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Abstract. We study the dynamics of fixed point free mappings on the interior
of a normal, closed cone in a Banach space that are nonexpansive with respect to
Hilbert’s metric or Thompson’s metric. We establish several Denjoy-Wolff type
theorems which confirm conjectures by Karlsson and Nussbaum for an important
class of nonexpansive mappings. We also extend and put into a broader perspective
results by Gaubert and Vigeral concerning the linear escape rate of such nonex-
pansive mappings.

1 Introduction

The classical Denjoy-Wolff theorem asserts that all orbits of a fixed point free
holomorphic mapping f : D → D on the open unit disc D ⊆ C converge to a
unique point η ∈ ∂D. Since the inception of the theorem by Denjoy [14] and Wolff
[51, 52] in the nineteen-twenties, a variety of extensions have been obtained; see,
for example, [1, 8, 9, 10, 24, 46]. A detailed account of its history and an extensive
list of references can be found in the recent survey articles [4, Appendices G and
H], [26], and [45]. The problems considered in this paper originated in work by
Beardon [6, 7] and Karlsson [25], who extended the Denjoy-Wolff theorem to fixed
point free nonexpansive mappings on metric spaces that possess certain features of
nonpositive curvature. Earlier studies of the Denjoy-Wolff theorem in the context
of metric spaces can be found in [20, 19, 44].

A mapping f : M → M on a metric space (M, ρ) is called nonexpansive if

ρ( f (x), f (y)) ≤ ρ(x, y) for all x, y ∈ M.

Recall that each holomorphic self-mapping of the open unit disc D ⊆ C is nonex-
pansive under the hyperbolic metric, by the Schwarz-Pick Lemma.
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Particularly interesting examples of metric spaces that possess features of non-
positive curvature are Hilbert’s metric spaces. Hilbert’s metric spaces were intro-
duced by Hilbert [22] and play a role in the solution of his fourth problem; see
[42]. They are Finsler metric spaces that naturally generalize Klein’s model of the
real hyperbolic space. To define Hilbert’s metric, let � be a convex set in a real
vector space X such that for each x �= y in �, the straight line �xy through x and y
has the property that �xy ∩ � is a (relatively) open, bounded subset of �xy. On �,
Hilbert’s metric is given by

(1) δ (x, y) := log
( |x′ − y|

|x′ − x|
|y′ − x|
|y′ − y|

)
for x �= y ∈ �,

where x′, y′ ∈ ∂� are the end-points of the segment �xy ∩� such that x is between
x′ and y and y is between y′ and x.

For finite dimensional Hilbert metric spaces, Karlsson and Nussbaum inde-
pendently conjectured the following generalization of the Denjoy-Wolff theorem;
see [26, 41].

Conjecture 1.1. If f : � → � is a fixed point free mapping on a finite di-
mensional Hilbert’s metric space (�, δ ), then there exists a convex set � ⊆ ∂�

such that for each x ∈ �, all accumulation points ω(x; f ) of the orbit O(x; f ) :=
{ f k(x) : k ≥ 0} lie in �.

In fact, Nussbaum conjectured that the same assertion holds in infinite dimen-
sions under additional compactness conditions on f ; see [41, Conjecture 4.21].
Note that if � is finite dimensional and its closure (in the usual topology) is
strictly convex, then each convex subset of ∂� reduces to a single point. Con-
jecture 1.1 was shown by Beardon [7] to hold in case � has a strictly convex
closure, and by Lins [34] for polytopes. Further supporting evidence was obtained
in [2, 28, 35, 41].

Important examples of Hilbert metric nonexpansive mappings arising in math-
ematical analysis come from nonlinear mappings on cones. Let C be a closed
cone with nonempty interior C◦ in a normed space X . Suppose that there exists a
strictly positive linear functional ϕ ∈ X∗, i.e., ϕ(x) > 0 for all x ∈ C \ {0}, and let
�◦
ϕ := {x ∈ C◦ : ϕ(x) = 1}. If f : C◦ → C◦ preserves the partial ordering induced

by C and is homogeneous (of degree 1), the mapping g : �◦
ϕ → �◦

ϕ given by

(2) g(x) =
f (x)

ϕ( f (x))
for x ∈ �◦

ϕ,

is nonexpansive under δ on �◦
ϕ; see [31, Chapter 2]. Examples of such map-

pings f : C◦ → C◦ include reproduction-decimation operators in the analysis
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of diffusions on fractals [35, 38], dynamic programming operators in stochastic
games (after a change of variables) [47], and mappings arising in nonlinear Perron-
Frobenius theory [31].

Among other results, we establish the following Denjoy-Wolff type theorem
for mappings g given in (2).

Theorem 1.2. Let C be a closed cone with nonempty interior in a finite di-
mensional vector space and ϕ ∈ X∗ be a strictly positive functional. Suppose that
f : C◦ → C◦ is an order-preserving homogeneous mapping with no fixed point in
C◦ and partial spectral radius rC◦( f ) = 1. If there exists x0 ∈ C◦ such that either

(a) O(x0; f ) has a compact closure in the norm topology, or,
(b) limk→∞ ‖ f k(x0)‖ = ∞,

then there exists a convex set� ⊆ ∂�◦
ϕ such that for each x ∈ �◦

ϕ, the accumulation
points of O(x; g), where g is given by (2), lie in �.

In fact, we prove a more general infinite dimensional version of this result; see
Theorems 7.1 and 7.3. Unlike in finite dimensions, there need not exist a strictly
positive linear functional ϕ ∈ X∗ if C is infinite dimensional; see [29, pp. 48–
57]. In that case, we consider scalings of order-preserving homogeneous mappings
f : C◦ → C◦ by using continuous homogeneous functions q : C◦ → (0,∞).

We conjecture that condition (a) or (b) in Theorem 1.2 always holds. In other
words, we believe that there do not exist an order-preserving homogeneous map-
ping f : C◦ → C◦, with rC◦( f ) = 1, on the interior of a finite dimensional closed
cone and a point x0 ∈ C◦ such that O(x0; f ) is unbounded in the norm topology
and O(x0; f ) has an accumulation point in ∂C. At present, we can only confirm
this in case C is a polyhedral cone; see Theorem 7.4.

Thompson’s metric [49] is closely related to Hilbert’s metric and is defined on
the interior of a closed cone C in a normed space X . For Thompson’s metric we
establish the following Denjoy-Wolff type theorem.

Theorem 1.3. Let C be a closed cone with nonempty interior in a finite di-
mensional vector space X and f : C◦ → C◦ be a fixed point free mapping which
is nonexpansive under Thompson’s metric. If O(x0; f ) has compact closure in the
norm topology for some x0 ∈ C◦, then there exists a convex set � ⊆ ∂C such that
for each x ∈ C◦, the accumulation points of O(x; f ) lie in �.

Again we establish a more general infinite dimensional version (see Theorem
3.2), which confirms [41, Conjecture 4.23] under the additional condition that
there exists a pre-compact orbit in the norm topology.

In Section 4, we introduce a spectral radius rC◦( f ) for order-preserving ho-
mogeneous mappings f : C◦ → C◦ and use it, not only to prove Theorems 7.1
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and 7.3, but also to extend some results concerning the linear escape rate in [18];
see Theorem 4.6, Corollary 6.4 and Theorem 6.5. In Section 5, we study Funk
and reverse-Funk horofunctions on the interiors of cones and characterize them
for symmetric cones; see Theorem 5.6. We use the Funk and reverse-Funk horo-
functions to establish a Wolff type theorem for order-preserving homogeneous
mappings f : C◦ → C◦ (see Theorem 6.1), which plays a role in the proof of
Theorem 7.3.

We will start by collecting some basic concepts in the next section.

2 Preliminaries

A convex subset C of a real vector space X is called a cone if C ∩ (−C) = {0}
and λC ⊆ C for all λ ≥ 0. A cone C induces a partial ordering ≤C on X by

x ≤C y if y − x ∈ C.

Throughout this paper, we assume that C is a closed cone with nonempty interior,
denoted C◦, in a real Banach space (X, ‖ · ‖). We often assume that C is normal,
i.e., there exists a constant κ ≥ 0 such that ‖x‖ ≤ κ‖y‖ whenever 0 ≤C x ≤C y.

For a closed cone C with nonempty interior in a Banach space (X, ‖ · ‖) and
u ∈ C◦, the order unit norm, ‖ · ‖u on X is defined by

‖x‖u := inf{λ ≥ 0: − λu ≤C x ≤C λu}.
Note that C is a normal cone in (X, ‖·‖u) with normality constant κ = 1. Moreover,
the order interval [−u, u] := {x ∈ X : −u ≤C x ≤C u} (which is the unit ball in
‖·‖u) is a neighborhood of 0 in the original topology, by [5, Lemma 2.5], and so
the topology generated by ‖·‖u is coarser than the original topology. If C is normal
in (X, ‖ · ‖), the order unit norm ‖ · ‖u is equivalent with ‖ · ‖; see, for example, [5,
Theorems 2.8 and 2.63].

A linear functional ϕ : X → R is said to be positive if ϕ(C) ⊆ [0,∞); it is
said to be strictly positive if ϕ(x) > 0 for all x ∈ C with x �= 0. Note that each
positive functional on X is continuous with respect to ‖ · ‖u, as |ϕ(x)| ≤ ϕ(u) for
all x ∈ X with ‖x‖u ≤ 1. We denote the dual cone by C∗; so,

C∗ := {ϕ ∈ X∗ : ϕ(C) ⊆ [0,∞)}.
Furthermore, we define

�∗
u := {ϕ ∈ C∗ : ϕ(u) = 1}.

The following lemma collects some known facts concerning �∗
u. For the reader’s

convenience, we include the proofs.
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Lemma 2.1. Let C be a closed cone with nonempty interior in a Banach
space X. For u ∈ C◦,
(1) x ≤C y if and only if ϕ(x) ≤ ϕ(y) for all ϕ ∈ �∗

u;
(2) for x ∈ X,

‖x‖u = sup{|ϕ(x)| : ϕ ∈ �∗
u};

(3) the set �∗
u is norm bounded by 1/d(u,X \ C), where

d(u,X \ C) := inf{‖u − v‖ : v ∈ X \ C},

and �∗
u is weak* compact. Moreover, if X is separable, then �∗

u is a
weak* sequentially compact and there exists a strictly positive functional
ψ ∈ �∗

u.

Proof. To prove (1), note that if x �≤C y, then y − x �∈ C. In that case, there
exist α ∈ R and ϕ ∈ X∗ such that ϕ(y − x) < α and ϕ(z) > α for all z ∈ C, by the
Hahn-Banach separation theorem. We can normalize ϕ such that ϕ(u) = 1. Also
note that 0 = ϕ(0) > α, so ϕ(y) < ϕ(x). As ϕ(λz) > α for all λ > 0 and z ∈ C, we
must have that ϕ(z) ≥ 0 for all z ∈ C, and hence ϕ ∈ �∗

u. The opposite implication
is trivial.

To prove (2) note that it follows from (1) that for each x ∈ X ,

‖x‖u = inf{λ ≥ 0: − λu ≤C x ≤C λu}
= inf{λ ≥ 0: − λ ≤ ϕ(x) ≤ λ for all ϕ ∈ �∗

u}
= sup{|ϕ(x)| : ϕ ∈ �∗

u}.

To prove (3), we define for x ∈ X the weak* continuous linear functional
x̂ : X∗ → R by x̂(ϕ) = ϕ(x). So,

�∗
u =

(⋂
x∈C

x̂−1([0,∞))

)
∩ û−1({1}),

which is a weak* closed subset of X∗.
Let r := d(u,X \ C) > 0. If ‖z‖ ≤ r and ϕ ∈ �∗

u, then u ± z ∈ C; and so
ϕ(u ± z) ≥ 0, which yields

−1 = −ϕ(u) ≤ ϕ(z) ≤ ϕ(u) = 1.

Hence |ϕ(z)| ≤ 1, and so
∥∥ϕ∥∥ ≤ 1/r. Therefore, �∗

u is contained in a multiple of
the unit ball of X∗, which is weak* compact by the Banach-Alaoglu Theorem, and
so �∗

u is weak* compact.
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It is well known that if X is separable, then bounded sets of X∗ are weak*
metrizable. In that case, �∗

u is sequentially compact, and hence �∗
u is separable.

Let (ϕk)k be a dense sequence in �∗
u, and define ϕ =

∑
k≥1 2−kϕk ∈ �∗

u. For
x ∈ C with x �= 0, ‖x‖u > 0; and hence by part (2), there exists σ ∈ �∗

u with
ε := σ(x) > 0. Consider the weak* neighborhood of σ

Nε,σ := {ϕ ∈ �∗
u : |(ϕ− σ)(x)| < ε} = {ϕ ∈ �∗

u : |ϕ(x) − ε| < ε}.
As (ϕk)k is dense in �∗

u, there exists ϕm ∈ Nε,σ, and hence ϕm(x) > 0. This implies
that

ψ(x) :=
∑
k≥1

2−kϕk(x) ≥ 2−mϕm(x) > 0,

which shows that ψ is strictly positive. �
The partial ordering ≤C induces an equivalence relation ∼C on C by x ∼C y

if there exist 0 < α ≤ β such that αy ≤C x ≤C βy. The equivalence classes are
called parts of C. It is easy to verify that C◦ is a part of C. Given x ∈ X and
y ∈ C, we let

M (x/y) := M (x/y;C) = inf{β ∈ R : x ≤C βy}.
On C, Thompson’s metric is defined by

dC(x, y) :=

⎧⎨
⎩log (max{M (x/y),M (y/x)}) for x ∼C y,

∞ otherwise.

It was shown by Thompson [49] that dC is a metric on each part of C, and its
topology on C◦ coincides with the norm topology if C is a closed, normal cone in
a Banach space.

Also on C, Hilbert’s (projective) metric is defined by

δC(x, y) :=

⎧⎨
⎩log (M (x/y)M (y/x)) for x ∼C y,

∞ otherwise.

Note that δC(μx, νy) = δC(x, y) for all μ, ν > 0 and x ∼C y. It is known that
δC is a metric between pairs of rays in each part of C if C is closed; see [31,
Chapter 2]. Moreover, if there exists a strictly positive linear functional ϕ ∈ X∗,
then δC coincides with Hilbert’s metric δ given in (1) on�◦

ϕ = {x ∈ C◦ : ϕ(x) = 1}.
In finite dimensional spaces, the set�◦

ϕ is bounded in the norm topology, but it may
be unbounded in infinite dimensional normed spaces. In this paper, we work with
δC rather than δ , and consider δC on subsets � ⊆ C◦ with the property that for
each y ∈ C◦, there exists a unique λ > 0 such that λy ∈ �.

The following basic lemma is useful.
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Lemma 2.2. Let C be a closed cone with nonempty interior in a Banach
space X, and u ∈ C◦. For each x ∈ X and y ∈ C◦,

M
(

x
y

)
= sup
ϕ∈�∗

u

ϕ(x)
ϕ(y)

,

and the supremum is attained. Moreover, (x, y) �→ M (x/y) is a continuous map
from X × C◦ into R.

Proof. By Lemma 2.1(1),

M (x/y) = inf{β ∈ R : x ≤C βy}
= inf{β ∈ R : ϕ(x) ≤ βϕ(y) for all ϕ ∈ �∗

u}
= sup{ϕ(x)/ϕ(y) : ϕ ∈ �∗

u}.

The supremum is attained by weak* compactness of �∗
u.

For the second statement, recall that the ‖·‖u-topology is coarser than the ‖·‖-
topology on X ; so we may assume that X is equipped with ‖·‖u. By Lemma 2.1, the
map x �→ x̂ is an isometric order isomorphism from (X, ‖·‖u) into (C(�∗

u), ‖·‖∞),
where x̂(ϕ) := ϕ(x) and �∗

u is equipped with the weak* topology. The continu-
ity statement now follows from the fact that the map is the composition of the
continuous maps

(x, y) �→ (x̂, ŷ) �→
(

x̂,
1
ŷ

)
�→ x̂

ŷ
�→ sup

ϕ∈�∗
u

x̂
ŷ
(ϕ) = sup

ϕ∈�∗
u

ϕ(x)
ϕ(y)

= M
(

x
y

)
.

�

3 A Denjoy-Wolff theorem for Thompson’s metric

In this section, we prove a Denjoy-Wolff theorem for fixed point free
Thompson’s metric nonexpansive mappings f : C◦ → C◦, where one of the orbits
of f has a compact closure in the norm topology. We denote the set of accumu-
lation points of O(x; f ) in C by ω(x; f ). As we are allowing infinite dimensional
cones, some care must be taken to ensure that all accumulation points of the or-
bits of fixed point free nonexpansive mapping lie in ∂C. Indeed, in [15] Edelstein
gave an example of a fixed point free nonexpansive mapping f : H → H on a
separable Hilbert space H such that O(0; f ) is unbounded in norm but has 0 as an
accumulation point; see also [48]. To exclude such situations, we assume that the
nonexpansive mapping satisfies the following property.
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Definition 3.1. Let C be a normal, closed cone with nonempty interior in a
Banach space (X, ‖ · ‖), and let f : C◦ → C◦ be a continuous mapping. We say
that f has the fixed point property on C◦ with respect to dC if f has a fixed
point in D for each bounded, convex, closed subset D of (C◦, dC) with f (D) ⊆ D.

Of course, if X is finite dimensional, then every continuous mapping f : C◦ →
C◦ has the fixed point property with respect to dC , by the Brouwer Fixed Point
Theorem. In infinite dimensional spaces, sufficient conditions were obtained by
Nussbaum in [41, Theorem 3.10] in terms of “condensing functions and measures
of noncompactness”.

Let us now formulate the main result of this section.

Theorem 3.2. Let C be a normal closed cone with nonempty interior in a
Banach space (X, ‖·‖), and let f : C◦ → C◦ be a fixed point free Thompson metric
nonexpansive mapping satisfying the fixed point property on C◦ with respect to dC.
If O(x0; f ) has compact closure in the norm topology for some x0 ∈ C◦, then there
exists a convex set � ⊆ ∂C such that ω(x; f ) ⊆ � for all x ∈ C◦.

This result confirms [41, Conjecture 4.23] by Nussbaum in case the mapping
has a pre-compact orbit. Also note that Theorem 3.2 implies Theorem 1.3, as each
nonexpansive mapping has the fixed point property on C◦ with respect to dC when
C is finite dimensional.

The following proposition plays a central role in the proof.

Proposition 3.3. If {xk}k is a sequence in the interior of a closed cone C in
a Banach space X such that {xk : k = 0, 1, 2, . . .} has compact closure in the norm
topology on X,

(3) dC(xm+k, xn+k) ≤ dC(xm, xn) for all k,m, n ≥ 0,

and

(4) lim
k→∞ dC(xk, x0) = ∞,

then there exist a subsequence {xki }i of {xk}k and η ∈ ∂C such that limi→∞ xki = η
and

(5) dC(xm, x0) < dC(xki , x0) for all m < ki .

Moreover, there exist ϕ, σ jm ∈ �∗
u for j,m ≥ 1 with σ jm(η) = 0 such that

(6)
ϕ(xk j+m)

ϕ(x0)
≤ σ jm(xk j )

σ jm(x0)

for all j,m ≥ 1.
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Proof. Take u ∈ C◦ fixed, and let R := 1/d(u,X\C), so that�∗
u is bounded by

R, by Lemma 2.1(3). Let Y be the closed linear span of {xk : k = 0, 1, 2, . . .}∪{u},
and write K = C ∩ Y . Then Y is separable, and K is a closed cone in Y with u in
its interior. Note that

M (x/y;C) = M (x/y;K ) for all x, y ∈ K ◦,

and hence dK (x, y) = dC(x, y) on K ◦. As Y ∩ C◦ is nonempty, Y is a majorizing
subspace of X , meaning that for each x ∈ X there exists y ∈ Y such that x ≤C y.
By Kantorovich’s theorem [5, Theorem 1.30], each positive linear functional on Y
can be extended as a positive functional to all of X . Thus we may assume from the
outset that X is separable.

By Lemma 2.1(3) �∗
u is weak* sequentially compact. By (4), we can find a

subsequence {xki }i of {xk}k satisfying (5). Furthermore, as {xk : k = 0, 1, 2, . . .}
has compact closure in the norm topology, we can take a further subsequence and
assume that {xki }i converges to η ∈ ∂C. (Note that η cannot lie in C◦; as otherwise,
dC(η, x0) < ∞, which violates (4).)

By Lemma 2.2, for each i, j,m ≥ 1 with m ≤ ki , there exist ϕi, ψim, σi jm ∈ �∗
u

such that

M
(

x0

xki

)
=
ϕi(x0)
ϕi(xki )

,

M
(

x0

xki−m

)
=

ψim(x0)
ψim(xki−m)

,

M
(

xk j

xki−m

)
=

σi jm(xk j )

σi jm(xki−m)
.

(7)

We claim that for all i sufficiently large, the Thompson metric distance equals the
logarithm of the M -functions in (7). We prove this only for M (xk j/xki−m); the
arguments for the other functions are similar and left to the reader.

First note that

dC(xki , x0) − dC(xk j+m, x0) ≤ dC(xk j+m, xki ) ≤ dC(xk j , xki−m).

As the left hand side tends to ∞ as i → ∞, we find that dC(xk j , xki−m) → ∞ as
i → ∞. For i ≥ 1, let σ̂i jm ∈ �∗

u be such that

M

(
xki−m

xk j

)
=
σ̂i jm(xki−m)
σ̂i jm(xk j )

.

By weak* compactness of �∗
u, the sequence {σ̂i jm(xk j )}i is bounded from below

by a positive real; hence

M

(
xki−m

xk j

)
=
σ̂i jm(xki−m)
σ̂i jm(xk j )

≤ R‖xki−m‖
σ̂i jm(xk j )
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is bounded from above by a positive real, since (‖xki−m‖)i is bounded. Thus, for
all i sufficiently large,

dC(xk j , xki−m) = log
σi jm(xk j )

σi jm(xki−m)
.

From now on we assume that i is so large that the Thompson metric distance
is given by the logarithm of the M -functions in (7).

By (5),

log
(

ψim(x0)
ψim(xki−m)

)
= dC(x0, xki−m) ≤ dC(x0, xki ) = log

(
ϕi(x0)
ϕi(xki )

)
,

so that

(8)
ϕi(xki )

ψim(xki−m)
≤ ϕi(x0)
ψim(x0)

.

Note also that by the definition of ψim ∈ �∗
u,

σi jm(x0)
σi jm(xki−m)

≤ ψim(x0)
ψim(xki−m)

,

so that

(9)
ψim(xki−m)
σi jm(xki−m)

≤ ψim(x0)
σi jm(x0)

.

Now using equations (3), (8), and (9), we get that

ϕi(xk j+m)

ϕi(x0)
=
ϕi(xk j+m)

ϕi(xki )
ϕi(xki )
ϕi(x0)

≤ edC (xk j +m,xki )
ϕi(xki )
ϕi(x0)

≤ edC (xk j ,xki−m)ϕi(xki )
ϕi(x0)

=
σi jm(xk j )

σi jm(xki−m)
ϕi(xki )
ϕi(x0)

=
σi jm(xk j )

ϕi(x0)
ϕi(xki )

ψim(xki−m)
ψim(xki−m)
σi jm(xki−m)

≤ σi jm(xk j )

ϕi(x0)
ϕi(x0)
ψim(x0)

ψim(x0)
σi jm(x0)

=
σi jm(xk j )

σi jm(x0)
.

As �∗
u is sequentially weak* compact, we can pass to a subsequence twice and

assume that ϕi → ϕ ∈ �∗
u and σi jm → σ jm ∈ �∗

u in the weak* topology as
i → ∞, which proves (6).

It remains to show that σ jm(η) = 0 for all j,m ≥ 1. As

dC(xk j , xki−m) = log
(
σi jm(xk j )/σi jm(xki−m)

) → ∞
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as i → ∞, we know that σi jm(xki−m) → 0 as i → ∞. Moreover,

log
σi jm(xki )
σi jm(xki−m)

≤ dC(xki , xki−m) ≤ dC(xm, x0),

which implies that σi jm(xki ) → 0 as i → ∞. As

lim
i→∞ |σi jm(xki − η)| ≤ lim

i→∞ R‖xki − η‖ = 0

and σi jm(xki − η) → −σ jm(η) as i → ∞, we see that σ jm(η) = 0. �
Before proceeding. we mention a useful result of Całka . Recall that a metric

space (M, ρ) is said to be finitely totally bounded if for each bounded set S ⊆
M and each ε > 0, the set S can be covered with finitely many balls of radius ε.

Theorem 3.4 (Całka [12, Theorem 5.6]). If f : M → M is a nonexpansive
mapping on a finitely totally bounded metric space (M, ρ) and there exists x0 ∈ M
such that O(x0; f ) has a bounded subsequence, then O(x; f ) is bounded for every
x ∈ M.

Using Całka’s theorem and Proposition 3.3, we now derive the following con-
sequence.

Corollary 3.5. Let C be a normal closed cone with nonempty interior in a
Banach space (X, ‖ · ‖) and let f : C◦ → C◦ be a fixed point free Thompson metric
nonexpansive mapping satisfying the fixed point property on C◦ with respect to dC.
If x0 ∈ C◦ is such that O(x0; f ) has compact closure in the norm topology, then
there exists ϕ ∈ C∗ \ {0} such that ω(x0; f ) ⊆ ker(ϕ) ∩ C.

Proof. Take u ∈ C◦ fixed, and let R := 1/d(u,X \ C). Recall that �∗
u is

bounded by R, by Lemma 2.1(3).
We first prove that

lim
k→∞ dC( f k(x0), x0) = ∞.

Suppose, by way of contradiction, that there exist r > 0 and a subsequence
{ f ki (x0)}i of { f k(x0)} such that dC( f ki (x0), x0) ≤ r for all i. Define M to be the
norm closure of O(x0; f ), which is compact in the norm topology, by assumption.
As the topology of dC coincides with the norm topology on C◦, M ∩Bδ (x0) is com-
pact with respect to dC for each closed ball Bδ (x0) := {y ∈ C◦ : dC(x0, y) ≤ δ}.
So, for each ε > 0, the set O(x0; f ) ∩ Bδ (x0) can be covered with finitely many
balls of radius ε. This shows that (O(x0; f ), dC) is finitely totally bounded. Using
Całka’s theorem, we see that O(x0; f ) is bounded with respect to dC . This implies
that ω(x0; f ) ⊆ C◦ is a nonempty and bounded with respect to dC . As f has the
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fixed point property on C◦ with respect to dC , we can apply [41, Theorem 3.11]
to conclude that the mapping f has a fixed point in C◦, which contradicts our
assumption.

For k ≥ 1 let xk := f k(x0), so {xk}k satisfies the assumptions of Proposition 3.3.
We find ϕ, σ jm ∈ �∗

u such that

(10)
ϕ(xk j+m)

ϕ(x0)
≤ σ jm(xk j )

σ jm(x0)

and σ jm(η) = 0, where xki → η ∈ ∂C as i → ∞.

By weak* compactness of �∗
u, σ jm(x0) is uniformly bounded from below in j

and m, and

lim
j→∞ |σ jm(xk j )| = lim

j→∞ |σ jm(xk j − η)| ≤ lim
j→∞ R‖xk j − η‖ = 0,

by Lemma 2.1(2). This implies that the right hand side of (10) converges to 0
uniformly in m, and hence

(11) lim
j→∞ϕ(xk j+m) = 0

uniformly in m.

Now if ξ ∈ ω(x0; f ), there exists a subsequence {xk jn+mn} j of {xkn + mn} with
xk jn+mn → ξ and k jn → ∞ as n → ∞. It follows from (11) that ϕ(ξ ) = 0,
and hence ξ is in the kernel ker(ϕ) of the positive functional ϕ; so, ω(x0, f ) ⊆
ker(ϕ) ∩ C. �

We can now prove Theorem 3.2.

Proof of Theorem 3.2. By Corollary 3.5, ω(x0; f ) ⊂ ∂C. It remains to
show that the convex hull of ∪x∈C◦ω(x; f ), denoted �, is contained in ∂C. The
argument is similar to that given in [41, Theorem 5.3] and relies on the fact that
the closure of O(x0; f ) is compact.

Let z ∈ C◦ and ζ ∈ ω(z; f ). Then there exists a subsequence { f ki (z)}i of
{ f k(z)}k converging to ζ in the norm topology. As O(x0; f ) has a compact closure,
we may assume, after possibly taking a further subsequence, that f ki (x0) converges
to some ξ ∈ ω(x0; f ). Obviously, dC( f ki (x0), f ki (z)) ≤ dC(x0, z) for all i, and hence
ξ ∼C ζ , by [41, Lemma 5.2].

Now let η ∈ �. Then there exist z1, . . . , zn ∈ C◦, 0 < λ1, . . . , λn < 1 with∑n
i =1 λi = 1, and ζi ∈ ω(zi ; f ) for i = 1, . . . , n such that η =

∑n
i =1 λiζi . For each

i = 1, . . . , n, there exists ξi ∈ ω(x0; f ) with ξi ∼C ζi . Clearly, ν :=
∑n

i =1 λiξi is in
the convex hull of ω(x0; f ) and ν ∼C η.
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Now suppose that there exists χ ∈ � ∩ C◦. By the previous observation, there
exists ν in the convex hull of ω(x0; f ) with ν ∼C χ. But this implies that ν ∈ C◦,
which contradicts the fact that ω(x0; f ) is contained in ∂C. �

4 The cone spectral radius

In the remainder of this paper, we discuss Denjoy-Wolff type theorems for Hilbert’s
metric nonexpansive mappings that come from scaling order-preserving homogen-
ous mappings f : C◦ → C◦. More precisely, we consider mappings g : �◦ → �◦

of the form

g(x) :=
f (x)

q( f (x))
for x ∈ �◦

q,

where f : C◦ → C◦ is an order-preserving homogeneous mapping on the interior
of a normal closed cone in a Banach space (X, ‖ · ‖), q : C◦ → (0,∞) is a norm
continuous homogeneous function, and

�◦
q := {x ∈ C◦ : q(x) = 1}.

Typical examples of functions q include strictly positive functionals ϕ in X∗, q(·) =
‖ · ‖, and q(·) = ‖ · ‖u, where u ∈ C◦ is fixed.

To analyze the dynamics of such mappings, we need to introduce a spectral
radius for order-preserving homogenous mappings f : C◦ → C◦. There exist
various definitions for the spectral radius for continuous, order-preserving, homo-
geneous mappings f : C → C if f is defined on the whole of the closed cone
C; see [36]. In general, however, f : C◦ → C◦ may fail to have a continuous,
order-preserving, homogeneous extension to the whole of C; see [11]. So, some
additional analysis is needed.

4.1 Approximate eigenvectors. As the definition of, and the results con-
cerning, the cone spectral radius for mappings f : C◦ → C◦ are of some independ-
ent interest, we work in a slightly more general setting. We consider homogeneous
mappings that are defined on a subset of a normal closed cone C ⊆ X and that are
order-preserving with respect to a, possibly different, normal closed cone K ⊆ X
with C ⊆ K .

Throughout this section, we assume that C ⊆ K are normal closed cones in a
Banach space (X, ‖ · ‖). For u ∈ C with ‖u‖ = 1, we denote the part of u (with
respect to K ) by

Ku := {x ∈ K : αx ≤K u ≤K βx for some 0 < α ≤ β}.
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We consider homogeneous mappings f : C ∩ Ku → C ∩ Ku that are order-
preserving with respect to K , so f (x) ≤K f (y) whenever x, y ∈ C ∩Ku and x ≤K y.
For the applications in this paper, we eventually assume that u ∈ C◦ and K = C, in
which case Ku = C◦. The reader may wish to make this simplifying assumption.

Definition 4.1. Let u ∈ C, with ‖u‖ = 1, and f : C ∩ Ku → C ∩ Ku be ho-
mogeneous and order-preserving with respect to K . We say that f is u-bounded
if there exists M > 0 such that

f (x) ≤K M‖x‖u for all x ∈ C ∩ Ku.

Note that if u ∈ C◦, with ‖u‖ = 1, and K = C, then any homogeneous order-
preserving mapping f : C◦ → C◦ is u-bounded. Indeed, as C is a closed normal
cone and u ∈ C◦, the order-unit norm ‖ · ‖u is equivalent to ‖ · ‖. So there exists
a constant M1 > 0 such that ‖x‖u ≤ M1 for all x ∈ C with ‖x‖ ≤ 1. This implies
that x ≤C M1u for all x ∈ C with ‖x‖ ≤ 1, and hence f (x) ≤C M1 f (u). As u ∈ C◦,
there exists M2 > 0 such that f (u) ≤C M2u, so

f (x) ≤C M1M2u for all x ∈ C with ‖x‖ ≤ 1.

Given a homogeneous mapping f : C∩Ku → C∩Ku which is order-preserving
with respect to K , we define for k ≥ 1,

‖ f k‖C∩Ku := sup{‖ f k(x)‖ : x ∈ C ∩ Ku and ‖x‖ ≤ 1}.
Lemma 4.2. If f : C ∩ Ku → C ∩ Ku is a homogeneous mapping which is

order-preserving with respect to K and there exists an integer m ≥ 1 such that f m

is u-bounded, then ‖ f k‖C∩Ku < ∞ for all k ≥ m, and

lim
k→∞ ‖ f k‖1/k

C∩Ku
= inf

k≥m
‖ f k‖1/k

C∩Ku
= lim

k→∞ ‖ f k(u)‖1/k.

Proof. We first show that f k extends continuously to 0 for all k ≥ m. Note
that if k ≥ m and ‖xn‖ → 0, then

f k(xn) = f k−m( f m(xn)) ≤K M‖xn‖ f k−m(u) ≤K M‖xn‖βku

for some βk > 0, as f m is u-bounded and f k−m(u) ∈ C ∩ Ku. Thus, for each
k ≥ m, we have that f k(xn) → 0 if ‖xn‖ → 0. So, defining f k(0) := 0, we obtain
a continuous extension of f k to 0.

Using the homogeneity of f k , it is easy to show that ‖ f k‖C∩Ku < ∞ for all
k ≥ m. Using sub-additivity, we now show that

lim
k→∞ ‖ f k‖1/k

C∩Ku
= inf

k≥m
‖ f k‖1/k

C∩Ku
.
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Let an := log ‖ f n‖C∩Ku for all n ≥ 1. We know that an < ∞ for all n ≥ m;
and, clearly, ap+q ≤ ap + aq for all p, q ≥ m. Let L := infn≥m an/n < ∞. Take
ε > 0 and choose k ≥ m such that ak/k < L + ε. For each n ≥ 2k we have that
n =: pnk+qn+m, where pn ≥ 1 and 0 ≤ qn < k, so an ≤ apnk+aqn+m ≤ pnak+aqn+m .
This gives the inequality

an

n
≤ pnk

n
ak

k
+

aqn+m

n
.

Letting n → ∞ shows that
lim sup

n→∞
an

n
≤ ak

k
,

since pnk/n → 1 as n → ∞, and a j+m < ∞ for all 0 ≤ j < k. Thus,

L ≤ lim inf
n→∞

an

n
≤ lim sup

n→∞
an

n
≤ ak

k
≤ L + ε,

which shows that limn→∞ an/n = L.
Write r := limk→∞ ‖ f k‖1/k

C∩Ku
and rk := ‖ f k‖1/k

C∩Ku
. It is an easy exercise in

calculus to show that limk→∞ r(k+n)/k
k+n = r for all n ≥ 1. Let κ > 0 be the normality

constant of K . If x ∈ C ∩ Ku and ‖x‖ ≤ 1, then f m(x) ≤K Mu, so f k+m(x) ≤K

M f k(u), which gives ‖ f k+m(x)‖ ≤ Mκ‖ f k(u)‖ for all x ∈ C ∩ Ku with ‖x‖ ≤ 1.
Thus

r(m+k)/k
m+k ≤ (Mκ‖ f k(u)‖)1/k ≤ (Mκ)1/krk,

and hence limk→∞ ‖ f k(u)‖1/k = r. �
It is well known; see for example [5, Theorem 2.38] or [29, Theorem 4.4], that

as K is normal, (X, ‖ · ‖) admits an equivalent monotone norm | · |, i.e., |x| ≤ |y|
whenever 0 ≤K x ≤K y. Given a homogeneous mapping f : C ∩ Ku → C ∩ Ku

which is order-preserving with respect to K and ε > 0, define fε,u : C ∩ Ku →
C ∩ Ku by

(12) fε,u(x) := f (x) + ε|x|u for x ∈ C ∩ Ku.

Note that fε,u is homogeneous and order-preserving with respect to K , as | · | is a
monotone norm. Moreover, for each x ∈ C ∩ Ku we have that f (x) ≤K fε,u(x) and

sup
x∈C∩Ku : |x|≤1

| f (x) − fε,u(x)| ≤ ε|u|.

Theorem 4.3. Let f : C ∩ Ku → C ∩ Ku be a homogeneous mapping which
is order-preserving with respect to K , and let fε,u : C ∩ Ku → C ∩ Ku be given by
(12). If f is u-bounded, then

(i) for each ε > 0, the mapping fε,u has a unique eigenvector vε,u ∈ C ∩Ku with
|vε,u| = 1, and

fε,u(vε,u) =: rε,uvε,u;
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(ii) the mapping ε �→ vε,u is continuous in the norm topology for ε > 0;
(iii) for each ε > 0,

rε,u = lim
k→∞ ‖ f k

ε,u‖1/k
C∩Ku

= inf
k≥1

‖ f k
ε,u‖1/k

C∩Ku
= lim

k→∞ ‖ f k
ε,u(u)‖1/k,

and
lim
ε→0+

rε,u = lim
k→∞ ‖ f k‖1/k

C∩Ku
.

Proof. For notational convenience, we write fε := fε,u, rε := rε,u, and vε :=
vε,u. Let � := {x ∈ C ∩ Ku : |x| = 1} and define gε : � → � by

gε(x) :=
fε(x)

| fε(x)| for x ∈ �.

As εu ≤K fε(x) for all x ∈ �, ε|u| = |εu| ≤ | fε(x)| for all x ∈ �.
Because of the equivalence of the norms | · | and ‖ · ‖ and the fact that f is

u-bounded, there exists M1 > 0 such that

f (x) ≤K M1|x|u for all x ∈ C ∩ Ku.

This implies for x ∈ � that fε(x) ≤K (M1 + ε)u and | fε(x)| ≤ (M1 + ε)|u|.
By definition of Hilbert’s metric δK ,

δK (gε(x), gε(y)) = δK ( fε(x), fε(y))

for all x, y ∈ �, and

(13) δK (gε(x), u) = δK ( fε(x), u) ≤ log
(

M1 + ε
ε

)

for all x ∈ �.
Let � := {x ∈ Ku : |x| = 1}. We know (see [29, Theorem 4.8]) that the metric

space (�, δK ) is complete, as K is a closed normal cone in (X, ‖ · ‖). We now
show that � is a closed subset of (�, δK ), from which we conclude that (�, δK ) is
a complete metric space.

Suppose that {xk}k is a sequence in � converging to ξ in (�, δK ), Then there
exist 0 < αk ≤ βk such that αkξ ≤K xk ≤K βkξ for k = 1, 2, . . . and log(βk/αk) →
0 as k → ∞. Since

αk = |αkξ | ≤ |xk| = 1 ≤ |βkξ | = βk,

αk ≤ 1 ≤ βk, and hence limk→∞ αk = 1 = limk→∞ βk. This implies that

0 ≤k xk − αkξ ≤K (βk − αk)ξ,
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so |xk − αkξ | ≤ βk − αk, which shows that limk→∞ |xk − ξ | = 0. Since ‖ · ‖ and
| · | are equivalent, C is closed in (X, | · |), and therefore ξ ∈ C. But also |ξ | = 1,
which shows that ξ ∈ � and hence � is closed in (�, δK ).

To proceed, we fix ε1 > 0. Define

(14) R := log
(

M1 + ε1
ε1

)
> 0 and BR := {x ∈ � : δK (x, u) ≤ R};

BR is a closed subset of (�, δK ), so (BR, δK ) is a complete metric space. Note that
it follows from (13) that gε(BR) ⊆ BR for ε1 < ε.

To prove that fε has a unique normalised eigenvector vε ∈ C ∩Ku, it suffices to
show that gε has a unique fixed point in BR, where we choose 0 < ε1 < ε. The idea
is to prove that gε is a contraction mapping on the complete metric space (BR, δK ).

To this end, we let x �= y in BR and define α := M (x/y)−1 and β := M (y/x), so
αx ≤K y ≤K βx and δK (x, y) = log(β/α) > 0. As x, y ∈ �, α = α|x| ≤ |y| = 1 ≤
β|x| = β, so α ≤ 1 ≤ β. Now α ≤ 1 and f (x) ≤K M1u give the inequality

ε(1 − α) f (x) ≤K ε(1 − α)M1u.

Combining this with the inequalities αM1 f (x) ≤K M1 f (y) and αε f (x) ≤K ε f (y)
gives

(αM1 + ε)( f (x) + εu) ≤K (M1 + ε)( f (y) + εu),

which shows that

α′ fε(x) ≤K fε(y), where α′ :=
αM1 + ε
M1 + ε

.

In a similar way, it can be shown that

fε(y) ≤K β
′ fε(x), where β′ :=

βM1 + ε
M1 + ε

.

So, letting ε′ := ε/M1, we get

(15) δK ( fε(x), fε(y)) ≤ log
(
β′

α′

)
= log

(
β + ε′

α + ε′

)
.

Note that δK (x, y) ≤ 2R, so log(β/α) ≤ 2R, and hence β/α ≤ e2R =
(M1+ε1

ε1

)2,
as x, y ∈ BR. Thus, to prove that gε is a contraction, it suffices to show that there
exists 0 ≤ c < 1 such that for all 0 < α ≤ 1 ≤ β with 1 < β/α ≤ e2R, and for all
ε > 0 with ε1 < ε,

(16) log
(
β + ε′

α + ε′

)
≤ c log

(
β

α

)
.
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Basic algebra gives

log
(
β + ε′

α + ε′

)
= log

(
β

α

)
+ log

(
1 −

(
ε′

α + ε′

)(
1 − α

β

))
.

Writing ρ := β/α, so 1 < ρ ≤ e2R, and using the fact that 0 < α ≤ 1, we derive
that

(17) log
(
β + ε′

α + ε′

)
≤ logρ + log

(
1 −

(
ε′

1 + ε′

)(
1 − 1

ρ

))
.

Let γ := ε′/(1 + ε′), and for 1 < ρ < e2R, consider the continuous function
ρ �→ ψ(ρ), where

ψ(ρ) =
logρ + log

(
1 −

(
ε′

1+ε′

)(
1 − 1

ρ

))
logρ

= 1 +
log (1 − γ(1 − 1/ρ))

logρ
.

Thus, to establish (16) it suffices to find 0 < δ ≤ 1, which is independent of
γ = ε′/(1 + ε′) = ε/(M1 + ε) for 0 < ε1 < ε, such that

(18) sup
{

log (1 − γ(1 − 1/ρ))
logρ

: 1 < ρ ≤ e2R
}

= sup
{

log (1 − γ(1 − e−σ))
σ

: 0 < σ ≤ 2R
}

≤ −δ.

As 0 < γ(1 − e−σ) < 1, we can use Taylor’s formula to get

1
σ

log(1 − γ(1 − e−σ)) = −
∞∑
j =1

(γ(1 − e−σ)) j

σ j
≤ −γ(1 − e−σ)

σ

for 0 < σ ≤ 2R. Now consider the derivative of ϑ : σ �→ (1 − e−σ)/σ:

ϑ′(σ) =
e−σ(σ + 1 − eσ)

σ2
.

As eσ > 1+σ for all σ > 0, we conclude that ϑ′(σ) < 0 on 0 < σ ≤ 2R, and hence

1
σ

log(1 − γ(1 − e−σ)) ≤ −γ
(

1 − e−2R

2R

)
.

So, if we let

δ :=
(

ε1
M1 + ε1

)(
1 − e−2R

2R

)
< 1,

then (18) holds for all ε1 < ε, as ε1/(M1 + ε1) ≤ ε/(M1 + ε) for all ε1 ≤ ε.
It now follows from (17) that gε is a contraction mapping on the complete met-

ric space (BR, δK ) with contraction constant 1 − δ for all ε1 < ε. So, by the Con-
traction Mapping Theorem gε, ε1 < ε has a unique fixed point vε ∈ �. Moreover,
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vε is the unique normalised eigenvector in� of fε, and fε(vε) = | fε(vε)|vε. Writing
rε := | fε(vε)| and recalling that | fε(x)| ≥ ε|u| for all x ∈ �, we see that rε > ε|u|.

We now prove the second assertion, which is also a consequence of the Con-
traction Mapping Theorem. Indeed, for ε1 > 0, let R be as in (14) above. For
ε > ε1, that the mapping gε is a contraction mapping on (BR, δK ) with contraction
constant 0 ≤ c < 1, where c is independent of ε. This implies that

δK (vμ, vε) ≤ 1
1 − c

δK (gμ(vε), vε) =
1

1 − c
δK ( fμ(vε), vε)

for μ, ε > ε1. As vε ∈ BR, there exist 0 < a ≤ 1 ≤ b such that avε ≤K u ≤K bvε.
So, if μ > ε > ε1, then

(1 + a(μ− ε))vε ≤K fμ(vε) = fε(vε) + (μ− ε)u ≤K (1 + b(μ− ε))vε.

This implies that

δK (vμ, vε) ≤ 1
1 − c

δK ( fμ(vε), vε) ≤ 1
1 − c

log
(

1 + b(μ− ε)
1 + a(μ− ε)

)

for ε1 < ε < μ. A similar argument shows that

δK (vμ, vε) ≤ 1
1 − c

log
(

1 + a(μ− ε)
1 + b(μ− ε)

)

for ε1 < μ < ε. So, if εk → μ, then δK (vεk , vμ) → 0, so ‖vεk − vμ‖ → 0, as the
topology of δK is the same as the topology of ‖ · ‖ on BR.

To prove the third assertion, we can apply Lemma 4.2 to fε and f to get

lim
k→∞ ‖ f k

ε ‖1/k
C∩Ku

= inf
k≥1

‖ f k
ε ‖1/k

C∩Ku
= lim

k→∞ ‖ f k
ε (u)‖1/k(19)

and

lim
k→∞ ‖ f k‖1/k

C∩Ku
= inf

k≥1
‖ f k‖1/k

C∩Ku
= lim

k→∞ ‖ f k(u)‖1/k.(20)

For 0 ≤ ε ≤ μ, it is easy to see that f k
ε (x) ≤K f k

μ(x) for all x ∈ C ∩ Ku and
k ≥ 1. By the normality of K , there exists a constant M2 > 0 (independent of k)
such that ‖ f k

ε ‖C∩Ku ≤ M2‖ f k
μ‖C∩Ku for 0 ≤ ε ≤ μ. It follows that

| f k
ε ‖1/k

C∩Ku
≤
(
M2‖ f k

μ‖C∩Ku

)1/k

for 0 ≤ ε ≤ μ, and hence limε→0+

(
limk→∞ ‖ f k

ε ‖1/k
C∩Ku

)
exists and satisfies

(21) lim
ε→0+

(
lim

k→∞ ‖ f k
ε ‖1/k

C∩Ku

)
≥ lim

k→∞ ‖ f k‖1/k
C∩Ku

.
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Recall that fε(vε) = rεvε and vε ∈ �. Thus there exist 0 < λ1 ≤ λ2 (depending
on ε) such that λ1u ≤K vε ≤K λ2u. This implies that λ1 f k

ε (u) ≤K rk
ε vε ≤K λ2 f k

ε (u)
for all k ≥ 1, and hence

(22) rε = lim
k→∞ ‖ f k

ε (u)‖1/k.

It remains to show that limε→0+ rε = limk→∞ ‖ f k(u)‖1/k. Combining (19)–(22),
we see that it suffices to show that

lim
ε→0+

rε ≤ lim
k→∞ ‖ f k(u)‖1/k =: rC∩Ku( f ).

First note that there exists γ > 0, independent of ε ≥ 0, such that u ≤K γ fε(u). We
also know that for each |x| ≤ 1 and 0 < ε < M1,

fε(x) ≤K (M1 + ε)u ≤K 2M1u.

Thus f k
ε (x) ≤K 2M1γ f k

ε (u) for each k ≥ 1 and |x| ≤ 1. As the norms | · | and ‖ · ‖
are equivalent on X , there exists a constant M3 > 0 such that

(23) ‖ f k
ε (x)‖ ≤ M3‖ f k

ε (u)‖

for all x ∈ C ∩ Ku and ‖x‖ ≤ 1.

Now fix η > 0 and choose N ≥ 1 so large that

(24) M 1/N
3 ‖ f N (u)‖1/N < rC∩Ku( f ) + η/2.

Since limε→0+ ‖ f N
ε (u)‖ = ‖ f N (u)‖, there exists ε(η) > 0 such that for 0 < ε <

ε(η),

M 1/N
3 ‖ f N

ε (u)‖1/N < rC∩Ku( f ) + η.

From (23), we now deduce that

‖ f N
ε ‖1/N

C∩Ku
= sup{‖ f N

ε (x)‖1/N : x ∈ C ∩ Ku and ‖x‖ ≤ 1}
≤ M 1/N

3 ‖ f N
ε (u)‖1/N < rC∩Ku( f ) + η

for 0 < ε < ε(η). It now follows from (19) that

lim
k→∞ ‖ f k

ε ‖1/k
C∩Ku

≤ ‖ f N
ε ‖1/N

C∩Ku
< rC∩Ku( f ) + η.

As η > 0 was arbitrary, we conclude that limε→0+ rε = rC∩Ku( f ). �
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Remark 4.4. The general idea of using perturbations of f like fε,u has been
exploited before; see, for example, [3], [36, Lemma 2.1], and [41, Lemmas 3.2,
3.9, and 4.1]. In particular, cf. [41, Sections 3 and], where results similar to
Theorem 4.3 are established, and [3, Lemma 7.6], which provides a proof of [41,
Lemma 3.2].

We also remark that if w ∈ Ku and f is a u-bounded homogeneous mapping
which is order-preserving with respect to K , then there exists a constant Mw > 0
such that f (x) ≤K Mw‖x‖w for all x ∈ C ∩ Ku. Now, for ε > 0, we can consider
the mapping fε,w : C ∩ Ku → C ∩ Ku given by fε,w(x) = f (x) + ε|x|w for all
x ∈ C ∩ Ku. Then fε,w has a unique eigenvector vε,w ∈ C ∩ Ku with ‖vε,w‖ = 1. A
slight variant of the proof of Theorem 4.3 shows that the mapping (ε, u) �→ vε,u is
norm continuous; see [41, Lemma 4.1] for related results.

For a u-bounded, homogeneous, and order-preserving with respect to K map-
ping f : C ∩ Ku → C ∩ Ku, we define the partial spectral radius of f by

rC∩Ku( f ) := lim
k→∞ ‖ f k‖1/k

C∩Ku
.

Note that, as ‖ f k+m‖C∩Ku ≤ ‖ f k‖C∩Ku‖ f m‖C∩Ku for all m, k ≥ 1, it follows from
Fekete’s sub-additive lemma that rC∩Ku( f ) = infk ‖ f k‖1/k

C∩Ku
< ∞. Using the nota-

tion from Theorem 4.3, we obtain the following immediate corollary, which we
need later.

Corollary 4.5. If f : C ∩ Ku → C ∩ Ku is u-bounded, homogeneous and
order-preserving with respect to K , then

lim
ε→0+

rC∩Ku( fε,u) = rC∩Ku( f ).

Of particular interest to us is the case where K = C and Ku = C◦. In that
case, the partial spectral radius rC◦( f ) satisfies a Collatz-Wielandt formula, which
generalizes [18, Corollary 37]; see also [3] and [31, Section 5.6].

Theorem 4.6 (Collatz-Wielandt formula I). Let C be a closed normal cone
with nonempty interior in a Banach space X and f : C◦ → C◦ order-preserving
and homogeneous. Then

rC◦( f ) = inf
y∈C◦ M ( f (y)/y).

Proof. Let y ∈ C◦ and recall that, as C is normal, the norms ‖ · ‖ and ‖ · ‖y

are equivalent. For each k ≥ 1 and 0 ≤C x ≤C y, ‖ f k(x)‖y ≤ ‖ f k(y)‖y, as f is
order-preserving. This implies that

‖ f k‖y,C◦ := sup{‖ f k(x)‖y : x ∈ C◦ with ‖x‖y ≤ 1} = ‖ f k(y)‖y.
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It now follows from Lemma 4.2 that

rC◦( f ) = lim
k→∞ ‖ f k(y)‖1/k

y = inf
k≥1

‖ f k(y)‖1/k
y ≤ M ( f (y)/y),

as ‖ f (y)‖y = M ( f (y)/y), so rC◦( f ) ≤ infy∈C◦ M ( f (y)/y).

Now let ε > 0, u ∈ C◦, and fε,u be as in (12). Then f (x) ≤C fε,u(x) for all
x ∈ C◦, and rC◦( fε,u) → rC◦( f ) as ε → 0+, by Corollary 4.5. By Theorem 4.3,
there exist vε,u ∈ C◦ such that fε,u(vε,u) = rC◦( fε,u)vε,u. Thus, M ( fε,u(vε,u)/vε,u) =
rC◦( fε,u), so

rC◦( f ) = lim
ε→0+

M ( fε,u(vε,u)/vε,u) ≥ lim inf
ε→0+

M ( f (vε,u)/vε,u) ≥ inf
y∈C◦ M ( f (y)/y).

�

The following two basic observations concerning rC◦( f ) will be useful to us
later. The first one is essentially [32, Lemma 2.2]; we include the short proof for
the reader’s convenience.

Lemma 4.7. Let C be a normal closed cone with nonempty interior in a
Banach space X. If f : C◦ → C◦ is an order-preserving homogeneous mapping,
then rC◦( f ) > 0.

Proof. Pick u, x ∈ C◦. As f (x) ∈ C◦, there exists α > 0 such that αx ≤C

f (x), so αkx ≤C f k(x) for all k ≥ 1. We show that α ≤ rC◦( f ). Suppose that
α > rC◦( f ) + ε for some ε > 0. The definition of rC◦( f ) implies that ‖ f k(x)‖ ≤
(rC◦( f )+ε)k for all k ≥ 1 sufficiently large. Since α > rC◦( f )+ε, we conclude that
α−k f k(x) → 0 as k → ∞. However, α−k f k(x) − x ∈ C for all k ≥ 1, so −x ∈ C,
which is impossible. �

Lemma 4.8. Let C be normal closed cone with nonempty interior in a Banach
space X. If f : C◦ → C◦ is an order-preserving homogeneous mapping with
rC◦( f ) = 1, then, for each x ∈ C◦, the orbit O(x; f ) does not accumulate at 0.

Proof. Let u ∈ C◦ and vε,u ∈ C◦ be as in Theorem 4.3. As C is a normal
cone, the norms ‖ · ‖ and ‖ · ‖u are equivalent, and hence there exists a constant
M > 0 such that ‖vε,u‖u ≤ M for all 0 < ε ≤ 1. If x ∈ C◦, then u ≤C βx for some
β > 0. So letting z := βMx, we obtain vε,u ≤C z for all 0 < ε ≤ 1.

We show that O(z; f ) does not accumulate at 0. As f : C◦ → C◦, for each
n ≥ 1 there exists βn > 0 (depending only on f n(z) ∈ C◦) such that | f n−1(z)|u ≤C

βn f n(z). Thus

fε,u( f
n−1(z)) ≤C (1 + εβn) f

n(z)
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for all n ≥ 1. Now fix k ≥ 1 and note that, as vε,u ≤C z,

vε,u ≤C f k−1
ε,u ( fε,u(z)) ≤C (1 + εβ1) f

k−1
ε,u ( f (z)) ≤C . . . ≤C

k∏
i =1

(1 + εβi) f
k(z).

It follows that 1 ≤ ∏k
i =1(1+εβi)| f k(z)|. So, letting ε → 0, we see that 1 ≤ | f k(z)|.

Thus O(z; f ) does not accumulate at 0. As f is homogeneous, no orbit inside C◦

can accumulate at 0. �
Later, in Theorem 6.1, we need to assume that the set {vε,u : 0 < ε ≤ 1} in

Theorem 4.3 contains a convergent subsequence in the norm topology. This is
always the case in finite dimensional spaces but not in infinite dimensional spaces.
For this reason, we introduce the following terminology.

Definition 4.9. Let C be normal closed cone with nonempty interior in a
Banach space X . If f : C◦ → C◦ is an order-preserving homogeneous mapping
and the set {vε,u : 0 < ε ≤ 1} in Theorem 4.3 contains a convergent subsequence in
the norm topology, we say that f has converging approximate eigenvectors.

In the next subsection, using so-called generalised measures of noncompact-
ness or simply generalised MNC’s, we establish several sufficient conditions for a
mapping to have converging approximate eigenvectors.

4.2 Generalised measures of non-compactness. Let X be a (real or
complex) Banach space, and denote by B(X) the collection of all bounded, non-
empty, subsets of X . Given S,T ∈ B(X), we denote by co(S) the convex hull of S,
S + T := {s + t : s ∈ S and t ∈ T }, and λS := {λs : s ∈ S} for all λ in the scalar
field. Following the terminology from [36], we call a mapping β : B(X) → [0,∞)
a generalised homogeneous measure of non-compactness (MNC) if it
satisfies the following conditions:

(A1) for all S ∈ B(X), β(S) = 0 if and only if S is compact;
(A2) for all S ∈ B(X), with S ⊆ T , β(S) ≤ β(T );
(A3) for all S ∈ B(X) and x0 ∈ X , β(S ∪ {x0}) = β(S);
(A4) for all S ∈ B(X), β(S) = β(S);
(A5) for all S ∈ B(X) , β(co(S)) = β(S);
(A6) for all S,T ∈ B(X), β(S + T ) ≤ β(S) + β(T );
(A7) for all S ∈ B(X) and all scalars λ, β(λS) = |λ|β(S).

Property (A7) is called the homogeneity property of β. Some treatments of
MNC’s assume that β satisfies the so-called set additive property:

(A8) for all S,T ∈ B(X), β(S ∪ T ) = max{β(S), β(T )}.



694 B. LEMMENS, B. LINS, R. NUSSBAUM, AND M. WORTEL

However, we do not assume (A8).
A fundamental example is the Kuratowski measure of non-compactness

α(S) := inf

{
δ > 0: S =

n⋃
i =1

Si with diam(Si) ≤ δ for all 1 ≤ i ≤ n < ∞
}

for S ∈ B(X). The Kuratowski MNC satisfies properties (A1)–(A8). Notice that
(A1) and (A8) imply (A2) and (A3), but there are many interesting examples of
generalised homogeneous MNC’s that do not satisfy (A8).

Using the generalised homogeneous MNC’s, we can formulate a condition un-
der which the set {vε,u : 0 < ε ≤ 1} in Theorem 4.3 has a compact norm closure.

Theorem 4.10. Let f : C ∩ Ku → C ∩ Ku be a homogeneous mapping which
is order-preserving with respect to K and u-bounded. Let {vε,u : 0 < ε ≤ 1} be
as in Theorem 4.3. If rC∩Ku( f ) > 0 and there exists a generalised homogeneous
MNC β such that for each A ∈ B(X) with A ⊆ C ∩ Ku and β(A) > 0

β( f (A)) < rC∩Ku( f )β(A),

then {vε,u : 0 < ε ≤ 1} has a compact closure in the norm topology.

Proof. For simplicity, we write S := {vε,u : 0 < ε ≤ 1} and r := rC∩Ku( f ) >
0. It suffices to show that β(S) = 0, by (A1). Define g(x) := f (x)/r for all
x ∈ C ∩ Ku. Then β(g(A)) < β(A) for all A ∈ B(X) with A ⊆ C ∩ Ku and
β(A) > 0, by (A7).

As |vε,u| = 1 and fε,u(vε,u) = f (vε,u) + εu = rεvε,u, where rε := rC∩Ku( fε,u), we
have

g(vε,u) +
ε

r
u +

(
1 − rε

r

)
vε,u = vε,u.

Define T := { εr u + (1 − rε
r )vε,u : 0 < ε ≤ 1}. Note that Corollary 4.5 implies that

limε→0+
rε
r = 1, and hence

lim
ε→0+

ε

r
u +

(
1 − rε

r

)
vε,u = 0.

Thus, the mapping σ : ε �→ ε
r u + (1 − rε

r )vε,u is a norm continuous mapping
on [0, 1], by Theorem 4.3. This implies that T is compact, so β(T ) = 0. Since
S ⊆ g(S) + T , we conclude from (A2) and (A6) that

β(S) ≤ β(g(S) + T ) = β(g(S)) + β(T ) = β(g(S)),

so β(S) = 0. �
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Notice that in the proof of Theorem 4.10 we have used only properties (A1),
(A2), (A6) and (A7) of β. Another sufficient condition is given in the following
result.

Theorem 4.11. Let f : C ∩ Ku → C ∩ Ku be a homogeneous mapping which
is order-preserving with respect to K , u-bounded, and satisfies rC∩Ku( f ) = 1. Let
{vε,u : 0 < ε ≤ 1} be as in Theorem 4.3. If there exists a generalised homogeneous
MNC β such that lim infm→∞ β( f m(V )) = 0, where V := {x ∈ C ∩ Ku : |x| ≤ 1},
and f is uniformly continuous on V in the norm topology, then {vε,u : 0 < ε ≤ 1}
has a compact closure in the norm topology.

Proof. Note that by Theorem 4.3(ii), it suffices to prove that β({vε,u : 0 < ε ≤
ε0 ≤ 1}) = 0, where ε0 > 0 can be arbitrary small. Now let η > 0 be given.

We first show that for each m ≥ 1 and σ > 0, there exists ε0 := ε0(σ,m) > 0
such that

(25) | f m(vε,u) − vε,u| ≤ σ for all 0 < ε ≤ ε0.

For m = 1, the assertion follows from the fact that

| f (vε,u) − vε,u| ≤ | fε,u(vε,u) − εu − vε,u| ≤ |rC∩Ku( fε,u)vε,u − εu − vε,u| → 0,

as ε → 0+, since rC∩Ku( fε,u) → rC∩Ku( f ) = 1, by Corollary 4.5.
Now suppose the assertion holds for all 1 ≤ j < m. As f is uniformly con-

tinuous on V , there exists δ > 0 such that

| f (x) − f (y)| ≤ σ/4 for all x, y ∈ V with |x − y| ≤ δ.

As f is homogenous, | f (x) − f (y)| ≤ σ/2 for all x, y ∈ C ∩ Ku with |x|, |y| ≤ 2
and |x − y| ≤ 2δ .

As |vε,u| = 1 for all 0 < ε ≤ 1, we can use the induction hypothesis to find
ε0 > 0 such that | f m−1(vε,u) − vε,u| ≤ 2δ and | f m−1(vε,u)| ≤ 2 for all 0 < ε ≤ ε0.
Using uniform continuity of f , we deduce that

| f m(vε,u) − f (vε,u)| = | f ( f m−1(vε,u)) − f (vε,u)| ≤ σ/2

for all 0 < ε ≤ ε0. Applying the induction hypothesis again, and possibly decreas-
ing ε0 > 0, we may also assume that | f (vε,u) − vε,u| ≤ σ/2 for all 0 < ε ≤ ε0.
Combining these inequalities gives

| f m(vε,u) − vε,u| ≤ | f ( f m−1(vε,u)) − f (vε,u)| + | f (vε,u) − vε,u| ≤ σ/2 + σ/2 ≤ σ

for all 0 < ε ≤ ε0.
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As lim infm→∞ β( f m(V )) = 0, there exists m0 ≥ 1 such that β( f m0 (V )) ≤ η/2.
Define �ε0 := { f m0 (vε,u) : 0 < ε ≤ ε0}. Taking σ = η

2β(B1(0)) in (25), we find an
ε0 > 0 such that

{vε,u : 0 < ε ≤ ε0} ⊆ �ε0 +
{

x ∈ C ∩ Ku : |x| ≤ η

2β(B1(0))

}
,

where B1(0) := {x ∈ X : |x| ≤ 1}. This implies that

β({vε,u : 0 < ε ≤ ε0}) ≤ β(�ε0 ) +
η

2β(B1(0))
β(B1(0)) ≤ η/2 + η/2 = η,

as �ε0 ⊆ f m0 (V ). Thus β({vε,u : 0 < ε ≤ 1}) = 0. �

Remark 4.12. For a generalised homogeneous MNC β on a Banach space X
and a bounded linear map g : X → X , one can define β(g) as in Theorem 4.10, i.e.,

β(g) := inf{c > 0: β(g(A)) ≤ cβ(A) for all bounded subsets A of X}.
However, as follows from [37, Theorem 8], it may happen that β(gm) = ∞ for
infinitely many positive integers m.

5 Horofunctions of Hilbert’s metric

The horofunction boundary, which goes back to Gromov [21], is known to be a
useful tool for proving Denjoy-Wolff type theorems for fixed point free nonex-
pansive mappings on a variety of metric spaces; see [18, 25, 34, 41]. We also
exploit horofunctions here. We sfollow Walsh [50], who made detailed study of
the horofunction boundary of finite dimensional Hilbert’s metric spaces, and use
the so-called Funk and reverse Funk (weak) metrics.

Let C be a closed cone with nonempty interior in a Banach space X . For
x, y ∈ C◦ the Funk (weak) metric is given by

(26) FunkC(x, y) := logM (x/y).

and the reverse Funk (weak) metric is given by

(27) RFunkC(x, y) := logM (y/x).

Hilbert’s (projective) metric satisfies

(28) δC(x, y) = FunkC(x, y) + RFunkC(x, y),

and Thompson’s metric satisfies

(29) dC(x, y) = max{FunkC(x, y),FunkC(y, x)}
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for all x, y ∈ C◦.
The reader can check that both the Funk metric and reverse Funk metric satisfy

the triangle inequality on C◦ × C◦, but are clearly neither symmetric nor non-
negative functions. They are named after P. Funk who studied them in [17] in
connection with Hilbert’s fourth problem; see [43] for more details.

Lemma 5.1. Let C be a closed cone with nonempty interior in a Banach
space X. For each y ∈ C◦, the functions x �→ FunkC(x, y) and x �→ RFunkC(x, y)
are Lipschitz with Lipschitz constant 1 with respect to dC on C◦.

Proof. For x1, x2 ∈ C◦,

x1 ≤C M (x1/x2)x2 ≤C M (x1/x2)M (x2/y)y,

so M (x1/y) ≤ M (x1/x2)M (x2/y). This implies that

FunkC(x1, y) ≤ FunkC(x1, x2) + FunkC(x2, y).

Interchanging the roles of x1 and x2 gives

FunkC(x2, y) ≤ FunkC(x2, x1) + FunkC(x1, y),

so
|FunkC(x1, y) − FunkC(x2, y)| ≤ dC(x1, x2).

The argument for RFunkC goes in a similar fashion. �
It follows from Lemma 5.1 and (28) that for each y ∈ C◦, the function

x �→ δC(x, y) is Lipschitz with Lipschitz constant 2 with respect to dC on C◦.
The following lemma lists some basic properties of FunkC that are immediate

from the definition.

Lemma 5.2. Let C be a closed cone with nonempty interior in a Banach
space X. Then

1. for x, y ∈ C◦, and α, β > 0,

FunkC(αx, βy) = FunkC(x, y) + logα− logβ;

2. if x1, x2 ∈ C◦ with x1 ≤C x2, and y ∈ C◦, then

FunkC(x1, y) ≤C FunkC(x2, y);

3. if y1, y2 ∈ C◦ with y1 ≤C y2, and x ∈ C◦, then

FunkC(x, y2) ≤C FunkC(x, y1);
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4. if f : C◦ → C◦ is an order-preserving homogeneous mapping, then

FunkC( f (x), f (y)) ≤ FunkC(x, y) for all x, y ∈ C◦.

Following Walsh [50], we now define the horofunction boundaries for the Funk
metric, RFunk metric, and δC . Fix a base point b ∈ C◦ and let ρ be either FunkC ,
RFunkC , or, δC . Denote by C(C◦) the space of continuous functions from (C◦, dC)
into R, equipped with the topology of compact convergence (also called the to-
pology of uniform convergence on compact sets); see [39, Section 46]. Define
iρ : C◦ → C(C◦) by iρ(y)(x) := ρ(x, y) − ρ(b, y). Note that for each x, x′ ∈ C◦,

|iρ(y)(x) − iρ(y)(x
′)| = |ρ(x, y) − ρ(x′, y)| ≤ 2dC(x, x′)

for all y ∈ C◦, by Lemma 5.1, and hence iρ(C◦) := {iρ(y) : y ∈ C◦} is an equicon-
tinuous family in C(C◦). Furthermore, if ρ is FunkC or RFunkC , then for each
x ∈ C◦, |iρ(y)(x)| ≤ dC(x, b) for all y ∈ C◦, by Lemma 5.1. Also, if ρ = δC ,
then for each x ∈ C◦, |iρ(y)(x)| ≤ 2dC(x, b) for all y ∈ C◦. Thus, for each fixed
x ∈ C◦, the set {iρ(y)(x) : y ∈ C◦} has compact closure in R. It now follows from
Ascoli’s Theorem [39, Theorem 47.1] that iρ(C◦) has compact closure in C(C◦)
with respect to the topology of compact convergence.

The boundary, iρ(C◦) \ iρ(C◦), is called the horofunction boundary and its
elements are called horofunctions. Note that iρ(αy) = iρ(y) for all α > 0 and
y ∈ C◦. Thus, letting S := {y ∈ C◦ : ‖y‖ = 1}, we see that Hρ = iρ(S) \ iρ(S). For
simplicity, we write iF := iρ and HF := iF (C◦) \ iF (C◦) if ρ = FunkC . Likewise,
we write iR and HR for ρ = RFunkC , and iH , respectively, and HH for ρ = δC .

On iρ(C◦), the topology of compact convergence agrees with the topology of
pointwise convergence. It also coincides with the compact open topology; see
[39, Section 46]. If C is a finite dimensional cone, the metric space (C◦, dC) is σ-
compact, viz, the union of countably many compact sets. In that case, the topology
of compact convergence on C(C◦) is metrizable, and hence each horofunction h
in Hρ is the limit of a sequence {iρ(yn)}n where (yn)n is in C◦. However, if C is
infinite dimensional, (C◦, dC) is no longer σ-compact, and the topology of compact
convergence is not metrizable. Therefore we work with nets instead of sequences.
For each h ∈ Hρ, there exists a net (iρ(yα))α such that iρ(yα) → h, where yα ∈ C◦

for all α. Moreover, every net (iρ(yα))α in iρ(C◦) has a convergent subnet, as iρ(C◦)
is compact.

The next lemma is an infinite dimensional version of [50, Lemma 2.4].

Lemma 5.3. Let C be a closed cone with nonempty interior in a Banach
space X, and let (iR(yα))α be a net converging to h ∈ HR. If (yα)α has a subnet
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converging to y ∈ C \ {0} in the norm topology, then y ∈ ∂C and

(30) h(x) = RFunkC(x, y) − RFunkC(b, y)

for all x ∈ C◦.

Proof. Let (yβ)β be a subnet of (yα)α converging to y ∈ C \ {0} in the norm
topology. By Lemma 2.2, RFunkC(x, yβ) → RFunkC(x, y) for all x ∈ C◦, and
hence iR(yβ) converges to x �→ RFunkC(x, y) − RFunkC(b, y). This proves (30).
Note also that, as h ∈ HR, the point y ∈ ∂C; as otherwise, h ∈ iR(C◦). �

In general, it appears to be difficult to completely characterize HF . Instead, we
observe that all Funk horofunctions have a kind of sub-gradient, which will prove
useful later.

Lemma 5.4. Let C be a closed cone with nonempty interior in a Banach
space X. If h ∈ HF , there exists ϕ ∈ C∗ \ {0} such that logϕ(x) ≤ h(x) for all
x ∈ C◦.

Proof. Let (i(yα))α be a net converging to h ∈ HF . For each α there exists
ϕα ∈ �∗

b such that FunkC(b, yα) = log ϕα(b)
ϕα(yα)

, by Lemma 2.2. So, for each α and
each x ∈ C◦,

FunkC(x, yα) − FunkC(b, yα) ≥ log
ϕα(x)
ϕα(yα)

− log
ϕα(b)
ϕα(yα)

= logϕα(x) − logϕα(b) = logϕα(x).

As �∗
b is weak* compact, there exists a subnet on which ϕα converges to a point

ϕ ∈ �∗
b in the weak* topology. Thus, h(x) ≥ logϕ(x) for all x ∈ C◦. �

We also need the following fact.

Proposition 5.5. Let (yα)α be a net in C◦ such that yα → y ∈ ∂C \ {0}. Then
iR(yα) → hR ∈ C(C◦), where hR(x) = RFunkC(x, y) − RFunkC(b, y) for all x ∈ C◦

and hR ∈ HR. If (yβ)β is a subnet of (yα)α, then iF (yβ) converges in C(C◦) if and
only if iH (yβ) converges in C(C◦). Moreover, if iF (yβ) converges to hF ∈ C(C◦)
and iH (yβ) converges to hH ∈ C(C◦), then hF ∈ HF and hH ∈ HH .

Proof. It follows from Lemma 2.2 that iR(yα) converges to hR ∈ C(C◦), where
hR(x) = RFunkC(x, y) − RFunkC(b, y) for all x ∈ C◦. To show that hR ∈ HR, we
need to prove that there does not exist v ∈ C◦ such that

(31) hR(x) = RFunkC(x, v) − RFunkC(b, v)
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for all x ∈ C◦. We argue by contradiction. Suppose there exists v ∈ C◦ satisfying
(31). Let {εk}k be a sequence of reals with 0 < εk < 1 and limk→∞ εk = 0.
Define xk := εkb + (1 − εk)y for all k ≥ 1. Because y ≤C

( 1
1−εk

)
xk, we see that

logM (y/xk) ≤ − log(1 − εk). As y �= 0, −∞ < logM (y/b) < ∞, so

(32) lim sup
k→∞

hR(xk) = lim sup
k→∞

RFunkC(xk, y) − RFunkC(b, y) < ∞.

On the other hand,

RFunkC(xk, v) = logM (v/εkb + (1 − εk)y) → ∞
as k → ∞, because v ∈ C◦ and εkb+(1−εk)y → y ∈ ∂C. Moreover, RFunkC(b, v)
is finite, as b ∈ C◦. So, if there exists v ∈ C◦ satisfying (31), then

(33) lim
k→∞ hR(xk) = ∞,

which contradicts (32).
Now suppose that (yβ)β is a subnet of (yα)α. Then iR(yβ) still converges in

C(C◦); and because iR(yβ) + iF (yβ) = iH (yβ), the convergence of iF (yβ) in C(C◦) is
equivalent to the convergence of iH (yβ) in C(C◦). Suppose that iF (yβ) converges to
hF ∈ C(C◦) and iH (yβ) converges to hH ∈ C(C◦). It remains to show that hF ∈ HF

and hH ∈ HH .
To prove that hF ∈ HF , we need to show that there does not exist v ∈ C◦ such

that

(34) hF (x) = FunkC(x, v) − FunkC(b, v)

for all x ∈ C◦. Let xk be as above. Note that for each β,

iF (yβ)(xk) = FunkC(xk, yβ) − FunkC(b, yβ)

= logM (εkb + (1 − εk)y/yβ) − logM (b/yβ)

≤ logM (εkb + (1 − εk)y/εkb + (1 − εk)yβ)

+ logM (εkb + (1 − εk)yβ/yβ) − logM (b/yβ).

We know that yβ converges to y, so Lemma 2.2 implies that for each fixed k ≥ 1,

M (εkb + (1 − εk)y/εkb + (1 − εk)yβ) → 0.

Also,
M (εkb + (1 − εk)yβ/yβ) ≤ εkM (b/yβ) + (1 − εk)

and M (b/yβ) → ∞ as yβ → y ∈ ∂C. Thus

(35) iF (yβ)(xk) ≤ M
(
εkb+

(1 − εk)y
εkb

+(1−εk)yβ
)

+log
(
εkM (b/yβ) + (1 − εk)

M (b/yβ)

)
.
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The right hand side of (35) converges to log(εk) as yβ → y, and hence hF (xk) ≤
log(εk) for k ≥ 1. Thus

(36) lim
k→∞ hF (xk) = −∞.

On the other hand, if there exists a v ∈ C◦ satisfying (34), then it follows from
Lemma 2.2 that

(37) lim
k→∞ hF (xk) = logM (y/v) − logM (b/v) > −∞,

which contradicts (36).
If there exists v ∈ C◦ such that hH = iR(v) + iF (v), the estimates in (33) and

(37) show that limk→∞ iR(xk) = ∞ and limk→∞ iF (xk) > −∞, which implies that

(38) lim
k→∞ hH (xk) = ∞.

On the other hand, hH (x) = hR(x) + hF (x) for all x ∈ C◦. Equations (32) and (36)
show that lim supk→∞ hR(xk) < ∞ and limk→∞ hF (xk) = −∞, so limk→∞ hH (xk) =
−∞, which contradicts (38) and shows that hH ∈ HH . �

Note that if ρ is FunkC , RFunkC or δC , and y ∈ C◦, then

iρ(y)(x) = ρ(x, y) − ρ(b, y) = ρ(x, y/‖y‖) − ρ(b, y/‖y‖)

for all x ∈ C◦. Thus, any horofunction is the limit of a net (iρ(yα))α where ‖yα‖ = 1
for all α. If C is a finite dimensional cone, any sequence (yn)n with ‖yn‖ = 1 for
all n has a limit point y ∈ C with ‖y‖ = 1. In that case, it follows from Lemma 5.3
and Proposition 5.5 that

HR = {x �→ RFunkC(x, y) − RFunkC(b, y) : y ∈ ∂C and ‖y‖ = 1};
cf. [50, Proposition 2.5].

5.1 The horofunction boundary of a symmetric cone. If C◦ is a sym-
metric cone, there exists a particularly simple description of HF . Recall that a
symmetric cone is the interior of the cone of squares in a euclidean Jordan al-
gebra. A detailed exposition of the theory of symmetric cones can be found in [16]
by Faraut and Korányi. We follow their notation and terminology. A euclidean
Jordan algebra (X, •) is a finite dimensional real inner product space (X, 〈·, ·〉)
equipped with a bilinear product x • y such that for each x, y ∈ X
(1) x • y = y • x,
(2) x • (x2 • y) = x2 • (x • y),
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(3) the linear map L(x) : X → X given by L(x)w := x •w satisfies

〈L(x)w, z〉 = 〈w,L(x)z〉 for all w, z ∈ X.

The collection of squares in (X, •) forms a cone C, and its interior is called a
symmetric cone. We denote the unit element in (X, •) by e, which is an element
of C◦. It is a basic consequence of the Spectral Decomposition Theorem [16,
Theorem III.1.2] that ‖x‖e := inf{λ > 0: − λe ≤C x ≤C λe} = max{|λ| : λ ∈
σ(x)}. For x ∈ X , the linear mapping P(x) : X → X given by P(x) := 2L(x)2−L(x2)
is called the quadratic representation of x. Note that P(x−1/2)x = e for all
x ∈ C◦. The mapping P(x) maps the symmetric cone C onto itself if x ∈ X is
invertible; see [16, Proposition III.2.2]; hence it preserves FunkC , by Lemma 5.2.
So, for x, y ∈ C◦,

M (x/y) = M (P(y−1/2)x/e) = max{λ : λ ∈ σ(P(y−1/2)x)},
where the second equality follows from the Spectral Decomposition Theorem.

Theorem 5.6. If C◦ is a symmetric cone in a euclidean Jordan algebra (X, •)
and the unit e ∈ C◦ is a base point, then

(i) HF consists of those f ∈ C(C◦) for which there exists z ∈ ∂C with ‖z‖e = 1
such that f (x) = RFunkC(x−1, z) for all x ∈ C◦,

(ii) HR consists of those g ∈ C(C◦) for which there exists y ∈ ∂C with ‖y‖e = 1
such that g(x) = RFunkC(x, y) for all x ∈ C◦,

(iii) HH consists of those h ∈ C(C◦) for which there exist y, z ∈ ∂C with ‖y‖e =
‖z‖e = 1 and y • z = 0 such that

h(x) = RFunkC(x−1, z) + RFunkC(x, y)

for all x ∈ C◦.

Proof. Let g ∈ HR and let {yn}n be a sequence in C◦, with ‖yn‖e = 1 for all
n, such that iR(yn) → g. Taking subsequences, if necessary, we may assume that
yn → y ∈ ∂C \ {0}. It follows from Lemma 5.3 that

g(x) = lim
n→∞ iR(yn)(x) = RFunkC(x, y) − RFunkC(e, y)

for all x ∈ C◦. But RFunkC(e, y) = logM (y/e) = log ‖y‖e = 0, so g(x) =
RFunkC(x, y) for all x ∈ C◦. On the other hand, if y ∈ ∂C with ‖y‖e = 1,
there exists a sequence {yn}n in C◦ with ‖yn‖e = 1 for all n such that yn → y.
Taking a subsequence, if necessary, we can also ensure that {iR(yn)}n converges to
an element in HR. So, by Lemma 5.3,

lim
n→∞ iR(yn)(x) = RFunkC(x, y) − RFunkC(e, y) = RFunkC(x, y)
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for all x ∈ C◦, and hence x �→ RFunkC(x, y) ∈ HR. This completes the proof of
part (ii).

Let f ∈ HF and {yn}n be a sequence in C◦, with ‖yn‖e = 1 for all n, such that
iF (yn) → f . Taking subsequences, if necessary, we may assume that yn → y ∈
∂C \ {0} and y−1

n /‖y−1
n ‖e → z ∈ C. Note that as y ∈ ∂C \ {0}, it follows from the

Spectral Decomposition Theorem that ‖y−1
n ‖e → ∞. This implies that

y • z = lim
n→∞ yn •

(
y−1
n

‖y−1
n ‖e

)
= lim

n→∞
e

‖y−1
n ‖e

= 0.

It follows from [16, Exercise 3.3] that 〈y, z〉 = 0, and hence z ∈ ∂C, as 〈v,w〉 > 0
for all w ∈ C◦ and v ∈ C \ {0}.

The inverse operation w �→ w−1 on C◦ is known to be an order-reversing
homogeneous of degree −1 involution; see [23, Proposition 3.2]. This implies
that FunkC(u, v) = RFunkC(u−1, v−1) for all u, v ∈ C◦. Using Lemma 5.3 again,
we see that

f (x) = lim
n→∞ FunkC(x, yn) − FunkC(e, yn)

= lim
n→∞ RFunkC(x−1, y−1

n /‖y−1
n ‖e) − RFunkC(e, y−1

n /‖y−1
n ‖e)

= RFunkC(x−1, z) − RFunkC(e, z)

= RFunkC(x−1, z)

(39)

for all x ∈ C◦, as RFunkC(e, z) = log ‖z‖e = 0.
On the other hand, if y, z ∈ ∂C with ‖y‖e = ‖z‖e = 1 and y • z = 0, there

exists a Jordan frame {c1, . . . , ck} such that y =
∑p

i =1 λici and z =
∑q

i =p+1μici

with 1 = λ1 ≥ λ2 ≥ . . . ≥ λp > 0, 1 = μ1 ≥ μ2 ≥ . . . ≥ μq > 0, and p < q ≤ k.
For n ≥ 1, define

(40) yn :=
p∑

i =1

λici +
q∑

i =p+1

1
n2μi

ci +
k∑

i =q+1

1
n
ci ∈ C◦.

For sufficiently large n, ‖yn‖e = 1 and

y−1
n =

p∑
i =1

1
λi

ci +
q∑

i =p+1

n2μici +
k∑

i =q+1

nci ∈ C◦.

Note that ‖y−1
n ‖e = n2μ1 = n2 for all large n, so

y−1
n

‖y−1
n ‖e

=
p∑

i =1

1
n2λi

ci +
q∑

i =p+1

μici +
k∑

i =q+1

1
n
ci ∈ C◦
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for all large n, which converges to z as n → ∞. Taking a further subsequence, if
necessary, we may assume that {iF (yn)}n converges to a point in HF . Using the
same equations as in (39), we see that iF (yn)(x) → RFunkC(x−1, z) for all x ∈ C◦,
which completes the proof of part (i).

If h ∈ HH , there exists a sequence {yn}n in C◦ with ‖yn‖e = 1 for all n such that
iH (yn) → h. Taking a subsequence, if necessary, we may assume that yn → y ∈ ∂C
and y−1

n /‖y−1
n ‖e → z ∈ C. By the same argument as before, we see that y • z = 0

and z ∈ ∂C. Taking a further subsequence, if necessary, we may also assume that
iF (yn) → f ∈ HF and iR(yn) → g ∈ HR, where f (x) = RFunkC(x−1, z) and g(x) =
RFunkC(x, y) for all x ∈ C◦. This shows that h(x) = RFunkC(x−1, z)+RFunkC(x, y)
for all x ∈ C◦.

To prove the other inclusion, suppose that y, z ∈ ∂C with ‖y‖e = ‖z‖e = 1 and
y • z = 0. Then we can define yn as in (40) for all n ≥ 1. Taking a subsequence,
if necessary, we may assume that iF (yn) → f ∈ HF , iR(yn) → g ∈ HR, and
iH (yn) → h ∈ HH . So h(x) = f (x) + g(x) for all x ∈ C◦. By the previous
arguments, f (x) = RFunkC(x−1, z) and g(x) = RFunkC(x, y) for all x ∈ C◦. �

Remark 5.7. If C◦ is the symmetric cone of self-adjoint positive definite
matrices over R, C, or H, then for each x, y ∈ C◦,

M (x/y) = maxσ(P(y−1/2)x) = maxσ(y−1/2xy−1/2) = max{λ : λ ∈ σ(y−1x)}.

So, in that case, the horofunctions are given by

1. hF (x) = logmaxσ(xz),
2. hR(x) = logmaxσ(x−1y),
3. hH (x) = logmaxσ(xz) + logmaxσ(x−1y),

where y, z ∈ ∂C are such that ‖y‖e = ‖z‖e = 1 and y • z = 0.

We also find a description of the horofunctions of Hilbert’s metric on the in-
terior of the standard positive cone (Rn

+)
◦ = {x ∈ R

n : xi > 0 for all i} alternative
to the one given in [27]. Indeed, in that case, Theorem 5.6 gives

1. hF (x) = logmaxi xizi ,
2. hR(x) = logmaxi x−1

i yi ,
3. hH (x) = logmaxi xizi + logmaxi x−1

i yi ,

where y, z ∈ ∂Rn
+ are such that ‖y‖∞ = ‖z‖∞ = 1 and yizi = 0 for all i.

6 A Wolff type theorem for cones

Let f : � → � be a fixed point free nonexpansive mapping on a finite dimen-
sional Hilbert’s metric space. Then there exists a horofunction in h ∈ HH such that
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h( f (x)) ≤ h(x) for all x ∈ �; see [18, Theorem 16] and [25, Theorem 3.4]. The
next theorem gives an analogous result for order-preserving homogenous map-
pings f : C◦ → C◦ that do not have an eigenvector in C◦, where the cone can be
infinite dimensional.

Theorem 6.1. Let C be closed normal cone with nonempty interior in a
Banach space X. If f : C◦ → C◦ is an order-preserving homogeneous mapping
with no eigenvector in C◦ and f has converging approximate eigenvectors, then
there exists a net (vα) in C◦ with vα → v ∈ ∂C and |v | = 1 such that iF (vα) →
hF ∈ HF , iR(vα) → hR ∈ HR, and iH (vα) → hH ∈ HH with hH (x) = hF (x) + hR(x)
for all x ∈ C◦ such that

1. hF ( f (x)) ≤ hF (x) + log rC◦( f ),
2. hR( f (x)) ≤ hR(x) − log rC◦( f ),
3. hH ( f (x)) ≤ hH (x).

Moreover, there exists y ∈ ∂C \ {0} such that hR(x) = RFunkC(x, y) for all x ∈ C◦.

Proof. Let u ∈ C◦ be the base point to construct the horofunction boundaries.
By Theorem 4.3, for each ε > 0, there exists vε,u ∈ C◦ such that |vε,u| = 1 and
fε,u(vε,u) = rε,uvε,u. For simplicity, we write vε := vε,u, rε := rε,u, and fε := fε,u. It
also follows from Theorem 4.3 that rε → rC◦( f ) as ε → 0.

Since f has converging approximate eigenvectors, {vε : 0 < ε < 1} contains
a convergent subsequence {vεn}n with limit, say, v ∈ C. Note that |v | = 1, and
v ∈ ∂C; as otherwise, v is an eigenvector of f in C◦. By Proposition 5.5, there
exists a subnet (vεα) such that iF (vεα) → hF ∈ HF , iR(vεα) → hR ∈ HR, and
iH (vεα) → hH ∈ HH . By construction, hH (x) = hF (x) + hR(x) for all x ∈ C◦. Thus,
to prove the third inequality it suffices to show the first two. From Lemma 5.2, we
see that for each α and x ∈ C◦,

FunkC( f (x), vεα) − FunkC(u, vεα) ≤ FunkC( fεα(x), vεα) − FunkC(u, vεα)

= FunkC( fεα(x), fεα(vεα))

+ log rεα − FunkC(u, vεα)

≤ FunkC(x, vεα) + log rεα − FunkC(u, vεα).

Thus, hF ( f (x)) ≤ hF (x) + log rC◦( f ) for all x ∈ C◦.

To prove the second inequality, fix x ∈ C◦, Note that since f (x) ∈ C◦, there
exists a constant β > 0, depending on x, such that |x|u ≤C β f (x), and hence
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(1 + βε)−1 fε(x) ≤C f (x). From Lemma 5.2, we see that for each α,

RFunkC( f (x), vεα) − RFunkC(u, vεα) ≤ RFunkC((1 + βεα)
−1 fεα(x), vεα)

− RFunkC(u, vεα)

= RFunkC( fεα(x), fεα(vεα))

− RFunkC(u, vεα) + log(1 + βεα)

− log rεα

≤ RFunkC(x, vεα) − RFunkC(u, vεα)

+ log(1 + βεα) − log rεα .

Thus, hR( f (x)) ≤ hR(x) − log rC◦( f ) for all x ∈ C◦.
To prove the final assertion, note that hR(x) = RFunkC(x, v) − RFunkC(u, v)

for all x ∈ C◦, by Lemma 5.3. Letting y := M (v/u)−1v , we get that hR(x) =
RFunkC(x, y). �

The following example shows that equality can hold simultaneously in the
three inequalities in Theorem 6.1.

Example 6.2. Consider the linear mapping f (X) := MXM ∗, where

M :=

(
1 1
0 1

)
,

on the cone �2(R) consisting of positive semi-definite 2 × 2 real matrices in the
Jordan algebra of 2 × 2 symmetric matrices. An elementary computation shows
that for k ≥ 1,

(41) f k(X) =

(
a + 2kb + k2c b + kc

b + kc c

)
for X =

(
a b
b c

)
∈ �2(R),

and hence r�2(R)◦( f ) = 1.
Define the mapping g on the set �◦ consisting of invertible trace 1 matrices

in �2(R), by g(X) := f (X)/tr( f (X)). As f is an invertible linear mapping from
�2(R) onto itself, the mapping g is an Hilbert metric isometry on �◦. In fact, g
corresponds to a parabolic isometry of the hyperbolic plane. To see this, let

Y =

(
1 0
0 0

)
and Z =

(
0 0
0 1

)
.

By the above computation, gk(X) → Y for all X ∈ �◦, and hence f has no



DENJOY-WOLFF THEOREMS FOR METRIC SPACES 707

eigenvector in �2(R)◦. It follows from Theorem 5.6 that there exist horofuntions
hF (X) = RFunkC(X−1,Z) ∈ HF , hR(X) = RFunkC(X,Y ) ∈ HR, and hH =
hF + hR ∈ HH , where we have taken the identity matrix I as the base point. Note
that

hF (X) = RFunkC(X−1,Z) = logmaxσ(XZ) = log c

and

hR(X) = RFunkC(X,Y ) = logmaxσ(X−1Y ) = log(c/ det(X)).

for all X ∈ �2(R)◦. Since det( f (X)) = det(X), we deduce from (41) that

hF ( f (X)) = log c = hF (X) and hR( f (X)) = log(c/ det(X)) = hR(X)

for all X ∈ �2(R)◦. Thus, for each X ∈ �2(R)◦,

hH ( f (X)) = log c + log(c/ det(X)) = hH (X).

The level sets of hF and hR are depicted in Figure 1.

Figure 1. Funk and reverse-Funk horofunction level sets in�2(R)◦.

The next corollary generalizes results from [13] and [18] and is an immediate
consequence of Lemma 5.4 and Theorem 6.1.

Corollary 6.3. Let C,X, f, y and hF be as in Theorem 6.1. Then
(i) there exists ϕ ∈ C∗ \ {0} such that logϕ( f k(x)) ≤ hF (x) + k log rC◦( f ) for all

x ∈ C◦ and k ≥ 1;
(ii) for all x ∈ C◦ such that y ≤C x, rC◦( f )y ≤C f (x).

Another consequence of Theorem 6.1 concerns the linear escape rate studied
in [18]. Recall that for an order-preserving homogeneous mapping f : C◦ → C◦,
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the linear escape rate is defined by

ρ( f ) := lim
k→∞

RFunkC(x, f k(x))
k

.

Note that

RFunkC(x, f k(x))
k

= logM ( f k(x)/x)1/k = log ‖ f k(x)‖1/k
x → log rC◦( f ),

as k → ∞, so ρ( f ) = log rC◦( f ). The following characterization of ρ( f ) extends
[18, Theorem 1].

Corollary 6.4. Let C be closed normal cone with nonempty interior in a
Banach space X. If f : C◦ → C◦ is an order-preserving homogeneous mapping
and f has converging approximate eigenvectors, then

(42) ρ( f ) = max
h∈AR

inf
x∈C◦ h(x) − h( f (x)),

where AR consists of those h ∈ iR(C◦) for which there exists a net (yα) in C◦, with
yα → y ∈ C and ‖y‖b = 1, such that iR(yα) → h in C(C◦). If f has no eigenvector
in C◦, the maximum is attained at some h ∈ AR ∩ HR.

Proof. Denote by b ∈ C◦ the base point for the horofunctions. By Proposi-
tion 5.5, for each element h ∈ AR there exists y ∈ C with ‖y‖b = 1 such that

h(x) = RFunkC(x, y) − RFunkC(b, y) = RFunkC(x, y) for all x ∈ C◦.

So

h(x) − h( f (x)) = RFunkC(x, y) − RFunkC( f (x), y) ≤ RFunkC(x, f (x))

for all x ∈ C◦, and hence

sup
h∈AR

inf
x∈C◦ h(x) − h( f (x)) ≤ inf

x∈C◦ RFunkC(x, f (x)) = log rC◦( f ),

by Theorem 4.6.
If f has an eigenvector v ∈ C◦, then f (v) = rC◦( f )v and h(v) − h( f (v)) =

log rC◦( f ) for all h ∈ iR(C◦). Since ρ( f ) = log rC◦( f ), the identity holds if f has
an eigenvector in C◦.

If f has no eigenvector in C◦, then by Theorem 6.1, there exists hR ∈ AR ∩HR

such that log rC◦( f ) ≤ hR(x) − hR( f (x)) for all x ∈ C◦. Thus,

ρ( f ) = max
h∈AR

inf
x∈C◦ h(x) − h( f (x)). �
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Note that if in Corollary 6.4 the cone C is finite dimensional, then AR = iR(C◦).
Having established (42), we can now use identical arguments as those used

by Gaubert and Vigeral in [18, Lemma 36 and Corollary 37] to obtain a second
Collatz-Wielandt formula for rC◦( f ), which generalises that given in [18, Corollary
37]. The details are left to the reader. To formulate it, we need to recall the
following concept. The radial extension of an order-preserving homogenous
mapping f : C◦ → C◦ on the interior of a closed cone in a finite dimensional
vector space X is given by

f̂ (x) := lim
ε→0+

f (x + εu) for all x ∈ C,

where u ∈ C◦ is fixed. (It is easy to verify that f̂ is an order-preserving ho-
mogeneous mapping, and the limit exists and is independent of u ∈ C◦, as f is
order-preserving and C is finite dimensional.)

Theorem 6.5 (Collatz-Wielandt formula II). Let C be closed cone with non-
empty interior in a finite dimensional vector space X, and f : C◦ → C◦ be an
order-preserving homogeneous mapping. Then

rC◦( f ) = max
y∈C\{0}

m( f̂ (y)/y),

where m( f̂ (y)/y) := sup{α ≥ 0: αy ≤C f̂ (y)} for y ∈ C \ {0}.
Theorem 6.5 should be compared with [31, Corollary 5.4.2], which implies

that if f : C → C is a continuous, order-preserving, homogeneous mapping on a
closed cone in a finite dimensional vector space X , then

rC( f ) = max{α ≥ 0: f (y) = αy for some y ∈ C \ {0}}.
The main difference is that in our case, the mapping is defined only on C◦ and
need not have a continuous extension to the boundary; see [11].

7 Denjoy-Wolff theorems for Hilbert’s metric

In this section, we prove Denjoy-Wolff type theorems for Hilbert’s metric nonex-
pansive mappings on possibly infinite dimensional domains. We consider map-
pings g : �◦ → �◦ of the form

(43) g(x) =
f (x)

q( f (x))
for x ∈ �◦ := {x ∈ C◦ : q(x) = 1},

where f : C◦ → C◦ is an order-preserving homogeneous mapping on the interior
of a normal closed C in a Banach space X with rC◦( f ) = 1 and q : C◦ → (0,∞)
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is a continuous homogenous mapping. Typical examples of q are the norm (or
an equivalent norm to the norm) of X and strictly positive functionals q ∈ C◦.
Mappings g of this form are nonexpansive under Hilbert’s metric; see, e.g., [31,
Section 2.1], Note also that by Lemma 4.7, we can always renormalize f so that
rC◦( f ) = 1 without changing g.

Theorem 7.1. Let C be normal closed cone with nonempty interior in a
Banach space X, and let f : C◦ → C◦ be a fixed point free order-preserving ho-
mogeneous mapping, with rC◦( f ) = 1, satisfying the fixed point property on C◦

with respect to dC. Suppose that the mapping g : �◦ → �◦ is given by (43). If
there exists x0 ∈ C◦ such that O(x0; f ) and O(x0/q(x0); g) have compact closures
in the norm topology, then there exists a convex set � ⊆ ∂C such that ω(z; g) ⊆ �

for all z ∈ �◦.

Proof. Denote by �0 the convex hull of ω(x0; f ). The mapping f : C◦ → C◦

is nonexpansive under Thompson’s metric, as it is order-preserving and homogen-
eous; see e.g. [31, Section 2.1]. So we obtain from Corollary 3.5 that �0 ⊆ ∂C.
Using the Hahn-Banach separation theorem, we find ϕ ∈ X∗ such that�0 ⊆ ker(ϕ)
and ϕ(z) > 0 for all z ∈ C◦. Now let y0 := x0/q(x0) and η ∈ ω(y0; g). Then there
exists a subsequence {gki (y0)}i which converges to η. As O(x0; f ) has compact
closure in the norm topology, we may assume, after taking a further subsequence,
if necessary, that f ki (x0) converges to say, ξ . It follows from Lemma 4.8 that ξ �= 0,
and hence q(ξ ) > 0. So

ϕ(η) = lim
i→∞ϕ

(
f ki (x0)

q( f ki (x0))

)
= lim

i→∞
ϕ( f ki (x0))
q( f ki (x0))

=
ϕ(ξ )
q(ξ )

= 0,

which shows that ω(y0; g) ⊆ ker(ϕ) ∩ C. As O(x0/q(x0); g) has a compact closure
in the norm topology, we can apply [41, Theorem 5.3] to conclude that

⋃
z∈�◦

ω(z; g) ⊂ ∂C.
�

Remark 7.2. It is interesting to note that the assumption that f : C◦ → C◦ is
a continuous order-preserving mapping such that for each x ∈ C◦ the orbit O(x; f )
has a compact closure in the norm topology and all accumulation points of O(x; f )
lie inside ∂C is sufficient for one to prove that ω(x; f ) is contained in a convex
subset of ∂C for each x ∈ C◦. The argument goes as follows.

Let x ∈ C◦, and note thatω(x; f ) is a closed subset of X . Asω(x; f ) is contained
in the closure of O(x; f ), which is compact, ω(x; f ) is compact. Hence there exists
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y ∈ C◦ with z ≤C y for all z ∈ cl(O(x; f )). Indeed, there exists R > 0 such that
ω(x; f ) ⊆ BR(0) := {u ∈ X : ‖u‖ ≤ R}. Now let y0 ∈ C◦. Then there exists δ > 0
such that Bδ (y0) := {u ∈ X : ‖y0 − u‖ ≤ δ} ⊆ C. Letting y = R

δ
y0, we see that for

each z ∈ X , with ‖z‖ ≤ R,

y − z =
R
δ

(y0 − δ

R
z) =:

R
δ

(y0 − z0) ∈ C,

as z0 = δ
R z ∈ X with ‖z0‖ ≤ δ .

By assumption, ω(y; f ) is a nonempty compact subset of ∂C. Let w ∈ ω(y; f ).
As w ∈ ∂C, there exists ϕ ∈ C∗ \ {0} such that ϕ(w) = 0.

We now show that z ≤C w for all z ∈ ω(x; f ). If {mi}i is a sequence such that
f mi (y) → w, and {k j } j is a sequence such that f k j (x) → z, then f k j (x) ≤C f mi (y)
for all k j ≥ mi , as f k(x) ≤C y for all k ≥ 0. Taking the limit for j → ∞, we get
z ≤C f mi (y) for all mi . Now letting i → ∞, we find that z ≤C w. As ϕ(w) = 0,
we conclude that ϕ(z) = 0 and hence ω(x; f ) ⊆ ker(ϕ) ∩ ∂C.

Theorem 7.3. Let C be normal closed cone with nonempty interior in a
Banach space X and let f : C◦ → C◦ be a fixed point free order-preserving homo-
geneous mapping, with rC◦( f ) = 1, having converging approximate eigenvectors.
Let g : �◦ → �◦ be given by (43), where �◦ = {x ∈ C◦ : q(x) = 1} is bounded in
the norm topology. If there exists x0 ∈ C◦ such that limk→∞ ‖ f k(x0)‖ = ∞ and
the orbit O(x0/q(x0); g) has compact closure in the norm topology of X, then there
exists a convex set � ⊆ ∂C such that ω(z; g) ⊆ � for all z ∈ �◦.

Proof. As rC◦( f ) = 1, Corollary 6.3 assures the existence of ψ ∈ C∗ \{0} and
hF ∈ HF such that

(44) logψ( f k(x0)) ≤ hF (x0)

for all k ≥ 1. As �◦ is bounded in the norm topology, there exists δ > 0 such
that q(x) ≥ δ for all x ∈ C◦ with ‖x‖ = 1. Indeed, if there exists a sequence
{uk}k in C◦ such that ‖uk‖ = 1 and q(uk) ≤ 1/k for all k, then uk/q(uk) ∈ �◦,
but ‖uk/q(uk)‖ = 1/q(uk) → ∞ as k → ∞, which contradicts the fact that �◦ is
bounded. Combining this with the assumption, ‖ f k(x0)‖ → ∞ as k → ∞, we
find that

q( f k(x0)) = ‖ f k(x0)‖q
(

f k(x0)
‖ f k(x0)‖

)
≥ δ‖ f k(x0)‖ → ∞ as k → ∞.

So,letting y0 := x0/q(x0), we see from (44) that

ψ(gk(y0)) =
ψ( f k(x0))
q( f k(x0))

→ 0 as k → ∞.
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Thus ω(y0; g) ⊆ ker(ψ) ∩ C. It now follows from [41, Theorem 5.3] that there
exists � ⊆ ∂C convex such that ω(z; g) ⊆ � for all z ∈ �◦. �

Theorems 7.1 and 7.3 confirm a conjecture by Karlsson and Nussbaum; see
[26, 41], for an interesting class of Hilbert’s metric nonexpansive mappings. The
main point is that the arguments do not rely on the geometry of the domain. They
also imply Theorem 1.2, as an order-preserving homogeneous mapping
f : C◦ → C◦ always satisfies the fixed point property on C◦ with respect to dC ,
and each orbit of g : �◦ → �◦ has a compact closure in the norm topology if
the cone is finite dimensional. However, we do not know whether there exists an
order-preserving homogenous mapping f : C◦ → C◦, where C is a finite dimen-
sional closed cone, with a point x ∈ C◦ such that O(x; f ) has an accumulation point
in ∂C and O(x; f ) is unbounded in the norm topology. We conjecture that such a
mapping cannot exist, but at present can only prove this for polyhedral cones.

Theorem 7.4. Let f : C◦ → C◦ be an order-preserving homogeneous map-
ping on the interior of a polyhedral cone. Then there does not exist a point x ∈ C◦

such that O(x; f ) has an accumulation point in ∂C and O(x; f ) is unbounded in the
norm topology.

Theorem 7.4 is a simple consequence of the following proposition.

Proposition 7.5. Let f : C◦ → C◦ be an order-preserving homogenous map-
ping on the interior of a polyhedral cone C in a finite dimensional vector space
V with rC◦( f ) = 1, and let x ∈ C◦ be such that O(x; f ) is unbounded in the norm
topology. Then there exists hR ∈ HR such that

lim
k→∞ hR( f k(x)) = −∞.

Proof. For simplicity we write xk := f k(x) and zk := xk/‖xk‖ for k ≥ 0.
As O(x; f ) is unbounded in the norm topology, there exists a subsequence {xk j } j

of {xk}k such that ‖xm‖ < ‖xk j ‖ for all m < k j . Note that we can take a fur-
ther subsequence such that as j → ∞, iR(xk j ) converges to, say, hR ∈ HR and
zk j → z ∈ C \ {0} . We claim that z ∈ ∂C. Indeed, suppose, for the sake of contra-
diction, that z ∈ C◦. The mapping g : y �→ f (y)

‖ f (y)‖ on �◦ := {y ∈ C◦ : ‖y‖ = 1} is
nonexpansive on (�◦, δC). Moreover,

gkj (z0) =
f k j (x0)

‖ f k j (x0)‖ = zk j → z ∈ C◦ as j → ∞.

Thus, ω(z0; g) ∩ �◦ is nonempty. It now follows from [31, Corollary 3.2.5] that
g has a fixed point, say, u ∈ �◦. The equality u = g(u) = f (u)

‖ f (u)‖ implies that
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‖ f (u)‖ = rC◦( f ) = 1. Thus f has a fixed point in C◦. As f is nonexpansive under
dC on C◦, all orbits of f are bounded under dC and hence also bounded in the
norm topology, as the topologies coincide. This contradicts our assumption; so,
z ∈ ∂C.

Let E be the extreme points of �∗
z0

:= {ϕ ∈ C∗ : ϕ(z0) = 1}. Note that E is
a finite set, as C is polyhedral. Let E0 := {ϕ ∈ E : ϕ(z) = 0} and E+ := E \ E0,
which are both nonempty sets.

Observe that for m ≥ 0 fixed and ϕ ∈ E0,

log
ϕ(zk j−m)

ϕ(zk j )
≤ dH (gkj (z0), g

kj−m(z0)) ≤ dH (gm(z0), g(z0)) < ∞.

Thus, for ϕ ∈ E0, ϕ(zk j−m) → 0 as j → ∞. As zk j → z and ϕ(zk j ) > 0 for all j
and ϕ ∈ E+, there exists a constant γ > 0 such that ϕ(zk j ) > γ for all j and ϕ ∈ E+.
Combining these two observations gives

lim sup
j→∞

RFunkC(zki , zk j−m) = lim sup
j→∞

log
(
ϕ j (zk j−m)

ϕ j (zki )

)
≤ − log γ

for some ϕ j ∈ E+, as ϕ j (zk j−m) ≤ 1 and ϕ(zki ) > γ. Similarly, for all j sufficiently
large,

RFunkC(z0, zk j ) = log
(
ϕ j (zk j )

ϕ j (z0)

)
≥ log γ,

where ϕ j ∈ E+.

Now fix integers m, i > 0 and consider

hR(xki+m) = lim
j→∞ RFunkC(xki+m, xk j ) − RFunkC(x0, xk j ).

As f is order-preserving and homogeneous, it is nonexpansive with respect to
RFunkC ; see Lemma 5.2(4). Therefore,

hR(xki+m) ≤ lim sup
j→∞

RFunkC(xki , xk j−m) − RFunkC(x0, xk j )

≤ lim sup
j→∞

RFunkC(zki , zk j−m) − RFunkC(z0, zk j ) + log

(‖xk j−m‖‖x0‖
‖xki ‖‖xk j ‖

)

≤ lim sup
j→∞

RFunkC(zki , zk j−m) − RFunkC(z0, zk j ) + log
( ‖x0‖

‖xki ‖
)

≤ −2 log γ + log ‖x0‖ − log ‖xki ‖.

As ‖xki ‖ → ∞, we see that limk→∞ hR(xk) = −∞. �
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Note that Example 6.2 shows that Proposition 7.5 does not hold for general
cones.

Let us now prove Theorem 7.4.

Proof of Theorem 7.4. We argue by contradiction. Suppose that ( f mi (x))i
is a norm bounded subsequence and O(x, f ) is unbounded in the norm topology.
Then there exists β > 0 such that f mi (x) ≤ βx for all i. Before we can apply
Proposition 7.5, we need to show that rC◦( f ) = 1. Note that O(x; f ) has a con-
vergent subsequence { f s j (x)} j with limit, say, η ∈ C. By Lemma 4.8, η �= 0, so
rC◦( f ) = lim j→∞ ‖ f s j (x)‖1/s j = 1.

By Proposition 7.5 there also exists a subsequence { f k j (x)} j of O(x; f ) with
‖ f k j (x)‖ → ∞ such that iR( f k j (x)) → hR ∈ HR, where hR( f m(x)) → −∞ as
m → ∞. Note, however, that

iR( f k j (x))( f mi (x)) = RFunkC( f mi (x), f k j (x)) − RFunkC(x, f k j (x))

≥ RFunkC(βx, f k j (x)) − RFunkC(x, f k j (x))

= − logβ

for all i and j , which is absurd. �

Remark 7.6. There exists an alternative proof of Theorem 7.4 which does
not rely on horofunctions. We sketch the argument.

As C is a polyhedral cone, the order-preserving homogeneous mapping has
a continuous order-preserving homogeneous extension to the whole of C; see
[11]. Moreover, it follows from [31, Theorem 5.3.1 and Proposition 5.3.6] that
1 = rC◦( f ) = r̂C( f ), where r̂C( f ) is the Bonsall spectral radius, which is given
by r̂C( f ) := limk→∞ ‖ f k‖1/k

C . Now suppose that x ∈ C◦ and O(x; f ) is un-
bounded in the norm topology. Then there exists a subsequence {ki}i such that
limi→∞ ‖ f ki (x)‖ = ∞ and ‖ f j (x)‖ < ‖ f ki (x)‖ for all j < ki and i ≥ 1. Assume
that we have selected a subsequence of {ki}i , which we also label by ki , such that

lim
i→∞

f ki−ν(x)
‖ f ki−ν(x)‖ =: ην ∈ C

for all ν = 0, . . . ,m. Leave the subsequence unchanged for i ≤ m, and for i ≥
m + 1, modify the subsequence so that

lim
i→∞

f ki−(m+1)(x)
‖ f ki−(m+1)(x)‖ = ηm+1

for some ηm+1 ∈ C. Continuing in this way, we obtain a subsequence {ki}i such
that

lim
i→∞

f ki−ν(x)
‖ f ki−ν(x)‖ =: ην
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for all ν ≥ 0. Now note that, as f km (x) and f km−m(x) in C◦, there exist 0 < am ≤ bm

such that

am f km−m(x) ≤C f km (x) ≤C bm f km−m(x),

and hence am f k j−m(x) ≤C f k j (x) ≤C bm f k j−m(x) for all j ≥ m. This gives

am
f k j−m(x)
‖ f k j (x)‖ ≤C

f k j (x)
‖ f k j (x)‖ ≤C bm

f k j−m(x)
‖ f k j (x)‖ .

As
‖ f k j−m(x)‖
‖ f k j (x)‖ ≤ 1 and

‖ f k j−m(x)‖
‖ f k j (x)‖ ≥ 1

‖ f m‖C
,

we have
am

‖ f m‖C

f k j−m(x)
‖ f k j−m(x)‖ ≤C

f k j (x)
‖ f k j (x)‖ ≤C bm

f k j−m(x)
‖ f k j−m(x)‖ .

Letting j → ∞ gives
am

‖ f m‖C
ηm ≤C η0 ≤C bmηm

for all m ≥ 1. Thus, ηm ∼C η0 for all m ≥ 1, and hence ηm ∼C ηn for all
m, n ≥ 1. In a similar way, it can be shown that f (η1) ∼C η0. As η1 ∼C η0, it
follows that for each x ∼C η0, f (x) ∼C f (η0) ∼C η0, and hence f (C0) ⊆ C0,
where C0 := {x ∈ C : x ∼C η0} is the part of η0. By continuity of f : C → C, we
find that f (C0) ⊆ C0.

It is known that C0 is the relative interior of the closed cone C0; see [31,
Lemma 1.2.2]. We claim that r̂C0

( f|C0
) = 1. Obviously r̂C0

( f|C0
) ≤ 1, as r̂C( f ) = 1.

Note that for all m ≥ 1, we have ‖ηm‖ = 1, ηm ∈ C0, and

‖ f m(ηm)‖ = lim
i→∞

‖ f m( f ki−m(x))‖
‖ f ki−m(x)‖ = lim

i→∞
‖ f ki (x)‖

‖ f ki−m(x)‖ ≥ 1,

so r̂C0
( f|C0

) = limk→∞ sup{‖ f k(x)‖1/k : x ∈ C0 with ‖x‖ ≤ 1} ≥ 1.
It follows from [31, Corollary 5.4.2] that there exists v ∈ C0 such that f (v) =

v and ‖v‖ = 1. As η0 ∈ C0, there exists β > 0 such that v ≤C βη0. As
f ki (x)/‖ f ki (x)‖ → η0 and C is polyhedral, we know; see [31, Lemma 5.1.4],
that for each 0 < λ < 1 there exists i0 ≥ 1 such that λη0 ≤C f ki (x)/‖ f ki (x)‖ for
all i ≥ i0. So, if we fix 0 < λ < 1, and let b := β−1, we get

bλ‖ f ki (x)‖v = bλ‖ f ki (x)‖ f m(v) ≤C f ki+m(x)

for all i ≥ i0 It follows that lim infm→∞ ‖ f ki+m(x)‖ ≥ bλκ−1‖ f ki (x)‖, where κ > 0
is the normality constant of C, so lim infn→∞ ‖ f n(x)‖ = ∞. Thus O(x; f ) cannot
have any accumulation points in C.
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