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Abstract

We investigate the iterative behaviour of continuous order preserving subhomo-
geneous maps f :K →K, where K is a polyhedral cone in a finite dimensional vector
space. We show that each bounded orbit of f converges to a periodic orbit and,
moreover, the period of each periodic point of f is bounded by
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where N is the number of facets of the polyhedral cone. By constructing examples
on the standard positive cone in R

n , we show that the upper bound is asymptotically
sharp.
These results are an extension of work by Lemmens and Scheutzow concerning

periodic orbits in the interior of the standard positive cone in R
n .

1. Introduction

Let K be a polyhedral cone in a finite dimensional real vector space X and
f :K →K be a continuous map. A basic problem in the theory of discrete dy-
namical systems is to describe qualitatively the asymptotic behaviour of the orbits
{fk (x): k = 0, 1, 2, . . .} for each initial point x ∈ K, as k→∞. In this paper we
investigate this problem for continuous maps f :K →K that are, in addition, order
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preserving and subhomogeneous. In particular, we prove in Theorem 2·1 that each
bounded orbit of f converges to a periodic orbit and that the period of each periodic
point of f is bounded by

βN = max
q+r+s=N
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, (1·1)

where N is the number of facets of the polyhedral cone K. Here �a� denotes the
greatest integer not exceeding a. As a second result we show in Theorem 2·2 that
the upper bound is asymptotically sharp in case the polyhedral cone is the standard
positive cone in R

n given by R
n
+ = {x ∈ R

n :xi � 0 for 1 � i � n}.
Order preserving subhomogeneous maps have been studied intensively in non-

linear Perron-Frobenius theory. They arise in various fields, such as optimal control
and game theory [1, 24, 29], idempotent analysis [17, 23], the analysis of monotone
dynamical systems [15, 16, 18, 19, 32, 33], and discrete event systems [4, 12, 13]. In
this list we have quoted only a few recent works and we suggest the reader consult
[25, 26] for further references. The dynamical behaviour of these maps has been in-
vestigated in [1, 11, 15, 16, 18, 19, 20, 25–28, 32, 33, 35]; often under the additional
assumption that f mapsK into its interior, which is denoted by int(K). In particular,
it is known that if f : int(K)→ int(K) is an order preserving subhomogeneous map,
then f is nonexpansive with respect to Thompson’s part metric (see [8] and [25]).
For maps that are nonexpansive with respect to Thompson’s part metric, Weller
[35] has proved that every bounded orbit in the interior of the polyhedral cone K
converges to a periodic orbit. Moreover, for the standard positive cone, R

n
+, it has

been shown by Martus [22] that if f : int(Rn
+)→ int(Rn

+) is nonexpansive with respect
to the part metric, then the periods of periodic points of f are bounded by n!2n . The
upper bound of Martus is not sharp. In fact, Nussbaum [27, p. 525] has conjectured
that 2n is the optimal upper bound; but at present this conjecture is proved only for
n � 3. The case n = 3 is proved by Lyons and Nussbaum in [21], in which additional
evidence supporting the conjecture is also given. The current best general estimate
is max k 2k (n

k
) by Lemmens and Scheutzow [20]. Other upper bounds have been ob-

tained in [5, 27, 31]. For order preserving homogeneous maps f : int(Rn
+)→ int(Rn

+), it
was expected that stronger estimates hold for the periods of periodic points. Indeed,
Gunawardena and Sparrow conjectured (see [12]) that ( n

�n/2�) is the optimal upper
bound. A proof of this conjecture was given by Lemmens and Scheutzow in [20]. We
shall see that the arguments in [20] can be refined to show that if f : int(K)→ int(K) is
an order preserving subhomogeneous map, then the periods of periodic points of f do
not exceed ( N

�N/2�), where N is the number of facets of the polyhedral coneK. In con-
nection with these results it is useful to mention that each order preserving subhomo-
geneous map f : int(K)→K is continuous and has a continuous extension f :K →K,
which is again order preserving and subhomogeneous (see [7, theorem 3·10]).
With these results in mind the following questions are natural. Given a polyhedral

cone K and a continuous order preserving subhomogeneous map f :K →K, does
every bounded orbit of f converge to a periodic orbit? Does there exist an a priori
upper bound for the periods of periodic points in terms of the number of facets of
K? If so, what is the optimal upper bound? In this paper we answer these questions.
To conclude the introduction we outline the organisation of the paper. In Section 2

we state the two main results, Theorems 2·1 and 2·2. In Section 3 we collect some
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preliminary results. Subsequently, we study in Section 4 periodic points of order
preserving subhomogeneous maps on polyhedral cones, whose orbit is contained in
a part of the cone. Using a result of Lemmens and Scheutzow [20] we give an upper
bound for the possible periods of these periodic points. This upper bound is then used
in Section 5 to show that the period of any periodic point does not exceed βN , where
βN is given in (1·1). In Section 6 we prove that each bounded orbit converges to a
periodic orbit. Combining this result with the results in Section 5 yields the first main
result, Theorem 2·1. In Section 7 we prove the second main result, Theorem 2·2.

2. Statement of the main results

Let X be a real topological vector space. A subset K of X is called a cone if it is a
convex subset of X such that λK ⊂ K for all λ � 0 and K � (−K) = {0}. A cone K
in X is called a closed cone if it is a closed subset of X. If X is a finite dimensional
topological vector space, then it is known that X has exactly one Hausdorff vector
space topology and it coincides with the standard topology. The main results of this
paper concern closed cones in finite dimensional vector spaces. In that case the vector
space topology will always be the standard topology. Many preliminary results will
however be stated and proved for more general topological vector spaces.
A closed cone K in a finite dimensional vector space X is said to be a polyhedral

cone if it is the intersection of finitely many closed half spaces, i.e., there exist linear
functionals ϕ1, . . . , ϕm such that K = {x ∈ X:ϕi(x) � 0 for 1 � i � m}. A face
of a polyhedral cone K is any set of the form F = K � {x ∈ X:ϕ(x) = 0}, where
ϕ:X →R is a linear functional such thatK ⊂ {x ∈ X:ϕ(x) � 0}. Note that the cone
itself is a face. The dimension of a face F , denoted dim(F ), is the dimension of its
linear span. A face F is called a facet if dim(F ) = dim(K) − 1. We remark that if K
is a polyhedral cone with N facets, then there exist N linear functionals ψi :X →R,
where 1 � i � N , such that

K = {x ∈ X:ψi(x) � 0 for 1 � i � N} � span(K) (2·1)
and each linear functional ψi defines a facet of K (see [30, section 8·4]). In this
paper the closed cone will often be polyhedral and we reserve the notation ψi , where
1 � i � N , to denote the linear functionals that define its facets. A natural example
of a polyhedral cone is the standard positive cone in R

n given by R
n
+ = {x∈R

n :xi � 0
for 1 � i � n}, which has n facets.
A cone K in a topological vector space X induces a partial ordering �K on X

by x �K y if y − x ∈ K. We simply write � if K is obvious from the context.
Subsets of X will always inherit the partial ordering of X. If (S, �) and (T, �) are
two partial ordered sets, then we call a map f :S →T order preserving if f (x) � f (y)
for all x, y ∈ S with x � y. If X is a vector space with a partial ordering � and if
f :D→X, where D ⊂ X, has the property that λf (x) � f (λx) for every x ∈ D and
0 < λ < 1 satisfying λx ∈ D, then f is said to be subhomogeneous. If λf (x) = f (λx)
for every x ∈ D and λ � 0 satisfying λx ∈ D, then f is said to be homogeneous.
If S is a set and f :S →S, then a point x ∈ S is called a periodic point if fp (x) = x

for some integer p � 1; the minimal such p � 1 is said to be the period of x under f .
The orbit of x ∈ S under f is given by O(x; f ) = {fk (x): k = 0, 1, 2, . . .}. If x is a
periodic point, then O(x; f ) is called a periodic orbit.
Equipped with these notions we now state the main results.
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Table 1. The lower and upper bound for 1 � N � 15

αN 1, 2, 6, 12, 30, 78, 210, 540, 1660, 4180, 11480, 34510, 90090, 251874, 756252
βN 1, 2, 6, 12, 30, 90, 210, 560, 1680, 4200, 11550, 34650, 90090, 252252, 756756

Theorem 2·1. LetK be a polyhedral cone withN facets in a finite dimensional vector
space X. If f :K →K is a continuous order preserving subhomogeneous map and the
orbit of x ∈ K is bounded, then there exists a periodic point ξ of f , with period p, such
that lim k→∞ fkp (x) = ξ and p � βN , where

βN = max
q+r+s=N
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=
N !⌊
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. (2·2)

To show that the upper bound βN is asymptotically sharp we prove in Section 7 the
following theorem.

Theorem 2·2. For every 1 � m � n, 1 � p � ( m
�m/2�), and 1 � q � (n

m
), there exists

a continuous order preserving homogeneous map f :Rn
+→R

n
+ that has a periodic point

with period equal to the least common multiple of p and q.

From Theorem 2·2 it follows that

αN = max
{
lcm (p, q): 1 � p �

(
m

�m/2�

)
, 1 � q �

(
N

m

)
, and 1 � m � N

}
(2·3)

is a lower bound for the maximum period of periodic points of continuous order pre-
serving subhomogeneous map f :RN

+ →R
N
+ . We show in Section 7 that limN →∞ αN /

βN =1. This implies that the upper bound in Theorem 2·1 is asymptotically sharp in
case K is the standard positive cone in R

N . This fact is illustrated in Table 1 below.
Moreover, by using Stirling’s formula, it can be shown that βN has the following
asymptotics:

βN ∼ 3N +1
√
3

2πN
.

3. Preliminary results

3·1. Partially ordered sets
Partially ordered sets occur frequently in this exposition and it is useful to recall

several basic concepts concerning them. Let (S, �) be a partially ordered set. We say
that a and b are comparable if a � b or b � a. A subset A of S is called an antichain
if no two distinct elements in A are comparable. A subset C of S is called a chain if
every two elements in C are comparable, and it is said to be a maximal chain if there
exists no chain D ⊂ S that properly contains C. We have the following basic lemma.

Lemma 3·1. Let (S, �) be a partially ordered set and let f :S →S be an order preserving
map. If x ∈ S is a periodic point of f , then O(x; f ) is an antichain.

Proof. Let x ∈ S be a periodic point of f with period p. Suppose that y, z ∈ O(x; f )
and y � z. As O(x; f ) is a periodic orbit with period p, there exists 0 � k < p such
that z = fk (y) and hence y � fk (y). Since fk is order preserving, this implies that
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fk (y) � f 2k (y) � · · · � fkp (y) = y and therefore z � y. Thus y = z and hence O(x; f )
is an antichain.

3·2. Parts and Thompson’s part metric
LetK be a cone in a topological vector spaceX. For the analysis it is convenient to

define an equivalence relation∼ onK by x ∼ y if there exist constants 0 < α � β such
that αx � y � βx. We write [x] to denote the equivalence class of x. The equivalence
classes in K are called parts (or constituents) (see [3, 34]) and we denote the set of all
parts ofK by P (K). We say that x dominates y if there exists β > 0 such that y � βx.
We observe that if x ∼ x′ and y ∼ y′, then x dominates y if and only if x′ dominates
y′. This observation allows us to define a partial ordering	 on the set of parts, P (K),
in the following manner: P 	 Q if x dominates y for some x ∈ Q and y ∈ P .
For x, y ∈ K we define

M (y/x;K) = inf {β > 0: y � βx} (3·1)

and we put M (y/x;K) = ∞ if the set is empty. If K is obvious from the context,
we simply write M (y/x). Remark that M (y/x) < ∞ if and only if x dominates y.
Moreover, if in addition K is closed, then the infimum in (3·1) is attained and in that
case y � M (y/x)x. We have the following lemma.

Lemma 3·2. Let K be a cone in a topological vector space X and let P be a part of
K. If A is an antichain in the partially ordered set (P, �) and f :P →P is an order
preserving subhomogeneous map, then

M (f (y)/f (x)) � M (y/x) for all x, y ∈ A. (3·2)

Moreover, if f (A) ⊂ A and each x ∈ A is a periodic point of f , then

M (f (y)/f (x)) = M (y/x) for all x, y ∈ A. (3·3)

Proof. Clearly the equations (3·2) and (3·3) are true if x = y. So, let x, y ∈ A with
x � y. As x and y belong to the same part, M (y/x) is finite. Consider λ > 0 such
that λ > M (y/x). Then y � λx and, since A is an antichain, we have that λ > 1.
Using the fact that f is order preserving and subhomogeneous, we deduce that
λ−1f (y) � f (λ−1y) � f (x), so that M (f (y)/f (x)) � λ. Since this inequality holds for
all λ > M (y/x), inequality (3·2) follows.
To prove the second assertion we assume that fp (x) = x and fq (y) = y. By apply-

ing the previous observation iteratively we deduce for each k � 1 that M (fk (y)/
fk (x))� M (f (y)/f (x))�M (y/x). Now by taking k= pq we find that M (y/x)�
M (f (y)/f (x)) � M (y/x), which completes the proof.

Using the function M (y/x) we define a map dT :K × K → [0,∞] by

dT (x, y) = log(max{M (y/x), M (x/y)}) (3·4)

for all (x, y) ∈ K ×K, with (x, y)� (0, 0), and we put dT (0, 0) = 0. The function dT is
called (Thompson’s) part metric [34]. It is well known that if K is a closed cone, then
dT is a genuine metric on each part of the cone, but not on the whole cone. Indeed,
dT (x, y) is finite if and only if x ∼ y. If K is not a closed cone, then in general dT

is a semi-metric on each part. Moreover, if K is a closed cone in a finite dimensional
vector space X and P is a part of K, then (P, dT ) is a complete metric space and the
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topology coincides with the topology induced by the standard topology on X. More
general results concerning the part metric can be found in [3, 25, 26, 34].
To conclude this subsection we mention the relation between the part metric and

the sup-norm on R
n given by ‖z‖∞ = max i |zi |. Consider the standard positive cone

R
n
+ and the part corresponding to the interior ofR

n
+. There exists an isometry from the

metric space (int(Rn
+), dT ) onto the metric space (Rn , ‖·‖∞) (cf. [25, proposition 1·6]).

Indeed, one can use the map L: int(Rn
+)→R

n given by

L(x) = (log x1, . . . , log xn ) for x = (x1, . . . , xn ) ∈ int(Rn
+). (3·5)

The inverse of L is, of course, the map E:Rn → int(Rn
+) given by

E(x) = (ex1 , . . . , exn) for x = (x1, . . . , xn ) ∈ R
n . (3·6)

To see that the map L is an isometry it is convenient to first define a map t:Rn →R

by t(x) = max i xi for x ∈ R
n , and subsequently to remark that

‖x‖∞ = max{t(x), t(−x)}. (3·7)

Now note that if x, y ∈ int(Rn
+), then

M (x/y) = inf {β � 0:x � βy} = max
i
(xi/yi)

and log(max i(xi/yi)) = max i(log xi − log yi) = t(L(x)− L(y)). Thus,

log M (x/y) = t(L(x)− L(y)) for all x, y ∈ int(Rn
+), (3·8)

so that (3·4) and (3·7) yield

dT (x, y) = ‖L(x)− L(y)‖∞ for all x, y ∈ int(Rn
+). (3·9)

The function t:Rn →R above appears naturally in the study of topical functions
(see Gunawardena and Keane [14]) and also played an important role in [20]. It has
certain properties of a norm. For instance, t(x+ y) � t(x) + t(y) for all x, y ∈ R

n ; but,
t(x)� t(−x) in general.

3·3. Nonexpansiveness and order preserving maps on a cone
If (C, d) is a metric space, then f :C →C is called nonexpansive with respect to d, or,

simply d-nonexpansive if

d(f (x), f (y)) � d(x, y) for all x, y ∈ C. (3·10)

The map f is called a d-isometry if (3·10) is an equality for all x, y ∈ C. Although dT

is not a proper metric on a cone K (and in general only a semi-metric on each part
of K, when K is not closed), we say that f :K →K is dT -nonexpansive if (3·10) holds
for dT . Here the inequality only makes sense if the right-hand side is finite. In the
same way we abuse terminology for the function t : Rn →R given by t(x) = max i xi .
We call a map f :S →S, where S ⊂ R

n , t-nonexpansive if t(f (x) − f (y)) � t(x − y)
for all x, y ∈ S. The map f is called a t-isometry if t(f (x) − f (y)) = t(x − y) for all
x, y ∈ S. We have the following lemma (cf. [25, proposition 1·5]), which is similar to
results in [9].

Lemma 3·3. Let K be a closed cone in a topological vector space X. If f :K →K is
order preserving, then f is dT -nonexpansive if and only if f is subhomogeneous.
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Proof. Assume first that f is subhomogeneous. If x, y ∈ K and

λ � max{M (y/x), M (x/y)}, (3·11)

then y � λx and x � λy, so that x � λy � λ2x and therefore λ � 1. As f is order
preserving and subhomogeneous, we obtain

λ−1f (y) � f (λ−1y) � f (x) and λ−1f (x) � f (λ−1x) � f (y).

This implies that max{M (f (y)/f (x)), M (f (x)/f (y))} � λ and hence

dT (f (x), f (y)) � log λ = dT (x, y).

Now assume that f is nonexpansive with respect to dT on K. Let x ∈ K and put
y = λ−1x, where λ � 1. Clearly dT (x, y) = log λ if x� 0 and dT (x, y) � log λ if x = 0.
As f is nonexpansive with respect to dT , we have that

log M (f (x)/f (y)) � dT (f (x), f (y)) � dT (x, y) � log λ,

so that f (x) � λf (y). This implies that λ−1f (x) � f (y) = f (λ−1x) and hence f is
subhomogeneous.

Maps that are nonexpansive with respect to the part metric map parts into parts.
Indeed, we have the following lemma.

Lemma 3·4. If K is a cone in a topological vector space X and f :K →K is dT -
nonexpansive, then f ([x]) ⊂ [f (x)] for each x ∈ K.

Proof. If y ∈ f ([x]), then there exists z ∈ [x] such that f (z) = y. Since z ∼ x we
have that dT (x, z) is finite. As f is nonexpansive with respect to dT on [x], we find
that dT (f (x), y) is finite and hence y ∼ f (x).

This lemma has the following corollary.

Corollary 3·5. If K is a cone in a topological vector space X and f :K →K is
dT -nonexpansive, then the map F :P (K)→P (K) given by F (P ) = [f (x)] for x ∈ P is
well defined. Moreover, if f is order preserving and K is closed, then F preserves the
ordering 	 on P (K).

Proof. To see that F is well defined we let P be a part of the cone K. For each
x, y ∈ P we have that f (x) ∼ f (y), by Lemma 3·4, and hence [f (x)] = [f (y)]. Thus,
F is well defined. If f :K →K is an order preserving dT -nonexpansive map and K is
closed, then f is subhomogeneous by Lemma 3·3. Now let P, Q ∈ P (K) be such that
P 	 Q. If x ∈ Q and y ∈ P , then x dominates y and therefore there exists λ � 1
such that y � λx. Since f is order preserving and subhomogeneous, it follows that
λ−1f (y) � f (λ−1y) � f (x). Thus f (x) dominates f (y), so that [f (y)] 	 [f (x)]. From
this we conclude that F (P ) 	 F (Q), which completes the proof.

4. Periodic orbits in a part of the polyhedral cone

In [20] Lemmens and Scheutzow proved the following theorem.

Theorem 4·1 ([20]). IfA is a finite antichain in (Rn , �), where the partial ordering�
is induced by R

n
+, and on A a commutative group of t-isometries acts transitively, then

A has at most ( n
�n/2�) elements.



164 M. Akian and Others

We use this theorem to derive the following result.

Theorem 4·2. Let K be a polyhedral cone with nonempty interior in a finite dimen-
sional vector space X. IfK has N facets and f : int(K)→ int(K) is order preserving and
subhomogeneous, then the periods of periodic points of f do not exceed ( N

�N/2�).

Proof. Let ξ be a periodic point of f with period p and let A = O(ξ; f ). From
Lemma 3·1 it follows thatA is an antichain in (int(K), �K ). Furthermore Lemma 3·2
implies that

M (f (y)/f (x);K) = M (y/x;K) for all x, y ∈ A. (4·1)

Define Ψ:X →R
N by Ψ(x) = (ψ1(x), . . . , ψN (x)) for all x ∈ X. Here ψi :X →R, with

1 � i � N , are the linear functionals that define the facets ofK. The map Ψ is linear
and, by (2·1), x ∈ K if and only if Ψ(x) ∈ R

N
+ . Hence Ψ(K) = Ψ(X) � R

N
+ and if

R
N is endowed with the partial ordering induced by R

N
+ , we get that x �K λy is

equivalent to Ψ(x) � λΨ(y). It follows that

M (y/x;K) = M (Ψ(y)/Ψ(x);Rn
+) for all x, y ∈ K. (4·2)

Moreover, Ψ is injective, because Ψ(x) = 0 implies that x ∈ K and −x ∈ K, so that
x = 0. We also have that Ψ(int(K)) ⊂ int(RN

+ ). Indeed, if y ∈ int(K), then for each
z ∈ X there exists ε > 0 such that y − εz ∈ K. This implies that ψi(y) � εψi(z) for
all 1 � i � N . Since ψi is nonzero, there exists z ∈ X such that ψi(z) > 0. Therefore
ψi(y) > 0 for all 1 � i � N and hence Ψ(y) ∈ int(RN

+ ).
Let Ψ−1 be the inverse of Ψ on Ψ(X). Put A′ = Ψ(A) and let g:A′ →A′ be given

by g = Ψ ◦ f ◦Ψ−1. By using (4·1) and (4·2) we find that if u, v ∈ A′, u = Ψ(x), and
v = Ψ(y), then

M (v/u;Rn
+) = M (y/x;K) = M (f (y)/f (x);K) = M (g(u)/g(v);Rn

+). (4·3)

Now put A′′ = L(A′) and define h:A′′ →A′′ by h = L ◦ g ◦ E, where the maps
L and E are given in (3·5) and (3·6), respectively. The set A′′ is well defined, as
A′ ⊂ Ψ(int(K)) ⊂ int(RN

+ ). It follows from (3·8) and (4·3) that

t(h(r)− h(s)) = t(r − s) for all r, s ∈ A′′.

One can verify that A′′ is a periodic orbit of h with period p; in fact, A′′ =
O(L(Ψ(ξ));h). Therefore G = {hk :A′′ →A′′ | 0 � k < p} is a commutative group of
t-isometries that acts transitively on A′′ and hence Theorem 4·1 implies that
p = |A′′| � ( N

�N/2�).

We shall generalize Theorem 4·2 to the case where f maps a part of the cone into
itself; but before we do this we introduce some definitions. Let K be a polyhedral
cone with N facets and let ψi :X →R, with 1 � i � N , be the linear functionals that
define the facets of K. We define for each x ∈ K a set Ix by

Ix = {i ∈ {1, . . . , N}:ψi(x) > 0}. (4·4)

It easy to verify that Iy ⊂ Ix if and only if x dominates y. Therefore Ix = Iy is
equivalent to x ∼ y. This allows us to make the following definition.

Definition 4·3. If K is a polyhedral cone with N facets in a finite dimensional
vector space X, then for each part P ∈ P (K) we define I(P ) = Ix , where x ∈ P .
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The same observation shows that the map I:P (K)→ 2[N ] given by P �→ I(P ) is inject-
ive. Here 2[N ] denotes the set of all subsets of {1, . . . , N}. In particular, this implies
that there are at most 2N parts in K. Moreover, I(P ) ⊂ I(Q) if and only if P 	 Q,
and hence I: (P (K),	)→ (2[N ],⊂) and its inverse I−1 are both order preserving.

Corollary 4·4. LetK be a polyhedral cone in a finite dimensional vector spaceX. If
P is a part ofK and f :P →P is order preserving and subhomogeneous, then the periods
of periodic points of f do not exceed ( m

�m/2�), where m = |I(P )|.

Proof. LetK be given by {x ∈ X:ψi(x) � 0 for 1 � i � N}� span(K), where each
ψi is a linear functional that defines a facet of K. Put J = I(P ) and let J ′ denotes
its complement. Define

Y = {x ∈ X:ψj (x) = 0 for all j ∈ J ′} � span(K).

Remark that Y is a linear subspace of X. Now let C = K � Y . We observe that
C = {y ∈ Y :ψj (y) � 0 for all j ∈ J} and hence C is a polyhedral cone with at most
|J | facets in the vector space Y . Since

P = {x ∈ X:ψj (x) > 0 for j ∈ J and ψj (x) = 0 for j ∈ J ′} � span(K)

= {y ∈ Y :ψj (y) > 0 for j ∈ J},

we have that P is the interior of C in Y . Thus we can apply Theorem 4·2 to conclude
that the periods of periodic points of f :P →P do not exceed ( q

�q/2�), where q is the
number of facets of C. Since q � |J | = |I(P )| = m, we find that ( q

�q/2�) � ( m
�m/2�) and

this completes the proof.

Theorem 4·2 and Corollary 4·4 generalize theorem 5·2 in [20] by allowing subhomo-
geneous maps rather than homogeneous maps and allowing general polyhedral
cones. To conclude this section we mention one other consequence of Theorem 4·2,
which refines another result in [20]. It concerns order preserving sup-norm
nonexpansive maps. Recall that a map f :Rn →R

n is sup-norm nonexpansive if
‖f (x)− f (y)‖∞ � ‖x − y‖∞ for all x, y ∈ R

n .

Theorem 4·5. If f :Rn →R
n is a sup-norm nonexpansive map and f is order pre-

serving with respect to the ordering induced by R
n
+, then the periods of periodic points of

f do not exceed ( n
�n/2�).

Proof. Let f :Rn →R
n be an order preserving sup-norm nonexpansive map

and suppose that ξ ∈ R
n is a periodic point of f with period p. Define a map

h: int(Rn
+)→ int(Rn

+) by h = E ◦ f ◦ L, where L and E are respectively given in
(3·5) and (3·6). From (3·9) we know that L is an isometric homeomorphism between
(int(Rn

+), dT ) and (Rn , ‖ ·‖∞) and the inverse isometry is the map E. As f is sup-norm
nonexpansive this implies that h is nonexpansive with respect to dT . Since f is
order preserving, the map h also preserves the ordering induced by R

n
+. Therefore it

follows from Lemma 3·3 that h is an order preserving subhomogenous map. Clearly
E(ξ) is a periodic point of h, with period p, and hence we conclude from Theorem 4·2
that p is at most ( n

�n/2�).
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5. Periods of periodic points in a polyhedral cone

The main goal of this section is to prove that the periods of all periodic points of
order preserving subhomogenous maps on a polyhedral cone with N facets do not
exceed βN , where βN is given in (2·2). As a start we show the following theorem.

Theorem 5·1. LetK be a polyhedral cone withN facets in a finite dimensional vector
space X. If f :K →K is an order preserving subhomogenous map and x ∈ K is a
periodic point of f with period p, then there exist integers q1 and q2 such that p = q1q2,

1 � q1 �
(

N

max{m, �N/2�}

)
, and 1 � q2 �

(
m

�m/2�

)
,

where m = min{|If j (x)|: 0 � j < p}.

Proof. It follows from Lemma 3·3 and Corollary 3·5 that the map F :P (K)→P (K)
given by F (P ) = [f (x)] for x∈P , is well defined and order preserving. Let I:P (K)→
2[N ] be given as in Definition 4·3. We denote by I−1 the inverse of I on I(P (K)).
Define a map G: I(P (K))→ I(P (K)) by G = I ◦F ◦I−1. As F , I, and I−1 are all order
preserving, the map G preserves the partial ordering ⊂ on I(P (K)).
Let x ∈ K be a periodic point of f , with period p, and let m = min{|If j (x)|: 0 �

j < p}. Take z ∈ O(x; f ) such that |Iz | = m and put Q = [z]. We observe that
F j (Q) = [fj (z)] for all j � 0 and hence Fp (Q) = Q. Let k be the period of Q
under F . Obviously k divides p and I(Q) is a periodic point of G with period k. Let
A = O(I(Q);G). Since

Gj (I(Q)) = I(F j (Q)) = I([fj (z)]) = If j (z ) for all j � 0,

we have that A = {If j (z ): 0 � j < k}. As G is order preserving, it follows from
Lemma 3·1 that A is an antichain in (2[N ],⊂).
A maximal chain C in (2[N ],⊂) is a sequence of N + 1 subsets A0, A1, . . . , AN of

{1, . . . , N} such that A0 ⊂ A1 ⊂ · · · ⊂ AN and |Ai | = i for 0 � i � N . Hence
there are exactly N ! maximal chains. If A ⊂ {1, . . . , N} and |A| = s, then there
are precisely s!(N − s)! maximal chains C in (2[N ],⊂) which contain A. As A is an
antichain, each maximal chain C contains at most one element of A. Since m =
min{|If j (x)|: 0 � j < p}, we know that |A| � m for all A ∈ A.
Now for m � s � N , let νs be the number of elements of A with cardinality s.

As each maximal chain contains at most one element of A and each A ∈ A with
cardinality s is contained in s!(N − s)! maximal chains, we find that

N∑
s=m

νss!(N − s)! � N ! so that
N∑

s=m

νs

(
N

s

)−1
� 1.

Put M (m) = maxm�s�N (Ns ). It is well known that M (m) = (N
m
) if m � �N/2�, and

M (m) = ( N
�N/2�) if 0 � m � �N/2�. From this it follows that

k = |A| =
N∑

s=m

νs � M (m) =
(

N

max{m, �N/2�}

)
. (5·1)

For k, z, and Q as above, it follows from Lemma 3·4 that fk (Q) ⊂ [fk (z)] = Q. As
z is a periodic point of fk , we can use Corollary 4·4 to see that the period of z under
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fk is less than or equal to ( m
�m/2�). Put q1 = k and let q2 be the period of z under fk .

Since k divides the period p of z under f , we get that p = kq2 = q1q2, which completes
the proof.

We would like to remark that the arguments to derive inequality (5·1) in the proof of
Theorem 5·1 appear in the study of Sperner systems and are known in combinatorics
as the LYM technique; see [6, p. 10 –11].
As a consequence of Theorem 5·1 we find that if K is a polyhedral cone with N

facets, then the periods of periodic points of order preserving subhomogeneous maps
f :K →K are bounded by

max
1�m�N

(
N

max{m, �N/2�}

)(
m

�m/2�

)
.

To see that this upper bound coincides with βN , where βN is given in (2·2), we prove
the following equalities.

Lemma 5·2. For each n � 1 we have that

max
1�m�n

(
n

max{m, �n/2�}

)(
m

�m/2�

)
= max

q+r+s=n

n!
q!r!s!

=
n!⌊

n
3

⌋
!
⌊

n + 1
3

⌋
!
⌊

n + 2
3

⌋
!
.

Proof. We first remark that for 1 � m � �n/2� we have that(
n

max{m, �n/2�}

)(
m

�m/2�

)
�

(
n

�n/2�

)(
�n/2�

��n/2�/2�

)
,

so that

max
1�m�n

(
n

max{m, �n/2�}

)(
m

�m/2�

)
= max

�n/2��m�n

(
n

m

)(
m

�m/2�

)
. (5·2)

Further we have that (
n

m

)(
m

�m/2�

)
=

n!
q!r!s!

, (5·3)

where q = n − m, r = �m/2�, and s = m − �m/2�. This implies that

max
�n/2��m�n

(
n

m

)(
m

�m/2�

)
� max

q+r+s=n

n!
q!r!s!

. (5·4)

Let us now consider the right-hand side of (5·4). Assume that the maximum is
attained for 0� q∗ � r∗ � s∗. We claim that s∗ � q∗ + 1. Indeed, suppose by way of
contradiction that s∗ > q∗ + 1. Then q∗!s∗! = q∗!(s∗ − 1)!s∗ > (q∗ + 1)!(s∗ − 1)!, so that

n!
q∗!r∗!s∗!

<
n!

(q∗ + 1)!r∗!(s∗ − 1)! ,

which contradicts the maximality assumption.
Since n = q∗+r∗+s∗ and q∗ � r∗ � s∗ � q∗+1 we have that 3q∗ � n � 3q∗+2 and

hence q∗ = �n
3 �. Furthermore, n + 1 = r∗ + s∗ + q∗ + 1 and r∗ � s∗ � q∗ + 1 � r∗ + 1,

as q∗ � r∗. This implies that 3r∗ � n + 1 � 3r∗ + 2 and hence r∗ = �n + 1
3 �. Similarly,

n+2 = s∗+q∗+1+r∗+1 and s∗ � q∗+1 � r∗+1 � s∗+1 imply 3s∗ � n+2 � 3s∗+2,
so that s∗ = �n + 2

3 �. Thus, we find that

max
q+r+s=n

n!
q!r!s!

=
n!⌊

n
3

⌋
!
⌊

n + 1
3

⌋
!
⌊

n + 2
3

⌋
!
. (5·5)
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Now putm = �n + 1
3 �+�n + 2

3 � and compute q, r, and s in the right-hand side of (5·3).
As 2�n + 1

3 � � m � 2�n + 1
3 � + 1, we find that r = �m/2� = �n + 1

3 � = r∗. Moreover,
s=m−�m/2� = �n + 2

3 � = s∗. Since n = q + r + s we also have that q = �n
3 � = q∗.

Further we remark that m=n− q =n−�n/3�� 2n/3�n/2� �n/2� so that
equation (5·3) implies

max
�n/2��m�n

(
n

m

)(
m

�m/2�

)
� n!⌊

n
3

⌋
!
⌊

n + 1
3

⌋
!
⌊

n + 2
3

⌋
!
.

Finally we combine this inequality with (5·2), (5·4), and (5·5) to obtain the desired
result.

A combination of Theorem 5·1 and Lemma 5·2 immediately gives the following
corollary.

Corollary 5·3. IfK is a polyhedral cone withN facets in a finite dimensional vector
space X, then the periods of periodic points of order preserving subhomogenous maps
f :K →K do not exceed βN , where βN is given in (2·2).

6. Asymptotic behaviour of bounded orbits

In this section we prove Theorem 2·1. To establish this result we need to understand
the asymptotic behaviour of bounded orbits. It is therefore natural to study the
structure of the ω-limit sets. If D is a metrizable topological space and f :D→D is
a continuous map, then for each x ∈ D the ω-limit set of x under f is given by

ω(x; f ) = {y ∈ D: fki (x)→ y for some sequence (ki) with ki →∞}.

It is easy to verify that each ω-limit set is a (possibly empty) closed subset of D and
that f (ω(x; f )) ⊂ ω(x; f ). Furthermore, if O(x; f ) has a compact closure, then ω(x; f )
is a nonempty compact subset of D and f (ω(x; f )) = ω(x; f ). The ω-limit sets also
enjoy the following elementary property.

Lemma 6·1. Let D be a metrizable topological space. If f :D→D is a continuous
map and x ∈ D is such that O(x; f ) has a compact closure and ω(x; f ) is finite, then
there exists a periodic point ξ of f , with period p, such that lim k→∞ fkp (x) = ξ and
ω(x; f ) = O(ξ; f ).

Proof. Since f is continuous and O(x; f ) has a compact closure, f (ω(x; f )) =
ω(x; f ). As ω(x; f ) is a finite set, this implies that each y ∈ ω(x; f ) is a periodic
point of f . Moreover, as ω(x; f ) is finite andD is a metrizable topological space, there
exist pairwise disjoint neighbourhoods Uy for each y ∈ ω(x; f ). Every y ∈ ω(x; f ) also
has a neighbourhood Vy ⊂ Uy such that for each u ∈ Vy we have that fq (u) ∈ Uy ,
where q is the period of y under f , because f is continuous.
Let cl(O(x; f )) denote the closure ofO(x; f ) inD. Then there existsm � 1 such that

for all k � m we have that fk (x) ∈ Vy for some y ∈ ω(x; f ). Indeed, if such an integer
m does not exist, then there exists a sequence (ki)i such that ki →∞ and fki (x) � Vy

for all y ∈ ω(x; f ). But cl(O(x; f )) is compact, so that (fki (x))i has a convergent
subsequence, which has its limit outside ω(x; f ). This is obviously a contradiction.
Now let m � 1 be such an integer. Suppose that fm (x)∈Vz and let p be the

period of z. Then fm+p (x)∈Uz ; but, as the neighbourhoods Uy are pairwise disjoint
and fm+p (x)∈Vy for some y ∈ω(x; f ), we find that fm+p (x)∈Vz . By iterating the
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argument we deduce that fm+kp (x)∈Vz for all k � 1. As z is the only limit point
of (fk (x))k in Vz , we conclude that (fm+kp (x))k converges to z. This implies that
(fkp (x))k converges to fr (z), where r≡−m mod p, because f is continuous. Thus, if
we take ξ = fr (z), then ω(x; f ) = O(ξ; f ) and this completes the proof.
To prove Theorem 2·1 we first show that if f :K →K is a continuous order pre-

serving subhomogenous map on a polyhedral cone, then the ω-limit sets of points,
with a bounded orbit, are finite. A combination of this result with Lemma 6·1, and
Corollary 5·3 will yield Theorem 2·1.
We shall use the following result of Nussbaum [27, corollary 2].

Theorem 6·2 ([27]). Let P be a part of a polyhedral cone K in a finite dimensional
vector space X and let m = |I(P )|. If C is a compact subset of P and f :C →C is
nonexpansive with respect to dT , then there exists an integer τm , which only depends onm,
such that |ω(x; f )| � τm for every x ∈ C.

The first ideas for this theorem go back to Weller [35, corollary 4·10], who proved a
similar assertion, only without the upper bound.
In case K is the standard positive cone R

n
+ and P is the part corresponding to

int(Rn
+), we know that the map f :C →C, with C ⊂ P , is nonexpansive with respect

to dT if and only if the map g:C ′ →C ′ given by g = L ◦ f ◦ E, where L and E are
given in (3·5) and (3·6), is nonexpansive with respect to the sup-norm. Using this
observation it is not hard to show that Theorem 6·2 is equivalent to the following
assertion: if C is a compact set of R

n and g:C →C is sup-norm nonexpansive, then
there exists an integer τn , which only depends on n, such that |ω(x; g)| � τn for all
x ∈ C. It has been conjectured by Nussbaum [27, p. 525] that the optimal choice for
τn is 2n ; but at present the conjecture is proved only for n � 3 (see [21]). The current
best general estimate for τn is max k 2k (n

k
) (see [20]).

We know by Lemma 3·3 that every order preserving subhomogeneous map is
nonexpansive with respect to the part metric. Therefore Theorem 6·2 implies that if
f :K →K is an order preserving subhomogenous map andO(x; f ) ⊂ P has a compact
closure in P , then ω(x; f ) is finite. A difficulty arises when O(x; f ) is an orbit in a
part P , but its closure is not contained in P . To overcome this and other difficulties
we shall use several technical lemmas.
Let us first recall the following old result of Freudenthal and Hurewicz [10].

Lemma 6·3 ([10]). Let (C, d) be a compact metric space and let D be a nonempty
subset of C. If f :D→D is nonexpansive and f maps D onto itself, then f has a unique
continuous extension F : cl(D)→ cl(D), where cl(D) denotes the closure of D, and F is
an isometry of cl(D) onto itself.

A combination of this lemmawith Lemma 6·1 and Theorem 6·2 yields the following
corollary.

Corollary 6·4. Let P be a part of a polyhedral coneK in a finite dimensional vector
spaceX. If C is a compact subset of P and f :C →C is dT -nonexpansive map that maps
C onto itself, then every point x ∈ C is a periodic point of f .

Proof. We first remark that as C is a compact subset of a part of the cone, (C, dT )
is a compact metric space. Since f is dT -nonexpansive and maps C onto itself, it
follows from Lemma 6·3 that f is an isometry with respect to dT .



170 M. Akian and Others

Now let x ∈ C and remark that ω(x; f ) is finite by Theorem 6·2. As O(x; f ) ⊂ C,
it has a compact closure. Therefore Lemma 6·1 implies that there exists a periodic
point ξ ∈ C of f , with period p, such that fkp (x) converges to ξ, as k goes to infinity.
Since f is an isometry with respect to dT , we find that

dT (fp (x), x) = dT

(
f (k+1)p (x), fkp (x)

)
for all k � 0.

We now observe that the right-hand side of this equality converges to 0, as k goes to
infinity, and hence dT (fp (x), x) = 0. Thus fp (x) = x and this completes the proof.

The following technical lemma is stated in considerably greater generality than is
actually needed here. Recall (see [7, p. 41]) that if K is a closed cone in a topological
vector space X and x ∈ K, we say that K satisfies condition G at x if for every
0<λ< 1 and every sequence (xk )k in K such that lim k→∞ xk =x, there exists k∗ � 1
such that λx�xk for all k � k∗. We say that K satisfies condition G if it satisfies
condition G at every x ∈ K. IfK has a nonempty interior, thenK satisfies condition
G at every point in its interior. IfK is a closed cone in a Hausdorff topological vector
space X, it is proved in [7, lemma 3·3] that K is a polyhedral cone in X if and only
if X is finite dimensional and K satisfies condition G.

Lemma 6·5. Let K be a closed cone in a metrizable topological vector space X and let
D ⊂ K be such that λD ⊂ D for all 0 < λ < 1. Suppose that f :D→D is order pre-
serving and let x ∈ D. If at every periodic point η ∈ ω(x; f ) of f condition G is satisfied
and there exists δ = δ(η) > 0 such that λfm (η) � fm (λη) for allm � 1 and 1−δ � λ < 1,
then for every y ∈ ω(x; f ) and for every periodic point ξ ∈ ω(x; f ) of f there exists j � 0
such that fj (ξ) � y. Moreover, if there exists a periodic point ξ in ω(x; f ), then O(ξ; f )
is the only periodic orbit of f in ω(x; f ).

Before proving this lemma we remark that ifK is a polyhedral cone in a finite dimen-
sional vector space, then K satisfies condition G at every point in D. Furthermore,
the condition concerning the existence of δ in Lemma 6·5 holds for every y ∈ D if f
is subhomogeneous.

Proof of Lemma 6·5. Assume that ξ ∈ ω(x; f ) is a periodic point of f with period p.
By definition, there exists a sequence (ki)i such that fki (x)→ ξ, as i→∞. By taking
a subsequence we may assume that there exists 0 � σ < p such that ki ≡ σ mod p for
all i � 1. Take λ with 1− δ(ξ) � λ < 1. As K satisfies condition G at ξ, we have that
λξ � fki (x) for all sufficiently large i. Suppose that y ∈ ω(x; f ) and let (mi)i be such
that fmi (x)→ y as i→∞. By taking a subsequence we may assume that mi > ki for
all i � 1 and that there exists an integer 0 � τ < p such that mi − ki ≡ τ mod p for
all i � 1. For sufficiently large i we now find that

fmi (x) = fmi −ki (fki (x)) � fmi −ki (λξ) � λfmi −ki (ξ) = λfτ (ξ).

Letting i go infinity on the left-hand side we find that λfτ (ξ) � y. Subsequently by
letting λ approach 1 we deduce that fτ (ξ) � y, which proves the first assertion.
To show the second assertion we suppose that ξ and η in ω(x; f ) are periodic points

of f with period p and q, respectively. We need to show that O(η; f ) = O(ξ; f ). It
follows from the first assertion that there exist 0 � µ < p and 0 � ν < q such that
fµ (ξ) � η and fν (η) � ξ. Since f is order preserving, it follows that fµ+k (ξ) � fk (η)
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and fν+k (η) � fk (ξ) for all k � 0. This implies that

fµ+ν (ξ) � fν (η) � ξ.

By Lemma 3·1, we know that O(ξ; f ) is an antichain, so that ξ = fµ+ν (ξ) and hence
ξ = fν (η). As η and ξ are both periodic points of f , it follows that O(η; f ) = O(ξ; f )
and this completes the proof.

The following two lemmas tell us that we can reduce the problem to the case where
the ω-limit set is contained in a part of the cone.

Lemma 6·6. Let K be a polyhedral cone in a finite dimensional vector space X. If
f :K →K is dT -nonexpansive, then there exists m � 1 such that f 2m (x) ∼ fm (x) for all
x ∈ K.

Proof. Let F :P (K)→P (K) be the map in Corollary 3·5. Since P (K) is a finite
set, we know for each P ∈ P (K) that the sequence (Fk (P ))k is eventually periodic,
i.e., there exist r � 0 and p � 1 such that Fr (P ) = Fr+kp (P ) for all k � 0. By the
pigeonhole principle, we can take r + p � 2N , where N is the number of facets of
K, because |P (K)| � 2N . Now put m = lcm (1, . . . , 2N ). Clearly, r � m and p divi-
des m. Therefore Fm (P ) = F 2m (P ) for each P ∈ P (K). By taking P = [x], we find
that [fm (x)] = Fm (P ) = F 2m (P ) = [f 2m (x)] and from this we conclude that fm (x)∼
f 2m (x) for all x ∈ K.

Lemma 6·7. Let K be a polyhedral cone in a finite dimensional vector space X and let
g:K →K be a continuous order preserving subhomogeneous map. If x ∈ K is such that
O(x; g) is bounded and O(x; g) is contained in a part of K, then ω(x; g) is contained in
a part of K.

Proof. Assume thatO(x; g) is contained in a part P ofK. If P = {0}, thenO(x; g) =
ω(x; g) = {0} and hence the result is trivial in that case. Now assume that P � {0},
so that I(P ) is nonempty. We first show that there exists c � 1 such that y � cx for
all y ∈ O(x; g). As O(x; g) ⊂ P , we get that Iy = Ix = I(P ) for all y ∈ O(x; g). This
implies that ψi(y) > 0 if and only if i ∈ I(P ). Define a number c by

c = sup{ψi(y)/ψi(x): y ∈ O(x; g) and i ∈ I(P )}.
The number c is finite, because ψi(x) > 0 for all i ∈ I(P ) and O(x; g) is a bounded
subset of X. Moreover, c � 1, as x ∈ O(x; g) and I(P ) is nonempty. Now let y ∈
O(x; g). By definition of c we have that ψi(y − cx) � 0 for all i ∈ I(P ). Since
ψi(y) = ψi(x) = 0 for all i � I(P ), we deduce that y � cx.
We remark that {y ∈ K: y � cx} is a closed set that contains O(x; g) and hence it

also contains ω(x; g). As g is an order preserving subhomogeneous map and c � 1, we
find that gk (y) � gk (cx) � cgk (x) for all y ∈ ω(x; g) and k � 0. The map gmaps ω(x; g)
onto itself, because g is continuous and ω(x; g) is bounded. Therefore y � cgk (x) for all
y ∈ O(x; g) and k � 0. As the set {z ∈ K: c−1y � z} is closed, this implies that y � cz
for all y, z ∈ ω(x; g). Therefore y ∼ z for all y, z ∈ ω(x; g), which completes the proof.

Equipped with these lemmas we can now prove the following theorem.

Theorem 6·8. Let K be a polyhedral cone in a finite dimensional vector space X.
If f :K →K is a continuous order preserving subhomogeneous map and x ∈ K has a
bounded orbit under f , then ω(x; f ) is finite.
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Proof. It follows from Lemma 3·4 that f is dT -nonexpansive. Let m be as in
Lemma 6·6 and put g = fm and P = [g(x)]. Clearly, g(P ) ⊂ [f 2m (x)] = [fm (x)] = P
and hence O(g(x); g) ⊂ P . As O(g(x); g) ⊂ O(x; f ), the orbit O(g(x); g) is bounded.
It is easy to verify that

ω(x; f ) = ω(g(x); f ) =
m−1⋃
j=0

fj (ω(g(x); g)).

Therefore it suffices to show that ω(x′; g) is finite, whenever O(x′; g) is bounded and
contained in a part P , such that g(P ) ⊂ P .
So, suppose that O(x′; g) is a bounded orbit that is contained in a part P of K and

g(P ) ⊂ P . It follows from Lemma 6·7 that ω(x′; g) is included in a part of K, say Q.
Since ω(x′; g) is a bounded closed set in Q, we have that (ω(x′; g), dT ) is a compact
metric space. The map g is dT -nonexpansive on Q and g maps ω(x′; g) onto itself.
Therefore we can apply Corollary 6·4 and conclude that each point in ω(x′; g) is a
periodic point of g. As g is an order preserving subhomogeneous maps and K is a
polyhedral cone, it follows from Lemma 6·5 that there is at most one periodic orbit
in ω(x′; g). This implies that ω(x′; g) is finite and hence the proof is complete.

Knowing Theorem 6·8 it is now straightforward to prove Theorem 2·1.

Proof of Theorem 2·1. Let f :K →K be a continuous order preserving subhomo-
geneous map, where K is a polyhedral cone with N facets in a finite dimensional
vector space X. Suppose that the orbit of x ∈ K is bounded. Then it follows from
Theorem 6·8 that ω(x; f ) is finite. Therefore Lemma 6·1 implies that there exists a
periodic point ξ ∈ K of f , with period p, such that (fkp (x))k converges to ξ. To finish
the proof we remark that it follows from Corollary 5·3 that p is bounded by βN ,
where βN is given in (2·2).

7. A lower bound for the maximal period

In this section a proof of Theorem 2·2 is presented. Indeed, given 1 � m � n we
construct for every 1 � p � ( m

�m/2�) and 1 � q � (n
m
) a continuous order preserving

homogeneous map f :Rn
+→R

n
+ that has a periodic point with period lcm (p, q). In

the proof of Theorem 2·2 we use the following consequence of an observation of
Gunawardena and Sparrow (see [13, p. 152]).

Lemma 7·1 ([13]). For each 1 � p � ( n
�n/2�) there exists a continuous order preserving

homogeneous map h:Rn
+→R

n
+ that has a periodic point x, with period p, such that

O(x;h) ⊂ int(Rn
+).

Indeed, Gunawardena and Sparrow [13] constructed for every 1 � p � ( n
�n/2�) a so

called topical map f : Rn →R
n that has a periodic point u with period p. By defining

h = E ◦ f ◦ L, where L: int(Rn
+)→R

n and E:Rn → int(Rn
+) are respectively given in

(3·5) and (3·6), we obtain an order preserving homogeneous map h: int(Rn
+)→ int(Rn

+),
which has E(u) as a periodic point with period p. To derive the conclusion of
Lemma 7·1 we take a continuous extension of h to R

n
+ that is order preserving

and homogeneous. Such extensions always exist (see [7]). Indeed, in our case it is
straightforward to find one.
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The proof of Theorem 2·2 is quite technical. For the reader’s convenience we have

therefore worked out an illustrative example in the paragraph directly following the
proof. It may be helpful to read the two in parallel. Before we start the proof it useful
to introduce the following notation: for a, b ∈ R we write a ∧ b to denote min{a, b}
and a ∨ b to denote max{a, b}.

Proof of Theorem 2·2. Consider a collection of q distinct vectors {v1, . . . , vq} in
{0, 1}n , each with m nonzero coordinates, so that q �

(
n
m

)
. Put vq+1 = v1. Further

let g:Rm
+ →R

m
+ be a continuous order preserving homogeneous map and assume that

there exists C > 0 such that

g(z)i � C(z1 ∧ z2 ∧ · · · ∧ zm ) for all 1 � i � m and z ∈ R
m
+ .

Assume also that g has a periodic point y with period p, where 1 � p � ( m
�m/2�) and

O(y; g) ⊂ int(Rm
+ ). The existence of such a map g and a periodic point y is guaranteed

by taking a map h as in Lemma 7·1 and defining g(z)i = h(z)i ∧ C(z1 ∧ · · · ∧ zm ) for
1 � i � m, with C large enough.
For 1 � k � q and 1 � i � m, we let ν(k, i) be the index of the ith nonzero coordi-

nate of vk . Further for each x ∈ R
n
+, we let x|vk be the vector in R

m
+ given by

(x|vk )i = xν (k,i) for all 1 � i � m. Subsequently, we define f :Rn
+→R

n
+ in the following

manner:

f (x)i =
∨

(k,r ):ν (k+1,r )=i

g(x|vk )r for each 1 � i � n and x ∈ R
n
+. (7·1)

It easy to see that f :Rn
+→R

n
+ is a continuous order preserving homogeneous map.

Furthermore it has a periodic point with period lcm (p, q). Indeed, for 0 � a � p − 1
and 1 � b � q let ya,b ∈ R

n
+ be given by

ya,b
i =

{
0 if vb

i = 0
ga (y)r if i = ν(b, r).

As {gk (y): 0 � k < p} ⊂ int(Rm
+ ), it is evident that ya,b = yc,d if and only if a = c and

b = d, so that they are all distinct. To complete the proof we now show that f (ya,b) =
ya+1,b+1, where the indices a and b are counted modulo p and modulo q, respectively.
As g(z)i � C(z1 ∧ z2 ∧ · · · ∧ zm ) for each 1 � i � m and z ∈ R

m
+ , we have that

g
(
ya,b
|vk

)
=

{
0 if k � b
g(ga (y)) if k = b.

Therefore

f (ya,b)i =
{
0 if vb+1

i = 0
ga+1(y)r if i = ν(b + 1, r),

for 1� i�n. Thus, f (ya,b) = ya+1,b+1 and hence y0,1 is a periodic point of f with period
lcm (p, q).

To illustrate the construction in the proof of Theorem 2·2, we consider the following
example. Let m = 2, n = 3, p = 2, and q = 3. Put

v1 =


 1
1
0


, v2 =


 1
0
1


 and v3 =


 0
1
1


.
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Further let g:R2
+→R

2
+ be given by

g

(
z1
z2

)
=

(
3z1 ∧ z2
z1 ∧ 3z2

)
,

and take y = (1, 2). It is easy to see that y is a periodic point of g with period 2. The
map f :R3

+→R
3
+ defined in (7·1) is then given by

f


x1

x2
x3


 =


g(x1, x2)1 ∨ g(x2, x3)1

g(x1, x3)1 ∨ g(x2, x3)2
g(x1, x2)2 ∨ g(x1, x3)2


 =


(3x1 ∧ x2) ∨ (3x2 ∧ x3)
(3x1 ∧ x3) ∨ (x2 ∧ 3x3)
(x1 ∧ 3x2) ∨ (x1 ∧ 3x3)


 .

Now it is easy to verify that

y0,1 =


12
0


, y1,2 =


20
1


, y0,3 =


01
2


,

y1,1 =


21
0


, y0,2 =


10
2


, y1,3 =


02
1


,

is a periodic orbit of f with period lcm (2, 3) = 6.
We would also like to point out that if we take g(z)i = z1 ∧ z2 ∧ · · · ∧ zm for all

1 � i � m in the proof, then we recover the construction of Gunawardena and
Sparrow. In particular, the maps f and g are so-called min-max maps.
It follows directly from Theorem 2·2 that αN given in (2·3) is a lower bound for the

maximal period of periodic points of continuous order preserving subhomogeneous
maps f :K →K, where K is a polyhedral cone with N facets in a finite dimensional
vector space X. By using the prime number theorem we now show that αN has
the same asymptotics as the upper bound βN given in (2·2). From Lemma 5·2 and
equation (5·2) it follows that

βN = max
�N/2��m�N

(
N

m

)(
m

�m/2�

)
= max
1�m�N

(
N

m

)(
m

�m/2�

)
. (7·2)

For a given N let m∗ be the m that attains the maximum in the right-hand side of
(7·2). From the proof of Lemma 5·2 we know that m∗ = �N + 1

3 � + �N + 2
3 �. Now for

each k � 1 let ρ(k) be the largest prime not exceeding k. It then follows from the
prime number theorem that

lim
k→∞

ρ(k)
k

= 1. (7·3)

Indeed, let pN denote the Nth prime and let π(k) be the number of primes not
exceeding k. Then ρ(k) = pπ (k ) for each k � 1. It is known that

lim
N →∞

pN

N log N
= 1 and lim

k→∞

π(k) log π(k)
k

= 1

are equivalent to the prime number theorem (see [2, p. 80]). Thus, the prime number
theorem implies that

lim
k→∞

ρ(k)
k

= lim
k→∞

pπ (k )

π(k) log π(k)
· π(k) log π(k)

k
= 1.
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We now observe that

αN � ρ

((
N

m∗

))(
m∗

�m∗/2�

)
,

if ρ(( N
m∗)) and

(
m∗

�m∗/2�
)
are coprime. As m∗ = �N + 1

3 � + �N + 2
3 �, we can use Stirling’s

formula to show that there exists M � 1 such that

2
(

m∗

�m∗/2�

)
�

(
N

m∗

)
for all N � M and

(
N

m∗

)
→∞, as N →∞.

Therefore (7·3) implies that ρ(( N
m∗)) > ( m∗

�m∗/2�) for all N sufficiently large and hence
they are coprime. Thus, we derive that

lim
N →∞

αN

βN

� lim
N →∞

(
m∗

�m∗/2�
)
ρ
((

N
m∗

))
(

m∗

�m∗/2�
)(

N
m∗

) = 1.

As αN � βN for each N � 1, we find that limn→∞ αN /βN = 1.
We conclude the paper with some remarks. Given a polyhedral cone K, let Γ(K)

be the set of integers p � 1 for which there exists a continuous order preserving
subhomogeneous map f :K →K that has a periodic point with period p. From
Theorem 5·1 it follows that Γ(K) is a finite set. In fact, Theorem 5·1 implies that ifK
hasN facets, then Γ(K) ⊂ B(N ), where B(N ) is the set of p � 1 for which there exist
integers q1 and q2 such that p = q1q2, 1 � q1 �

(
N
m

)
, and 1 � q2 �

(
m

�m/2�
)
for some

1 � m � N . In particular, it follows that Γ(R3
+) ⊂ {1, 2, 3, 4, 6}, so that 5 is not in

Γ(R3
+). By Theorem 2·2 we know that Γ(RN

+ ) ⊃ A(N ), where A(N ) is the set of p � 1
for which there exist 1 � m � N , 1 � q1 �

(
N
m

)
, and 1 � q2 �

(
m

�m/2�
)
such that

p = lcm(q1, q2). For instance, Γ(R3
+) ⊃ A(3) = {1, 2, 3, 6}�B(3). Thus, for eachN � 1

we have the following inclusions:

A(N ) ⊂ Γ(RN
+ ) ⊂ B(N ).

Knowing these inclusions it is natural to ask if there exists a characterization of
Γ(RN

+ ) in terms of arithmetical and (or) combinatorial constraints. In particular, one
might wonder if Γ(RN

+ ) = A(N ) for all N � 1, or, if Γ(RN
+ ) = B(N ) for all N � 1. This

question is investigated by Bas Lemmens and Colin Sparrow in a forthcoming paper.
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