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We study the singularly perturbed state-dependent delay-differ-
ential equation

εẋ(t) = −x(t) − kx(t − r), r = r
(
x(t)

)
= 1+ x(t), (∗)

which is a special case of the equation

εẋ(t) = g
(
x(t), x(t − r)

)
, r = r

(
x(t)

)
.

One knows that for every sufficiently small ε > 0, Eq. (∗) possesses
at least one so-called slowly oscillating periodic solution, and
moreover, the graph of every such solution approaches a specific
sawtooth-like shape as ε → 0. In this paper we obtain higher-
order asymptotics of the sawtooth, including the location of the
minimum and maximum of the solution with the form of the
solution near these turning points, and as well an asymptotic
formula for the period. Using these and other asymptotic formulas,
we further show that the solution enjoys the property of super-
stability, namely, the nontrivial characteristic multipliers are of size
O (ε) for small ε. This stability property implies that this solution
is unique among all slowly oscillating periodic solutions, again for
small ε.
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1. Introduction

In this paper we study the state-dependent delay-differential equation

εẋ(t) = −x(t) − kx(t − r), r = r
(
x(t)

)
= 1+ x(t), (1.1)

where

k > 1 (1.2)

is a given constant. In this equation the delay r varies with time as a function of the solution x(t),
and we consider only solutions for which r(x(t)) � 0, that is, x(t) � −1. We always take ε > 0, and
generally ε is small, so Eq. (1.1) is in singular perturbation form.

Differential equations with variable delays, and more specifically with state-dependent delays, have
been studied for at least 45 years. They often appear in an applied framework, although more re-
cently they have been studied from a theoretical perspective. Among the earliest works are those by
Driver [15–18], Driver and Norris [19], and Cooke [11], in the 1960’s; and by Winston [58,59], Nuss-
baum [47], and Alt [2,3], in the 1970’s. Numerous models have arisen in the context of biology; see,
for example, [1,5,7,22,32–35,38], and [40]. See also [8,10], and [37], for models in economics, and as
well [46] for a model of crystal growth.

Although many of the state-dependent problems can be put in the general delay-equation frame-
works of [14] and [24], many of the results there (for example, stability results and existence of invari-
ant manifolds) do not directly apply. Much recent work has been aimed at addressing this problem,
and establishing a rigorous foundation for the theory of state-dependent delay-differential equations.
In this direction we mention the recent foundational work of Walther [51], Hartung, Krisztin, Walther,
and Wu [25], and Krisztin [28,29]. Many other theoretical works are to be found, for example, [4,6,9,
10,12,13,23,26,30,31,36,39,49,50,52–56], and [57].

Our analysis in the present paper continues our earlier work [41–43], and [45] on a class of equa-
tions of the form

εẋ(t) = g
(
x(t), x(t − r)

)
, r = r

(
x(t)

)
. (1.3)

In particular, in [43] we obtained general results on the limiting shape of so-called slowly oscillating
periodic solutions as ε → 0. These results are, in a sense, “zeroth-order” results, in that given a se-
quence xi(t) of slowly oscillating periodic solutions with corresponding parameter values εi → 0 as
i → ∞, the limiting set Γ ⊆ R2 of the graphs of the solutions is determined in a very explicit form.
Here Γ is, roughly, the limit Γi → Γ of the sequence of sets

Γi =
{
(t, x) ∈ R2 ∣∣ x = xi(t) for t ∈ R

}
, (1.4)

the limit being taken in a sense similar to Hausdorff convergence. In general the limiting set Γ is not
the graph of a function as it can contain vertical line segments. A negative feedback condition was
assumed for Eq. (1.3), as well as monotonicity of g in the delay variable x(t − r), and conditions on g
yielding instability of the origin and boundedness of solutions. It was also assumed that r(x(t)) � 0.
A particular class of such equations are those of the form

εẋ(t) = −x(t) + f
(
x(t − r)

)
, r = r

(
x(t)

)
, (1.5)

where f (0) = 0, f ′(0) < −1, and f ′(x) < 0 for all x, along with a boundedness condition on f , and
where also r(0) > 0. Quite generally, under such conditions one has the existence of at least one
slowly oscillating periodic solution for every ε in the range 0 < ε < ε0 where ε0 is the Hopf bifurca-
tion point for slowly oscillating periodic solutions.

The singular parameter ε is very natural in such problems. In particular, taking the singular limit
ε → 0 corresponds, after rescaling time, to a regular problem with a large delay. The advantage of
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introducing ε is that it provides an “organizing center” at ε = 0 near which precise, quantitative, and
global results can be obtained using analytical methods.

In the present paper we refine some of the zeroth-order results by obtaining a “higher-order”
description of how the above solutions xi(t) converge. Our results are expressed as an asymptotic
description of these solutions in terms of the parameter ε. The asymptotics are rather subtle, involving
logarithmic terms as well as powers of ε. A central result obtained from this analysis is the stability
and uniqueness of slowly oscillating periodic solutions of Eq. (1.1) for sufficiently small ε. In fact, we
prove a result on so-called superstability of these solutions, namely that all nontrivial characteristic
(Floquet) multipliers λ satisfy an estimate |λ| = O (ε) as ε → 0. The stability of all slowly oscillating
periodic solutions for small ε in turn implies their uniqueness for small ε, as we show by means of a
degree theory argument.

In both the earlier work described above, and in the present paper, only problems with a single
delay r are considered. In fact, while the theory of single-delay problems such as (1.3) is now highly
developed, there is relatively little known of a global nature about multiple-delay equations such as

εẋ(t) = g
(
x(t), x(t − r1), . . . , x(t − rm)

)
, r j = r j

(
x(t)

)
, (1.6)

and the study of such equations (and also systems) is a significant challenge. We believe that the
techniques developed in the present paper are robust enough to allow a much more detailed analysis
of problems such as (1.6) than has been possible before. We propose that extending and adapting
our techniques to (1.6) and to more general problems is the basis for a challenging and long-term
program.

Our purpose in restricting to the very special equation (1.1) is to keep the analysis simple and
to provide as much transparency and insight as possible into the underlying dynamical mechanisms.
Here we do not consider systems of the form (1.3), or even those of the form (1.5), with general
nonlinearities, although this is planned for a future study. Indeed, we believe that the analysis of
the model equation (1.1) in the present paper is fundamentally the same and just as intricate as
the analysis of a broader class of systems of the form (1.3). Thus the analysis of Eq. (1.1) herein
should serve as a template for the study of the more general problem (1.3), and even for the study of
multiple-delay problems such as (1.6).

Note finally that one could consider the system

εẋ(t) = −k1x(t) − k2x(t − r), r = r
(
x(t)

)
= c1 + c2x(t), (1.7)

where 0 < k1 < k2, which is a negative feedback condition along with an instability condition on the
origin, and where c1, c2 > 0. In fact, Eq. (1.7) is easily transformed into Eq. (1.1) by rescaling x, t ,
and ε. Namely, upon introducing new variables x = c−1

1 c2x and t = c−1
1 t with ε = ε(k1c1)−1 in (1.7),

one obtains (1.1) with k = k−1
1 k2.

2. The setting and main results

Consider now Eq. (1.1), where (1.2) is assumed. It is known [42,45] that for every sufficiently
small ε, there exists a so-called slowly oscillating periodic solution (SOPS) of Eq. (1.1), namely a
solution x(t) satisfying the following properties for some discrete set {zn}∞n=−∞:

{
t ∈ R

∣∣ x(t) = 0
}

= {zn}∞n=−∞, where zn+1 − zn > r(0) = 1 for every n, and

x(t + p) = x(t) for all t, where p = zn+2 − zn for every n. (2.1)

It is easily seen from the differential equation (1.1) that ẋ(zn) (= 0 for every n, so all zeros of x(t) are
simple. Thus the solution x(t) changes sign infinitely often, with sign changes separated by a distance
greater than the delay r(0) = 1 at zero. Also, x(t) repeats periodically after any two consecutive zeros.
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It is also known that any SOPS of Eq. (1.1) satisfies several additional properties, in particular

−1 < x(t) < k for every t ∈ R,
{
t ∈ (zn, zn+1)

∣∣ ẋ(t) = 0
}

= {qn} is a singleton for every n. (2.2)

Thus an SOPS x(t) has exactly one local maximum and one local minimum per period, and these are
the global maximum and minimum. In each interval [qn,qn+1] the solution moves strictly monoton-
ically between these two extrema, and the range of the solution is contained in the open interval
(−1,k). Note that this range is contained in the region where r(x) > 0. We shall make use of these
facts in our analysis.

One easily sees, by repeatedly differentiating (1.1), that the SOPS x(t) is C∞-smooth. It is an open
question, however, as to whether or not x(t) is analytic in t . In this paper we shall use smooth to
mean C∞-smooth unless stated otherwise.

We remark that more or less identical results on the existence of SOPS’s hold for the more general
class of equations (1.3) under appropriate assumptions on the nonlinearity, including negative feed-
back, monotonicity of g in the delay term, instability at the origin, and a boundedness condition on g ,
with r(0) > 0.

It is not difficult to show directly that the monotonicity property

d
dt

(
t − r

(
x(t)

))
> 0, equivalently ẋ(t) < 1, for every t ∈ R, (2.3)

holds for the so-called historical time t − r(x(t)) for every SOPS, and indeed, this was shown in [41]
for a very general class of equations of the form (1.3). For Eq. (1.1), considered in the present paper,
one proves (2.3) by simply observing that whenever d

dt (t − r(x(t))) = 0, that is, whenever ẋ(t) = 1,

then (1.1) implies that ẍ(t) = −ε−1 ẋ(t) < 0 and thus d2

dt2
(t − r(x(t))) = −ẍ(t) > 0. Therefore every

critical point of the function t − r(x(t)) is a nondegenerate local minimum, and it follows from the
fact that t − r(x(t)) → −∞ as t → −∞, that no such critical points can exist. (Note that this proof is
valid for any solution x(t) of (1.1) which is defined for all t ∈ R and bounded as t → −∞.)

In this paper we shall observe that (2.3) is a consequence of our asymptotic analysis for small ε.
Indeed, this follows from Corollaries 5.3 and 6.4, from Proposition 7.5 (which concern Intervals II,
III, and IV, respectively), and from Corollary 4.4 which ensures that ẋ(t) < 0 throughout Interval I.
(These four time intervals cover the entire period of x(t), and will be defined below.) We believe
these techniques may be useful in proving analogs of (2.3) for other problems, such as Eq. (1.6) with
multiple delays, where the proof from [41] is not applicable.

Let us now recall the zeroth-order results for Eq. (1.1). It is known from [43] that as ε → 0, the
asymptotic shape of any SOPS of (1.1) has the form of a sawtooth in the following sense. Define a
sawtooth-shaped set Γ ⊆ R2 by

Γ =
∞⋃

n=−∞
(Vn ∪ Sn),

Vn =
{
(t, x) ∈ R2 ∣∣ t = (k + 1)n and −1 � x � k

}
,

Sn =
{
(t, x) ∈ R2 ∣∣ x = t − 1− (k + 1)n and (k + 1)n � t � (k + 1)(n + 1)

}
.

The sets Vn are the vertical parts of the sawtooth, while the Sn are the sloping portions. Now assume
we have a sequence xi(t) of SOPS’s of Eq. (1.1) for ε = εi , where εi → 0 is a sequence of positive quan-
tities. Let pi denote the corresponding periods of these solutions. Also assume, by a time translation,
that

xi(0) = 0 and ẋi(0) < 0 for every i. (2.4)
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Let Γi ⊆ R2 as in (1.4) denote the graph of xi(t) in the plane. Then as proved in [43], for every R > 0
there exists a compact set KR ⊆ R2 containing the R-ball at the origin, that is

{
(t, x) ∈ R2 ∣∣ t2 + x2 � R2} ⊆ KR ,

such that

lim
i→∞

dist(Γi ∩ KR ,Γ ∩ KR) = 0. (2.5)

Here dist(·,·) denotes the Hausdorff distance between two sets, and so (2.5) says that the graphs of
the solutions xi(t) converge to the sawtooth set Γ . Recall that in any metric space (X,d) the Hausdorff
distance is defined as

dist(A, B) = max
{
max
a∈A

d(a, B),max
b∈B

d(b, A)
}
,

d(a, B) = min
b∈B

d(a,b), d(b, A) = min
a∈A

d(b,a),

for any nonempty compact sets A, B ⊆ X .
The above set Γ is known as the limiting profile of the sequence xi(t) of SOPS’s. The vertical

portions Vn of Γ arise from transition layers in the solution, namely where |ẋ(t)| is of size ε−1, while
the sloping portions Sn occur where |ẋ(t)| remains bounded as ε → 0. The vertices or turning points
((k+1)n,−1), ((k+1)n,k) ∈ Γ , where the vertical and sloping portions meet, are of particular interest
in our analysis below.

Let us note that the limiting value

lim
i→∞

pi = k + 1 (2.6)

of the period follows directly from the convergence result (2.5). Also observe, for future use, that (2.5)
implies the limit

lim
i→∞

xi(t) = t + k uniformly for t in compact subsets of (−k − 1,0). (2.7)

This corresponds to the convergence of a portion of the graph Γi to the segment S−1 ⊆ Γ in the
limiting profile.

We regard the above convergence results (2.5), (2.6), and (2.7) as zeroth-order results, in that they
give no information on the rate of convergence, or on the detailed shape of Γi such as the widths, in
terms of εi , of the turning points near the maxima and minima of xi(t). Our object in this paper is to
obtain a more precise asymptotic description of the shape of SOPS’s in terms of the small parameter ε,
thereby refining the result (2.5) on Hausdorff convergence. We shall then use these refined estimates
to study the linear variational equation of such SOPS’s, and thereby obtain results on the associated
characteristic (Floquet) multipliers. In particular, the above-mentioned results on superstability and
uniqueness of SOPS’s will follow from these estimates.

Let us precisely state our main results. The first theorem concerns uniqueness and stability of
SOPS’s for small ε. The term superstability refers to the estimate (2.8) below on the nontrivial char-
acteristic multipliers.

Theorem A. Fix k as in (1.2). Then there exists εs > 0 such that if 0 < ε < εs the following properties hold.

(1) Eq. (1.1) has a unique slowly oscillating periodic solution xε(t).
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(2) The trivial characteristic multiplier λ = 1 of the periodic solution xε(t) has simple algebraic multiplicity,
and |λ| < 1 for every nontrivial characteristic multiplier, and so this solution is asymptotically orbitally
stable with asymptotic phase. In fact, there exists C1 > 0 such that

|λ| � εC1 (2.8)

for every nontrivial characteristic multiplier of this solution.

Remark. In the above theorem, εs is a sufficiently small quantity. It is an open question as to whether
or not the conclusions of this theorem hold for every ε in the range 0 < ε < ε0, where ε0 is the
location of the Hopf bifurcation of SOPS’s from the origin.

A precise description of asymptotic orbital stability with asymptotic phase, in the context of prob-
lems with state-dependent delays, is given in [44], which is a companion paper to the present paper,
and which can be read independently of the present paper. It is proved there for a general class of
state-dependent problems, that the linear stability condition |λ| < 1 on nontrivial characteristic mul-
tipliers implies asymptotic orbital stability with asymptotic phase. In fact, such stability issues are
a matter of some delicacy as it is not immediately clear what is the appropriate phase space for
many state-dependent problems. However, the recent papers of Walther [51], and Hartung, Krisztin,
Walther, and Wu [25], have addressed and clarified many of these issues, and their theory plays a
significant role here.

The next result describes some (but by no means all) of the asymptotic results we obtain for
SOPS’s. Taking ε small, we may assume the conclusions of Theorem A hold, and so the SOPS is unique.
We denote this solution by xε(t), and more generally, we use a subscript ε to denote various quanti-
ties associated to this solution, such as the zeros zn = zn,ε in (2.1) and critical points qn = qn,ε in (2.2).
Let us also define three quantities Q+ , Q 0, and Q− by

Q+ = log(k + 1)
k − 1

, Q 0 = logk
k − 1

, Q− = log(k − 1)
k − 1

. (2.9)

These quantities will be regular players in what follows.

TheoremB. Fix k as in (1.2) and let xε(t) denote the unique slowly oscillating periodic solution of Eq. (1.1) guar-
anteed by Theorem A for small ε. Assume that each solution is normalized to satisfy xε(0) = 0 and ẋε(0) < 0,
and enumerate the zeros so that z0 = z0,ε = 0 in the notation (2.1). Then the location of the first minimum
q0 = q0,ε ∈ (0, z1,ε) to the right of t = 0 and the value of the solution there, the location of the first maximum
q−1 = q−1,ε ∈ (z−1,ε,0) to the left of t = 0 and the value of the solution there, and the period p = pε of the
solution, are as given in Table 1.

The above results follow from precise asymptotic estimates on any SOPS x(t) for small ε. These
estimates are summarized in Table 2, as ansätze in various intervals which comprise one period of
the solution.

It is worth noting that the asymptotic forms of an SOPS near its minimum and maximum are very
different. Roughly speaking, the characteristic widths of the vertices in the graph of x(t) at the min-
imum and maximum are of orders O (ε2|logε|) and O (ε|logε|), respectively, and so the minimum
vertex is “sharper” than the maximum vertex. As is pointed out in Section 5, the solution near the
minimum of x(t) has a dynamical interpretation as a turning point near a normally hyperbolic in-
variant manifold for an ordinary differential equation, in the spirit of Fenichel [20,21], although with
a time scaling of ε2 rather than ε; see the discussion preceding Lemma 5.1. On the other hand, the
dynamics near the maximum of x(t) are essentially those of a regular point, but rescaled by a factor
of ε; see the ansatz for Interval IV in Table 2 and the limiting formula (2.10) for ζ∗(τ ) below.
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Table 1
The minimum, the maximum, and the period.

q0,ε = ε(Q+ − Q 0) + o(ε)

min
t∈R

xε(t) = xε(q0,ε) = −1+ ε(Q 0 − Q−) + o(ε)

q−1,ε = −
(

ε|logε|
k − 1

)
− 2εQ− + o(ε)

max
t∈R

xε(t) = xε(q−1,ε) = k − ε

(
k

k − 1

)(
1+ (k − 2)Q 0 − (k − 1)Q−

)
+ o(ε)

pε = k + 1+ ε|logε|
k − 1

+ ε
(
−1+ Q+ − kQ 0 + (k + 2)Q−

)
+ o(ε)

To contrast more clearly the form of the solution at its minimum and maximum, we first mention
that the minimum and maximum, t = q0 and t = q1, occur in Intervals II and IV, respectively, as
outlined in Table 2. In particular, differentiating the ansatz for Interval II gives

ẋ(t) = 1− εσ̇ (t) − ε−1e−η(ε−2(t−εT3))η′(ε−2(t − εT3)
)
,

where it is the case that σ̇ (t) > 0 is bounded and that η(θ) has linear growth in θ with η(0) bounded
independent of ε, throughout the range under consideration; see (5.12) in Lemma 5.1, and (5.20)
and (5.21) in Proposition 5.2. (Here prime ′ denotes differentiation with respect to the argument θ
of η, and not with respect to t . We use the same convention for ζ below.) Thus

ẋ(t) = 1− ε−1e−η(θ)η′(θ) + O (ε), t = εT3 + ε2θ,

and so ẋ(t) is negative and of order O (ε−1) when θ = 0, while ẋ(t) is positive and of order O (1)
when θ is of order O (|logε|) so that ε−1e−η(θ)η′(θ) + 1. In essence, the vertex of the graph of x(t)
near its minimum has width O (ε2|logε|). By contrast, for the maximum, we differentiate the ansatz
for Interval IV to give

ẋ(t) = −
(
e(k−1)τ ζ(τ )

)′
, t = k + 1+ ετ .

As it turns out, the function ζ(τ ) is C1 close to the limiting function

ζ∗(τ ) = e(k−1)T5,∗

(k − 1)2
− ke−(k−1)τ

(k − 1)2
(
1+ (k − 1)(τ − Q+ + 2Q 0 − Q−)

)
(2.10)

as ε → 0, where T5,∗ is a certain constant; see Eq. (7.15). Thus ẋ(t) is close to

−
(
e(k−1)τ ζ∗(τ )

)′ = k − e(k−1)(τ+T5,∗)

k − 1
.

It follows that when τ = −T5,∗ then ẋ(t) is near +1, while if τ = |logε|(k−1)−1 then ẋ(t) is negative
and of order O (ε−1). One concludes that the vertex of the graph of x(t) near its maximum has width
O (ε|logε|).

Theorem A is proved by first obtaining the asymptotic estimates in Table 2 for any SOPS x(t) for
small ε. (In fact, the results of Theorem B are among these estimates, and we shall prove Theorem B
before we prove Theorem A.) The estimates on x(t) are then used to obtain further estimates on
solutions y(t) of the linear variational equation

ε ẏ(t) = a(t)y(t) − ky
(
t − r

(
x(t)

))
, a(t) = −1+ kẋ

(
t − r

(
x(t)

))
, (2.11)
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about x(t). Observe that the variational equation (2.11) for a specific solution x(t) of Eq. (1.1)
is obtained by replacing x(t) with x(t) + δy(t), and correspondingly replacing x(t − r(x(t))) with
x(t − r(x(t) + δy(t))) + δy(t − r(x(t) + δy(t))), then differentiating the resulting equation with respect
to δ and setting δ = 0. Generally, the desired estimates on x(t) and y(t) will be obtained straightfor-
wardly by solving the relevant differential equation around one period in a finite number of steps.
With this we obtain precise information about the monodromy operator M , which is the solution
operator for the linear equation (2.11) around one period.

Note here that property (2.3) implies the estimate

a(t) < k − 1 for every t ∈ R, (2.12)

for the coefficient in (2.11).
Quite generally, for a given p-periodic solution x(t) of (1.1), we may define the operator M for

Eq. (2.11) by prescribing an initial condition

y(t) = ψ(t) for t ∈ J (2.13)

on a suitable compact interval J , and then defining Mψ to be the function

(Mψ)(t) = y(t + p) for t ∈ J . (2.14)

Here ψ,Mψ ∈ X where X = C( J ) is the space of continuous functions on J , and where the interval
J must be such that the solution to (2.11), (2.13) is defined for forward time. Specifically, J = [t−, t+]
must have the property that t − r(x(t)) � t− holds whenever t � t+ . If this is so, then the monodromy
operator M : X → X is a bounded linear operator, and additionally it is compact if t+ − t− � p. More-
over, M always has the trivial eigenvector

Mψ0 = ψ0, ψ0(t) = ẋ(t) for t ∈ J , (2.15)

corresponding to the p-periodic solution y(t) = ẋ(t) of Eq. (2.11).
In our analysis leading to the proof of Theorem A, we show that for a suitably chosen interval

J = Jε , the monodromy operator M = Mε has the form Mε = M0,ε + M1,ε , where M1,ε is a rank-one
operator with the trivial eigenfunction M1,εψ0,ε = ψ0,ε , where the operator M0,ε has small norm,
and where the norm of M1,ε is uniformly bounded in ε. To be precise, we show that ‖M0,ε‖ � εC1
and ‖M1,ε‖ � C1 for some C1 independent of small ε, where ‖ · ‖ denotes the operator norm for
C( Jε), and that additionally M0,εM1,ε = 0. The interval Jε must be chosen carefully, and has the
form Jε = [−εT1, εT2,ε], for some fixed T1 > 0, and for T2,ε > 0 which approaches a finite positive
limit as ε → 0. Establishing these facts requires delicate and precise estimates on the periodic solution
x(t) and on solutions y(t) of the variational equation.

Let us outline the structure of the paper. In Section 3 we describe the four fundamental time
intervals, denoted I, II, III, and IV, on which the SOPS x(t) is to be analyzed. These intervals cover
one period of x(t). We also describe the form (ansatz) of the solution in each interval. We then
treat Intervals I, II, III, and IV in Sections 4, 5, 6, and 7, respectively, obtaining precise and rigorous
bounds for the solution. With the aid of these bounds, in Section 8 we obtain asymptotic forms for
the maximum, minimum, and period of x(t), thereby proving Theorem B. In Section 9 we study the
linear variational equation (2.11) about x(t), and obtain bounds for the solution y(t) of this equation
successively in each of the four fundamental intervals. With the aid of these bounds we prove Part 2
of Theorem A, namely superstability, also in Section 9. Finally, in Section 10 we prove Part 1 of
Theorem A, namely the uniqueness claims about x(t). This is done with the aid of a degree argument
and the stability results of the companion paper [44].
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Table 2
Ansätze for the solution in various intervals.

Interval I: −εT1 � t � εT2,

x(t) = ϕ(τ ), t = ετ .

Interval II: εT3 � t � k + 1− εT4,

x(t) = t − 1− εσ (t) + εe−η(ε−2(t−εT3)) .

Interval III: k + 1− εT4 � t � k + 1− εT5,

x(t) = k + ε(τ − T3) − ε2α(τ ), t = k + 1+ ετ .

Interval IV: k + 1− εT5 � t � k + 1+ ε|logε|
k − 1

+ εT6,

x(t) = k − εe(k−1)τ ζ(τ ), t = k + 1+ ετ .

3. Outline of the proofs

In this section we describe the proofs of our results in more detail. Let us first remark that we
do not know a priori that for any ε there is a unique SOPS xε(t), and so we may not regard such a
solution as a well-defined function of ε. Thus in what follows, we shall instead consider a general
sequence xi(t) of SOPS’s with positive ε = εi → 0, as i → ∞. We shall establish various estimates
involving these solutions, and will need to keep track of how the estimates depend on εi . We thus
adopt the following conventions, which generally will be used without further comment.

Standing Assumptions. For the remainder of this paper, unless stated otherwise, we assume that k is
fixed as in (1.2), that we have a sequence xi(t) of SOPS’s of Eq. (1.1) for positive ε = εi → 0, and that
these solutions have been normalized by a time translation so as to satisfy (2.4).

Notation. We let Tm , for m � 1, denote certain times which arise as we estimate the solution xi(t),
although with a possible scaling of the time. Similarly, Hm will denote certain values in the range of
the solution, in x-space, again with an appropriate scaling of x. The index m will be such that Hm is
associated to Tm .

In some cases the quantities Tm = Tm,i and Hm = Hm,i will depend on the index i of the sequence
xi(t) of SOPS’s. In such a case the sequence Tm,i or Hm,i will be bounded in i as i → ∞. Often we
shall omit the index i, writing x(t), ε, Tm , and Hm , for xi(t), εi , Tm,i , and Hm,i , and so forth, to keep
the notation simple.

We shall also let Cm denote various constants appearing in our analysis, usually as uniform
estimates or bounds on the solution or on related quantities. That is, the constants Cm will be in-
dependent of the index i, and typically the associated estimates will hold for large i. The indices m
here have no special meaning, being assigned sequentially as new constants are needed.

Finally, we shall let a dot ˙ denote the derivative with respect to the time variable t . We use a
prime ′ to denote derivatives with respect to all other variables, including scaled time variables such
as τ = ε−1t as for example in Interval I below.

Generally, our strategy is to obtain rigorous asymptotic expressions for the solution x(t) in a set
of intervals which covers one period of the solution. In each interval an ansatz for the solution will
be given, along with precise estimates on the solution. As a rule, different scalings of t and x will
be used in different intervals. The estimates on the solution in each interval will be obtained from
the form of the solution in a previous interval, using the delay structure of the differential equation.
The initial estimate, to start the process, is the convergence result (2.7). Table 2 provides a list of the
intervals and the associated ansätze for the solution.

We shall see from their definitions that T3 < T2, and so there is an overlap between Intervals I
and II. This overlap is small, and is only needed for technical reasons. Also, the point t = p, where
p = pi is the period of xi(t), is contained in Interval IV. Thus these four intervals cover a full period
of the solution.
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Let us outline some of the basic properties of the functions appearing in the above ansätze. These
properties will be established in the sections that follows. The functions ϕ(τ ), σ(t), and ζ(τ ), which
depend on the index i, and the derivatives ϕ′(τ ), σ̇ (t), and ζ ′(τ ) with respect to their arguments,
are all uniformly bounded in their respective domains, and also are bounded with respect to i.
That is, they enjoy bounds which are independent of τ or t , and are also independent of i. The
derivative η′(θ) of the function η(θ) with respect to its argument θ = ε−2(t − εT3) also enjoys this
boundedness property, and in fact it is bounded between two positive constants. Thus η(θ) has uni-
form linear growth in θ . However, the function η(θ) itself is not uniformly bounded, as its domain
0 � θ � ε−2(k+1−ε(T3 + T4)) is an interval of size O (ε−2). The initial value η(0) = ηi(0) is bounded
with respect to i, but η(θ) becomes arbitrarily large as θ becomes large. (Note that this growth
implies that the exponential term in the formula of x(t) for Interval II becomes extremely small.)
Finally, although α(τ ) and its derivative α′(τ ) are unbounded, they are of size at most O (|logε|) and
O (ε−1/2), respectively. In fact, α(τ ) has roughly the same character as logτ , for τ of size O (ε1/2).

As stated above, we obtain new information about the solution in each interval by using informa-
tion obtained earlier in a previous interval. To describe this approach in more detail, let us write the
differential equation (1.1) as

εẋc(t) = −xc(t) − kxh
(
t − r

(
xc(t)

))
, (3.1)

where xh(·) denotes the historical solution from a previous interval, and xc(·) denotes the current
solution which is to be analyzed. For example, in Section 6 we study the solution in Interval III by
taking the ansatz

xc(t) = k + ε(τ − T3) − ε2α(τ ) (3.2)

from the list above for the current solution. Noting from this that xc(t) = t − 1 − εT3 − ε2α(ε−1(t −
k − 1)), since t = k + 1+ ετ , we see also that

ẋc(t) = 1− εα′(τ ). (3.3)

As it will turn out, the historical time t − r(xc(t)) belongs to Interval II whenever t is in Interval III.
Thus we take the ansatz of Interval II to express the historical solution in (3.1), namely

xh
(
t − r

(
xc(t)

))
=

(
s − 1 − εσ (s) + εe−η(ε−2(s−εT3))

)∣∣
s=t−r(xc(t))

=
(
s − 1 − εσ (s) + εe−η(ε−2(s−εT3))

)∣∣
s=εT3+ε2α(τ )

. (3.4)

We regard the functions σ and η as known, as they occur in the (known) historical solution, while
the function α appearing in the current solution is regarded as unknown. Upon substitution of the
formulas (3.2), (3.3), and (3.4) into (3.1), one thereby obtains an ordinary differential equation for
α(τ ). Analysis of this ordinary differential equation yields an asymptotic description of α(τ ).

We remark that the historical interval is not necessarily the interval immediately preceding the
current interval. In particular, in Section 7 we have Interval IV for the current interval, although
Interval II is the historical one.

To obtain estimates on solutions, it will be useful to construct sets in the (t, x)-plane to which
these solutions are confined. The following technical result, which describes an invariance property of
certain sets U ⊆ R2, will be used to this end. In the notation below, solutions beginning in the set U
can only exit U at points where the “exit function” E(t, x) vanishes.

Proposition 3.1. Suppose that

W j : O → R for 1 � j �m, E : O → R
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are C1 functions defined in an open set O ⊆ R2 of the (t, x)-plane. Let

U =
{
(t, x) ∈ O

∣∣ W j(t, x) � 0 for 1 � j �m and E(t, x) � 0
}
,

and assume that U is a closed subset of R2 (equivalently, that ∂U ⊆ O ). Suppose also that

f :U → R

is continuous in (t, x) and locally Lipschitz in x, and also assume that for each j we have that

DtW j(t, x) > 0 whenever (t, x) ∈ U and W j(t, x) = 0,

where Dt denotes the total derivative along the vector field

DtW j(t, x) = ∂W j(t, x)
∂t

+ ∂W j(t, x)
∂x

f (t, x).

Let (t0, x0) ∈ U be such that E(t0, x0) > 0. Then there exists a solution x = ψ(t) to the initial value problem

ẋ = f (t, x), x(t0) = x0, (3.5)

on an interval I , with (t,ψ(t)) ∈ U for all t ∈ I , and where either

(1) I = [t0,∞);
(2) I = [t0,ω) with t0 < ω < ∞ and limt→ω |ψ(t)| = ∞; or
(3) I = [t0,ω] with t0 < ω < ∞ and E(ω,ψ(ω)) = 0.

In any case, one has for every j that W j(t,ψ(t)) > 0 for all t ∈ I \ {t0}, including the endpoint t = ω if case (3)
holds.

Proof. Extend the function f from its domain U , which is a closed set, to a continuous function
f :R2 → R defined on the plane. Let ψ(t) be a solution to the initial value problem (3.5) on a maximal
interval Ĩ to the right of t0. (As the extended f need not be Lipschitz outside of U , this solution need
not be unique. However it is unique up to such time where it may leave U .) The interval Ĩ has the
form Ĩ = [t0, ω̃) with t0 < ω̃ � ∞, and with limt→ω̃ |ψ(t)| = ∞ if ω̃ < ∞. If there exists a point t∗ ∈ Ĩ
for which (t∗,ψ(t∗)) /∈ U , then let

ω = sup
{
t ∈ Ĩ

∣∣ (
s,ψ(s)

)
∈ U for every s ∈ [t0, t]

}
, I = [t0,ω].

If no such point t∗ exists, let ω = ω̃ and I = Ĩ . We see that in any case, (t,ψ(t)) ∈ U for every t ∈ I .
Let us observe now, that if t ∈ I is such that W j(t,ψ(t)) = 0 for some j, then d

dt W j(t,ψ(t)) =
DtW j(t,ψ(t)) > 0 at this point. If t > t0 for such a point, then W j(t − δ,ψ(t − δ)) < 0 for all small
δ > 0, implying from the definition of U that (t − δ,ψ(t − δ)) /∈ U . But this is false, as t − δ ∈ I . We
thus conclude that W j(t,ψ(t)) > 0 must hold for all t ∈ I \ {t0}, for every j.

We next prove the strict inequality ω > t0. If W j0 (t0,ψ(t0)) = 0 holds for some j0, then
DtW j0 (t0,ψ(t0)) > 0 and thus W j0 (t,ψ(t)) > 0 for all t > t0 near t0. It follows that there exists
δ > 0 such that W j(t,ψ(t)) > 0 for all t ∈ (t0, t0 + δ] and every j. By decreasing δ if necessary, we
additionally have that E(t,ψ(t)) > 0 for all such t , because E(t0,ψ(t0)) = E(t0, x0) > 0 is assumed. It
follows that (t,ψ(t)) ∈ U for every t ∈ [t0, t0 + δ], and thus ω � t0 + δ, as desired.

At this point observe that if our solution satisfies (t,ψ(t)) ∈ U for all t ∈ Ĩ , then either case (1)
or case (2) holds and we are done. Assume therefore that (t∗,ψ(t∗)) /∈ U for some t∗ ∈ Ĩ . Then
(ω,ψ(ω)) ∈ ∂U . As W j(ω,ψ(ω)) > 0 for every j, necessarily E(ω,ψ(ω)) = 0, and it follows that
case (3) holds as claimed. With this the proposition is proved. !
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Remark. Perhaps the simplest example of a set U as in Proposition 3.1 is one of the form

U =
{
(t, x)

∣∣ t− � t � t+ and β(t) � x � γ (t)
}
,

where t− < t+ and β,γ : [t−, t+] → R are C1 and satisfy β(t) < γ (t) throughout their domain. Taking

W1(t, x) = x− β(t), W2(t, x) = −x+ γ (t), W3(t, x) = t − t−, E(t, x) = −t + t+,

we see that Proposition 3.1 applies provided that

DtW1
(
t, β(t)

)
= f

(
t, β(t)

)
− β̇(t) > 0,

DtW2
(
t, γ (t)

)
= − f

(
t, γ (t)

)
+ γ̇ (t) > 0,

}

for every t ∈ [t−, t+]. (3.6)

(Technically, one must make C1-smooth extensions of the functions β(t) and γ (t) to some open
interval containing [t−, t+] in order that W1 and W2 are defined on an open set O containing U .)

The conditions (3.6) simply say that the vector field points inward to U along the upper and
lower boundaries of U . The condition DtW3(t, x) = 1 > 0 of course holds everywhere. Proposition 3.1
implies that for any initial condition (t0, x0) ∈ U , with t0 < t+ , the solution (t,ψ(t)) stays in the
interior of U for t0 < t < t+ until it exits at some point (t+,ψ(t+)) with β(t+) < ψ(t+) < γ (t+).

4. Interval I

Recall the sequence xi(t) of SOPS’s, with εi → 0, and with the normalization (2.4), as per our
Standing Assumptions. In this section we establish some basic properties of the transition layers,
namely the portions of the solutions that converge to the vertical segments Vn of the limiting profile
as i → ∞. The main result here is Corollary 4.4, which provides a description of the solution in an
interval of size O (ε) about t = 0, namely in Interval I. To begin, we scale time to define the function
ϕ(τ ) = ϕi(τ ) by

ϕ(τ ) = x(ετ ). (4.1)

(Recall that we sometimes suppress the index i for notational simplicity.) Our interest in this function
is for τ in bounded intervals, which corresponds to neighborhoods of size O (ε) in the original time t ,
but of course the formula (4.1) defines ϕ(τ ) for any real τ . We note the uniform bound

∣∣ϕ′(τ )
∣∣ = ε

∣∣ẋ(t)
∣∣ < k(k + 1) (4.2)

for all τ or all t , following from the differential equation (1.1) and the general bounds (2.2) on the
solution x(t).

Proposition 4.1. Fix quantities τ1 , τ2 (of either sign) satisfying

τ1 < τ2 < Q+ − Q 0, (4.3)

where Q+ and Q 0 are as in (2.9). Then

lim
i→∞

ϕi(τ ) = ϕ∗(τ ) where ϕ∗(τ ) = k
(
1− e(k−1)τ )

, (4.4)

with the convergence in (4.4) in the space C1[τ1, τ2].
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Remark. Note that ϕ∗(τ ) is strictly decreasing in τ , with a nonzero derivative. Moreover,

ϕ∗(−∞) = k, ϕ∗(Q+ − Q 0) = −1 (4.5)

both hold, which is consistent with the inequalities in the hypothesis (4.3) of the result.

Proof of Proposition 4.1. We make the replacement xc(t) = ϕ(τ ) in the differential equation (3.1),
with τ = ε−1t . For the historical term we write

xh
(
t − r

(
xc(t)

))
= xh

(
t − 1− xc(t)

)
= x

(
ετ − 1− ϕ(τ )

)
,

dropping the subscript “h” at the end for simplicity of notation. Using a dot ˙ to denote the derivative
with respect to t and a prime ′ to denote the derivative with respect to τ , we have that εẋc(t) = ϕ′(τ ).
Thus y = ϕ(τ ) is seen to satisfy the ordinary differential equation

y′ = f1(τ , y), y(0) = 0,

f1(τ , y) = f1,i(τ , y) = −y − kx(ετ − 1− y),

where here we regard x(·) as a known function. The convergence result (2.7) implies that

lim
i→∞

f1,i(τ , y) = f1,∗(y) uniformly for (τ , y) in compact subsets of U1, where

f1,∗(y) = −y − k(k − 1− y) = (k − 1)(y − k),

U1 =
{
(τ , y) ∈ R2 ∣∣ −1 < y < k

}
.

(The subscript 1 will distinguish the function f1(τ , y) and the region U1 from analogous functions
and regions introduced later.) Observe now that the solution of the limiting equation y′ = f1,∗(y)
with the initial condition y(0) = 0 is the function y = ϕ∗(τ ) in the statement of the result. Also,

(
τ ,ϕ∗(τ )

)
∈ U1 for every τ ∈ [τ1, τ2]

holds with τ1 and τ2 as given, from the monotonicity of the function ϕ∗(τ ) and from (4.3) and (4.5).
Thus by a standard result on continuous dependence of solutions for ordinary differential equations,
the convergence of ϕi(τ ) to ϕ∗(τ ) in C1[τ1, τ2] holds. !

A variant of the above result, stated in terms of the range of the solution, can also be given.

Corollary 4.2. Fix quantities ξ1 , ξ2 satisfying

−1 < ξ2 < ξ1 < k.

Then there exists C > 0 such that for all sufficiently large i, there exist quantities t1,i < t2,i such that

x(t1,i) = ξ1, x(t2,i) = ξ2, |t1,i| �
ε|ξ1|
C

, |t2,i| �
ε|ξ2|
C

,

ẋ(t) < −C
ε

for every t ∈ [t1,i, t2,i]. (4.6)
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Proof. From (4.5) we may fix τ1 < 0 < τ2 < Q+ − Q 0 to satisfy

−1 < ϕ∗(τ2) < ξ2 < ξ1 < ϕ∗(τ1) < k.

Then the convergence (4.4) ensured by Proposition 4.1 implies that ϕi(θ1,i) = ξ1 and ϕi(θ2,i) = ξ2
for some θ1,i, θ2,i ∈ [τ1, τ2], for sufficiently large i, and so t1,i = εθ1,i and t2,i = εθ2,i satisfy the two
equalities in (4.6). We have directly from the formula (4.4) for ϕ∗(τ ) that ϕ′

∗(τ ) < −C for every
τ ∈ [τ1, τ2], for some C > 0, and thus ϕ′

i (τ ) < −C also holds for such τ , for every large i, due to the
convergence of ϕi(τ ) to ϕ∗(τ ) in the space C1[τ1, τ2]. Now with the formula ẋ(t) = ε−1ϕ′

i (ε
−1t) we

conclude the final inequality in (4.6), in fact for t in the larger interval [ετ1, ετ2] which contains the
origin. The first two inequalities in (4.6) now follow from this, as x(0) = 0. !

The next result extends Corollary 4.2, to show that the quantity ξ2 in that result can be taken
within O (ε) of the value −1.

Proposition 4.3. Fix ξ satisfying

−1 < ξ < k.

Then there exist H > 0 and C > 0 such that for all large i, there exist ti < t̃i such that

x(ti) = ξ, −1 < x(̃ti) < −1+ εH, |ti| �
ε|ξ |
C

, |̃ti| <
ε

C
,

ẋ(t) < −C
ε

for every t ∈ [ti ,̃ ti]. (4.7)

Proof. Without loss ξ > k−1. Denote ξ1 = ξ . Fix ξ2 to satisfy all the inequalities

ξ2 < ξ1, −1 < ξ2 < k − 1− ξ1, (4.8)

and let t1,i < t2,i be as in the statement of Corollary 4.2. Then

lim
i→∞

(
t2,i − r

(
x(t2,i)

))
= lim

i→∞
(
t2,i − r(ξ2)

)
= −1− ξ2 ∈ (−k,0) ⊆ (−k − 1,0) (4.9)

and so

lim
i→∞

x
(
t2,i − r

(
x(t2,i)

))
= k − 1− ξ2 > ξ1 (4.10)

by (2.7), using (4.8). Assuming i is large enough so that x(t2,i − r(x(t2,i))) > ξ1, define

t3,i = inf
{
t > t2,i

∣∣ x
(
t − r

(
x(t)

))
= ξ1

}
(4.11)

and observe that

t2,i < t3,i, x
(
t − r

(
x(t)

))
� ξ1 for every t ∈ [t2,i, t3,i]. (4.12)

Now define ti = t1,i and t̃i = t3,i . We shall show that the statement of the proposition holds with
these values. Already, we have the first equality in (4.7) by definition. Also, the upper bound for
ẋ(t) in (4.7) holds in [ti, t2,i] by Corollary 4.2, so we need only establish this bound (with possibly a
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different constant C ) in the interval [t2,i ,̃ ti]. We claim that this follows easily from the lower bound
−1 on the solution in (2.2) and from (4.12). Indeed, throughout the interval [t2,i ,̃ ti] we have

εẋ(t) = −x(t) − kx
(
t − r

(
x(t)

))
< 1− kξ1 < 0,

and so the desired bound (4.7) on ẋ(t) holds there provided that C � kξ1 − 1.
We next establish the bound

x(̃ti) < −1+ εH (4.13)

for some H > 0 independent of i. (The lower bound x(t) > −1 of course holds for every t , by (2.2).)
We claim that (4.13) follows from the relation

t̃i − r
(
x(̃ti)

)
= ti, (4.14)

which is to be shown. Indeed, if (4.14) holds, then

1+ x(̃ti) = r
(
x(̃ti)

)
= t̃i − ti <

ε|x(̃ti) − x(ti)|
C

<
ε(k + 1)

C
, (4.15)

with the first inequality in (4.15) following from the upper bound (4.7) on ẋ(t) and the second in-
equality in (4.15) following from the general bounds (2.2) on x(t). Clearly, (4.15) implies (4.13) with
H = (k + 1)C−1.

To prove (4.14), observe first that

x
(̃
ti − r

(
x(̃ti)

))
= ξ = x(ti)

from the definition (4.11) of t̃i = t3,i . Now let {zn}∞n=−∞ = {zn,i}∞n=−∞ denote the zeros of x(t) = xi(t)
as in (2.1), normalized so that z0,i = 0. Thus

z−1,i = sup
{
t < 0

∣∣ x(t) = 0
}

denotes the zero of x(t) immediately to the left of t = 0. The slowly oscillating property of x(t) implies
that z−1,i < −1, and from (2.7) we see further that

lim
i→∞

z−1,i = −k. (4.16)

We have that x(t) > 0 throughout (z−1,i,0), with ẋ(t) = 0 at exactly one point, where x(t) achieves its
maximum (recall (2.2)). From (2.7) we see that the value of that maximum approaches k as i → ∞,
and so x(t) = ξ at exactly two points t−,i < t+,i in (z−1,i,0), for large i. The limiting values of these
points are clear from (2.7), namely

{
t ∈ (z−1,i,0)

∣∣ x(t) = ξ
}

= {t−,i, t+,i}, lim
i→∞

t−,i = −k + ξ, lim
i→∞

t+,i = 0. (4.17)

Now (4.9) and (4.16) imply that t2,i − r(x(t2,i)) ∈ (z−1,i,0) for large i, and with (4.10) and the above
we conclude that

t−,i < t2,i − r
(
x(t2,i)

)
< t+,i (4.18)

for large i. Also,

d
dt

(
t − r

(
x(t)

))
= 1− ẋ(t) > 1 + C

ε
> 0 for every t ∈ [ti ,̃ ti]
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and so

t2,i − r
(
x(t2,i)

)
< t̃i − r

(
x(̃ti)

)
. (4.19)

We conclude now from (4.11), (4.18), and (4.19) that

t̃i − r
(
x(̃ti)

)
= t+,i .

We must show that ti = t+,i for large i in order to establish (4.14). If ti < 0 then this conclusion
follows from (4.17), the fact that x(ti) = ξ , and the fact that ti → 0 as i → ∞, by Corollary 4.2. On the
other hand ti � 0 is impossible for large i, as x(t) < 0 throughout at least the interval (0,1] due the
fact that this solution is slowly oscillating, which would force ti > 1 and preclude the limit ti → 0.
Thus (4.14) is established, completing the proof of (4.13).

Finally, the estimates on |ti | and |̃ti | in (4.7) follow from the estimate on ẋ(t) in (4.7), upon noting
that ti < 0 < t̃i . !

A refinement of the above result allows us to fix an interval −T1 � τ � T2 on which we shall
work. More precisely, we have the following result.

Corollary 4.4. Let ϕ(τ ) = ϕi(τ ) be as in (4.1). Then there exist positive quantities T1 , H2 , and C2 independent
of i, and positive quantities T2 = T2,i , such that for all large i

ϕ′(τ ) < −C2 for every τ ∈ [−T1, T2], (4.20)

and also

ϕ(T2) = −1+ εH2. (4.21)

Moreover T1 and H2 can be chosen to satisfy

Q 0 − Q− < H2 < Q+ − Q 0 + T1, (4.22)

where Q± and Q 0 are as in (2.9). Also,

lim
i→∞

T2,i = Q+ − Q 0 (4.23)

holds. (More precisely, there exist H2 and T2 = T2,i such that for all sufficiently large T1 , there exists C2 such
that the above holds.)

Remark. The inequalities in (4.22) will be needed in our later analysis.

Proof of Corollary 4.4. Take ξ = 0 in Proposition 4.3. Observe that H in the statement of that result
can be increased if desired, so that without loss we may assume that it satisfies H > Q 0 − Q− .
Defining H2 = H for this H , we have that the first inequality of (4.22) holds. Also define T2 = T2,i
such that εT2 is the unique point in the interval [ti ,̃ ti] = [0,̃ ti] for which x(εT2) = −1 + εH2. This
gives (4.21). Finally, let C0 denote the quantity C which appears in the statement of Proposition 4.3.

Now fix T1 > 0 large enough that the second inequality in (4.22) holds, and take τ1 = −T1 and
τ2 = 0 in the statement of Proposition 4.1. The convergence (4.4) in that result and the fact that
ϕ′

∗(τ ) < 0, ensure that there is a constant C00 > 0 such that ϕ′(τ ) < −C00 for every τ ∈ [−T1,0], for
all large i. One now easily sees that upon taking C2 = min{C0,C00}, the inequality (4.20) holds for all
large i.
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There remains to prove the limit (4.23). Fix any quantity τ0 satisfying 0 < τ0 < Q+ − Q 0. Then the
convergence (4.4) in the interval [0, τ0], along with the fact that

ϕ∗(τ0) > ϕ∗(Q+ − Q 0) = −1,

from (4.5), implies that T2,i > τ0 for all large i and hence

lim inf
i→∞

T2,i � Q+ − Q 0.

Thus for large i we have that T2,i > τ0, and so from (4.20)

ϕ∗(Q+ − Q 0) = −1 < ϕ(T2,i) < ϕ(τ0) − C2(T2,i − τ0),

and one concludes from this that

limsup
i→∞

T2,i � τ0 + ϕ∗(τ0) − ϕ∗(Q+ − Q 0)

C2
.

This in turn implies that

limsup
i→∞

T2,i � Q+ − Q 0,

as we see by taking τ0 arbitrarily close to Q+ − Q 0, and this completes the proof. !

At this point, let us fix the quantities T1, T2,i , H2, and C2 as in the statement of Corollary 4.4,
keeping them fixed for the remainder of the paper. We see that Corollary 4.4 provides a precise
description of the solution x(t) for t in Interval I, namely for t ∈ [−εT1, εT2,i].

5. Interval II

We next consider the solution for

εT3 � t � k + 1− εT4, (5.1)

which is Interval II. Here we define

T3 = T2 − 2ε2C3, T4 = kH2 + 1− T2, C3 = 1
(kC2)2

. (5.2)

Of course T3 = T3,i and T4 = T4,i depend on i, as do T2 = T2,i and ε = εi , but one sees that they
are bounded sequences. (As before, we sometimes suppress the index i for ease of notation. Also, our
statements generally hold for sufficiently large i, that is, for sufficiently small ε = εi .) For large i the
left-hand endpoint εT3 of this interval is seen to lie in Interval I, which is the interval [−εT1, εT2]
considered in Corollary 4.4, and thus ẋ(εT3) < 0. We see also that Interval II contains the diagonally
sloping part of the sawtooth, and as well the point near t = 0 where x(t) achieves its minimum.
We shall provide a precise asymptotic description of how the solution passes through its minimum,
changing from the vertical downward transition layer to the upward sloping part of the sawtooth.

For future use let us define H3 = H3,i by

ϕ(T3) = −1+ εH3. (5.3)
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We note the bounds

0 < H3 − H2 < 2εk(k + 1)C3 (5.4)

for large i, which follow from the formula (4.21), from the monotonicity of ϕ(τ ) in Corollary 4.4, and
from the bound (4.2) on ϕ′(τ ).

We prescribe an ansatz for the solution in Interval II as

x(t) = t − 1− εσ (t) + εe−η(ε−2(t−εT3)), εT3 � t � k + 1− εT4. (5.5)

The function σ(t) = σi(t) will be defined to be the solution of the initial value problem

ε2σ̇ = f2(t,σ ), σ (−T0) = σ̃ (−T0),

f2(t,σ ) = f2,i(t,σ ) = t − 1+ ε − εσ + kϕ(σ ), (5.6)

for an appropriately chosen T0 > 0. Here ϕ(τ ) = x(ετ ) as before. The related function σ̃ (t) = σ̃i(t),
which determines the initial condition in (5.6), will be defined to be a particular solution of the
functional equation

f2,i(t, σ̃ ) = t − 1+ ε − εσ̃ + kϕ(σ̃ ) = 0. (5.7)

By way of motivation, the differential equation in (5.6) can be rewritten as the two-dimensional
autonomous system

σ ′ = f2(t,σ ),

t′ = ε2, (5.8)

after a rescaling of the time. One has a limiting graph σ = σ∗(t), defined to be the solution of the
limit t − 1 + kϕ∗(σ∗) = 0 of Eq. (5.7), and which is a normally hyperbolic invariant manifold for (5.8)
when ε = 0, in the spirit of Fenichel [20,21]. (See also the comprehensive article [27] of Jones.) The
graph of σ(t) is thus a smooth perturbation of this invariant manifold for small ε > 0, and the term
εe−η(ε−2(t−εT3)) in (5.5) describes the rapid approach to this manifold as one passes through the
turning point at the minimum of x(t).

In the next result we define σ(t) and σ̃ (t) precisely for t ∈ [−T0,k + 1 − εT4], and hence for t in
Interval II. We also provide bounds for σ(t) in terms of σ̃ (t).

Lemma 5.1. Fix T0 satisfying

0 < T0 < kϕ∗(−T1) − 1, (5.9)

where we observe that

kϕ∗(−T1) − 1 > kϕ∗(Q+ − 2Q 0 + Q−) − 1 = 0

holds in view of (2.9), (4.4), and (4.22). Then for large i

σ : [−T0,k + 1− εT4] → [−T1, T2],
σ̃ : [−T0,k + 1− εT4] → [−T1 + ε, T2] (5.10)
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are uniquely defined as the solutions of (5.6) and (5.7) with the domains and ranges indicated. Both functions
are smooth in t. In addition

σ̃ (k + 1− εT4) = T2, (5.11)

and

0 < σ̇ (t) < 2k2(k + 1)C3 and σ̃ (t) − ε2C3 < σ(t) < σ̃ (t)

for every t ∈ (−T0,k + 1− εT4], (5.12)

with C3 as in (5.2). Finally,

lim
i→∞

σi(ti) = Q+ − 2Q 0 + Q− (5.13)

for any sequence ti satisfying limi→∞ti = 0.

Proof. We first consider σ̃ (t). Denote ϕ̃(τ ) = ϕ(τ )+εk−1(1−τ ) and observe from (4.20) that ϕ̃′(τ ) <
−C2 for τ ∈ [−T1, T2]. Next observe that (5.7) can be rewritten as −kϕ̃(σ̃ ) = t − 1. We see that σ̃ (t)
is uniquely defined as a solution of this equation with the domain and range in (5.10) provided that

−kϕ̃(−T1 + ε) � −T0 − 1 < k − εT4 � −kϕ̃(T2). (5.14)

For large i the first inequality of (5.14) follows from the fact that

−kϕ̃(−T1 + ε) = −kϕ(−T1 + ε) − ε(T1 + 1) + ε2

→ −kϕ∗(−T1) < −T0 − 1 as i → ∞,

using Proposition 4.1 and (5.9). It is clear that the middle inequality in (5.14) holds for large i. The
final inequality in (5.14) is in fact an equality, as is easily seen from the definition (5.2) of T4 and
from the formula (4.21) involving H2. This equality in turn implies that Eq. (5.11) holds. Let us also
observe here that σ̃ (t) is smooth in t by the implicit function theorem. Indeed,

˙̃σ(t) = −1
kϕ′(σ̃ (t)) − ε

> 0 (5.15)

by (5.7).
Now consider σ(t). To show this function is well-defined as in (5.10) and satisfies the bounds

in (5.12), for large i we define the set U2 = U2,i by

U2 =
{
(t,σ ) ∈ R2 ∣∣ −T0 � t � k + 1− εT4 and σ̃ (t) − ε2C3 � σ � σ̃ (t)

}

⊆ [−T0,k + 1− εT4] × [−T1, T2],

and show that it satisfies the conditions of Proposition 3.1 for the differential equation (5.6). More
precisely, we show that U2 satisfies the conditions of the remark immediately following the proof
of Proposition 3.1, and so with the vector field pointing strictly inward along the upper and lower
boundaries of U2. Thus U2 enjoys the invariance property of Proposition 3.1, wherein solutions of the
differential equation in U2 can only leave that set at the right-hand boundary t = k + 1− εT4. As the
initial condition σ(−T0) = σ̃ (−T0) of σ(t) lies in U2, the desired bounds on σ(t) in (5.12) follow.
(The bounds on σ̇ (t) will be proved later.)
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To establish these facts, and specifically the inequalities (3.6) in this setting, let σ = σ̃ (t) for some
t ∈ [−T0,k + 1 − εT4], and so (t, σ ) is a point on the upper boundary of U2. Then f2(t, σ̃ (t)) = 0
from (5.7). Thus ε−2 f2(t, σ̃ (t)) − ˙̃σ(t) < 0 by (5.15), and so the vector field in (5.6) points strictly
inward into U2 along its upper boundary. Next let σ = σ̃ (t) − ε2C3 for some t in the same interval,
so (t, σ ) lies on the lower boundary of U2. From the bound ϕ′(τ ) < −C2 and by the mean value
theorem, we have that

f2
(
t, σ̃ (t) − ε2C3

)
= f2

(
t, σ̃ (t) − ε2C3

)
− f2

(
t, σ̃ (t)

)
> (ε + kC2)ε

2C3 > ε2kC2C3 (5.16)

for this point. However, from (5.15) we have that ˙̃σ(t) < (kC2 + ε)−1 < (kC2)
−1 = kC2C3. Combining

this inequality with (5.16) yields ε−2 f2(t, σ̃ (t) − ε2C3) − ˙̃σ(t) > 0, and thus the vector field points
strictly inward into U2 along its lower boundary. This verifies the desired conditions on f2 and U2.

We now must establish the bounds on σ̇ (t) in (5.12). We note that f2(t, σ ) is a decreasing function
of σ in U2, as ϕ′(τ ) < 0 for τ ∈ [−T1, T2]. Thus f2(t, σ ) > f2(t, σ̃ (t)) = 0 for (t, σ ) ∈ U2 provided
σ < σ̃ (t), and hence σ̇ (t) > 0 for t as in (5.12), as claimed. Also, ϕ′(τ ) > −k(k + 1) from (4.2) and so
for large i

∂ f2(t,σ )

∂σ
> −ε − k2(k + 1) > −2k2(k + 1).

Thus

f2(t,σ ) < f2
(
t, σ̃ (t) − ε2C3

)
< f2

(
t, σ̃ (t)

)
+ 2ε2k2(k + 1)C3 = 2ε2k2(k + 1)C3

in U2, provided that σ > σ̃ (t) − ε2C3. This now gives the upper bound on σ̇ (t) in (5.12).
Finally, to prove (5.13) it is enough to take the limit of σ̃i(0) as i → ∞, in light of the

bounds (5.12). From the definition (5.7) of σ̃ (t) we have that

lim
i→∞

σ̃i(0) = ϕ−1
∗

(
k−1) = Q+ − 2Q 0 + Q−,

where the formula (4.4) for ϕ∗(τ ) is used. !

Let T0 and σ(t) = σi(t) be as in the statement of Lemma 5.1. We keep these fixed for the remain-
der of the paper.

We now wish to obtain an ordinary differential equation for the function η(θ) which occurs in the
ansatz (5.5). Here θ = ε−2(t − εT3) is the independent variable, which by (5.1) lies in the interval

0 � θ � k + 1− ε(T3 + T4)

ε2 . (5.17)

Let us first use the ansatz (4.1) of Interval I to substitute for the historical term in Eq. (3.1), that is,
we let xh(t − r(xc(t))) = ϕ(ε−1(t − r(xc(t)))). We shall justify this later, by showing that t − r(xc(t))
lies in Interval I whenever t lies in Interval II. This substitution gives

εẋc(t) = −xc(t) − kϕ
(
ε−1(t − r

(
xc(t)

)))
= −xc(t) − kϕ

(
ε−1(t − 1− xc(t)

))
. (5.18)

Now substitute the ansatz (5.5) for xc(t) in (5.18). This yields, after a calculation in which the differ-
ential equation (5.6) for σ(t) is used, the ordinary differential equation

η′ = f3(θ,η), η(0) = − log
(
H3 − T3 + σ(εT3)

)
,

f3(θ,η) = f3,i(θ,η) = ε + keη(
ϕ

(
σ

(
εT3 + ε2θ

)
− e−η)

− ϕ
(
σ

(
εT3 + ε2θ

)))
, (5.19)
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where prime ′ denotes differentiation with respect to θ . Note also that formula (5.3) relating x(εT3) =
ϕ(T3) and H3 has been used in obtaining the initial condition.

We remark that the ansatz (5.5) presumes that the final term (the exponential term) in the ex-
pression for x(t) is positive. This assumption will be justified in our analysis below. In particular, we
must ensure that the solution η(θ) to (5.19) exists throughout the interval (5.17). In doing so we
must check that the initial condition η(0) is well-defined by the above formula, insofar that it is the
logarithm of a positive quantity. The following result establishes these facts, and more.

Proposition 5.2. There exist constants C4 and C5 , independent of i, such that

e−C5 < H3 − T3 + σ(εT3) < e−C4

for large i, and so η(0) is well-defined and bounded for large i, satisfying

C4 < η(0) < C5. (5.20)

Additionally, the solution η(θ) to (5.19) exists and satisfies

ε + kC2 < η′(θ) < ε + k2(k + 1) (5.21)

for θ in the interval (5.17), so in particular

C4 + kC2θ < η(θ) < C5 + 2k2(k + 1)θ (5.22)

holds throughout this interval.

Proof. We have that limi→∞H3,i = H2 by (5.4), where H2 defined in Corollary 4.4 is independent
of i. Also limi→∞T3,i = limi→∞T2,i = Q+ − Q 0 from the definition (5.2) of T3 and by (4.23) in Corol-
lary 4.4. Thus

lim
i→∞

(
H3,i − T3,i + σi(εi T3,i)

)
= H2 − (Q+ − Q 0) + (Q+ − 2Q 0 + Q−) = H2 − Q 0 + Q− > 0

by (5.13) and by the first inequality in (4.22). The bounds on η(0) follow directly.
Now for large i define the set U3 = U3,i by

U3 =
{
(θ,η) ∈ R2 ∣∣ 0 � θ � ε−2(k + 1− ε(T3 + T4)

)
and η � η(0)

}
,

and observe that f3(θ,η) is well-defined in U3 with the quantity εT3 + ε2θ lying in the domain
[−T0,k + 1− εT4] of σ(t) for θ in the interval (5.17) of U3. Thus

σ
(
εT3 + ε2θ

)
� T2,

by (5.10) of Lemma 5.1. Also, from the fact that σ̇ (t) > 0, we have for (θ,η) ∈ U3 that

σ
(
εT3 + ε2θ

)
− e−η � σ(εT3) − e−η(0) = T3 − H3 > −T1, (5.23)

where the final inequality in (5.23) holds for large i, and follows from the limit T3,i → Q+ − Q 0
noted above, and from the second inequality in (4.22), where again (5.4) is used. Thus the arguments
appearing in the function ϕ(τ ) in the formula (5.19) for f3(θ,η) lie in the interval [−T1, T2] in which
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ϕ′(τ ) < −C2. Recalling the general bound (4.2) on ϕ′(τ ), we conclude from the mean value theorem
that

ε + kC2 < f3(θ,η) < ε + k2(k + 1) for every (θ,η) ∈ U3. (5.24)

It is now clear from (5.24) and from the form of U3, that (5.21) and (5.22) hold for θ in (5.17). (One
may appeal to Proposition 3.1, although the conclusion here is straightforward.) !

In the next result, as in Corollary 6.4 and Proposition 7.5, we obtain a partial confirmation of the
monotonicity property (2.3). The second conclusion of this result, namely the mapping property of
the intervals, will be needed later.

Corollary 5.3. We have for large i that

εT3 � t � k + 1− εT4 .⇒






d
dt

(
t − r

(
x(t)

))
> 0 and

−εT1 < t − r
(
x(t)

)
< εT2.

(5.25)

In particular, if t belongs to Interval II then t − r(x(t)) belongs to the interior of Interval I.

Proof. From the ansatz (5.5) for Interval II we have that

t − r
(
x(t)

)
= t − 1− x(t) = ε

(
σ(t) − e−η(ε−2(t−εT3))

)
. (5.26)

The inequalities σ̇ (t) > 0 in (5.12) and η′(θ) > 0 in (5.21) imply the first conclusion in (5.25). Taking
the left endpoint t = εT3 of Interval II in (5.26) gives

(
t − r

(
x(t)

))∣∣
t=εT3

= ε
(
σ(εT3) − e−η(0)) > −εT1

as in (5.23). And taking the right endpoint t = k + 1− εT4 in (5.26) gives

(
t − r

(
x(t)

))∣∣
t=k+1−εT4

< εσ(k + 1− εT4) � εT2

by (5.10). The bounds on t − r(x(t)) in (5.25) follow directly. !

6. Interval III

We next consider the solution in Interval III, namely for

k + 1− εT4 � t � k + 1− εT5, (6.1)

where we define T5 = T5,i to be

T5 = 1+ (k − 1)T3 − kσ(εT3) + 2ε1/2k. (6.2)

As always, we take i sufficiently large. We note that

T4,∗ = lim
i→∞

T4,i = kH2 + 1− Q+ + Q 0,

T5,∗ = lim
i→∞

T5,i = 1− Q+ + (k + 1)Q 0 − kQ−, (6.3)



Author's personal copy

J. Mallet-Paret, R.D. Nussbaum / J. Differential Equations 250 (2011) 4037–4084 4059

by (4.23), (5.2), and (5.13), and thus T4,∗ > T5,∗ by the first inequality in (4.22), and where the above
limits serve as the definitions of T4,∗ and T5,∗ . In particular, T4,i > T5,i for large i and so the inequal-
ities in (6.1) make sense.

With t = k + 1+ ετ in the interval (6.1), we prescribe the ansatz

xc(t) = xc(k + 1+ ετ ) = t − 1− εT3 − ε2α
(
ε−1(t − k − 1)

)

= k + ε(τ − T3) − ε2α(τ ), −T4 � τ � −T5, (6.4)

and we will derive an ordinary differential equation for α(τ ). We first observe that

t − r
(
xc(t)

)
= t − 1− xc(t) = k + ετ − xc(t) = εT3 + ε2α(τ ). (6.5)

Differentiating (6.4) and substituting this and (6.5) into the differential equation (3.1) now gives

εẋc(t) = ε − ε2α′(τ ) = −xc(t) − kxh
(
t − r

(
xc(t)

))

= −k − ε(τ − T3) + ε2α(τ ) − kxh
(
εT3 + ε2α(τ )

)
, (6.6)

where prime ′ denotes the derivative with respect to τ . We use the ansatz (5.5) of Interval II for the
historical term in (6.6), to give

xh
(
εT3 + ε2α(τ )

)
= εT3 + ε2α(τ ) − 1− εσ

(
εT3 + ε2α(τ )

)
+ εe−η(α(τ )). (6.7)

The use of this ansatz is justified as long as α is such that εT3 + ε2α belongs to Interval II, equiva-
lently, that

0 � α � k + 1− ε(T3 + T4)

ε2 . (6.8)

Combining (6.6) and (6.7) now gives, with some calculation, the ordinary differential equation

εα′ = τ + f4(α),

f4(α) = f4,i(α) = 1+ (k − 1)(T3 + εα) − kσ
(
εT3 + ε2α

)
+ ke−η(α). (6.9)

We note that the function f4 is defined for α satisfying (6.8).
The initial condition for (6.9) is taken at τ = −T4, corresponding to the point t = k + 1 − εT4

where Intervals II and III meet. For ease of notation let us denote

v = k + 1− ε(T3 + T4).

Then we have

x(k + 1− εT4) = k − εT4 − εσ (k + 1− εT4) + εe−η(ε−2v)

from the ansatz (5.5) for Interval II, and also

x(k + 1− εT4) = k − ε(T3 + T4) − ε2α(−T4)
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from the ansatz (6.4) for Interval III. Equating these gives

α(−T4) = −
(
T3 − σ(k + 1 − εT4) + e−η(ε−2v)

ε

)
. (6.10)

The quantity α(−T4), despite the term ε in the denominator of the formula (6.10), is actually small,
as the following result shows.

Lemma 6.1. The bounds

0 < α(−T4) < 2εC3, 0 < −T4 + f4
(
α(−T4)

)
< 4εk2(k + 1)C3 (6.11)

hold for large i.

Proof. We have first that

T2 − ε2C3 < σ(k + 1− εT4) < T2 (6.12)

from (5.11) and (5.12). Also, the lower bound in (5.22) ensures that

e−η(ε−2v) < ε2C3 (6.13)

for large i, and in fact the left-hand side of (6.13) decays faster than any power of ε. With the
formula (6.10) for α(−T4) one easily checks, using (6.12) and (6.13) and also using the formula (5.2)
relating T2 and T3, that the bounds on α(−T4) in (6.11) hold.

Let us now estimate the quantity −T4 + f4(α(−T4)). We do this by calculating ẋ(k + 1 − εT4)
using the two ansätze (5.5) and (6.4). Differentiating (5.5), we have that

ẋ(k + 1− εT4) = 1− εσ̇ (k + 1− εT4) − ε−1e−η(ε−2v)η′(ε−2v
)
,

while from (6.4), and more specifically from the first equality in (6.6), we have that

ẋ(k + 1− εT4) = 1− εα′(−T4).

Equating these and taking note of the differential equation (6.9) gives

εα′(−T4) = −T4 + f4
(
α(−T4)

)
= εσ̇ (k + 1− εT4) + ε−1e−η(ε−2v)η′(ε−2v

)
.

The bounds (5.21) and (6.13) imply that

0 < ε−1e−η(ε−2v)η′(ε−2v
)
< ε

(
ε + k2(k + 1)

)
C3 < 2εk2(k + 1)C3, (6.14)

with the final inequality in (6.14) holding for small ε, that is, for large i. With this, and with the
bounds (5.12) on σ̇ (t) in Lemma 5.1, we obtain the bounds (6.11) on −T4 + f4(α(−T4)), as de-
sired. !
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Now for large i define the set U4a = U4a,i by

U4a =
{
(τ ,α) ∈ R2

∣∣∣ −T4 � τ � −T5 and α(−T4) � α � η−1
(
1
2
|logε|

)
,

where also 0 � τ + f4(α) � ε1/2C6

}
,

C6 = 2
k2C2

. (6.15)

The notation U4a rather than U4 reflects the fact that in the next section we shall consider a similarly
defined set U4b, with the same ansatz (6.4).

In the definition of U4a we observe that the quantity η−1( 12 |logε|) is well-defined, at least for
large i, in light of the uniform positive lower bound (5.21) on η′(θ), the uniform bounds (5.20) on
η(0), and the interval (5.17) of size O (ε−2) on which η(θ) is defined. Still, in order for U4a to be
well-defined, we must ensure that the interval α(−T4) � α � η−1( 12 |logε|) lies within the domain of
the function f4. This and more is established by the following result.

Lemma 6.2.We have for large i that

0 < α(−T4) < η−1
(
1
2
|logε|

)
<

k + 1− ε(T3 + T4)

ε2 (6.16)

and thus the set U4a and the differential equation (6.9) in U4a are well-defined. Also,

α <
|logε|
2kC2

(6.17)

holds for every (τ ,α) ∈ U4a . Finally,

α >
|logε|

5k2(k + 1)
(6.18)

holds on the right-hand boundary of U4a , that is, whenever (−T5,α) ∈ U4a .

Proof. As always, we assume that i is sufficiently large. The bounds (5.22) on η(θ) imply that

|logε| − 2C5

4k2(k + 1)
< η−1

(
1
2
|logε|

)
<

|logε| − 2C4

2kC2
,

and with the bounds (6.11) on α(−T4) we have (6.16). Further, as α � η−1( 12 |logε|) whenever
(τ ,α) ∈ U4a, we immediately obtain (6.17).

Now assume that (−T5,α) ∈ U4a. From the definition (6.2) of T5 and the formula (6.9) for f4(α),
we see that

T5 − f4(α) + ke−η(α) = −ε(k − 1)α + k
(
σ

(
εT3 + ε2α

)
− σ(εT3)

)
+ 2ε1/2k

< ε2kα
(
2k2(k + 1)C3

)
+ 2ε1/2k

< ε2|logε|
(
k2(k + 1)C3

C2

)
+ 2ε1/2k < 3ε1/2k,
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where the nonnegativity of α (because α � α(−T4) > 0) and the bound (5.12) on σ̇ (t) are used
in obtaining the first inequality, and the upper bound (6.17) on α is used in obtaining the second
inequality. From this we have that

e−η(α) < 3ε1/2 + −T5 + f4(α)

k
� ε1/2

(
3+ C6

k

)
,

where the second inequality holds because (−T5,α) ∈ U4a. Taking logarithms and using (5.22) gives

C5 + 2k2(k + 1)α > η(α) >
|logε|

2
− log

(
3+ C6

k

)
,

which implies (6.18), as desired. !

We see from (6.11) that

(
−T4,α(−T4)

)
∈ U4a

for the initial condition of the differential equation (6.9). With the next result, which establishes the
invariance property for U4a as in Proposition 3.1, we conclude from Lemma 6.2 that

|logε|
5k2(k + 1)

< α(−T5) <
|logε|
2kC2

(6.19)

at the point where this solution leaves U4a. The following result also justifies the ansatz (5.5) used
above in (6.7). This is stated more explicitly in Corollary 6.4.

Proposition 6.3. For large i the set U4a with the differential equation (6.9) satisfies conclusion (3) of Proposi-
tion 3.1 with

W1(τ ,α) = α − α(−T4), W2(τ ,α) = −α + η−1
(
1
2
|logε|

)
,

W3(τ ,α) = τ + f4(α), W4(τ ,α) = −
(
τ + f4(α)

)
+ ε1/2C6,

W5(τ ,α) = τ + T4, E(τ ,α) = −τ − T5.

Thus (τ ,α(τ )) ∈ U4a for −T4 � τ � −T5 . Moreover, εα′(τ ) = W3(τ ,α(τ )) > 0 throughout this range.

Proof. The six functions W j , for 1 � j � 5, and E , define the set U4a as in the statement of Propo-
sition 3.1. Taking i sufficiently large, let us verify the inward-pointing conditions Dτ W j(τ ,α) > 0,
where Dτ denotes the total derivative, as in Proposition 3.1. In the calculations below we always take
(τ ,α) ∈ U4a satisfying W j(τ ,α) = 0, as in the statement of that result. It is enough to consider the
cases 1 � j � 4, the case j = 5 being trivial.

When j = 1 we have, with α = α(−T4) because W1(τ ,α) = 0, that

εDτ W1(τ ,α) = εα′ = τ + f4
(
α(−T4)

)
� −T4 + f4

(
α(−T4)

)
> 0

by (6.11), as desired.
When j = 3 we have that

Dτ W3(τ ,α) = 1 + f ′
4(α)α′ = 1 > 0,



Author's personal copy

J. Mallet-Paret, R.D. Nussbaum / J. Differential Equations 250 (2011) 4037–4084 4063

as desired, since εα′ = τ + f4(α) = 0 from the differential equation (6.9) and because W3(τ ,α) = 0
is assumed.

When j = 4 we have again from (6.9) and the fact that W4(τ ,α) = 0, that εα′ = ε1/2C6, and so

Dτ W4(τ ,α) = −
(
1+ f ′

4(α)α′) = −
(
1+ f ′

4(α)C6

ε1/2

)
. (6.20)

To verify the inward-pointing condition, we must show that the quantity in (6.20) is positive. Differ-
entiating the formula (6.9) for f4(α), we have

1 + f ′
4(α)C6

ε1/2 = 1+ ε1/2(k − 1)C6 − ε3/2kC6σ̇
(
εT3 + ε2α

)
−

(
kC6e−η(α)η′(α)

ε1/2

)

< 1+ ε1/2(k − 1)C6 − kC6η
′(α)

< 1+ ε1/2(k − 1)C6 − k2C2C6 = −1+ ε1/2(k − 1)C6 < 0, (6.21)

where we have used the fact that σ̇ (t) > 0 from (5.12), that e−η(α) � ε1/2 following from α �
η−1( 12 |logε|) in (6.15), and as well the lower bound on η′(θ) in (5.21) and the definition (6.15) of C6.
As the final quantity in (6.21) is negative, the inward-pointing condition holds.

We lastly consider the case j = 2. We shall in fact show this case is vacuous, namely, that there
are no points of U4a satisfying W2(τ ,α) = 0. Assuming to the contrary that (τ ,α) is such a point,
we have from Lemma 6.2 that (6.17) holds. Also, e−η(α) = ε1/2 holds. Using (6.17) along with the
formula (6.9) for f4(α) and the inequality σ̇ (t) > 0, we have for this point that

f4(α) = 1 + (k − 1)(T3 + εα) − kσ
(
εT3 + ε2α

)
+ ε1/2k

< 1 + (k − 1)
(
T3 + ε|logε|

2kC2

)
− kσ(εT3) + ε1/2k < T5,

where the definition (6.2) of T5 is used in the final inequality. Thus

W3(τ ,α) = τ + f4(α) � −T5 + f4(α) < 0,

contradicting the assumption that (τ ,α) ∈ U4a.
The fact that the set U4a is bounded implies that it is case (3) in the statement of Proposition 3.1

that holds, as claimed.
The equation in the final sentence of the proposition is just the differential equation (6.9), and

this quantity is strictly positive for −T4 < τ � −T5 by Proposition 3.1. Positivity of this quantity at
τ = −T4 holds by Lemma 6.1. !

Corollary 6.4. We have for large i that

k + 1 − εT4 � t � k + 1− εT5 .⇒






d
dt

(
t − r

(
x(t)

))
> 0 and

εT3 < t − r
(
x(t)

)
< k + 1− εT4.

In particular, if t belongs to Interval III then t − r(x(t)) belongs to the interior of Interval II.

Proof. This follows from (6.5) and because α′(τ ) > 0 for −T4 � τ � −T5 by the final sentence of
Proposition 6.3, and from the bounds α(−T4) > 0 in (6.11) and α(−T5) < (2kC2)

−1|logε| in (6.17). !
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7. Interval IV

We finally consider the solution in Interval IV, namely for

k + 1− εT5 � t � k + 1+ ε|logε|
k − 1

+ εT6, (7.1)

where T6 = T6,i will be suitably chosen. This interval will contain the point at which x(t) achieves
its maximum, and as well will contain much of the vertical transition layer of the sawtooth near
t = k+1. With this we will be able to compare the form of the solution near t = 0 and near t = k+1,
on successive transition layers, and thereby obtain an asymptotic expression for the period of x(t).

Our analysis for Interval IV will proceed in two steps. First, we use the same ansatz as for Inter-
val III, that is, t = k + 1 + ετ and the formula (6.4) for xc(t). However, we will use these formulas in
a different region U4b in the plane and with the interval

−T5 � τ � |logε|
k − 1

+ T6, (7.2)

which corresponds to the interval (7.1). This will provide crude bounds on the solution. Following this,
we will introduce a new ansatz with which we shall refine our estimates of the solution in the same
interval (7.2).

Let us therefore define the set U4b = U4b,i by

U4b =
{
(τ ,α) ∈ R2 ∣∣ τ � −T5 and α(−T5) � α � ε−2(k + 1− ε(T3 + T4)

)
,

where also τ + f4(α) � 0
}

(7.3)

for large i. The quantity α(−T5) in the above definition is the same one as in the previous section. As
α(−T5) > α(−T4) > 0, one sees that α in the above definition lies in the interval (6.8) where f4(α)
is defined, and thus U4b is well-defined. And using the ansatz for Interval II exactly as in the previous
section, one again obtains the differential equation (6.9) which is valid throughout the set U4b.

Observe that U4b, unlike U4a, is unbounded in the positive τ -direction. We have not yet chosen
the quantity T6 which will define the right-hand endpoint of Interval IV. In fact this will be done via
the following result, by taking the exit time from U4b, with the exit occurring on the upper boundary
of that set.

Proposition 7.1. For large i the set U4b with the differential equation (6.9) satisfies conclusion (3) of Proposi-
tion 3.1 with

W1(τ ,α) = α − α(−T5), W2(τ ,α) = τ + f4(α),

W3(τ ,α) = τ + T5, E(τ ,α) = −α +
(
k + 1 − ε(T3 + T4)

ε2

)
.

Thus (τ ,α(τ )) ∈ U4b for −T5 � τ � ω for some finite ω > −T5 , with

α(ω) = k + 1 − ε(T3 + T4)

ε2 (7.4)

at the right-hand endpoint of this interval. Moreover, εα′(τ ) = W2(τ ,α(τ )) > 0 holds throughout this inter-
val.
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Proof. Taking (τ ,α) ∈ U4b with W j(τ ,α) = 0 for some j, we must show that Dτ W j(τ ,α) > 0. The
case j = 2 is identical to the case j = 3 of Proposition 6.3, and the case j = 3 in the present proposi-
tion is trivial. For j = 1 we have α = α(−T5) and thus

εDτ W1(τ ,α) = εα′ = τ + f4
(
α(−T5)

)
� −T5 + f4

(
α(−T5)

)
= εα′(−T5) > 0,

which holds by the final sentence of Proposition 6.3.
There remains to show that conclusion (3) of Proposition 3.1 holds. Conclusion (2) is impossible

due to the boundedness of the set U4b in the α coordinate. Suppose then that conclusion (1) holds,
namely, that (τ ,α(τ )) ∈ U4b for all τ � −T5. Consider in particular τ � τ0 where

τ0 = 1−min
α∈ J

f4(α), J =
[
α(−T5), ε

−2(k + 1− ε(T3 + T4)
)]

.

Then τ + f4(α) � 1 for all τ � τ0 for which (τ ,α) ∈ U4b, and so α′(τ ) � ε−1 for all such τ . But
then (τ ,α(τ )) would have to leave U4b in finite time, due to the boundedness in α of this set, a
contradiction. Thus conclusion (3) holds.

As in the proof of Proposition 6.3, the equation in the final sentence of the proposition is the dif-
ferential equation (6.9), and the quantity there is strictly positive for −T5 < τ � ω by Proposition 3.1.
Positivity at τ = −T5 holds by Proposition 6.3. !

Now define the quantity

T6 = ω − |logε|
k − 1

, (7.5)

where ω is as in Proposition 7.1. That is, ω is the right-hand endpoint of the interval (7.2) and is
the exit time from U4b. We have that ω = ωi and T6 = T6,i depend on the index i, and later in this
section we shall show that T6,i is a bounded sequence in i, although this is not evident here. In this
direction let us now introduce a new ansatz

xc(k + 1+ ετ ) = k − εe(k−1)τ ζ(τ ) (7.6)

for the solution in Interval IV, that is, for τ in the same interval (7.2) as above. We are thus making a
τ -dependent change of the independent variable, replacing α in (6.4) with

ζ = e−(k−1)τ (εα + T3 − τ ), (7.7)

and as such we may rewrite the differential equation (6.9) in terms of the new variable ζ . Indeed,
after a straightforward but tedious calculation, we obtain

ζ ′ = f5(τ , ζ ),

f5(τ , ζ ) = f5,i(τ , ζ )

= ke−(k−1)τ (
τ − σ

(
ε
(
τ + e(k−1)τ ζ

))
+ exp

(
−η

(
ε−1(τ + e(k−1)τ ζ − T3

))))
. (7.8)

The initial condition for Eq. (7.8) is taken at τ = −T5, and is given as

ζ(−T5) = H5 = e(k−1)T5
(
εα(−T5) + T3 + T5

)
, (7.9)

where the formula above is the definition of H5 = H5,i . Under the above transformation of α to ζ ,
the set U4b is mapped into (but not onto) the set U5 = U5,i given by
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U5 =
{
(τ , ζ ) ∈ R2 ∣∣ τ � −T5 and T3 + εα(−T5) � τ + e(k−1)τ ζ � ε−1(k + 1) − T4

}

=
{
(τ , ζ ) ∈ R2 ∣∣ τ � −T5 and −T5 + e−(k−1)T5H5 � τ + e(k−1)τ ζ � ε−1(k + 1) − T4

}
,

(7.10)

where we have used (7.9). Note in particular that the constraint τ + f4(α) � 0 in the definition (7.3)
of the set U4b has been omitted in the definition (7.10) of U5, and so the image of U4b under the
transformation is strictly contained in U5. Also note that the transformed differential equation (7.8)
is nevertheless well-defined throughout the set U5, with the arguments ε(τ + e(k−1)τ ζ ) and ε−1(τ +
e(k−1)τ ζ − T3) of σ and ζ always within the domains (5.10) and (5.17) of these functions.

The advantage of using the transformed differential equation (7.8) is that the nonlinearity f5 enjoys
an integrable bound, and this will imply that ζ(τ ) approaches a finite limit for large τ . We observe
that

∣∣ f5(τ , ζ )
∣∣ � ke−(k−1)τ (

|τ | +max{T1, T2} + exp
(
−η

(
ε−1(τ + e(k−1)τ ζ − T3

))))

for every (τ , ζ ) ∈ U5, (7.11)

which follows from the formula (7.8) for f5(τ , ζ ) using the range (5.10) of σ(t). We also note the
bound

exp
(
−η

(
ε−1(τ + e(k−1)τ ζ − T3

)))

� e−η(α(−T5)) < e−C4−kC2α(−T5) < exp
(

−C4 − C2|logε|
5k(k + 1)

)
< ερ, ρ = C2

6k(k + 1)
, (7.12)

which is valid for large i and is obtained using the lower bound on τ + e(k−1)τ ζ in (7.10), the mono-
tonicity (5.21) of η(θ), and the estimates (5.22) and (6.19). Combining the bounds (7.11) and (7.12)
and recalling the limit (4.23), we have that

∣∣ f5(τ , ζ )
∣∣ < g(τ ) = C7e−(k−1)τ (

|τ | + 1
)

(7.13)

throughout U5, with C7 = k(max{T1, Q+ − Q 0} + 1), and where the above formula serves as the
definition of g(τ ). Let us observe that g(τ ) is both uniformly bounded and integrable as τ → ∞. Also
note that as T1 is independent of i (recall Corollary 4.4), then so are C7 and thus g(τ ).

We now wish to determine the limit of the solution sequence ζi(τ ) as i → ∞. We do this by
taking the appropriate limit in the differential equation (7.8) and the initial condition (7.9), making
use of the bound (7.13). In doing this we shall maintain uniform estimates in τ , with the result that
the limiting behavior of the solution for large τ will also be determined. Of course some care must
be taken as the intervals on which the solutions are defined depend on i. The following result is the
first step to this end.

Proposition 7.2.We have the limits

lim
i→∞

H5,i = H5,∗ = e(k−1)T5,∗(1+ kQ 0 − kQ−),

lim
i→∞

f5,i(τ , ζ ) = f5,∗(τ ) = ke−(k−1)τ (τ − Q+ + 2Q 0 − Q−), (7.14)

where the above formulas serve as the definitions of H5,∗ and f5,∗(τ ), and where T5,∗ is as in (6.3). The
convergence of f5,i(τ , ζ ) is uniform on compact subsets of U5 = U5,i in the sense that
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lim
i→∞

(
sup

B∩U5,i

∣∣ f5,i(τ , ζ ) − f5,∗(τ )
∣∣
)

= 0

for every compact set B ⊆ R2 .

Proof. For the first limit in (7.14) we have from (7.9), using the bounds (6.19), and from (4.23), (5.2),
and (6.3), that

lim
i→∞

H5,i = e(k−1)T5,∗(Q+ − Q 0 + T5,∗) = e(k−1)T5,∗
(
Q+ − Q 0 + 1− Q+ + (k + 1)Q 0 − kQ−

)
.

The second limit in (7.14) follows from the formula (7.8) for f5,i(τ , ζ ), with the limit (5.13) and the
bound (7.12). !

Motivated by the above results, let us define the function

ζ∗(τ ) = H5,∗ +
τ∫

−T5,∗

f5,∗(s)ds

= e(k−1)T5,∗

(k − 1)2
− ke−(k−1)τ

(k − 1)2
(
1+ (k − 1)(τ − Q+ + 2Q 0 − Q−)

)
, (7.15)

and as well denoting

ζ∗(∞) = e(k−1)T5,∗

(k − 1)2
. (7.16)

As the following result shows, this function is the limit of the sequence of solutions ζi(τ ).

Proposition 7.3. There exists a uniform bound

∣∣ζi(τ )
∣∣ < C8 for every τ ∈ [−T5,i,ωi],

with C8 independent of large i. Moreover, let τi ∈ [−T5,i,ωi] be any sequence for which the (possibly infinite)
limit limi→∞ τi = τ∗ exists. Then

lim
i→∞

ζi(τi) = ζ∗(τ∗), lim
i→∞

ζ ′
i (τi) = ζ ′

∗(τ∗) (7.17)

both hold, where we interpret ζ ′
∗(∞) = 0.

Proof. Writing

ζi(τ ) = H5,i +
τ∫

−T5,i

f5,i
(
s, ζi(s)

)
ds (7.18)

for any τ ∈ [−T5,i,ωi], we obtain the desired bound

∣∣ζi(τ )
∣∣ < |H5,i| +

∞∫

−T5,i

g(s)ds � C8 (7.19)
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for some C8 independent of i and τ , in light of the bound (7.13), and because H5,i and T5,i are
bounded sequences.

Now taking a sequence τi as in the statement of the proposition, suppose first that τ∗ < ∞. Then
with τ = τi in (7.18), we may take the limit there by virtue of Proposition 7.2 and the bound (7.19),
to obtain the first limit in (7.17). The second limit in (7.17) follows by writing ζ ′

i (τi) = f5,i(τi, ζi(τi))
and taking the limit there.

Now suppose that τ∗ = ∞. Fixing any T > −T5,∗ , we have τi ∈ [T ,ωi] for large i. Integrating (7.8)
from T to τi , we have that

∣∣ζi(τi) − ζ∗(τi)
∣∣ <

∣∣ζi(T ) − ζ∗(T )
∣∣ + 2

∞∫

T

g(s)ds

from the bound (7.13). Thus

limsup
i→∞

∣∣ζi(τi) − ζ∗(τi)
∣∣ � limsup

i→∞

∣∣ζi(T ) − ζ∗(T )
∣∣ + 2

∞∫

T

g(s) = 2

∞∫

T

g(s)ds,

in particular because limi→∞ζi(T ) = ζ∗(T ) from the first part of this proof. As T is arbitrary, we
obtain the first limit in (7.17). For the second limit in (7.17) we have that

∣∣ζ ′
i (τi)

∣∣ =
∣∣ f5,i

(
τi, ζi(τi)

)∣∣ < g(τi) → 0,

as desired. !

Let us now show that the sequence T6,i is bounded, and in fact approaches a specific limit.

Proposition 7.4. The limit

T6,∗ = lim
i→∞

T6,i = −1 + 2Q+ − (k + 1)Q 0 + (k + 2)Q− (7.20)

holds, where the above formula serves as the definition of T6,∗ .

Proof. Inserting Eq. (7.4) into the change of variables formula (7.7), we obtain

ζ(ω) = e−(k−1)ω
(
k + 1

ε
− T4 − ω

)
.

Then making the replacement (7.5) for ω = ωi in the right-hand side of the above equation, we obtain

ζ(ω) = e−(k−1)T6

(
k + 1− ε

(
T4 + T6 + |logε|

k − 1

))
. (7.21)

Also, by passing to a subsequence, we may assume without loss that the (possibly infinite) limit
T6 = T6,i → T6,∗ exists. We shall show that in fact only one possible such limit T6,∗ can occur, namely
the one given in (7.20).

Suppose first that T6,∗ = −∞. Then we have from (7.21) that

lim inf
i→∞

e(k−1)T6,i ζi(ωi) � k + 1,

and thus ζi(ωi) → ∞. But this contradicts Proposition 7.3.
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Next suppose that T6,∗ = ∞. Then ωi → ∞ by (7.5), and so the left-hand side of (7.21) approaches
ζ∗(∞) by Proposition 7.3. But the right-hand side of (7.21) approaches zero as i → ∞, contradict-
ing (7.16).

Thus T6,∗ is a finite quantity. Again from (7.5) we have that ωi → ∞, and so taking the limit in
Eq. (7.21) gives ζ∗(∞) = e−(k−1)T6,∗(k + 1), and so

e(k−1)T6,∗ = (k + 1)(k − 1)2e−(k−1)T5,∗

by (7.16). From this, using (2.9) and (6.3), we obtain (7.20), as desired. !

Proposition 7.5.We have for large i that

k + 1− εT5 � t � k + 1+ ε|logε|
k − 1

+ εT6 .⇒






d
dt

(
t − r

(
x(t)

))
> 0 and

εT3 < t − r
(
x(t)

)
� k + 1 − εT4.

In particular, if t belongs to Interval IV then t − r(x(t)) belongs to Interval II.

Proof. As in the proof of Corollary 6.4 we use (6.5), and as well the fact that α′(τ ) > 0 for −T5 �
τ � ω from the final sentence in Proposition 7.1. We also note that t − r(x(t)) belongs to the interior
of Interval II for t = k + 1 − εT5, by Corollary 6.4. For t = k + 1 + ε|logε|(k − 1)−1 + εT6 one checks
that t − r(x(t)) = k + 1− εT4 using (7.4) and (7.5). !

8. The minimum, the maximum, and the period

This section is devoted to the proof of Theorem B. Prior to giving this proof, we need the following
technical result.

Lemma 8.1. Fix any β > 0. Then the limit

lim
i→∞

ηi(β|logεi|)
|logεi|

= β
(
k2 − 1

)
(k − 1) (8.1)

holds.

Proof. We have from the differential equation (5.19) for η(θ) that

ηi(β|logεi|) − ηi(0)
|logεi|

=
β∫

0

η′
i

(
s|logεi |

)
ds =

β∫

0

f3,i
(
s|logεi|, ηi

(
s|logεi |

))
ds. (8.2)

The integrand is uniformly bounded in i, in light of (5.21). If we show also that it enjoys the pointwise
convergence property

lim
i→∞

f3,i
(
s|logεi |, ηi

(
s|logεi|

))
=

(
k2 − 1

)
(k − 1) (8.3)

for every 0 < s � β , then (8.1) follows from (8.2) and from the boundedness of the sequence ηi(0),
using the Lebesgue dominated convergence theorem.

To establish (8.3), we note the limit

lim
i→∞

σi
(
εi T3,i + ε2

i θ
)∣∣

θ=s|logεi | = Q+ − 2Q 0 + Q− (8.4)
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of one of the terms appearing in the formula (5.19) for f3,i(θ,η) arising when we attempt to take
the limit (8.3). In particular, (8.4) holds by (5.13) of Lemma 5.1. Also noting that e−ηi(s|logεi |) → 0 as
i → ∞ from the growth estimate (5.22) for ηi(θ) and because s > 0, we conclude with the help of
Proposition 4.1 and the formulas (2.9) and (5.19) that

lim
i→∞

f3,i
(
s|logεi|, ηi

(
s|logεi|

))
= −kϕ′

∗(Q+ − 2Q 0 + Q−) =
(
k2 − 1

)
(k − 1),

as desired. !

Proof of Theorem B. As we have not yet proved there is a unique SOPS xε(t) as per Theorem A, we
continue to work with a sequence xi(t) of SOPS’s with εi → 0.

To determine the location of the minimum of x(t) = xi(t), we take t = εT3 + βε2|logε| with β > 0
fixed independent of i. Then t belongs to Interval II for sufficiently large i. For such t we have, from
the ansatz (5.5), that

ẋ
(
εT3 + βε2|logε|

)
= 1− εσ̇

(
εT3 + βε2|logε|

)
−

(
e−η(β|logε|)η′(β|logε|)

ε

)
. (8.5)

Now using Lemma 8.1, which implies that e−η(β|logε|) decays roughly like ερ for ρ = β(k2 − 1)(k− 1),
and as well noting the uniform positive bounds (5.21) on η′(θ) and the bounds (5.12) on σ̇ (t), we
have from (8.5) that

lim
i→∞

ẋi
(
εi T3,i + βε2

i |logεi|
)
=

{−∞, if β < 1
(k2−1)(k−1) ,

1, if β > 1
(k2−1)(k−1) .

It follows that the location t = q0 = q0,i of the minimum of x(t) in Interval II satisfies

q0 = εT3 + ε2|logε|
(k2 − 1)(k − 1)

+ o
(
ε2|logε|

)
,

and with the formulas (4.23) and (5.2) we obtain the first line of Table 1. As for the second line
of Table 1, that is, the value of the solution at this point, first let βi be defined by q0,i = εi T3,i +
βiε

2
i |logεi |. Thus βi → (k2 − 1)−1(k − 1)−1 as i → ∞, and we have again from the ansatz (5.5) that

min
t∈R

x(t) = x(q0) = −1+ εT3 − εσ (q0) + εe−η(βi |logε|) + o(ε)

= −1+ ε(Q+ − Q 0) − ε(Q+ − 2Q 0 + Q−) + o(ε) = −1 + ε(Q 0 − Q−) + o(ε),

where (4.23), (5.2), and (5.13) are used.
To determine the location of the maximum of x(t), we take t = k+1+ετ where τ > −T5,∗ is fixed.

Thus t belongs to Interval IV if ε is small enough. Note that here we are determining the location of
the point q1, to the right of zero. The point q−1 as in the statement of Theorem B lies to the left of
zero and is given by q−1 = q1 − p where p is the period. From the ansatz (7.6) and from (7.15) with
Proposition 7.3 we have that

lim
i→∞

ẋi(k + 1+ εiτ ) = − lim
i→∞

(
e(k−1)τ ζi(τ )

)′ = −
(
e(k−1)τ ζ∗(τ )

)′ = k − e(k−1)(T5,∗+τ )

k − 1
.

The value of τ at which this limiting value vanishes is

τ0 = −T5,∗ + logk
k − 1

= −T5,∗ + Q 0,



Author's personal copy

J. Mallet-Paret, R.D. Nussbaum / J. Differential Equations 250 (2011) 4037–4084 4071

and the limiting value is positive for −T5,∗ < τ < τ0, and negative for τ > τ0. It follows that the
location t = q1 = q1,i of the maximum of x(t) in Interval IV satisfies

q1 = k + 1+ ε(−T5,∗ + Q 0) + o(ε)

= k + 1+ ε(−1 + Q+ − kQ 0 + kQ−) + o(ε), (8.6)

where we have used the value (6.3) of T5,∗ . The value of the solution at this point is

max
t∈R

x(t) = x(q1) = k − εe(k−1)τ0ζ∗(τ0) + o(ε)

= k − εe(k−1)(T5,∗+τ0)

(k − 1)2
+ εk

(k − 1)2
(
1+ (k − 1)(τ0 − Q+ + 2Q 0 − Q−)

)
+ o(ε)

= k + εk
k − 1

(τ0 − Q+ + 2Q 0 − Q−) + o(ε)

= k − εk
k − 1

(
1+ (k − 2)Q 0 − (k − 1)Q−

)
+ o(ε),

where again the ansatz (7.6), with (7.15) and Proposition 7.3, are used. This gives the fourth line of
Table 1.

Consider now the period p = pi of x(t). Fix β < T6,∗ and take

t = k + 1+ ε|logε|
k − 1

+ εβ,

noting that this point lies in Interval IV for large i. Then

lim
i→∞

xi
(
k + 1+ εi|logεi|(k − 1)−1 + εiβ

)

= k − lim
i→∞

(
εie

|logεi |+(k−1)βζi
(
|logεi|(k − 1)−1 + β

))

= k − lim
i→∞

(
e(k−1)βζi

(
|logεi|(k − 1)−1 + β

))

= k − e(k−1)βζ∗(∞) = k −
(
e(k−1)(T5,∗+β)

(k − 1)2

)
.

The value of β at which this limiting value vanishes is

β0 = −T5,∗ + log(k(k − 1)2)
k − 1

= −T5,∗ + Q 0 + 2Q− = −1 + Q+ − kQ 0 + (k + 2)Q−,

and arguing as before gives the period of x(t) as

p = k + 1+ ε|logε|
k − 1

+ εβ0 + o(ε)

= k + 1+ ε|logε|
k − 1

+ ε
(
−1+ Q+ − kQ 0 + (k + 2)Q−

)
+ o(ε). (8.7)

This gives the fifth line of Table 1. We note in particular that the condition β0 < T6,∗ , as required
above, holds by (7.20).
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Finally, from (8.6) and (8.7) we calculate q−1 = q1 − p to obtain the third line of Table 1. This
completes the proof of the theorem. !

9. Superstability

This section is devoted to the proof of Part 2 of Theorem A. Again, we work with a sequence xi(t)
of SOPS’s, with ε = εi → 0, and we shall obtain the relevant conclusions, including the estimate (2.8),
for large i. Here y(t) will denote a general solution of the linear variational equation (2.11), with initial
condition ψ ∈ X = C( J ) with J = [−εT1, εT2] as in (2.13). Note that the interval J = J i and thus the
space X = Xi depend on the index i of our sequence. The proof of Part 2 of Theorem A will be given
following several lemmas which provide bounds for y(t) in various intervals. Prior to proving these
lemmas, we establish the following basic existence result for the linear variational equation which is
needed to ensure that the monodromy operator M is well-defined.

Proposition 9.1.We have for large i that

t − r
(
x(t)

)
> −εT1 whenever t � εT2. (9.1)

Thus for any given ψ ∈ X, Eq. (2.11) with the initial condition (2.13) has a unique solution y(t) for t � εT2 .

Proof. It is enough to prove (9.1). In fact, by (2.3) it is enough to prove that t − r(x(t)) > −εT1 for
t = εT2. But this follows immediately from Corollary 5.3 using the fact that T2 > T3, by (5.2). !

Our estimates on y(t) will be derived using the variation of constants formula

y(t) = A(t, t0)y(t0) − k
ε

t∫

t0

A(t, s)y
(
s − r

(
x(s)

))
ds (9.2)

for the variational equation (2.11), where t, t0 � εT2 and where

A(t, s) = exp

( t∫

s

a(u)

ε
du

)

, (9.3)

where a(t) is as in (2.11). It is useful to note that

ẋ(t) = A(t, t0)ẋ(t0) − k
ε

t∫

t0

A(t, s)ẋ
(
s − r

(
x(s)

))
ds, (9.4)

as ẋ(t) satisfies the variational equation. We define the function ψ0 ∈ X to be the initial condition of
the solution ẋ(t), as in (2.15), and note that its norm in X satisfies

‖ψ0‖ <
k(k + 1)

ε
(9.5)

from the general bound (4.2).
We now estimate y(t) in various intervals, beginning with Interval II.
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Lemma 9.2. There exists a constant C9 such that for large i, the bound
∣∣y(t)

∣∣ � εC9
(∣∣ẋ(t)

∣∣ + 1
)
‖ψ‖ for every t ∈ [εT3,k + 1− εT4] (9.6)

holds for t in Interval II, for any solution of (2.11), (2.13).

Proof. Without loss ‖ψ‖ = 1. With t0 = εT3, which lies in Interval II, and taking t in Interval II, we
have from Corollary 5.3 that the argument s − r(x(s)) in the integrand of (9.2) lies in Interval I. The
point εT3 also lies in Interval I, and thus

∣∣y(εT3)
∣∣ =

∣∣ψ(εT3)
∣∣ � 1,

∣∣y
(
s − r

(
x(s)

))∣∣ =
∣∣ψ

(
s − r

(
x(s)

))∣∣ � 1,

in (9.2). Also note the bounds

εẋ(εT3) < −C2, −k(k + 1) < εẋ
(
t − r

(
x(t)

))
< −C2,

again for t in Interval II and thus with t − r(x(t)) in Interval I, and which follow from (4.2) and (4.20).
We thus have from the above estimates and from (9.2), and also from (9.4) and (9.5), that

∣∣y(t)
∣∣ � A(t, εT3) + k

ε

t∫

εT3

A(t, s)ds < −
(

εA(t, εT3)ẋ(εT3)

C2

)
+ k

ε

t∫

εT3

A(t, s)ds

= −
(

εẋ(t)
C2

)
− k

C2

t∫

εT3

A(t, s)ẋ
(
s − r

(
x(s)

))
ds + k

ε

t∫

εT3

A(t, s)ds

� −
(

εẋ(t)
C2

)
+ k

ε

(
k(k + 1)

C2
+ 1

) t∫

εT3

A(t, s)ds (9.7)

for t in Interval II. We have the bound a(t) < kẋ(t − r(x(t))) < −ε−1kC2 for t in Interval II, and thus
A(t, s) < e−ε−2kC2(t−s) for t > s both in this interval. Inserting this bound into the final integral in (9.7)
gives

∣∣y(t)
∣∣ < ε

( |ẋ(t)|
C2

+ k(k + 1) + C2

C2
2

)
,

which establishes the result with C9 = max{C−1
2 ,C−2

2 (k(k + 1) + C2)}. !

The next two lemmas provide bounds for y(t) in Intervals III and IV, respectively.

Lemma 9.3. For large i, the bound

∣∣y(t)
∣∣ � 2εC9‖ψ‖ for every t ∈ [k + 1− εT4,k + 1− εT5] (9.8)

holds for t in Interval III, for any solution of (2.11), (2.13). Here C9 is as in Lemma 9.2.

Proof. Without loss ‖ψ‖ = 1. We first estimate the coefficient a(t) in Eq. (2.11). Writing t = k+1+ετ ,
where t is in Interval III, and using the ansatz (6.4) for this interval, we have the formula (6.5)
for the historical time, namely t − r(x(t)) = εT3 + ε2α(τ ). Now t − r(x(t)) belongs to Interval II, by
Corollary 6.4, and thus from the ansatz (5.5) for Interval II we have that
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ẋ
(
t − r

(
x(t)

))
= ẋ

(
εT3 + ε2α(τ )

)
= 1− εσ̇

(
εT3 + ε2α(τ )

)
−

(
e−η(α(τ ))η′(α(τ ))

ε

)

< 1−
(
e−η(α(τ ))η′(α(τ ))

ε

)
< 1−

(
kC2

ε1/2

)
. (9.9)

We have used (5.12) to obtain the first inequality above. The second inequality follows from (5.21)
and also from the fact that (τ ,α(τ )) ∈ U4a as t is in Interval III, implying α(τ ) � η−1( 12 |logε|) as per
the definition (6.15) of U4a. We thus have for large i that

a(t) < kẋ
(
t − r

(
x(t)

))
< k −

(
k2C2

ε1/2

)
< −

(
k2C2

2ε1/2

)
(9.10)

from (9.9) and from the definition (2.11) of a(t).
Now let us write the differential equation (2.11) as

ε ẏ = a(t)y + b(t), b(t) = −ky
(
t − r

(
x(t)

))
, (9.11)

where we regard b(t) as a known forcing term in a linear equation for y. Again noting that t − r(x(t))
belongs to Interval II, we see from (9.6) of Lemma 9.2 that

∣∣b(t)
∣∣ � εkC9

(∣∣ẋ
(
t − r

(
x(t)

))∣∣ + 1
)

= εkC9

( |a(t) + 1|
k

+ 1
)

< 2εC9
∣∣a(t)

∣∣, (9.12)

with the final inequality holding as a(t) is negative with large norm in view of (9.10). It follows
immediately from (9.12) and from the fact that a(t) < 0 that Proposition 3.1 can be applied to the set

U6 =
{
(t, y) ∈ R2 ∣∣ k + 1− εT4 � t � k + 1− εT5 and |y| � 2εC9

}

for Eq. (9.11), and that one concludes that any solution of (9.11) in the set U6 can only exit that set
on the right-hand boundary t = k+1− εT5. Thus in order to establish the desired bound (9.8) for the
solution, it is enough to show that |y(k + 1− εT4)| � 2εC9. We have that

∣∣ẋ(k + 1− εT4)
∣∣ =

∣∣1− εα′(−T4)
∣∣ =

∣∣1+ T4 − f4
(
α(−T4)

)∣∣ < 1− 4εk2(k + 1)C3 < 1

by (6.4), (6.9), and (6.11). With (9.6) this now gives
∣∣y(k + 1− εT4)

∣∣ � εC9
(∣∣ẋ(k + 1− εT4)

∣∣ + 1
)
< 2εC9,

as desired. !

Lemma 9.4. There exists a constant C10 such that for large i, the bound

∣∣y(t)
∣∣ � C10‖ψ‖ for every t ∈

[
k + 1− εT5,k + 1+ ε|logε|(k − 1)−1 + εT6

]
, (9.13)

holds for t in Interval IV, and also such that

t6∫

t4

∣∣y(s)
∣∣ds � εC10‖ψ‖. (9.14)
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Here t4 = t4,i and t6 = t6,i are defined as

t4 = k + 1− εT4, t6 = k + 1+ ε|logε|
k − 1

+ εT6, (9.15)

namely the left-hand endpoint of Interval III and the right-hand endpoint of Interval IV, respectively.

Proof. Again without loss ‖ψ‖ = 1. In this proof we consider t in both Intervals III and IV, that is,
t4 � t � t6. Note that in any case, the quantity t − r(x(t)) belongs to Interval II, by either Corollary 6.4
or by Proposition 7.5.

By (2.12) we have that a(t) < k − 1. Recalling the definition (9.3) of A(t, s), we see that

A(t, t4) � eε−1(k−1)(t−t4) � e(k−1)(T4+T6)

ε
,

t∫

t4

A(t, s)ds <
εeε−1(k−1)(t−t4)

k − 1
� e(k−1)(T4+T6)

k − 1
,

t∫

t4

s∫

t4

A(t,u)du ds <
ε2eε−1(k−1)(t−t4)

(k − 1)2
� εe(k−1)(T4+T6)

(k − 1)2
. (9.16)

Note that some of the inequalities in (9.16) are obtained by setting t = t6, which is the right-hand
endpoint of Interval IV.

We again estimate y(t) using the variation of constants formula (9.2). We take t0 = t4 there, and
so the argument s − r(x(s)) in the integrand of (9.2) lies in Interval II. Thus by Lemma 9.2 we have
for such s that

∣∣y
(
s − r

(
x(s)

))∣∣ � εC9
(∣∣ẋ

(
s − r

(
x(s)

))∣∣ + 1
)

� εC9
(∣∣ẋ

(
s − r

(
x(s)

))
− 1

∣∣ + 2
)
= εC9

(
−ẋ

(
s − r

(
x(s)

))
+ 3

)
, (9.17)

where (2.3) has been used to obtain the final equality in (9.17). Let us also note the bounds

∣∣y(t4)
∣∣ � 2εC9,

∣∣ẋ(t4)
∣∣ < 2k(k + 1)C9, (9.18)

which hold by (9.8) of Lemma 9.3, and because ẋ(t) is a solution of (2.11) with initial condition
ẋ(t) = ψ0(t) satisfying the bound (9.5). We thus obtain from the variation of constants formula (9.2),
using first the bounds (9.17) and (9.18), and then the formula (9.4), that

∣∣y(t)
∣∣ � 2εC9A(t, t4) + kC9

t∫

t4

A(t, s)
(
−ẋ

(
s − r

(
x(s)

))
+ 3

)
ds

= εC9
(
2− ẋ(t4)

)
A(t, t4) + εC9 ẋ(t) + 3kC9

t∫

t4

A(t, s)ds. (9.19)

The desired pointwise bound (9.13) now follows immediately from (9.19) using the bounds (9.16), the
bound (9.18) on ẋ(t4), and the general bound (4.2) on ẋ(t).
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For the integral bound (9.14), we integrate the inequality (9.19) from t4 to t6, and again use the
bounds in (9.16). We also note, in performing this integration, that the term εC9 ẋ(t) in (9.19) does
not contain an absolute value sign, and so integrating it contributes a term εC9(x(t6) − x(t4)) of size
O (ε). We have that

t6∫

t4

∣∣y(s)
∣∣ds < εC9

(
2+ |ẋ(t4)|

k − 1

)
e(k−1)(T4+T6)

+ εC9
(
x(t6) − x(t4)

)
+ ε

(
3kC9

(k − 1)2

)
e(k−1)(T4+T6),

after a straightforward calculation. This, with the bound (9.18) on ẋ(t4), gives the desired re-
sult (9.14). !

Lemma 9.5. Let T7 = T7,i and T8 = T8,i be given by

T7 = −εT1 + p − r
(
x(−εT1 + p)

)
, T8 = εT2 + p − r

(
x(εT2 + p)

)
, (9.20)

where p = pi is the period of x(t). Then

εT3 < T7 < T8 < k + 1+ ε|logε|
k − 1

+ εT6 (9.21)

holds for large i. Thus the interval [T7, T8] is contained in the union of Intervals II, III, and IV.
Also, we have that

k + 1− εT5 < −εT1 + p < k + 1+ ε|logε|
k − 1

+ εT6, (9.22)

and so −εT1 + p lies in Interval IV.

Proof. We have from (2.6) and (4.4) that

lim
i→∞

T7,i = k + 1− r
(
ϕ∗(−T1)

)
= k − ϕ∗(−T1) > 0,

so the first inequality of (9.21) follows directly, for large i. The second inequality of (9.21) holds
by (2.3). For the third inequality, we see from (4.21) and from the formula for p in Table 1 that

k + 1+ ε|logε|
k − 1

+ εT6 − T8

= k + 1+ ε|logε|
k − 1

+ ε(T6 − T2 + H2) − p

= ε
(
T6 − T2 + H2 + 1− Q+ + kQ 0 − (k + 2)Q−

)
+ o(ε).

From (4.23) and (7.20) we have that

lim
i→∞

(T6,i − T2,i) + H2 + 1− Q+ + kQ 0 − (k + 2)Q−

= − lim
i→∞

T2,i + H2 + Q+ − Q 0 = H2 > 0,

as desired.
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For the first inequality in (9.22) we have, again using the formula for p, that

−εT1 + p − (k + 1− εT5) = ε|logε|
k − 1

+ O (ε),

which is positive for large i. For the second inequality in (9.22) we have that

−εT1 + p < εT2 + p − r
(
x(εT2)

)
= T8 < k + 1+ ε|logε|

k − 1
+ εT6, (9.23)

where the first inequality in (9.23) follows from Proposition 9.1, and where the second inequality
in (9.23) is from (9.21) in the first part of this lemma. !

Lemma 9.6. There exists a constant C11 � 1 such that for all large i

εT2+p∫

−εT1+p

∣∣y
(
s − r

(
x(s)

))∣∣ds � ε2C11‖ψ‖, (9.24)

where p = pi is the period of x(t).

Proof. Again without loss ‖ψ‖ = 1. From (4.20) and the periodicity of x(t) we have the bound

d
dt

(
t − r

(
x(t)

))
= 1− ẋ(t) >

C2

ε
for every t ∈ [−εT1 + p, εT2 + p],

and thus we may make the change of variables θ = s − r(x(s)) in the integral (9.24). Letting t = γ (θ)
denote the inverse of the function θ = t − r(x(t)), and with T7 and T8 as in (9.20), we have that

εT2+p∫

−εT1+p

∣∣y
(
s − r

(
x(s)

))∣∣ds =
T8∫

T7

|y(θ)|
1− ẋ(γ (θ))

dθ

� ε

C2

T8∫

T7

∣∣y(θ)
∣∣dθ � ε

C2

t6∫

εT3

∣∣y(θ)
∣∣dθ, (9.25)

with the final inequality in (9.25) following from Lemma 9.5, where we recall the formula (9.15)
for t6. Also recalling t4 in (9.15), we have further that

t6∫

εT3

∣∣y(θ)
∣∣dθ =

t4∫

εT3

∣∣y(θ)
∣∣dθ +

t6∫

t4

∣∣y(θ)
∣∣dθ

� εC9

t4∫

εT3

∣∣ẋ(t)
∣∣ + 1dt + εC10

< εC9

t4∫

εT3

∣∣ẋ(t)
∣∣dt + ε

(
(k + 1)C9 + C10

)
(9.26)
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by Lemma 9.2 and (9.14) of Lemma 9.4. The fact that t4 − εT3 < k + 1, which follows from (5.2)
and (9.15), is also used. Due to the monotonicity properties of x(t), and in particular because it has
only one critical point (a minimum) in the interval [εT3, t4], we have that

t4∫

εT3

∣∣ẋ(t)
∣∣dt � 2

(
max
t∈R

x(t) −min
t∈R

x(t)
)

< 2(k + 1). (9.27)

The desired result (9.24) with

C11 = max
{
C−1
2

(
3(k + 1)C9 + C10

)
,1

}

is now obtained directly from (9.25), (9.26), and (9.27). !

Proof of Part 2 of Theorem A. It is enough to prove the claims about the characteristic multipliers
in the statement of the theorem. The claims of asymptotic stability with asymptotic phase for the
nonlinear equation follow from the results of [44], specifically, from Theorem 1.1 and Corollary 1.2 of
that paper.

We recall the monodromy operator M : X → X for the linear variational equation (2.11), given
by (2.13), (2.14), where X = C( J ) and J = [−εT2, εT1]. The characteristic multipliers λ in the state-
ment of the theorem are the nonzero points in the spectrum of M . We recall that M is a compact
operator, and so such points are isolated elements of the point spectrum and have finite algebraic
multiplicity. We also have that Mψ0 = ψ0 where ψ0 is as in (2.15).

Taking any solution y(t) of (2.11) with initial condition ψ ∈ X as in (2.13), rewrite Eq. (9.4) as

A(t, t0) = ẋ(t)
ẋ(t0)

+ k
εẋ(t0)

t∫

t0

A(t, s)ẋ
(
s − r

(
x(s)

))
ds, (9.28)

assuming that ẋ(t0) (= 0, and then substitute (9.28) for the first occurrence of A(t, t0) in (9.2). This
gives

y(t) = ẋ(t)y(t0)
ẋ(t0)

+ ky(t0)
εẋ(t0)

t∫

t0

A(t, s)ẋ
(
s − r

(
x(s)

))
ds − k

ε

t∫

t0

A(t, s)y
(
s − r

(
x(s)

))
ds.

With the particular choice of t0 = −εT1 + p, and also replacing t by t + p, and using the periodicity
of x(t), we have that

y(t + p) = ẋ(t)y(−εT1 + p)

ẋ(−εT1)
+ ky(−εT1 + p)

εẋ(−εT1)

t+p∫

−εT1+p

A(t + p, s)ẋ
(
s − r

(
x(s)

))
ds

− k
ε

t+p∫

−εT1+p

A(t + p, s)y
(
s − r

(
x(s)

))
ds.

Let us now write the monodromy operator as a sum Mψ = M0ψ + M1ψ where
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(M0ψ)(t) = ky(−εT1 + p)

εẋ(−εT1)

t+p∫

−εT1+p

A(t + p, s)ẋ
(
s − r

(
x(s)

))
ds

− k
ε

t+p∫

−εT1+p

A(t + p, s)y
(
s − r

(
x(s)

))
ds,

(M1ψ)(t) = ẋ(t)y(−εT1 + p)

ẋ(−εT1)
= y(−εT1 + p)

ẋ(−εT1)
ψ0(t). (9.29)

Here t ∈ J and ψ0 is as in (2.15). It is clear that M0,M1 : X → X depend linearly on ψ , since y(t)
depends linearly on ψ . It is also clear that M1 is an operator of rank one. Additionally, in the case
that ψ = ψ0 and so y(t) = ẋ(t), one has that M1ψ0 = ψ0 hence M0ψ0 = 0, and so

M0M1 = 0, M2
1 = M1. (9.30)

Let us next note the bounds

A(t, s) � eε−1(k−1)(t−s) � e(k−1)(T1+T2) � C12

for some C12, valid for large i and with t � s both in Interval I, and where without loss we can take
C12 � 1. This follows directly from the formula (9.3) for A(t, s) and the bound (2.12) on a(u). Also,
A(t + p, s + p) = A(t, s) for any t and s, and thus one has the estimate

A(t + p, s) � C12

for the kernel as it appears in the two integrals in (9.29), with t ∈ J . It now follows from this, from
Lemma 9.6, and from the bound (9.5) on ‖ψ0‖, that the integrals in (9.29) enjoy the bounds

∣∣∣∣∣

t+p∫

−εT1+p

A(t + p, s)ẋ
(
s − r

(
x(s)

))
ds

∣∣∣∣∣ � ε2C11C12‖ψ0‖ < εk(k + 1)C11C12,

∣∣∣∣∣

t+p∫

−εT1+p

A(t + p, s)y
(
s − r

(
x(s)

))
ds

∣∣∣∣∣ � ε2C11C12‖ψ‖. (9.31)

We also have that

∣∣y(−εT1 + p)
∣∣ � C10‖ψ‖,

∣∣ẋ(−εT1)
∣∣ >

C2

ε
, (9.32)

with the first inequality in (9.32) following from (9.13) in Lemma 9.4 and from the final sentence in
the statement of Lemma 9.5, and with the second inequality in (9.32) holding by (4.20). Combining
the bounds in (9.31) and (9.32) with (9.5), we obtain the desired estimates

‖M0ψ‖ � εkC11C12

(
k(k + 1)C10

C2
+ 1

)
‖ψ‖ = εC1‖ψ‖,

‖M1ψ‖ �
(
k(k + 1)C10

C2

)
‖ψ‖ � C1‖ψ‖,
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where the equality above serves as the definition of the constant C1. (Note that we use here the fact
that C11,C12 � 1.)

Let us now establish the claims about the characteristic multipliers, that is, about the spectrum
of M . Fix any λ ∈ C satisfying |λ| > εC1 and λ (= 1. We must show that λ does not belong to the
spectrum of M . We have first that |λ| > ‖M0‖ and so λI −M0 is invertible. We claim that the operator

L(λ) =
(
(λ − 1)−1M1 + I

)
(λI − M0)

−1

is the inverse of λI − M . To see this, we note from (9.30) that (λI − M0)M1 = λM1, hence (λI −
M0)

−1M1 = λ−1M1. Thus again using (9.30), we have

L(λ)M = L(λ)(M0 + M1)

=
(
(λ − 1)−1M1 + I

)
(λI − M0)

−1M0 + λ−1((λ − 1)−1M1 + I
)
M1

=
(
(λ − 1)−1M1 + I

)
(λI − M0)

−1M0 + (λ − 1)−1M1

= −(λ − 1)−1M1 − I + λ
(
(λ − 1)−1M1 + I

)
(λI − M0)

−1 + (λ − 1)−1M1

= −I + λL(λ),

and so L(λ) is a left inverse of λI − M . Also, again using (9.30),

ML(λ) = (M0 + M1)L(λ)

= M0
(
(λ − 1)−1M1 + I

)
(λI − M0)

−1 +
(
(λ − 1)−1 + 1

)
M1(λI − M0)

−1

= M0(λI − M0)
−1 + λ(λ − 1)−1M1(λI − M0)

−1

= −I + λ(λI − M0)
−1 + λ(λ − 1)−1M1(λI − M0)

−1

= −I + λL(λ),

and so L(λ) is a right inverse of λI − M . Thus λ /∈ spec(M), as claimed.
There remains to show that the point λ = 1 ∈ spec(M) has simple algebraic multiplicity. We es-

tablish this by calculating the canonical spectral projection P onto the generalized eigenspace, given
by

P = 1
2π i

∫

|λ−1|=δ

L(λ)dλ = M1(I − M0)
−1

for sufficiently small δ. Then P has a one-dimensional range, namely the span of ψ0, as desired. !

10. Uniqueness

In this section we complete the proof of Theorem A by showing that the SOPS of Eq. (1.1) is unique
for every sufficiently small ε.

Proof of Part 1 of Theorem A. First recall that any SOPS of Eq. (1.1) enjoys the bounds (2.2), along
with the bound (4.2) for its derivative. Note also the bound r(x(t)) < k+1 on the delay, which follows
from (2.2). Following [45], define

K =
{
ψ ∈ C[−k − 1,0]

∣∣ −1 � ψ(θ) � k for every θ ∈ [−k − 1,0],
ψ(θ) � 0 for every θ ∈ [−1,0], with Lip(ψ) � ε−1k(k + 1), and ψ(0) = 0

}
,
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which is a compact convex set. Then if x(t) is any SOPS, there exists a unique τ ∈ R, modulo the
period p, such that xτ ∈ K . Here, following [24], we define zτ ∈ C[−k − 1,0] by

zτ (θ) = z(τ + θ), θ ∈ [−k − 1,0],

for any function z(t) which is continuous at least on [τ − k − 1, τ ]. Also define the set

G =
{
ψ ∈ K

∣∣ ψ(θ) > 0 for some θ ∈ [−1,0]
}
.

Then in fact xτ ∈ G for any such solution, with τ as above, for if xτ ∈ K \ G then the unique solution
from this Lipschitz initial condition would be identically zero for t � 0.

As in [45], we define a Poincaré map T :G → K as follows. Let ψ ∈ G and let z(t) for t � 0
denote the unique solution of (1.1) with z0 = ψ . It is not difficult to check that z(t) enjoys the same
bounds (2.2) and (4.2) for t � 0. It is the case that either z(t) � 0 for every t � 0, or else there exists
some t1 > 0 such that z(t) � 0 for every t ∈ [0, t1], and z(t1) = 0 with ż(t1) > 0. Clearly such t1, if it
exists, is unique. Moreover t1 > 1 also holds. If t1 exists, then either z(t) � 0 for every t � t1, or else
there exists some t2 > t1 such that z(t) � 0 for every t ∈ [t1, t2], and z(t2) = 0 with ż(t2) < 0. Again,
t2 is unique if it exists, and t2 > t1 + 1 holds. Now define

Tψ =
{
zt2 if both t1 and t2 exist,
0 otherwise.

One easily sees that Tψ ∈ K , and it is shown in [45] that T :G → K is continuous. Moreover, there is a
one-to-one correspondence between fixed points of T in G and SOPS’s, namely, z(t) is an SOPS time-
translated so that z(0) = 0 and ż(0) < 0, if and only if Tψ = ψ where ψ = z0. Also, the fixed-point
set

S = {ψ ∈ G | Tψ = ψ}

is a compact subset of G provided that ε (= ε0 where ε0 is the point of Hopf bifurcation of SOPS’s.
We remark that in general, there is no assurance that T can be extended continuously to all of K .

In particular, as 0 /∈ G , we are only considering nonzero fixed points of T , unlike for treatments of
related problems in which T is defined and continuous at zero.

If O ⊆ K is a relatively open set such that the set S∩ O is compact, then there is defined the fixed-
point index ιK (T , O ) of T with respect to O . Note that if O ⊆ K is any open set whose closure O is
contained in G , then the compactness of S ∩ O is equivalent to the familiar condition that S ∩ ∂O = ∅,
namely that there are no fixed points of T on the boundary of O . However, if O is not a subset of G ,
then it can happen that S ∩ ∂O = ∅ and yet S ∩ O is not compact, as O might contain fixed points
clustering on K \ G . More generally, one can define the mth iterate Tm :Gm → K of T in the obvious
fashion, where in particular Gm ⊆ G is the set of ψ ∈ G such that the points T iψ for 1 � i �m−1 are
(inductively) well-defined and belong to G . Then ιK (Tm, O ) is defined as long as Sm ∩ O is compact,
where Sm = {ψ ∈ Gm | Tmψ = ψ} is the set of m-periodic points of T . See, for example, [48] for an
exposition of the basic properties of the fixed-point index in this framework.

It is shown in [45] that

ιK (T ,G) =
{
1 if 0 < ε < ε0,
0 if ε > ε0.

(10.1)

Also, if O is a ball, say

O = O δ(ψ∗) =
{
ψ ∈ K

∣∣ ‖ψ − ψ∗‖ < δ
}

for some ψ∗ ∈ K and δ > 0, and if TmO ⊆ O and Sm ∩ O is compact for some m � 1, then
ιK (Tm, O ) = 1. Further, if this condition holds for all sufficiently large m then in fact ιK (T , O ) = 1.
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Such is the case when ψ∗ is an asymptotically stable fixed point, as would arise from an asymptoti-
cally stable SOPS of the differential equation (1.1), with δ sufficiently small. In particular, by Part 2 of
Theorem A there exists εs > 0 such that if 0 < ε < εs then every fixed point ψ∗ of T is such a point,
and hence is an isolated point of the fixed-point set S . As S is a compact subset of G , it follows that
for every such ε the set S = {ψ1,ψ2, . . . ,ψm} is finite, with m = m(ε) and the points ψi of course
depending on ε. Thus for such ε, we have from (10.1) and the remarks following that formula, and
from the basic properties of the degree, that for sufficiently small δ

1 = ιK (T ,G) =
m∑

i=1

ιK
(
T , O δ(ψi)

)
=

m∑

i=1

1 =m.

With m = 1, we conclude that T has a unique fixed point in G if 0 < ε < εs, and thus Eq. (1.1) has a
unique SOPS. This completes the proof. !
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