — 0, provided the appropriate hypotheses hold.

We prove Theorem 5.1 by first assuming there exists a sequence x"(-) of SOPS’s of
equation (5.1) with & = ¢", where

(5.5 e">0 and ¢"- 0,
and
(5.6) X"l — 0,
and then obtaining a contradiction. Our strategy is to use the scaled equations (5.4), with

particular choices of & = «", # = f", and y =y", to obtain our contradiction. We always
choose

(5.7) a" = || x"||

to scale the variable x. We choose y" as any time at which | x" ()| achieves its maximum.
By passing to a subsequence, we may assume without loss that all x"(y") have the same
sign. In fact, we may assume without loss that all these quantities are positive and so

(5.8) x"(y") =1 x"l,
by making the change of variables x - —x in equation (5.1) if necessary.

The choice of ", which scales time, is more complicated. Three cases must be con-
sidered; these are outlined in Table 5.1. Note that the three results proved are mutually
contradictory, thereby establishing Theorem 5.1 as desired. In Cases I and II, which are
considered in this section, the theory of limiting profiles as developed in Section 2 is used
as the scaled system (5.4) is singularly perturbed. Case III yields a regularly perturbed
system which is handled in Section 6 by different methods.

Case Result proved Where proved Choice of f
I o=0(E+a") Lemma 5.3 o
II o' = 0(g) Lemma 5.4 o’
III e=o0(c+a") Lemma 6.1 €

Table 5.1



Mallet-Paret and Nussbaum, Differential-delay equations: 11 183
We therefore make the following standing assumption.

Standing assumption. For the remainder of this section, and all of Section 6, we
assume that f/: R* - R and r: R — R are continuous with yf(0,y) <0 for all y + 0 near
0 and with r(0) > 0. We also assume that for some sequence ¢" satisfying (5.5), we have
SOPS’s x"(-) to equation (5.1) with ¢ = ¢", and that the limit (5.6) holds. We denote «" as
in (5.7), we assume (5.8) holds for some y", and we let T'= T" denote the (minimal) period
of x"(-), with ¢ = ¢" given by (5.2).

The Hypotheses H1 through H3, above, will not be assumed unless explicitly stated,
and this is always in addition to the standing assumption.

Let us denote for convenience the function

with the constant
ro = ro(x) =r(0).

Before proceeding with the three cases of Table 5.1 we make some preliminary
observations. Let y"(t) and z"(t) be as in (5.3), with the above choices of " and ", and
with " — 0 yet to be given. Then clearly

5.9 [y"(z)|<1and [z"(7)[|S1 forallTeR,

y ) =1.

If y*(-) and z"(-) moreover are regular sequences, let £, and £, respectively denote
their limiting profiles; denote

Q. .={txy@, yO=[@.5@],
Q,.={t}xzZ(®), z()=[z(x),z(1)],

following Section 2. Then ;2 R x[—1,1], and

y(0)=1
from (5.9).
If also Hypothesis H1 holds, then x"(-) enjoys Property MM by Corollary 4.9. In
this case, with
I"=[—-T"/4p", T"/4p"],
Ji=D"=-T"4,y"+T"/4],
Jy=O"+T"/4,y"+3T"/4],
Jr=JrulJg,
one easily checks that

(5.10) mon y"(t) + mon z"(r) = mon x"(?) + m(;“n x"(1)
teln teln 2

ted7 te

<1+ monx"(1)£1+3=4.

teJn
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Therefore, as " — 0, we have using Proposition 4.5
(5.11) mon{;, + monQ, <4.
The finiteness of mon Q, imp]ies the existence and equality of the left-hand limits

(5.12) lim y(r) = lir? y(1),

10~ 10~
and also the right-hand limits

(5.13) lim y(r) = lim j(7),

10+ t—+0+
for every t°. Indeed, if the inequality in, say, (5.12) failed for some t°, then there would
exist points p' = (¢}, ) e Q,, with t' <12 < - - 1% and (—1)(&'*! - &) > 0 for each
i 2 1. For the finite subset F={p',p?, ..., p™} of Q, one has mon F = m — 1, implying

mon 2, = co, a contradiction. It now follows from the fact that (5.12) and (5.13) hold for
every 1°, that for each integer m =1 the set

{1eR[7(x) —y(x)>1/m}

contains no cluster point. From this we conclude that y(r) = y(7) for all but countably
many 7. One also has existence and equality of the limits at infinity

y(0) = lim y(7) = lim jy(7),

and

y(=oo)= lim y(r)= lim y(7),

again from the finiteness of mon ;. The corresponding statements for z(t) and Z(t) also
hold.

We need one other result before considering the three cases of Table 5.1.

Lemma 5.2. Assume Hypothesis H2'. Then lim T" = 2r,, and hence lim ¢" = 0.

Proof. Setw"(t) = (a")”'x"(¢t + y"); then w"(0) =1 and |w"(¢)| £ 1 for all t. Assume

also, by passing to a subsequence if necessary, that w”(-) is a regular sequence, and let
Q < R? denote its limiting profile in the sense of Section 2. In that spirit denote

Q. ={t}xw(), w)=[w,w)],
for each 7 € R. Note here that

(5.14) w(O0)=1.
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One sees that w"(-) satisfies the equation
(515) Snwn(t) =f;"(w"(t)9 W"([—‘ ra"))’ rz" = ra"(wn(t)) ’
and that Theorem 2.9 applies to this w"(-) and the equations (5.15). In particular, we have

the limits

lim £, (G, 8) =fo(&,8) = =4l —BL,  lim r.(§) =ro () =ro,

and therefore the formal limit of (5.14) is the equation
0= —Aw(t)—Bw(t—r,).
The rigorous interpretation of this limit is of course given by Theorem 2.9.

Suppose that £ = w(t) > 0 for some 7. By Theorem 2.8 we have (r, ) € 2*, so by
Theorem 2.9 there exists (0,{) = (t — ry, {) € Q satisfying A¢ + B{ = 0. Thus

wt—r)s{=—k"1=—k"'w().

Similarly, if w(r) < 0 for some 7 then one has w(t —ry) 2 —k~!w(z). These observations
together with (5.14) imply that

w(—mrg)2k™">0 foreven m=0,
(5.16)
w(—mry) S —k™" <0 forodd m>0.

Now (5.16) and the definition of @ as the limit of the graphs of the solutions w"(-)
imply the following fact: given m > 0 and any real number § > 0, then for all large n the
solutions w"(-) and hence x"(y" + -) possess at least m zeros in [ —mr, — 68,8]. If m is odd,
then this interval contains at least (m — 1)/2 periods of w"(-), hence

—1
(5.17) (-"—’2—> T" < rym+20.

Dividing (5.17) by (m —1)/2, letting m — oo, and using the fact that 6 can be taken
arbitrarily small, implies easily that imsup 7" < 2r,. But 7" > 2r, for all n as x"(-) is

n—* o

slowly oscillating; this gives the desired result. O
With the aid of Lemma 5.2 we can prove Case I.
Lemma 5.3. Assume Hypotheses H1 and H3'. Then a" = O(e" + (a")*).

Proof. We assume the result is false and seek a contradiction. By taking a subse-
quence if necessary, we have

n . all v

(5.18) lim & = fim &)

n—ao 0 n+o O

=0.
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Let " = ¢", define y"(z) and z"(1) by the formulas (5.3) with appropriate superscripts #,
and assume by taking a further subsequence if necessary that y"(-) and z"(-) are regular

sequences with limiting profiles 2, and ,. In light of (5.18) and the choice of §*, the
formal limit of the system (5.4) as n —» oo is

0=Ay(t)+Bz(z—1),
(5.19)
0=Az()+ By(r-1),
with a rigorous interpretation of (5.19) given by Theorem 2.10.
We use (5.19) first to prove that
(5.20) (), (1), 2(1), 2(zr) >0 ast—> +o0.
The fact that these limits exist follows directly from the piecewise monotonicity of y"(0)
and z"(-), and the fact that " = ¢" — 0 in the scaling (5.3), by Lemma 5.2. For simplicity
consider only the limits at oo; denote these by y(o0) and z(00). If either { = y(z) or § = (1),
then (1, &) e QF, so by Theorem 2.10 applied to the first equation in (5.19) there exists
{ez(t—1) such that A+ B{=0. As 1 - oo we have £ - y(o0) and { — z(0), hence
Ay(o)+ Bz(o0) = 0. Similarly, the second equation in (5.19) yields Az (o) + By(o0) = 0;
as 0 < 4 < B, we conclude y(o0) =z(o0) =0, as desired. This establishes (5.20).
Note that as y(0) =1, we have —k~'e z(—1) from (5.19), hence
(5.21) z(~1)<0.

Thus neither 2, nor €, is the trivial set R x {0}; this fact, with the limits (5.20) and bound
(5.11) on the index of monotonicity, imply easily that

(5.22) mon{; =monQ, =2,
(5.23) 07 sy(?) ifr'<?<0or0<t?<t!,

and that there exists u € R such that

(5.24) (1) £z(tH) 0 iftl<t?’<porpu<ti<il.
Moreover
(5.25) y(x)20 and z(1)=0 forallzeR,

and hence if (7, 0) € Q, for some 7 and i, then (7, 0) e QF.
Two possibilities now pesent themselves: either

(5.26) y(r)>0 forallt>rt*
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for some t*, or else
(5.27) (t*, 0) x {0} £ @,
for some 7*. We show each of these possibilities leads to a contradiction.

Suppose (5.26) holds. Then from the first equation of (5.19), for any t there exists
{ez(r—1)suchthat Ay(r)+ B{=0,andso Z(r - 1) 2 (= —k'l)_)(r). The second equa-
tion of (5.19) gives y(r —2) £ —k~'Z(z —1), hence

(5.28) Y= =k?y@<y@=y()

by (5.26), provided 7 = t*. But (5.28) contradicts (5.23) if > 2. This proves (5.26) is
impossible.

Suppose (5.27) holds. Then (7,0)e QF for each 7> 1*, so from (5.19) we have
(t—1,0)e @2,, hence (r —1,0) e Q%, for such 7. Continuing this argument shows that
Rx {0} = Q, for i=1,2, and in light of (5.23), (5.24), and (5.25) we have for all te R

(5.29) y(@)=y(t)=0, excepty(0)=0<y(0),
(5.30) z(t)=2(1) =0, exceptz(u) <0 =2(p).

But z(—1) <0 by (5.21), and so y(—2) > 0 by the second equation of (5.19). This con-
tradicts (5.29), and so proves (5.27) is impossible. With this final contradiction the proof
of the lemma is complete. O

Let us now prove Case 11.
Lemma 54. Assume Hypotheses H1 and H3. Then (a")" = O(e").

Proof. We assume

n

&
5.31 lim —— =90
( ) n— oo (a")v

and seek a contradiction. Let y"(-), z"(*), and €, be as in the proof of Lemma 5.3, but
with " = (¢")". Also assume by taking a subsequence if necessary that

. a"
lim — =620

n
n— o

exists; that this can be done follows from Lemma 5.3 and (5.31). Observe now the formal
limit of (5.4) is

0=Ay(®)+ Bz(t—° + ¢,(»(¥))),

5.32
(5-32) 0=Az(1)+ By(x — ° + ¢, (z(1))

instead of (5.19).
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Just as in the proof of Lemma 5.3, one can establish the limits (5.20) and monotoni-
city properties (5.22), (5.23), (5.24), and (5.25) of Q,. Again, one of two possibilities, (5.26)
or (5.27), occurs. One also sees that neither 2, nor £, is the trivial set R x {0}, and while
7(0) =1 still holds, we may not have equation (5.21).

Consider now the following general construction: take any t°eR and define
inductively

y(™) formeven,
z(z™) formodd,

(5.33) " = {
(5.34) " =1 — 0% 4 ¢4 (&™)
for m 2 0. For m even the first equation of (5.32) implies, with 1 = 1™, that A"+ B{ =0

for some {e€z(t™*!), hence Em¥ 1 =Z(t"* )2 (= —k~'¢é™ Similarly, Emti < —k e
for m odd. One concludes that

(5.35) (=Hm¢m =0,
(5.36) & k™m0,
for all m.

As in the proof of Lemma 5.3, we show both (5.26) and (5.27) lead to contradictions.
The arguments here, however, differ depending on whether ¢° > 0 or ¢° = 0; indeed, one
sees the full hypotheses of the lemma are not needed in the case ¢° > 0. In any case though,
we assume below, for definiteness, the inequality

(5.37) Q" >k Q7
of Hypothesis H 3.

Suppose (5.26) holds and ¢° > 0. For the above sequence (5.33), (5.34) we have for
the second term

12 =1%=20%+¢o(£%) + 9o (&)
=1"-20°+ Q7"+ Q7I¢
10— 26+ (@Y + k7O (y(E%)) <1°

IIA

provided 7° is sufficiently large, since (1) = 0 as T — oo. But from (5.35), (5.36), for t°
large we have

(5.38) ya) =2k 2y () <y £ 5G9
as )_)(r") > 0, and this contradicts the monotonicity (5.23).

Suppose (5.27) holds and ¢° > 0. As in the proof of Lemma 5.3 one concludes (5.29)
and (5.30). Each point of the spike (0, &), with 0 = & < 7(0), belongs to QF, by (c) of
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Theorem 2.8. The first equation of (5.32), with 7 = 0, implies that —k "¢ e Z7(~0° + qo(é))
for all such &, hence

2(—0%+¢,(8)) <0 for 0 <¢<5(0).

But ¢, is not constant in [0,7(0)] as Q* > 0, so z is strictly negative on an interval. This
contradicts (5.30).

Suppose ¢° = 0. We show (5.26) cannot hold, and in fact show that
(5.39) j(r) = {0} for all large |].
For any 7° one has from (5.34), (5.36), and the formula for q,, that
[tm =M S Qe S @k
hence
om0y g —2

=1k

where Q max{Q™,|Q7|}. Therefore {t™} is a Cauchy sequence with limit 1™ — t®. As
&™ — 0, we conclude

Q
1—k™

(5.40) (t*,0)eQ, for some t® with |[t* —1°| <

As 1° is arbitrary, one concludes (5.39) from (5.40) and from the monotonicity (5.23).
We have now (5.39), with 6% =0. Let
t* =sup{teR|j(6)=0forallo <t}.
Then j(1) = {0} for 1 <1* and y(r*)=0, but either j(z*) =0 or y(z*) > 0 may hold.

Suppose 7 (t*) = 0. The monotonicity property (5.23) implies that t* < 0, and that y(r>0
for t* <17 < 0. Choose 1° strictly between 7¥ and 0; then

12 =104+ ¢ (&%) + ¢, (&Y
=10+ Q% (0 + Q7|EY
212 +(Q" ~kQ D(yE) > <°

from (5.37). Moreover, if t° is sufficiently near t* then also 7 < 0, since y(t%) = 7(z*) = 0
as 1% — 1*, by (5.23). But as before (5.38) holds, and this contradicts (5.23) since t° < 1% < 0.

Therefore y(t*) > 0. Part (c) of Theorem 2.8 implies that
Q.S QUQT.

Thereforeif 0 < ¢ < 7(t*) we have from (5.32) that 0 < 4 ¢ + B{ forsome L e Z(t* + g, (¢));
without loss

13 Journal fiir Mathematik. Band 477
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(=2(t*+¢o(&) 2 —k~'¢.
Denote 6 = t* + ¢, (). Then again from (5.32), with t =g,
(5.41) Yo +g00) S —k Sk 2e.
Observe that if £ > 0 then
(5.42) o +qo(0) =1%+q0(8) + ¢ (0)
=t + Q7+ Q7L
2t (QT—kTVIQTNE >t
from (5.37), and that ¢ + g4 ({) = ©* as & - 0. This limit, and (5.41) and (5.42), imply the
right-hand limit X(‘E# + 0) = 0; and this in turn implies that t* <0 is impossible, since
y(t) 2 7(z*) > 0 for all 7 € (z*,0), by monotonicity (5.23). Thus ¥ = 0. Moreover, we see
that y(r) = 7(r) = 0 for all T > 0, again using the monotonicity (5.23), and the right-hand

limit_)_)(r# +0) =0, with t* = 0. Thus (5.29) holds, and so Q, = Q¥ by (c) of Theorem
2.8. Therefore

(t+ o (&), —k~'¢)eQ, foreach(1,&)e @,
by (5.32). In particular (r,0) € 2, and hence (1,0) € 2, and
(5.43) Z(1) =0 foreach t;
and also (0, &) € Q, hence (qo(¢), —k~1¢)eQ, and
(5.44) 2(4o (&) <0 for0<E<F(O) =1.
But (5.43) and (5.44) imply that z(z) < Z(r) for 7 in some interval, namely for
T1=¢o(§) =07 e(0,07].

This contradicts the monotonicity (5.24), and completes the proof of the lemma. 0

6. A lower bound for || x||: part II

We complete our proof of Theorem 5.1 by treating Case III of Table 5.1. Recall that
the standing assumption of the previous section continues to hold, including the existence
of a sequence x"(-) of SOPS’s satisfying (5.5) and (5.6), with scaling parameters «” and
y" satisfying (5.7) and (5.8). Here we choose " =¢&". Observe that with this choice, the
scaled system (5.4) is not singularly perturbed as it was in Cases I and II, but rather has
a regular limit.

We begin with a technical lemma about constant coefficient linear functional diffe-
rential equations.
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Lemma 6.1. Consider the scalar equation
6.1) W(0) = L(w)
where, following the notation of [Hal-VL], we assume L : C[~ R,0] — R is a bounded linear

Sunctional. Assume there exists a nontrivial solution w(-) of (6.1) which is bounded and
nonnegative for t £ 0. Then there exists a root A of the characteristic equation

(6.2) A—=L(*)=0

with A€ [0, ).
Proof. Necessarily w(t) is a finite linear combination of the form
(6.3) w(t) =3 p*(r)e™

where each p* is a polynomial, and each A* is a root of (6.2) with Re 2* > 0. Assume (6.2)
has no solution in [0, o0). Then (6.3) can be written

(6.4) w(f) =Y Y c*i(t)i e sin (v*t + 67)
k

with real coefficients ¢*J, with u* = 0 and v* > 0, such that the quantities u* + iv* are all
distinct, and where (¢)’ denotes the j'" power of . Let u* denote the minimum of the
values p*, and let N denote the maximum degree of the polynomials in (6.4) for such k,
that is, the maximum of those j for which c*/ # 0 for those k with u* = u*. We have then

(6.5) e M) Vw@)=q()+ 0@ ast— -~

for some nontrivial quasiperiodic function ¢ which is a linear combination of terms
sin(v*¢ + 8%7). In particular ¢ is nonconstant and has mean value zero

1 T
im — Hdt=0,
Jim 57 J a0di=0

so there exists a sequence t” — — oo such that g(¢") - ¢® < 0. But this contradicts the fact
that the left-hand side of (6.5) is nonnegative, so completes the proof.

Lemma 6.2. Assume Hypotheses H1 and H3. Then &" = o(c" + («")").

Proof. Assume the result is false, so that both ratios ¢"/¢" and («")*/¢” remain
bounded as n — oo. Without loss we assume the limits

lim & =6°20, fim &L =4020

n-o & n->wo &

exist, by taking a subsequence if necessary. Set " = ¢”, and define y"(7) and z"(z) by (5.3).
Then
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(6.6) [y"(™)], 1z"(1)| =1 forallt,
(6.7) y"(0) =1

and moreover for some K > 0 we have
(6.8) [»"(0)],12"(r1)|< K foralltand n.

The bound (6.8) follows immediately from the differential equations (5.1) and implies, with
Ascoli’s theorem, the existence of limits

lim (", z"®) = (), z(1)

uniformly on compact z-intervals, after possibly passing to a further subsequence. The
functions y(+) and z(-) so obtained are in fact C! and satisfy the system

(O =Ay(@)+Bz(1 -0’ +a°4,(y(0)),

(6.9)
(1) = Az(1) + By(r — 0° + a%¢, (2(v)))
obtained as the limit of (5.4). One establishes this in a standard fashion by writing (5.4)
in integrated form, taking the limit n — oo, then differentiating to obtain (6.9). The bounds
(6.6), and equation (6.7), imply

(6.10) [y@l,lzx) £1 forallz, y@0)=1,
for the limiting solution. Moreover, one obtains

(6.11) mon y(7) + mon z(t) <4
telR teR

from (5.10). From (6.11) one concludes the existence of limits y(+ o0) and z(+ o). Upon
letting 7 — oo in (6.9), one sees that y(z) and Z (1) also approach limits, which must therefore
be 0. Consequently both Ay(o0) + Bz(o0) =0and 4z(w) + By(oo) =0, and this implies
y(o0) = z(o0) = 0. The corresponding result at — oo also holds; therefore

(6.12) y(£w)=z(+0)=0.

Upon noting that y(0) = 1 is the maximum of y(-), and then setting T = 0 in the first
equation of (6.9), one obtains 0 = 4 + Bz(o¢) with 6 = —6° + a®g,(y(0)). Thus z(s) < 0.
From this, from (6.11), and from (6.12), it follows that

mon y(r) = monz(t) =2,
teR tel®

(6.13)
y(t) 20 and 71y(1)<0 forallz,

and that there exists u € R such that
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6.14) z(1)£0 and (t—wi(r)=0 forallz.

To prove the lemma we obtain a contradiction, assuming the existence of a nontrivial
solution of (6.9) satisfying (6.13) and (6.14). We first show the equation

(6.15) A=A~ Be *°

possesses a root satisfying
A€ (0,0)

under such conditions. To this end, write (6.9) as

6.16) 9() = (4 + v (1)) p(1) + Bz(t — 0°)
. 2(t)=(4+p2(®)z() + By(r — ¢°),

where

B(z(t—0°+a%¢,(y (1)) — z(t — 6))
y(1)

') =

0 1
= -B_a%(gi@)— _[Z'(‘C-—O'o +0a°q,(y (1)) 46
0

and y? (1), defined similarly, are continuous and satisfy

(6.17) lim pi(r)= 0

Tt~ 1w
since both y(1), Z2(t) = 0 as 7 = + 0. Set
u(® =y@+I1z(®)| = y() —2(1),

observing that u(t) - 0 monotonically for large |7]|. Take any sequence t" — — o0 and let

" u(t+1")
v (‘C) - u(‘L‘") ’
then for large n
(6.18) 0Zv (1)1 forallt<0,
(6.19) "(0) =1,

and moreover v"(-) is equicontinuous on (— o, 0] since from (6.16) and (6.17)
9"(1) = Av" (1) — Bv" (1 —6°) + 0(1) asn—> ©
uniformly for £ 0. Upon passing to a subsequence one obtains in the limit a solution v (- ) to

v(t) = Av(t) — Bv(t — ¢°)
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for 7 £ 0. This solution is nonnegative, bounded, and nontrivial for T < 0 by (6.18), (6.19),
so by Lemma 6.1 the characteristic equation (6.15) possesses a root A€ [0,00). In fact one

sees 4 e (0,0) as claimed as 4 + B.

Having established the existence of such 4, we complete the proof of the lemma. Set

w(t)= —u(t)+ Be **° [ e Vu(s)ds

g%

and observe, by a short calculation using (6.15) and (6.16), that
(6.20) w(t) —Aw(®) = —p' (D) y(0) + v* (1) z(7).

Also note that in view of the monotonicity properties (6.13), (6.14), we have for large t

(6.21) w(t) = —u(1) + Be **° i e* "9y (t)ds

1T—a

= (—1 +§£—1———f—_ﬁ~2) u(t) = (B;A>u(r)

and so from (6.20) and (6.21)

b0 =i 2 —pOu0 2 - (104w z - 220

for large 1, where y(t) = max{y'(1),p*(r)} approaches zero as t — co. But now the
differential inequality w(t) = Aw(t)/2 so obtained, with the boundedness and nonnegativity
(6.21) of w(t), implies that w(tr) =0 for all large . With (6.21) it follows that u(7) =0,
hence y (1) = z(t) = 0 for all large 7. And as (y(1), z(1)) satisfies the system (6.16), with
B =+ 0, one concludes that y(t) = z(t) = 0 for all T € R. But this contradicts (6.10), and so
completes the proof. 0O
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