Integr. equ. oper. theory 42 (2002) 385-424 .
0378-620X/02/040385-40 $ 1.50+0.20/0 |nt:g(;al Ecluat;-?]ns
© Birkhiuser Verlag, Basel, 2002 and Operator Theory

EXISTENCE, UNIQUENESS AND ANALYTICITY FOR PERIODIC
SOLUTIONS OF A NON-LINEAR CONVOLUTION EQUATION.

AMINE ASSELAH, ROGER D. NUSSBAUM

We study existence, uniqueness and analyticity for periodic solutions of
u(z) = @(f J(y)u(z — y)dy) for z €lR.

1 Introduction

We study the periodic solutions u of the equation
Vo €lR, ulz) = o[ J(y)u(z - y)dy). (1.1)

This problem is motivated by the case where ®(z) = tanh(z) and J(z) = Bexp(—mz?) with
f > 1. Indeed, to study phase separation in a system where the total density is conserved,
Lebowitz, Orlandi and Presutti {7] proposed the evolution law

g-iu(x, t) = %(—,% [%u(z,t) — (1 —u*(x, t))-a% /IRJ(J: - y)u(y,t)dy] . (1.2)
In (1.2), u represents the density of magnetization and takes values in [—1,1]. Intuitively,
the first term on the right hand side of (1.2) is a diffusive term which tends to homogenize
the magnetization, while the second term corresponds to an interaction between particles
countering the diffusive term with the net result, when 8 := [ J > 1, of favoring clumps of
the “pure phases” {a, —a}, where a = tanh(8a) > 0.

From the standpoint of statistical physics, the precise form of the “interaction”
kernel J is not known, and we will restrict ourselves to the assumptions that J is even,
non-negative and J(z) > J(y) for 0 < z < y. In other words, we deal with a symmetric,
attractive interaction decaying with the distance. It is known [4], in the case where J has
compact support and ® = tanh, that there is a solution ug of (1.1) odd and increasing
from —a to o unique in the class of functions with liminf, 4 > 0 and limsup__, u < 0.
The profile ug represents coexistence between the two pure phases with a diffusive interface.
Phenomenologically, we expect a conservative system to settle at low temperature (large 3
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here) in a crystal-like equilibrium state. Thus, periodic profiles, oscillating between the two
pure phases should be stationary solutions of (1.2) for § large. Thus, we study here periodic
solutions of (1.1). An interesting open problem is the stability of these periodic solutions.

When u is T-periodic and z € [-T/2,T/2] and some further assumptions are made,

T/2
Jxu(z) :== /lRJ(y)u(x—y)dy= /T//é]T(y)u(x—y)dy, with Jr{z) = > J(z+nT). (1.3)
neZ
The fixed point problem for a given period on the circle, was studied by Comets,
Eisele and Schatzmann [3]. However, they assumed that J was such that for some integer
p, [ J(z)exp(i2rnz/T)dz vanishes for n € (2Z + 1)p\{p, —p}, and they looked for fixed
points u such that [u(z)exp(i2rnz/T)dz =0 for all n & (2Z + 1L)p.
Besides the fact that we do not assume such features on J, our starting point is
J on the whole line. Our goal is to go beyond existence results, to give some information
about the fixed points and to show uniqueness in some natural classes of functions.

2 Notations and Results

For T > 0, we work in the Banach space, (Xr,| - |«), of continuous functions of period T',
odd with respect to 0 and even with respect to 7'/4

Xr = {u € C°(R): u(—2z) = —u(z), and u(z+T/2)= —u(z),Vz},

with the supremum norm |- |,. Also, we often consider the Hilbert space My, obtained by
completion of X7 under the scalar product
T

(o) = [ olzp(a)dz, for o9 € Xr. (21)

We label the different properties of J. (Aa) J :IR — IR is Lebesgue measurable,
nonnegative, and even; (Ab) J is integrable; (Ac) J is bounded; (Ad) J(z) > J(y) for
0 < z < y. We say that A holds if (Aa), (Ab), (Ac) and (Ad) hold.

Similarly, we label the properties of ®. (Ba) ® :IR —IR is odd, bounded, continu-
ously differentiable and '(0) = 1; (Bb) & is increasing; (Bc) & is concave in [0, c0); (Bd) ©
is C? in a neighborhood of 0, and ®"(0) < 0.

Remark 2.1 . With no less generality, we will assume that sup{®(z) : z > 0} = 1.
Indeed, for any positive constant ¢, solving the equation u = @ (J = u) is equivalent to solving
@ = @(J * @), where ®(y) := ®(cy)/c. Also, we call §:= [ J(z)dz

Our approach is based on the observation that when Jr is decreasing on {0,7/2} and &

satisfies (Ba) (respectively (Ba)-(Bc)), then the map f(u) := ®(J * u) preserves the cone
Cr={ue€Hr: ulzr)>0ae —dxforz €0,7/2]},

(respectively K7 = {u € X7 : u(x) concave and increasing in [0, T'/4]}).

If we do not assume that Jp is decreasing, no obvious cone is left invariant, and our
main result is
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Theorem 2.2 . Assume A, B and that 3 > 1. Then, there are Ty > 0 and ¢ € (0,1)
such that for T > Ty, there is a fized point, u, of [ in Cr\{0}, where f is defined by
fw)(z) = ®(fr J(v)u(z — y)dy). Moreover, f has no other fized point w € Xr satisfying
lw(z) — v(z)| < eolv(z)] for some v € Kr\{0} and all z € IR. Also, if ® is real analytic,
then u is real analytic.

It is based on the weaker but more satisfactory result.

Theorem 2.3 . Assume A, B, and f(Cr) C Cr. If T is such that

5, 2m 2w

J(~f) = -[RJ(:L‘) cos(a;—x)dx >1 (2.2)
then, there is a unique fired point, u, of f in C’T\_{O}, and v € Kp. If G is a bounded,
relatively open neighborhood of u in Cr and 0 € G, then ic.(f,G) = 1, where ic,(f, G)

denotes the fized point index of f : G — Cr (see [8]). Also, if
Dr={ve Xr:v(z) >0, for 0 <z <T/2},

if H is a relatively open neighborhood of u in Dy with 0 & H and if © is a relatively open
neighborhood of u € Kr with 0 € O, then ip, (f, H) =1 and ik, (f,©) = 1. Moreover, if ®
is real analytic, then u is real analytic.

Remark 2.4 . (i) We have stated Theorem 2.3 with assumptions A and B because our
primary purpose is Theorem 2.2. However, we can treat more general cases than A. For
instance, there are cases where [ J = oo (e.g. J(y) = 1/log(1 +log(1 + |y|))), which can be
treated by the same method, when we use the oddness of u to interpret J * u as

/ooo (J(z —y) = J(=z +9) uly)dy.

Thus, if
sgp/ |[J{y — =) — J(y)|ldy < 00, and f(Cr) C Cr

then by analyzing the linear map u ++ J * u, we could obtain an analogue of Theorem 2.3.

(it) For simplicity, in Theorem 2.3 we have made the hypotheses on ® stronger than necessary.
Assume A, B(a) and B(b) and suppose that & is C* for some k > 1, ®'(0) = 1, & is concave
in {0,00) and ®(z)/z is strictly decreasing on (0,00). If equation (2.2) holds, then the
argument we shall give proves that there is a unique fixed point v of f in Cr\{0} and that
u € C¥, w/(0) > 0 and u(z) > 0 for 0 < z < T/4. Moreover, if u € K7 and G, H and O are
as in Theorem 2.3, i¢c,.(f,G) = ip,(f, H) = ix(f,0) = 1.

Furthermore, we have characterized some J’s for which f(Cr) C Cr.

Lemma 2.5 . Assume A, (Ba), and that there is C > 0 such that J'(z) ezists for allz > C
and J' is concave in {z > C}. Then, for T > 4C, f(Cr) C Cr.
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To give a complete picture, we recall a known result [3]

Lemma 2.6 . Assume A and B. If T is such that

2r
J
ilé[g " (z) cos( T

then, 0 is the only fized point in Hr.

Existence results for periodic solutions of (1.1) are simpler and do not require all
these hypotheses for ®. For the sake of completeness, we will provide a variational proof of
the following.

Lemma 2.7 . Assume that ® : IR —IR is increasing, continuously differentiable, bounded,
®(0) =0, and ®'(0) = 1. Also, assume that J satisfies A end for T >0

sup J( (2n +1)) > (2.3)

Then, there is a non-zero fized point of f of period T'.

If we drop the assumption that ® is increasing, then it becomes unclear whether our problem
can be put in a variational form. However, we have the following result. Define

V€ [-T/2,T/2)  Jr(z) = (Jr(z) = Jr(T/2 + z)). (2.4)

Lemma 2.8 . Assume (Ba) and that ®(z) > 0 for z > 0. Also, assume A and that Jr is
decreasing in [0,T/2], Jr is nonnegative a.e. on [0,T/4], and J((27)/T) > 1. Then, there
is a non-zero fized point of f in Dp. There exist p > 0 and R > p such that f(u) # u for
0 < |u|oo € p, w € Dr and f(u) # u for Julew > R and u € Dy; and if Gop = {u € Dr:
p < |uloo < R}, then ip,.(f,G,r) = 1. Furthermore, if ® is also increasing and concave on
[0,c0), then f(K7) C Kr; and if Hpp = {u € K : p < |u|e < R}, then ix, (f, Hor) = 1.

We now illustrate Theorem 2.3 with two examples. First, we consider J;(z) equals
B/2 if |z} €1 and equals 0 otherwise. We will see in section 9 that for @ satisfying B

1
f(Cr)c =Cr,  for TG}JO 2n+2 2+ 1

)
1
f T 1
f(CT) C Crp, or € nL>JO o +3 DY 2) ( ,OO),

and, f(Cr)c {0}, for Te |J{1/(n+1)} (2.5)

n>0

By Theorem 2.3, (and Lemma 2.6), f has a fixed point in Cr\{0} if and only if

ﬂsin(%) > % and f(Cr)C Cr.
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Depending on 3, there will be an alternation of intervals where the period is such that f has
a unique fixed point in C7\{0} with intervals with no fixed point in Cr\{0}.

For the case Jy(z) = fe~*"/2/(V/27), we will see in section 9 (assuming B) that
f(Cr) C Cr, for any T. Thus, if Ty = 2r/(,/2log(8)) and T > Ty, f has a unique fixed
point in Cr\{0}, whereas if T < Ty, 0 is the only fixed point in .

An outline of the paper is as follows. We give in section 3 conditions on J equivalent
to having f(Cr) C Cr. We show also that a large class of kernels satisfies this condition.
In section 4, we give two types of complementary existence results: when @ is increasing,
we use a variational method, whereas when f(Cr) C Cr but ® not increasing, we use
a fixed point index argument. In section 5, we establish that the fixed points are real
analytic functions. In section 6, we deal with the problem of uniqueness in the case where
f(Cr) € Cr. When only A and B hold, we approximate the map f with f. such that
f.(Cr) C Cr. Results of section 6 tell us then that f, has a unique fixed point u, in Cr. We
show then that ||df.(u.)}| < 1, uniformly in €, in an appropriate Banach space: this is the
content of Lemma 7.6 of section 7.3. Many results of section 8 rely on a priori estimates of
u, that we have gathered in section 7. The implicit function argument is then developed in
section 8.1. Finally, we illustrate our results on some concrete examples of J’s in section 9.

3 Invariant Cones.

Our task in this section is to give conditions on J which guarantee that Kz is invariant
under convolution with J. We emphasize that the relation between J and Jr is not trivial:
see the first example of section 9.

Fix T > 0 and define Jr as in (1.3), allowing Jr to have the value +oco. We state
two Lemmas whose proofs are given in the appendix.

Lemma 3.1 . If (Aa) holds, then Jp is nonnegative, even, Lebesgue measurable and T-
periodic. If (Aa) and (Ab) hold, then, Jr is integrable on [0,T)] and

J " he(z)dz = / ” J(@)dz.
0 —00
If A holds, then Jr is bounded.

Lemma 3.2 . Assume A. For u € Hr, we define

Lrule) = [ e =ty = [ Jnle = v)ulv)es (3.1)

Then, Lru € Hr and Lt defines a compact linear map of Hr into Xr.

We note that Jr (see (2.4) is even, and odd with respect to z = T/4, ie. Jr(T)2 - z) =
—Jr(z). Also, for u € Hr, 2Jr * u(z) = J7 * u(z). Indeed, it is enough to note that

./7;//22 Jr(T/2 + y)u(z — y)dy = /oTJT(y)u(x —y+T 2
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T T/2
= _/0 Jr{yyule —y)dy = —/_T Jr(y)u(z ~ y)dy.

Therefore,

T/2 . .
(Lru)(z) = 5 / uw(y)(Jr(z —y) = Jr(z +y))dy  [by oddness of u]
= | ) 1) Tele ) (32)

Lemma 3.3 . Assume A. Then, Lp(Cy) C Cr if and only if Jp decreases a.e.-dz in [0,T/4]
and Jr(z) > 0 a.e.-dz for z € [0,T/4]. If & is odd, continuous, $(z) > 0 for z > 0 and
LT(CT) C Cr, then f(CT) c Cr.

Proof. First, for u € Xq,

(Lru)(o) = [ w)rte — )~ Jrlo + )y

For every z € [0,7/4] and almost all y € [0,7/4 — z], we have |z — y| < z +y < T/4,
and our hypothesis implies that Jp(z —y) > J; 1-(3: + ). For almost all y € [T/4 — z,7/4],
Jr(z +y) = ~Jr(T/2 — (z +y)) < 0 because Jr > 0 a.e.-dx in [0,7/4).

Conversely, suppose A holds and L(Cr) C Cr. For any o < 3 in (0,T/4) and

€ (0, min(e, (8 — )/2,T/4 — ) we choose v/(z) = 1/e if |z — | < € and u'(z) = —1/¢

if [# — B] < € and v/(z) = O for other z € [0,7/4]. This insures that (Lru)(z) > 0 for
z €[0,T/4]. We rewrite (Lru)(x) as

(Lru)(@) = 5 / Jr()(u(x + y) — u(y — ©))dy. (3.3)

As, Jr is bounded, the Lebesgue dominated convergence theorem implies that

Lypu)(z T/2

lim (—T—x)(—) / u'(y)Jr(y)dy = 2/ w/(y)Jr(y)dy > 0, (34)

Therefore,

1

- J 1 > - J y)dy.
/y r(y)dy > / Ir(y)dy

€ Jjy-o|<e
Now taking € — 0 and invoking the Lebesgue dlﬁ’erentla.mon theorem, for a and g outside a
subset of measure 0, Jr(a) > Jr(8).
Finally, for any v € (0,7/4), and ¢ < min(y,7/4 — ), we can define a piecewise
linear continuous function w € Cr such that w'(z) = 1/e if |z — ¥| < € and w'(z} = 0 if
|z — | > e. Thus,

lim LT _ 2/T/4 (y)Jr(y)dy > 0 = 2/ Jr(y)dy > 0.

0+ x ly=~i<e

Therefore, for almost all v € [0, T/4] Jr(y) > 0.

We prove in the Appendix that Z(Cr) comprises continuous functions. It follows
then, under our assumptions, that ®(Lr(Cr)) C Cr. ]



Asselah, Nussbaum 391

Corollary 3.4. Assume A. Then, Lr(Kr) C K is equivalent to Jr decreasing a.e.-dz in
[0,T/4], and Jr(x) > 0 a.e.-dz in [0, T/4]. If ® is odd, continuous, increasing and concave
and LT(KT) C Kr, then f(IxT) C Kr.

Proof. (i) We first show that Jr decreasing a.e.-dx in [0,7/4], and Jr(z) > 0 a.e-dx in
[0,T/4], implies that Ly(K7) C Kp. It is enough to show that Ly(K7 N C?) < Ky NC2
Indeed, K7 N C? functions are dense in (K7, | |) and Ly is continuous on (X7, | |o) (see
Lemma 10.2 of the Appendix). Now, it is easy to see that Lr(C?) ¢ C? and that u € K7NC?
is equivalent to u € Xr N C? and —u” € Cr. By Lemma 3.3, Lr(u) € Xy N C? and
——LT(’LL)" € Crp, so that LT('LL) € Kr.

(ii) Assume Lp(K7) C Kp. For any continuous ¢ € Cr one can find v € K¢ N C?
such that 4" = —¢. Then Ly(u) € Kr N C% Thus, ~Lp(u)" = Ly(¢) € Cr. Lr(Cr) C Cr
because continuous functions are dense in Cp in the Hr topology and Ly is continuous.
Lemma 3.3 implies that Jy is decreasing in [0,T/4] and Jr(z) > 0 a.e.~dx in [0,T/4].

The proof is concluded by noting that the composition of two increasing concave
functions is still increasing and concave. n

Remark 3.5 . In general Jr is not decreasing in [0, T/4] ( see example 9.1). However, if
we choose T' > 2M (¢) and define J¢ = JI_pre),m(e)), then (J€)p = J¢ on [-T/2,T/2], and
Lemma 3.3 applies to J¢. Here, for S CIR, we use Is(x) to denote the characteristic function
of S, 50 Is(z) = 1 for z € S and Is(z) = 0 for z ¢ S. A natural class of J leaving Kp
invariant are those of Lemma 2.5. This class is natural in most applications in physics where
such a fixed point problem arises.

Proof of Lemma 2.5. We write

> JOT+T/2+x) =3, J(nT +T/2+z)+ Y, J(—nT +T/2 +2).
nEZ n=0 n=1
Then, using that J is even
Y J(=nT+T/242)=3 J(-nT - T/2+3) = J(nT +T/2 - z),
n=1 n=0 n=0

and therefore, for x € [0, T/4], Jr = J(z) + Tno jn(z), with
(@) =JT +T+2z)+JnT +T —z) - J(nT +T/2 +z) — J(nT +T/2 — z). (3.5)

Now, for n > 0, j, is decreasing in [0, T'/4], as one can see by taking the derivative of j, and
using the concavity of J' on [9‘, 00). As J is decreasing on [0,7'/4], we conclude that Jy is
decreasing on [0,7/4]. Also, Jr(T/4) = 0 implies that Jr(z) > 0 for all z € [0,7/4]. a
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Remark 3.6 . Assume that (Aa), (Ac) and (Ad) hold and that [ |J(y—z)—J(y+x)|dy < oc
for all z. Then, J(z) = J(2) — J(2 — T/2) is an integrable function and we can define
Jr(z) = Sz J(z +nT). Now, for u € X, we interpret f(u) as

s = { [ Uty =) = Ity + Nutodas).

In case where J' is concave in {z > C}, then for T > 4C, f(Cr) C Cr because the formula
Jr = J(x) + Xn30 dn(z), with (3.5) still holds.

4 Existence Results.

Proof of Lemma 2.7. Because ® is increasing, we can define its inverse 7. For notational
convenience, we will assume in the proof that & is odd and lim,, ® = 1; these features play
no role. Also, for z € [-1, 1], we define

o) = [y, (1)

For u € G := {u € Hr : |u(z)] €1, a.e.}, a closed bounded convex set in Hr, we define

the energy as
A= [ W(u(x))dz - : / T/O T ez — y)u(a)uly)dedy = (U(u), 1) — Sreuw). (42)

If |u|w = 1, we set Flu] = co. We first claim that there is u € Gr such that Flu] < 0
(note that F[0] = 0). We assume that the supremum in (2.3) is achieved for ny and set
uy = sin(27(2ng + 1)z/T) € G so that Jp # ug = Aug, and A > 1. Then, the claim follows
by choosing ¢ small enough and noticing that ¥(z) ~ /2 close to 0.

Fleug) = (¥(eug), 1) — %GZ(JT * Up, Up) = %(1 — ) (uo, uo) + o(€?). (4.3)

We now show that we can always choose a minimizing sequence in {u : Ju|o < 1—6}
for & small enough. For, § € (0,1/2), let u; be a truncation of u

us = wlj<i-s3 + (1 = 6)Jqus1-5) — (1 = 6)J—un1-4)- (4.4)

It follows from a simple computation that

(T # u,u) — (J * ug, us)|

IN

¢ = (1= )l ups1-sdz
- ¢f l_tsl{a? €[0,T): lu(z)| > s}lds. (4.5)

Now, sup |®| = 1 implies that lim; ¥ = co. Thus, it is always possible to choose ¢ such that
(1 —48) =C. Now,

Flu] — Flus) 2 (U (u(x)) — O(us(z)))dz — %C’ /116]{27 : |u(z)] > s}ds. (4.6)

lul>1-d
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Note that
/lul>1—§\lj(u)_‘ll(“5)): f_;b(s)t{z: lu(z)| > 5}|ds
> 9(1-6) [ o u(@) > s}lds (47
Thus,
Ful - Ful > [ o+ @) > shas (v -0) - §) > s

Now, let (un) be a sequence in {u € Gy : |ule < 16}, such that lim Flu,] = inf F.
There is a subsequence converging weakly to u* € Gr with |u*|,, < 1 — 5. Now, it is well
known [2] that F is weakly lower semi-continuous so that F[u*] = inf F. Also, it is easy to
see that Y(u*) — Jrxu* = 0. ]

If we drop the assumption that @ is increasing, but demand that ® be odd, then
there is a case, natural from our point of view, where we can still have an existence result
through a fixed point index theorem. First, we recall that a closed cone C with vertex at
0 in a Banach space Y is a closed convex set such that (a) AC' C C for all A > 0 and (b)
Cn(-C) = {0}. We say that g : C — C is Fréchet differentiable at 0 with respect to C if
there exists a bounded linear map L = dgo : Y — Y such that g(z) = ¢(0) + L(z) + R(z)
for all z € C, where [|R(z)|| < n(p)p for all z € C with ||z]| < p, and lim,_,g+ n(r) = 0. The
following theorem can be found in [8].

Theorem 4.1 . Assume that C is a closed cone in a Banach space (Y, || |]). If (o) f: C — C
is a conlinuous map with f(0) = 0, (i) f is compact, (ir) f is Fréchet differentiable at 0
with respect to C and there ezist v € C\{0} and A > 1 with dfy(v) = Av, (iii) dfo(z) # z for
z € C\{0}, (iv) there is a > 0 such that tf(z) # z Vt € [0,1] for z € C\{0}, ||z|| = «, then
f has a fized point u € C with 0 < ||u}| < a.

Furthermore, if Be = {x € C: ||z|| <€} and Ua ={z € C: € < ||z|| < a}, there
exists €y such that 0 is the only fired point of f in Be,; for 0 < € < €y, ic(f, B) = 0 and
iC(f: Ue,a) =L

Proof of Lemma 2.8. We need to verify the hypotheses of Theorem 4.1. Our Banach space
is (X7, | o) and our closed cone is Dr. Lemma 7 and Corollary 1 imply that f(Dz) C Dr.
Lemma 6 implies that Lt is continuous and compact as a map fro Hy to Xg,s0 f : Dp — Dp
is compact. Using these observations, it is easy to see that f : Dy — Dy satisfies conditions
(0) and (i) of Theorem 4.1. We can also consider f as a map from Xr to Xr, and it is easy
to check that f is Fréchet differentiable at 0 with Fréchet derivative dfy : X7 — X7 given by
dfo = Ly. Also, for v(z) = sin(2rz/T), Lt(v) = v with A = J(2r/T) > 1. Thus, condition
(ii) is satisfied.

One can consider Ly as a bounded linear map of Hr into itself; since Ly : Hp —
Xr C Hr is compact, the spectrum of Ly : Hr —> Hrp is the same as the spectrum of
Ly : Xp — X7. Using Fourier series in Hr, one can see that o(dfy) is given by

2n(2n + 1)

o(dfe) = {J( T

), n=0,1,...}u {0},
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and that the eigenvector corresponding to A, = J(Z—T(Q—T”ﬂl) is u,(z) = sin(

Since u, € Dy for n > 1 and Ay > 1, we conclude that dfg(u) # u for u € Dy\{0},
and condition (iii) holds.

Condition (iv). If R > |®|, then for any z € Dy |f(2)|e < R. Thus, for any
t €10,1], tf(z) # z when = € Dy with |V|, = R.

If € is chosen as in Theorem 3 and R is as above and G,y is as in Lemma 4, then
Theorem 3 implies that ¢p,.(f, G r) = 1. The case for general p and R follows from the
additivity property of the fixed point index. Since ip,(f,G¢r) = 1, the properties of the
fixed point index imply that f has a fixed point in G, . If ® is also increasing and concave
on [0,00), we have seen that f(K7) C Kr and the same argument given above, with Kr
replacing Dr, shows that i, (f, H.g) = 1. [

2ty
nil)ey

Finally, for the sake of completeness, we prove here Lemma 2.6 (compare with [3]).
Proof of Lemma 2.6. Assume that u € Cr\{0} is such that f(u) = u. Thus,

®(Lru)=uv = u(z)Lru(z) > u(z)? (4.9)

with equality only for = such that u(x) = 0. Because u is continuous (Lemma 3.2) and not
identically zero, we see that (Lyu,u)r > (u,u)r. As Ly is self-adjoint, we have r(Lz) > 1,
which is a contradiction. a

5 Regularity.

Theorem 5.1 . Assume A and suppose that ® is real analytic. If u :IR —IR is measurable
and bounded and ®(J * u) = u, then u is real analytic onlR.

Proof. The proof will proceed in 3 steps. In step 1, we show that u is Lipschitz; in step 2
we show that u is C™ and in step 3 that u is real analytic.
Step 1. Our first claim is that for z < z,

| xu(z) — J * u(z)| < 3J(0)|u|e(z — ). (5.1)

Indeed,

[ wwe =) - T -l < fuleo ([ 1@ =9) = Iz = )la)
< fulo( [ (e —9) = (2 = v)lay

+ [ W@ =9) = I -y + [ Iy —2) - (- 2)ldy)
fuko (2 [ 7+ (1@ = ) = Iz~ v)lay)
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Note that |J % ue < |J]1|t|eo and if we call

M =3J(0), then |u(z)~-u(z)| < ( sup |<I>'(y)|> M|z — zl|t)so-

I <111 fuloe
Step 2. We show that u is &k times continuously diﬂereﬂtiable (Ck) for all k > 1, and
| D*(J * u)|oe < M|DF o (5.3)
First, we show that u is C! and
ID(J * u)loo < Mltco- (5.4)

Indeed, u Lipschitz implies that u'(z) exists almost everywhere, |u/[o < 00, and

vz, u(z) = u(0) + /Oz u'(y)dy

Thus, |J *u/(2) — J *4/(z)| < M|v/|e|z — z| and

|J*u(x+eZ—J*u(x) = Jxu(z)| = |%/‘)€(J*u'(z+z)—J*u’(x))dzl <

This implies that J  u is differentiable and (J * u) = J » (v'). It follows that (5.4) holds,
u € C' and

Mle||u'loo
T

W oo = @' (J *u)T %t oo <M sup  |®(z)||too- (5.5)

fel<I sl

Now, we assume, by way of induction, that « € C* and D'u is bounded for i < k.
We note that D¥(J * u) = J »* Dy, and by arguing similarly as above,

|D*J xu(z) — DFJ *u(z)| < M|D*u|e|z —~ x|, and D*u= &'(J*u)D*(J xu)+ Ry, (5.6)
where R, € C! and DR, is bounded. Thus, (5.6) shows that Dy € C' and D**'u is
bounded. The first inequality of (5.6) implies (5.3).

Step 3. We show by induction that there are positive numbers {p,, n > 0} such that

ju®|q

o0
g <p;, with > p,z" < oo, (6.7

n=0

for = positive and small enough.
We define for any b > 0 a sequence {g,(b)}, with ¢;(b) = b and

1-3...(2n—-3

Va>1,  g.(b) = i~ Jrgn-1,

It is known (6] (p.343-344) that {g,.(b)} satisfies

Zqz n- 1(b _Qn()
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We choose a § > 0 to be specified later, and v = 2py + 9. We take py = |tt|o0, 1 = |[1]eo and
forn>1
Pi
Pn = 5Qn(—(§') (58)

Thus, the sequence {p,,n > 0} satisfles

n
Zpipn—i < YPn-
1=0

Furthermore,

Z Pji -+ Pim < 'Ym—lpn: (59)
FESm(n)
where the summation is taken over Sy, (n) = {(j1,...,Jm) : J1,---»Jm = 0, 37 = n}. First,

(5.9) holds for m = 2. By induction, assume that (5.9) is true for some m > 2 (and any n).
Then, for any n,

n n
Y Die Pimn = DD ( > - -pjm) <Y (V" pasi) <Y pn-
7€Smp1(n) =0 \j€Smin—i) ‘

We assume now that (5.7) holds up to order n. We define A = J*u and g = ' and
start with the equation

u'(z) = &' (h(z))g(z). (5.10)
We fix 15 €IR. Taylor’s theorem implies that for £ near h(zp),
(€)= cj(¢ — h{zo))!, where |¢| <C7 for j>1. (5.11)
Jj20

Indeed, as h :IR — IR is bounded, C can be chosen independently of zy. Using (5.11),

k k! )
=Y tn . ———[Dﬂh( o) ... D™ h(zg)], (5.12)
m=1 Jjesn (k) N .72 ]m

DF®'(h(x))

=2y

where we have called 57, (k) = Sn(k) N {51 > 0,...,jn > 0}. Starting from (5.10) and using
Leibnitz formula, we obtain

w1 (7)) gij < >|D’°<I> h(xm ) OID"_kg(xo)[. (5.13)
This gives, using (5.3)
U("+1) o () n /n , .
| (n +(l)')| = C(]VTf]-!— 1)II (n+1)! kzz:l (k) ’Dkq’ (h(z))‘mzoIU( lo- (5.14)

Combining (5.12) and (5.14), we obtain

[ ()] CM([u™ ] M & k ™ Muti0] o\ utR)|,
< m . . (5.15
n+1)! = (n+1)! +n+lz > em 20 I ;! ) (n —k)! (5.15)

k=1 \m=1  je&z (k)i=1 Ji
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Using the inductive hypothesis and (5.9), we obtain from (5.15) (and |c,| < C") that

WD (zg)| O™ ,00 M mn
S 1 Dn—k M y -
(n+1)! (n+1)! n—i—lZ 12 ]esz:() H gt

m=1 k=m

CMu™| M
< a Cm Moy Pk
(h+D! ntl Zl kzm Pn—kPk

CMlu®| M
< } O M . .
(n+1)! 1.2 TP (5.16)

If0 <6 <1/2and 0 < k < n, we obtain from (5.8) that p,y; > (23&)'“+1pn_k. Thus,
assuming 4 so small that ¢ = (CM~8)/2p; < 1, we obtain

|u™ ) ()| e, M
< ne1 + (===)C" M.
Dl S Ty et GO MM R

Also, it is easy to see that
)
(CMy)'py < 25"(;)p0pn+1-
1
Thus, we obtain
[+ (o) €
<
(n+1)! “{(n+1Ly1-¢)
Thus, for ¢ small enough, independently of n and z,, we have |{u™* ()| < poyi(n + 1)L
Taking the supremum over all zy, we have proved that the induction is correct. The fact that

the power series in (5.7) has a positive radius of convergence follows now from the explicit
expression for the p, and Stirling’s formula for n!. |

0
+ Me—po| pni1-
Y21

6 Case where f(Cr) C Cr .

We assume in this section that A and B hold and that f (CrycCr.

If there is C' > 0 such that J is continuously differentiable in [C,00) and J' is
concave in [C, 00), then for T' > 4C, Lemma 2.5 shows that f(Cr) C Cr.

Remark 6.1 . If we make the assumption that Jp itself is decreasing in [0, 7/2], then it is
easy to see that a cone larger than Cr is invariant, namely

Cr = {u: odd and periodic and u(z) > 0 a.e. — dx for z € [0,T/2}}.

All the results of this section hold in this larger setting (i.e. without the symmetry with
respect to z = T'/4) with trivial modifications.

Now, Lemma 3.3 implies that J7 is a.e.-dx decreasing and nonnegative on {0, 7/4].
Let I' C [0, T'/4] be a measurable set of measure 7'/4 such that J is decreasing and nonneg-
ative on I'. We define a right continuous, increasing function on [0,7/4) by

Flz) = yelrlglﬂ —Jr(y), z€[0,T/4).
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We define F(T/4) = J(T/4) = 0 and F(z) = —F(T/2 — 2) for T/4 < x < T/2. Finally, we
define F(z) = F(-z) for —~T/2 < z < 0 and we extend F to be T-periodic. The map F is
bounded and increasing on [0,T/4], so F is of bounded variation on [0,7/4]. It follows that
for ¢ € C([0,T/4]) the Riemann-Stieltjies integral

[ e@)ir@ = A

is defined, and A is a bounded linear functional on C([0,T/4]). The Riesz representation
theorem implies that there is a regular Borel measure v on [0, T'/4] such that

v{(0,z]) = F(z) — F(0), vz e[0,T/4).

It is important to note that F = —Jp a.e.-dx, and that as Jp always appears
integrated against some function, we can replace Jr by —F.

The measure » may be singular with respect to Lebesgue measure, but we know
that if Jr is not equal to zero a.e.-dx on [0,7/4]: there is a point of increase. In other words,
either (a) there is @ € (0,7/4) such that

Vz €[0,a), Yy € (o, T/4], F(z) < F(y),

or (b) F is constant on [0,7/4) and F(z) < F(T/4) = 0 for 0 < £ < T/4. Here is an
illustration of case (b): if J(z) = 1 for 2] < T/4 and J(z) = 0 for |z| > T/4, then Jr(z) =1
for 0 < z < T/4, Jp(z) = —1 for T/4 < z < T/2 and Jp(T/4) = 0.

In case (a), Ve > 0 small, v((a — ¢, @ + €]) > 0; in case (b) Ve > 0 small, »((T/4 -
6,7/4]) > 0. We recall also a standard fact that we will use repeatedly. If u € X is
continuously differentiable, and F is as above,

lim T/“u(y) Fly+z) - Fly-x1)

T/4
=0+ Jo o dy = /O u(y)d'/(y) (6.1)
We are assuming here that Lp{Cr) C Cr. Observe that Hy = Cpr — Cr and
Ly : Hr — Hr is compact. If r(Lr) > 0, the Krein-Rutman theorem implies that there
exists p € Cr\{0} with Lr(p) = 7(Lr)p. However the spectrum of Ly is

{0}u{j(2%(2k+1), k=0,1,...}. (6.2)

Furthermore, there is a unique eigenvector ¢y(z) = sin(2w(2k + 1)z/T) corresponding to
J(2m(2k +1)/T). Clearly, ¢, € Cr if and only if k¥ = 0. Thus, if

r(Ly) = sup{|j(%§(2k UL k=0,1,...1} >0,

then r(Ly) = J(2r/T). Now, if r(Ly) = 0, we also have r(Ly) = J(2r/T). Also, because
L is self-adjoint, @ )
. n(l/n _ TU, U)T
r(Lr) = lim ||L7||7 [y e s
Our next lemma is a special case of Lemma 4, but we prefer to give the simpler constructive
proof which is available when A and B hold. If v,,vs € Hr, or vy, v2 € Xp, we shall write
vy > v if vy () — ve{z) > 0 for almost all 0 < z < T'/4.

(6.3)
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Lemma 6.2 . [fr(Ly) > 1, there is u € Kp\{0} such that f{u) = u.

Proof. 'The eigenfunction corresponding to r(Lz) is ¢(z) = sin(2r2/T). We note that
@ € Kr and that for e small enough, f(ep) = ®(r(Lr)ew) = ep. Thus, {f*(ep), n =1,2,...}
is an increasing sequence in K7. Let u* be the pointwise limit of f™(ep). Because f is
continuous from (Hr, |- |r) to (X7,| |eo), v* € Kr\{0} and f(u*) = u".

Lemma 6.3 . If u € Cr\{0} is such that f(u) = u, then u > 0 in (0,T/4], and v'(0) > 0.

Proof. Case a. There exists a € (0,7/4) point of increase of F. We recall that u is
continuously differentiable. We choose b € [0,7/4] such that u(b) > 0. Now, let a be the
smallest number such that » > 0 in (a, b). By definition of u € X7, u(0) = 0, thus ¢ > 0 and
u(a) = 0. We claim that a < c. Indeed, if we assume that a > a we reach a contradiction
in
- b - -
& (u(a)) = Jr x u(a) > /u(y) (JT(y —a)— Jr(y+ a)) dy > 0. (6.4)

The last inequality of (6.4) follows because for y € (a¢,a+ ), we have y +a > a > y — a.
Now, we rewrite (6.4) at o

3 Y(u(a)) = Jr * u(a) > / u(w) (Jrly — @) = Jr(y + @) dy > 0, (6.5)

because {y € (a,b): y +a > a > |y — a|}| > 0. Thus, we can actually choose {a,b) to
be the maximal interval in [0,7/4], containing ¢, such that u > 0 in (a,b). Now, by (6.4),
u{a) = 0 only if

Hy € (a,b): y+a>a>y—a}|=0, (6.6)

ie., if (& — a,a + a)| = 0, which implies that a = 0. On the other hand, u(b) # 0, because
v € (a,b): y+b>a>b—y} =|b-a,T/4|> 0.

Thus, b = T/4. This proves the first claim of Lemma 6.3. We prove now the last claim. We
write

u(z T/4 Fly+z2)-Fly—=z
( ):/ u(y)( (y+2) - Fly D gy
z 0 T
and, by (6.1), we have for ¢ > 0 small
. u(x) T/4 )
hak A > _
lim . 2/0 u(y)dv(y) > 2((0_161}3:“] u)v(a — € a+¢ > 0.

Case b. Because f has a nonzero fixed point in Cr, Jr cannot equal zero a.e.-dx on [0, T/4)].
However, Jr may be constant a.e. on [0,7/4], say Jr(z) = ¢ > 0 a.e. on [0,7/4] and
Jr(z) = —c a.e. on [T/4,T/2). If this is the case and u € Cr\{0} is a fixed point of f we
find that

(Lyu)(z) = /::4 (2c)u(y)dy, 0<zx< T/4,
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and,

wz) =& (20/”‘ u(y)dy) , 0<z<T/4 (6.7)

T/4-z

It follows that v is increasing in [0,7/4], and since u # 0, we must have w(7/4) > 0. It
follows easily from (6.7) that u(z) > 0 for 0 < = < T/4. Also, (6.7) implies that

W (0) = 20@'(0)u(§) >0,

Theorem 6.4 . Assume that r(L7) > 1. If u is any fired point of f in Cr\{0} and if L
denotes the Fréchet derivative of f ot w in Hr, then r(L) < 1.

Proaf. We denote by g{z) = Jr + u{z). Then, for v € X7, the Fréchet derivative of f at u
is

L:Hp—Hr,  Lv=3(g)Jr*v. (6.8)

Thus, L(Cr) C Cr and L is compact (as a consequence of Lemma 3.2). Thus, by the
Krein-Rutman Theorem [8], if r(L) # 0, there is w € Cp\{0} with

Lw = r(Lyw. (6.9)

Note that w'(0) exists, and by Lemma 6.3, g(z) > 0 for z € (0,7/4]. Thus we define the
linear operator L, : Hy — Hr with

Vz € (0,T/4], Lyv(z)= (b;g(g))jT «v(z) and, Lyw(0)=0. (6.10)

L, is well defined, for ®(g(z))/g(z) is continuous and bounded. L, is such that Lyu = u
and

Lv = ALy, with Mz) = ?%—(%%l Yz € (0,T/4] and, A(0)=1. (6.11)

As ®"(0) < 0 and g(z) > 0 for z € (0,7/4], we have that
Mz) €10,1), forz € (0,7/4] and A(0) = 1. (6.12)

Suppose we could prove that xu = L?u with a positive constant x < 1, and that there is
M > 0 such that Mu > w. Then, by applying L? k-times,

MkFu = ML*u = L*w = r(L)*w. (6.13)

This would imply that r?(L) < s < 1 which is the desired result.
To prove that xu > L%u with k < 1, we write
Jr = (A
v+ ()

T ¥ U

LPu = L(Lu) = LOw) = AL, (Qw) = A
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and & is given by

k= sup Az) JT.* (Au) (z) (6.14)
z€(0,7/4) Jr*ru
Now, u and X are in Xr, thus for z € [0,T/4]
Jre () oy B AQu)r(e —y) - Irlz +y))dy (6.15)

o u(y)(Jr(z — y) — Jr(z +y))dy

Because A(z) < 1 for z € (0,T/4], it remains to show that the Lh.s. of (6.15) is strictly less
than 1 at 0. After dividing numerator and denominator of (6.15) by z

JT*’U.

- Jrx (Ou)  My)u(g)dvly) S udv + (Suptayryn N Jofs udv

li 7)== <
20 Jrxu =) OT/4 u(y)dv(y) 0'1/2 udv + fz//; udy

(6.16)

which is strictly less than 1 because

T/4 )
/0/2 udv > ([a/lzx’le/ﬂ wv(af2,T/4] > 0.

To prove that there is M > 0 such that Mu > w, just recall that on one hand v'(0) > 0
and u(z) > 0 for 2 € (0,7/4] by Lemma 6.3 and on the other hand, w'(0) < oo, and w is
bounded so that this last claim follows easily. |

Proof of Theorem 2.5. The spectral radius of Ly is r(Lr) = J(2n/T), and we assume
J(27/T) > 1. Thus, by Lemma 6.2, there is at least one v € K7\{0}, such that f(u) = u.
Assume that there is v/ € Cp\{0, u} such that f(v') = v'. We define & € Xr as

a(z) = max (u(z),v'(z)), Vzel0,T/4]. (6.17)

By definition, @ > v and @ > o/, thus f(@) > @. Also, we can assume that 4 # u. For
A € [0,1] we define uy = A% + (1 — A)u, by concavity of ®, we have

Flua) = Af(@) + (1 =X f(u) = Aa+ (1 - Nu = u. (6.18)

Now, by Theorem 6.4,
r(df () = Jim, I )"/ < 1. (619)

Thus, there is ng such that ||df(u)"|| < 1. Now, by definition

R(v,u)

o) =u+df ()™ —u)+ Rlv,u and im =0 6.20
( ()0 —u) + Rv, ) lim (6.20)
Thus, there is a neighborhood U of u such that

VoeU, lim f"(v) =u. (6.21)

However, we can always take X small enough so that u; € U and (6.18) contradicts (6.21).
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If G, H and © are as in Theorem 2, the additivity property of the fixed point index
and the uniqueness of the nonzero fixed point w of f imply that the value of the fixed
point index is independent of the particular relatively open sets G, H and ©. Furthermore,
because F{Cr) C Dr, the commutativity property of the fixed point index implies that
icr(f, G) = Z.D"r(fv H).

If we take p < |ule < R and define

H={veDr: p<|vjo<R} and ©={veKy: p<|v|e <R},

Lemma 4 implies that ip, (f, H) = ik, (f,©), which proves the result for general G, H and
Q. ]

Counter-ezample to uniqueness.

Assume A and B. If we suppose that J(27/T) > 1, then Theorem 2 establishes
that f(v)(z) := ®(J % v(z)) has a unique fixed point v € Dr\{0}. Furthermore, if G is
any bounded, relatively open subset of Dr with v € G and 0 € G, then ip,(f,G) = L.
Because f : G — Dr is compact and f{v) # v for v € G — G, there exists § > 0 such that
flv— f)|]>éforallve G-G.

Now, recall that ¢ > 0, is such that ®(fa) = a and define

20z €

O(z) = @(—)(

- 2a)’ for |z| < fe/2, and P (z) = ®(x) for |z| > Be.

Complete the definition of ®, for fe/2 < |z| < fe so as &, is odd, increasing, and C*.
Note that ®.(8e/2) = €/2, and that ®, is concave on [0, 8¢/2] but not on [0,00). Define
fe(v(z)) = ®(J * v(z)). Thus, the same argument used in Lemma 8 shows that f. has a
fixed point v, with 0 < |v¢|e < €/2. Now, notice that

Yy, [2(y) —Ro()l <€, so YweDr, [f(v)—f)ll<e

If G is as above, we can arrange that |[vf| > 7 > 0 for all v € G. For 0 < ¢ < min(4,7),
consider the homotopy (1 —¢)f(v) +tf(v),0<t <1, v€G. Ifv € G — G, we have

llv— (1= 8)f() = tfe(w)l| 2 llv = FW)I| = tllf () = fe(w)]] > 6 —te > 0.

It follows from the homotopy property for the fixed point index that ip,{f., G) = ip, (f,G) =
1, (Theorem 2 implies that ip,(f, G) = 1). Thus, f. has a second fixed point in G (v, € G,
because |v|} < 7).

7 A priori estimates for the general case.

We do not assume here that f(Cr) C Cr, but only A and B.

It will be convenient to modify notations. Henceforth, we normalize J to have
integral one, and we set ®5(z) = ®(fz) (recall that § > 1).
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7.1 Truncation and Setting.

For any € € (0,1), we can find M (e) such that

/mgM(e) Jz)dz=1-¢. (7.1)

We denote by J*(z) := J(z)J|-pe),m(e) 20d by f the corresponding map. We note that for
T > 4M(e), (J)r(z) = J*(z) and (J)r(z) — (J)7(z + T/2) = J¢(z) for |z| < T/4, so our
previous lemmas imply that f(Cr) C Cr.

If the support of J is compact, say supp(J) C [~C,C], and T > 4C, then our
previous results imply that the equation f(u) := ®4(J * u) = u has a unique nonzero
solution u € Kr. Thus, we shall also assume that J does not have compact support. Under
our hypotheses, the map M = (M) := [ Iiy<mJ(y)dy is a strictly increasing, continuous
function from [0,00) onto [0,1), so M(e) := ¥~!(1 — ¢) is a continnous function of ¢ for
0 < ¢ £ 1. Now, we fix a period 7 and denote by er the positive number such that
T= 4M(ET).

We fix a number ¢y > 0 and consider two cases:

(#) flu)=u and 3Jve Kr\{0}, |u—v| < elv]
and,
(i) fe(u)=u and ue Kr\{0}.

We want to obtain a priori estimates of ||df (u)]| and ||dfe, (u)|| independent of T', in appro-
priate Banach spaces. To avoid repetition, we will treat a case which is more general than
both. We say that u satisfies (E7) if for some ¢ € [0, er],

fe(w)=v and 3Tve Kp\{0}, |u—v| < &lv|.

Then, we need estimates independent of € when T is large. The larger ¢y, the larger the class
of functions in which we can prove uniqueness. We will assume that ¢y < 1 to ensure that
u € Cr.

7.2 A priori bounds for nonzero solutions of f(u) = u.

An elementary but crucial observation is that if we assume that a solution of f.(u) = u is
“close enough” to an element of Kr, say v, then there is ¢, independent of T and ¢, such
that u(e) is “large enough”.

First, we need some simple facts about ®4. Define a,@* > g¢* > 0 with

®p(a) =a, @ :=inf{z>0: Pp(z) <1}, and, g :=sup{r >0: Fy(z) > 1}.

We claim that a > @*. Indeed, suppose by contradiction that ®;(a) > 1. Then, concavity
implies that for all z € [0,4a], ®y(z) > 1 and as $3(0) > 1, we find that ®g(z) > z for any
z €0, a] which contradicts ®s(a) = a. We note also that

. i*t+a
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Finally, we define
ag = min{a — a*,a*}/2. (7.2)

Proposition 7.1 . There is T\ such that for each T > T, there ezists o, 0 < @ < T/4,
with the following property: if u satisfies (Er) for €y sufficiently small, then

ula) =a—aq > a—;d*,
and, . .
+ : ! (=% ! a*
asMEOTE, wih €25 () -3 L. (73)

To be more precise, we shall define a number > 0 in the proof of Lemma 10 below, and
we shall need 0 < ¢y < 1/2 such that

2 *
€ a5 l+e€ a €
0 <70 0 I(

(1—€) 57 1—¢ A

<L (<I>},(a*) — &l

) 6*+a)>a0
27 1-2¢ 4

—. 7.4
)%
The proof of Proposition 7.1 will rely on the following lemma, which we prove first.

Lemma 7.2 . There is Ty such that if T > Ti, and u satisfies (Er) for ¢¢ small enough,
then
[ulee 2 @ — ag. (7.5)

Proof. Recall that ®; is bounded by 1 so that |u|., < 1. If u,v and ¢ are as in condition
(Er), we deduce that, for all z,

lv()] < lu(z)] + |v(2) - u(z)] < 1+ &lv(2)],

which implies that || < 1/(1 — €p), an estimate we shall need below.

We now argue in two steps. In Step 1 we show that |ule ¢ [ag, @ — ao], and in Step
2 we show that |u| > a*/2.

Step 1. We define v > 0 by
7 := min(®j(ao) — 1,1 — 4(a — ag)).
The concavity of ®4 in (0, a) implies that

inf  [®g(y) — y] = min(Bg(ag) — ag, Bs{a — ap) — (a — ag)) > 7as.

y€(ag,a~ag)

Set n := va?/5 and assume that 0 < ¢ < 1. We claim that if ®5(y — 5¢) < y, then
y ¢ [ag, & — ap). Indeed, assume y € [ag, o — ap); the concavity of ®5 implies that

25(y) — By —5¢) _ Bs(a0) — 25(0)
5e - ag '
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So,
Py —5¢) —y > Pp(y) —y — MSEZ’)‘G()—E > 0.
Qg dg
Now let Ty = 4M(n,)(1 + 1/m), where 7y := (1 — €o)n, and assume that T > Tg.
The reader can verify that er < 7;. Suppose that u,v and € are as in condition (Er). Our
initial remarks and the fact that v € Kp give v(T/4) = |v|e < 1/(1 — €); and using the
concavity of v on [0,7/2], we obtain for 0 <y < M{m)

v(T/4-y) —v(0) < (1-e)! < (1-e)'m

YIS Ty STASMG) S M)
The symmetry of v implies that for jy| < M(m),
[o(T/4~y) — v(T/4)]| < WlW'(T/4 = y)| < (1~ &) ' (7.6)

It follows that
FruT/) = [ ST/~ )y
T(y)o(T/4 - y)dy + /[ J(y)v(T/4 - y)dy

(lyl<M(m)] M(m)<lylsM(e)]
2 o(T/49(1—-m) - “y]<M(mJ)'](y)(v(T/4 —y) —o(T/4))dy —m /(1 - &)
> o(T/4) - 3m(1— &)~" > u(T/4) — 4", (7.7)

where 4n* := (3m + €0)(1 — €)™ < 4. We have used (7.4), (7.6) and the estimate |v]e <
(1 — €o)™* to obtain (7.7). Using (7.7), we see that

u(T/4) = Bg(J * u(T/4)) > Pp(J xv(T/4) + J * (u — v)(T/4))

2
> Bp(J *v(T/4) ~ eo(1 — €0) 7). (7.8)
Combining (7.7) and (7.8), we obtain

u(T/4) > Bp(u(T/4) - 57°).

Since n* < 7, our earlier remarks imply that w(7'/4) & [ao,a — ag)-
Step 2. Choose ¢; > 0 and § > 0 so small that

._ 1+¢ P . Yo
Y=< ¥%(a’/2), and B:=1 APy 8(L+ ) > 0 (7.9)
For this ¢, and T as in Step 1, choose 17 > min(4M(6), Tp) such that
T;
3M(5) < [? - 2M(5)] B. (7.10)

Suppose now that T" > T}, u satisfies condition (Er).
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For notational convenience, define & = |t|, and ¥ = |v|o,. Because Py is concave

on [0,00), we obtain
Vz e [0,T/2], ®p(J¢ xu(z)) > BH(@)J¢ x u(z). (7.11)
Let A =[0,T/2] and A, = [-M(6),T/2 + M(6)]. By using (7.11) and condition (Er) we

obtain,
_ € ! = €
(1+60)AU2AU—A¢ﬂ(J *u)ZQﬂ(u)/AJ *U.

Because u € Cr, we obtain that for any interval I of length T'/2

/Ju z)|dz —/ (2)d=.

Exploiting this fact, we obtain
€ ) — € —J9 —
| feru= o)l =1 [ [(70) - (@) u(z - v)dydal

< [ @ - 7w) ([ jutc = v)ldz) ay

- J¢ 6 — U.
/ / (y)) ( ) /A
Using this estimate, we find that

(1+60)Av2@%(&)(L]5*u—5_&u>.

Because (1 + €)v(y) > u(y) > (1 — e)v(y) for 0 < y < T/2, u,v € Cr and T > 4M(6),
Lemma 1 implies that

(1+60)/AvZ@’ﬂ(ﬁ)(/AJ‘s*u——é/Au) > (1= €0)®(7) (/J‘s*v—&m/ )

It is easy, using that v € Ky, to see that
[T v /A T % foly — o(M(8))a,\al.
A
We leave to the reader this simple check. Thus, we see that
(1+¢o) /A v > (1 — e)®(a) ( A %% (0Ls — v(M(8))Ia,\a) (@)dz — 630 /A v) .
Simple estimates give
[+ M) Iana) =v(01(9)) [ A/ o W) aalz — v)dydz

w0 170 [ vs)
< M(EwM) [ iy S MER(M@))
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It follows that
(1 + €) /A v > (1 - ) @) ( /A {5 % (vl,) — A;(i x () — M(8)o(M(8)) — 6o /A v) .

If z € AL\A and |y| < M(6), then using that v € Kr one sees that v(M(4)) > v(z -
y)Xa(z — y) > 0. Using this inequality, one finds that

_/,4+\A T s (vla) = /M(J)J(y) (/A+\Av(:1: — Y4z - y)d:c) dy < 2v(M(8))M(4).

~M(5)

It follows that

{1+ €) /Av > (1 — €)®y(w) (/A;]J « (vla) — 3v(M(§))M(S) - 670/ ) .

v
vA

One can easily verify that

[ 6= ([ [ =0-9 [5

50 one obtains that
Yo
> —§ =y — ——]. )
B(MEME) 2 ([o)1 =8 =7 - gl (712)
Because v(z) > v(M(6)) in [M(8),T/2 — M(6)], we see that
fA v > v(M(8)[T/2 - M(8)]. (7.13)
Assume, by way of contradiction, that @ < (a*/2), so ®j(@) > ®}(a*/2) > 1 and (using eq.

(7.9)

o
11—
(@
We can use eq. (7.12) and (7.13) and divide by v(M(d)) to obtain

—8—6w2B>0

3M(6) > [T'/2 — 2M{8)}B, (7.14)

which contradicts inequality (7.10) and completes Step2. The inequality (7.5) is obtained
by combining Stepl and Step2. R

Proof of Proposition 7.1. By Lemma 7.2, there is T} such that for T > T3, a ~ |ule < ao.
Thus, by continuity of v, there is a < 7'/4 such that a — u{a) = a5. Now,

25(u(0)) ~ u(@) =~ B5(a) — (u(a) ~ By(u(e))) 2 (1 = Fy(u(@))(a - u(e)
> (25(@) - Bp(u(e)) a0 2 (@) - (D)) 0. (7.15)

Now,
u{a) = 5 (J * ula)) > @p(J xv{a) + J* * (u — v)())
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Recall that {v]es < fule/{1 — €0) < 1/(1 — &), so we obtain
[J€* (= v)(a)] < €0 * |u](a) < €olv]eo < €0/(1 ~ o).
Combining these inequalities yields
u(0) 2 B5(J + (@) - eo/(1 - &)

We can always choose o = M(£)(1 + 1/£). Because v is concave on [ — M (&), e + M(£)),
we have for y € [& — M(€), a + M(£)],

o= M) ~ul0) 1
ME (= el - ME)

We now argue as in the inequalities (7.7), in the proof of Lemma 10:
JExv{a) > v(a) - 3¢/(1 - €).

Recalling that @4 is increasing, the previous inequality gives

u(a) 2 Ps(v(a) — (3¢ + &«)/(1 - &)
> ®5(ula) — (3¢ + 260)/(1 — €0) > Bp(u(e)) — B(2¢0 +36)/(1 - €). (7.16)

We have used that [®5(y)| < B for all y. Combining (7.15) and (7.16) gives

v'(y) <

B2e+36)/01 - e0) 2 (@) - E(5)) ao (717

Inequalities (7.17) and (7.4) now yield (7.3). |

7.3 Norm of df (u).

Let (Y,]].]]) be a real Banach space and suppose that K is a closed cone in Y. K induces
a partial ordering on Y: z < y if and only if y — z € K. Recall that K is called “normal”
if there exists a constant C such that ||z]| < Clly|| for all z,y € ¥ with 0 < z < y. If
u € K\{0}, we define a set Y, by

Yi={veY: 3IM>0, with - Mu <v < Mu}, (7.18)
and for v € Yy, we define ||v]], = inf{M: —Mu < v < Mu}.

The following lemma is well known (see [10]). For the reader’s convenience, a proof
is given in the appendix.

Lemma 7.3 . Let (Y,1].]]) be a real Banach space and K a closed cone in Y. If u € K\{0},
then (Yy, || - |l) is a normed linear space; if K is normal, then (Y, |- |l.) is a Banach space.
IfL:Y — Y is a linear map such that L(K) C K, and if there ezists N > 0 such that
—Nu < L(u) < Nu, then L(Y,) C Y, and L induces a bounded linear map £ : Y, = Y, with
[I1£]l. < N.
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Suppose now that u satisfies (E7) and that ¢,e7, 0 < ¢ < €7, are as in (Er), so that
fe(w) = u. Let L = df(v) : Xr — X7 denote the Fréchet derivative of f. at u. We shall
use Lemma 7.3 with V' := X7 and K := Dr = {w € X7 : w(z) 20, Vz € [0,7/2]}. For
T large, we shall show that L(Y,) C ¥, and L induces a bounded linear map £ : ¥, — Y.
Also, for w, % € Xr w < 1 is equivalent to @w(z) — w(z) > 0 for 0 < x < T/4. Notice that
if & € Dr\{0} and w € Xy, then —Mw < w < M is equivalent to jw(z)| < M|b(z) for
all z. ,
We now state the main result of this section.

Theorem 7.4 . Assume that u satisfies (Er) and that €, 0 < € < ey, is as in (Ey). Let
dfy(u) : Xr — Xt denote the Fréchet derivative of f, at u. There is a number Tb, such
that if T > T, and 0 < 5 < er, then df,(u) induces a bounded linear map L : Y, — Y,.
Furthermore, there ezists k = k(Ty) < 1 such that ||£?||, <k < L.

The proof of Theorem 7.4 will require several lemmas.

Lemma 7.5 . Let Ty be as in Proposition 7.1, and assume that u satisfles (Er) for some
T > Ty. Then, there is a function D(p) for 0 < p < 1 such that lim,,¢; D(n) = 0 and for
anyw €Yy andn, 0<n<1

I *w — J"x wlly < D)fwlle.

Furthermore, for any n, 0 < n < 1, the bounded linear operator w v J" x w on Xr induces
a bounded linear operator on Y.

Proof. We rewrite, for z > 0 and any w € Y,

Jxw(z) =J"xw(z)= | Jy)w(z—y)dy — J(y)w(z — y)dy
(@)~ wulz) Lowwe -y~ [ Il -y
= [” Jw)wly - 2) - w(y+2))dy

M(n)

/A:n)+z w(y) (Jy+z)— Jy—z))dy + MN([:)_:I w(y)J(y+x)dy (7.19)

Exploiting the fact the J is decreasing and nonnegative on [0, 00}, we obtain from eq.(7.19)
that forz >0

7u(e) = ru@l < [ OO =2) - Jo+ o) dy+f, oI+ a)dy
< (suplu(2)) (/;(’n)ﬂu(y—z)d(yﬂ e [ Ity + 2
< (suplw(@)l) min (47 (M (n))a, 2n). (7.20)

Let v € Kr and ¢, 0 < € < ér, be as in (Er). Let o be as in Proposition 7.1, so u{a} =
a — ag > @*. The concavity of v implies that for 0 < z < ¢, av(z)/v{e) > z. Condition
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(Er) implies that (1 — eg)u < u < (1 + €g)v, so setting o 1= (1 + €¢)/(1 — ¢g), one derives
that

C:;Gu(x) > alo(z()x ) 5 oo

Using this estimate, we derive from eq.(7.20) that

>z, 0<z<a.

Yz €[0,a], |J*w(z) — J"* w(z)] < 4J(M(y ))][wHua_%u(a;) (7.21)
If @ <z <T/4, v(z)/v(a) > 1 and one concludes that

Yo
at

@) | o) | |

uz) 2 ula) ~ v(e)

It follows that for o < z < T'/4,

| xw(z) — % w(z)| < 2nsup fw(z)| < 10 ’”"

—llwlluu(z). (7.22)
Inequality (7.3) implies that there is a constant &, independent of T > T3, €, v, u and 7 such
that & £ & Combining (7.20) and (7.22), we see that

1% w = J7 % wlly < 22 max(47(M(n))a 20)|wlk = D(n)llo]le.

_—ll

If n =1, J?+w = 0 and we see that ||J % w||y < DQ)||w]||y, for w € Yy, 50 w— Jxw

induces a bounded linear map on ¥,. Our estimates also show that w— J* w(z) — J7xw
gives a bounded linear map on Y, so does w— J7+wfor 0 <7 < 1. [ |

Lemma 7.6 . Assume A and B. Let Ty be as in Proposition 7.1, assume that u satisfies
(Br) for T >Ty, andlete, 0 < e < ey, and v € K7 be as in (Er). Define
p(9(z))g(=)
Bp(9(z))
(Also, we define @5(g(z))/g(z) = ®4(0) = B and A(z) =1 for g(z) = 0). Then, there is
ko < 1 independent of u,e and T, such that for T > T}

. L (o) (z)
e O T @ <

g(z) = J* x u(z), Mz) = and Lyw= @—ﬂg(g—)J‘" * W, (7.23)

Ko < 1. (7.24)

Proof. For any § > 0, set A\(8) = sup{A(z) : z € [5,T/4]}. Because ®s5(g(z)) = u(z)
and 0 < (1 — €)v < u, we see that 0 < g. Because of (Bc) and (Bd), we have that
®5(y)y/®p(y) < 1 for all y > 0. Combining these facts, we conclude that X6) < 1 for
0 < § < T/4. Because lim,,04 A(z) = 1, we also see that lims_,;. A(6) = 1. Define for
z#0, z,y€lR

K(,9) = (F (v~ o)~ (v +2). (7.25)
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If v,y € [0,T/4], then K(z,y) > 0. In fact, recalling that J7(z) = 0 for |2| > T/4,
JET(2) = Jr(2) for 0 < z < T/4, JF(z) = —J7(T/2 ~ z) for T/4 < z < T/2, and for
z,y € [0,T/4], we have that

zK(z,y)=JF(y—z) - S5 (y+z) for O <y +z < T/4,
eK(z,y)=JF y—x)+JFT/2—y—z)for y+z > T/4.
Now, notice that

B (JT * du)(z) oK (2, y)My)u(y)dy
=2 A Trw® o I G ey

We know from Lemma 1 or Lemma 7 that v — JT % v preserves the partial ordering, so
JT % (Au) < JT xy and ¢ < 1. Also,

oo g s o) 2229

<3+ -30) sup | [ uk(z, (M)_l , (7.26)

0<a<s \ JO x

We will estimate separately each term of (7.26).

Step 1: We will show that there is 6, > 0, C; > 0 and Cs > 0 independent of u, ¢ and
T > T such that for 0 < § < 4,

1-C8% < A(6) <1—Cyé62 ' (7.27)
Since g(z) = ®5'(u(z)), we introduce the function ¢

;)85
T

¥(x) , such that Mz) = ¢ (u(z)).

We claim that there exists §; > 0 such that ¢ is strictly decreasing on {0,d;]. Since y —
<I>51(y) is strictly increasing, it suffices to prove that there exists d; > 0 such that y —
®u(y)y/ ®a(y) == 0(y) is strictly decreasing on [0,d3). A calculation gives, for z > 0,

2®(z)2p(x) + p(2)(25(z) — 28 (2))

v = 23()

If we call §;(z) the numerator, then we need to show that 6;(z) < 0 on (0,d3], d3 > 0. Since
6:(0) = 0, it suffices to find &3 > 0 such that #;(z) < 0 for 0 < z < d;. A calculation gives

61 (c) = Bp(x) (2h(z) + 285 (2)) + ¥j(z) (Bp(x) — 28)(z)).
The concavity of $4 on [0, co) implies that for z > 0

4(2) (8p(x) — 284(z)) <0 and, 6(z) < Ep(x) (2Y(x) +28}(2)). (7.28)
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It follows that if ®7(2) < 0 on [0, 6], then #'(x) < 0 for 0 < 2 < d3. Our hypotheses imply
that such a 6; exists. We recall now that v’ satisfies u' = ®}(u)(J**u)" and therefore by the
inequality (5.3) of Theorem 5.1 in section 5, we have

u'(0) < Mu]oo < M

"(0) < , M:=3 . .
v()~1—60~1—60—1~60 J(O) (729>
The concavity of v in [0,7/4], implies that
M
v(6) < 5. (7.30)
1- €o

On the other hand, for « as in Proposition 7.1, the concavity of v implies that for 0 < ¢ < ¢,
imply that for § < ¢,

o8)  vle) | wle) 1 a1

— > . .
§ T a Tl+ega T l4+ego (7.31)
It follows from (7.30) and (7.31) that, writing yo = (1 +€)/(1 — &),
———(5 <u(d) < Mvyd, for0<d<a. (7.32)

Yo &

If we define &4 = min(w, §/(M=o)), we derive from (7.32) that 0 < u(z) < &, for
0 < z < 44. It follows that for 0 < § < dy,

71
P(M7d) < sup (u(z)) < Y(—=0) (7.33)
6<e<is Yo &
We easily derive from (7.31) and (7.32) that u(z) > (8*/v0)(ds/cx) for 84 <z < T/4, s0
sup  (u(z)) < sup{p(w) : Thcws 1}=p<L
84<z<T/4 Yo &

There exists ds > 0, independent of u, ¢ and 7', such that for 0 < § < &5, Y{Md) > p, and
so that

7\(5)=maX{6<sllga4¢(U(z)) sup  Y(u (w))}=6<sllg&¢(utv))~

64<x<T/4
Thus we derive from (7.33) that for 0 < 6 < 65,
P(Mod) < A(8) < ?!1('——) (7.34)
Yo &

To estimate (7.34), we use Taylor’s theorem to estimate () near 0, and we obtain

PY(z) =1+ (I)”;( )z2 + o(z?), (7.35)

and from (7.35) and (7.34), we find that there is é; independent of €,u,v and T > T3 (but
which depends on ¢y and J and ®) such that for 0 < § < §;
@I”(O)

1+ ‘I’W(O)( WM < XE) <1+ 210 (%a) 252, (7.36)
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If we recall the estimates on « in Proposition 7.1, we obtain (7.27).
Step 2: We show that there is A > 0 independent of T' such that for § < a

g ITxua) S

z€[0,5) z (7.37)
First, if we use Lemma 7.5, then for = € [0, §)
Jrxu(e) _ JOxu(m) + (JT— J)xu(z) | B (u(z)) — 2D(er)u(z)
T T T
)] (7.38)

Now, equation (7.31) implies that for z <

u(z) _ (1-elv(z )
JoZy 2 Bz

==Y(1 = 28D(er)).

and Step 2 follows.
Step 3: Here, we estimate [ K(z,y)u(y)dy.

[ Kty =1 [ (Bt -2) - Tty +2) uly)dy.

Because u(z) < sup{u(z)/z:0 < z < §} for 0 < z < 4, we find that

[ xG i < (s -6) (3 [ (rt-o - rwra)w).  9)
We have already noted (Step 1) that K(z,y) > 0 for z,y € [0,T/4], so
0</ xydy</T/4K(a:,y)dy.
Using properties of Ji¥ as noted in Step 1,
/OTM K(z,y)dy = i—/_z JiT (2)dz — i—/;iiz i (2)dz
=z 1 T/4 T/a+z
:E/Iﬁq@a——/ _ﬁuaw—l/ S (2)dz

xJ- z JTj4—x x JT/4
< 3J(0).

Recalling that sup,.s(u(2)/2) < M := 3J(0), and combining these estimates gives
0</ (z, y)u(y)dy < 3J(0) M.

Step 4: If we choose § < min(d;, @) in inequality (7.26) and use Steps 1,2, and 3, it follows
that
Cy

Ko <1—C18%+ Z(3J( YM)$® (7.40)
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and the result follows by taking § small enough.

Proof of Theorem 7.4. Let Ly, A and ¢ be as defined in Lemma 7.6, and Av = D5(9)JT v,
We note that both L; and A preserve the order <.

First, we claim that
Lyu < (L+2D(er)B)u. {7.41)

Indeed, by using Lemma 7.5, we have
_ éﬂ(g) € (5 €
Lyv = — (Joxu+ (JT = J)xu) < (1+28D(er))u. (7.42)

Since 0 < Au < Lyu < (1+ 2D(er)B)u, we have
1Al < (14 28D(er)). (7.43)
By (7.42) and Lemma 7.6, we have

A*(u) = ALi(AL1w) < (1 +2B8D(er))ALy (hu)
< (1+28D(er))n(Liu) < (1 + 28D (er))* Kou.

Because A preserves the partial ordering <, we have
1A%} < (1 +26D(er)) s, (7.44)

where &g is given in (7.24) and D(e) tends to 0 as ¢ goes to 0.
A consequence of Lemma 7.5 and 0 < ®5(g(z)) < 6 for all z is that

(1€~ All. < 268D(er). (7.45)

It follows, from (7.43) and (7.45) that
€]} < [1Aff + [1£ = Allu < (1+48D(er)).

We conclude that

2% < 1A%1 + [JA(L = M)l + (L = ALY,

< AP+ [[ANf1£ — Al +11(£ = DL
< (1+28D(er))?ro + 26D(er)[(1 + 28D(er)) + (1 + 48D(er))] == «.

The result follows for T > T5, for 75 large enough.

8 Proof of Theorem 2.2.

8.1 Proof of existence.

We note that, with the notations of section 7, f.,.(Cr) C Cr. By Theorem 2.3, there is T3,
such that for T > 73, f., has a unique fixed point in Cr, say u.,. Moreover, u.,. € K7, and
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by Theorem 6.4, the spectral radius of df,,.{w.,) In Hy is strictly less than 1. On the other
hand, once we know that .. € Ry, Theorem 7.4 of section 7, establishes that there is k < 1
independent of T' > T3 such that

||dfe27'(uf’]‘)H(ucT) S K.

We will consider 7 > max(75, T3) and for simplicity we henceforth drop the index T in f,
and .., and we denote the operator norm in (Y, |].ll..) by |||

For v €Y, define

F(J,v) =v = ®p(J xv). (8.1)
The Fréchet derivative of F'(J¢,v) with respect to v around wu, is
AF(gen)(§) = &~ Pp(J ¥ u)J + € = & ~ dfe(uc)t. (8.2)

Lemma 7.6 establishes that dFj,. ) is invertible in Y,,,. In fact, let A denote df,(u.), viewed
as a map from Y, to Yy, 50 dFjyey,) =1~ A, and

—_ 0 . m .
A= (dF(JE,uJ) = (J-A)"'= ;)AJ =(1+A)> A%,
J:

j=0
S0,

AN @y < T+ AN 18T €Ny <22 w1l wy < 77118l wo- (8.3)
=0 =0

T 1-k

Before stating the main result, we make a simple remark.

Remark 8.1 . Assume A,B and u = ®g(J * u) with v € C7\{0}. Then, J * v < u. First,
we show that |u|., < a. Because of properties B, 2 > a implies that ®5(z) < z. Now, by
contradiction, assume there is 0 < zo < T'/4 such that u(zy) = |u|e > a. Then, J *u(xg) <
u(2o), so that ®g(J xu(zo)) < ®5(u(zo)) < u(zo), which is absurd. Thus, |u|e < a. This in
turn implies that 0 < J*u{z) < afor 0 <z < T/4 so that J*u(z) < 84(J * ulz)) = u(z).

Proposition 8.2 . Assume A and B. There is ; > 0 such that for T > max(Ty,T3) and
er < €1, f has a non trivial fized point in Y,,, say u. Moreover, u € Cr.

Proof. We recall that |ue|s < 1, and so is |J *u¢|eo < 1. Let o be as in Proposition 7.1, and
let & be a uniform upper bound for « as given by equation 7.3. Let ¢ be as in Proposition
7.1. By remark 8.1 0 < J¢ x u, < u.. We define

(1 + 60)

v=sup|®"(z)], and D(e) = =—— max(e, 4aJ(M(e})).
[sl<2 (1—e)a

So D(e) can serve as the function in the statement of Lemma 7.5. We can always choose
€1 >0, ¢4 < ¢, and R < 1 such that
2

— (%R2 + 2/30(51)) <R, (8.4)
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and,

(YR + (27 +H)D(e)) < 1 (8.5)

We define V.Y, = Y, by
V(u) = u — A(F(J,u)). (8.6)
We will show that there is a closed ball around w,, say Bg such that V(Bg) C Bp, and

then that V is a contraction in Bg in Step 1 and Step 2, respectively. It is then routine to
complete the proof. The fact that u € Cr follows simply because R < 1:

|t — vellu, L R=> (1 - R)u < u.

Step 1. If B = {u € Y,,: |ju — u|,) < R}, then V(Bgr) C Bg. First, by using that
u — U = AdF(je u ) (U — u), we rewrite (8.6} as
V(u) — ue = A[F(J¢, u) — F(J,u)] — A[F(J¢,u) — F(J%,ue) — dFpyeuy(u —u)l.  (8.7)
A pointwise estimate of the last term and an application of Taylor’s theorem yields
|F(Ju) — F(J¢ ue) — dFge u) (v — ue)| =
[ (J ) = B # 1) — (I ) x (1~ )] < LT (u— )P (88
To bound this term in norm, we establish that ||(J¢ * v)?||@,) < |[v|[f,.,- Assume that there
is M such that |v| < Mu,, then |J¢*u| < MJ¢*u, < Mu,. Thus, recalling that |u.(z)| < 1,

we obtain
(Je 5 v(x))? < My () < M?u(z), for z€(0,7/4]. (8.9)

Thus,
€ € 8
A[F (T ) = F(J% ue) = dFgeug(u = ulllay < 1Al - Uelffue)- (8.10)

We now consider the first term of (8.7).

A[F(J¢ u) = F(J, )l < 1Al 1260 % u) = @ * )l ue)- (8.11)
Now, a pointwise estimate yields
[B5(J % u) = Bp(J xw)| < BI(T = T v ul. (8.12)
Thus, by Lemma 7.5,
1w = I %l < DOl (8.13)

Finally, (8.10) and (8.13) imply that

y ;
V() = el < AN = uelli) + BIAND(E el |- (8.14)
Now [|uf]w,) < 1o — tellw) + |uell@w) <1+ R < 2,50 eq.(8.14) gives

V() = wellwy < = [(1)R? + 28D(e),
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and we obtain inequality (8.4).
Step 2. We show that V is a contraction in Bp.
For 4 and v’ in Bg, let u; = v’ + t(u — ') € Bg. Also,

1
V(w) - V() = /0 Vi (u - o')dt. (8.15)
Thus, we obtain
1
W) = V(e < /0 18V (v — uYl@adt < (sup flaValDlle ~ vl (8.16)
R
Now, for £ € Y,,,, and any u € By,
V() = € = A(dFu(€)) = A (dFiyen) (&) ~ dFu(8) - (8.17)
Thus,
l1aVull < 1Al - H|dE(ye,ne) — AF )]l (8.18)
Now,

dF(gu)(€) — dF(geu)(€) = (@},(J *u) — <I>;3(J‘ *ue))J * €+ <I>;3(J *u)((J = J) % &).
Thus,

(dF ) — dFge el YT *u— T x0T * Elluy + BT = T) % €l
< (1T = T # ulluy + 11T # (= )y ) 1 % €l ey
+BI(J — T * &l wa)- (8.19)

Because 0 < J¢ * ue < u. and J¢ is order preserving, we see that ||J¢ * &||(u,) < /€], for
all ¢ € Y,,. Using this fact, (8.13) (8.16), (8.19) and ||u]|(,) < 2, we obtain

sup [[dVill < ANl (10 = I % ullwg + (1% (@ = wllun) + BIIAND()

< 1141l (vD()lullwy + YR + BD(e))
2
S 7= (YR + (27 + B)D(e)) - (8.20)
Now, the estimates of Step 1, {|u||,) < 2, and the conditions (8.4) and (8.5) on R and €
imply that V is a contraction in B(R). a

8.2 Proof of uniqueness.

We first show, as a corollary of Lemma 7.6, that around any fixed point u of f, which is
close enough to K, there is a neighborhood attracted to u whose width is independent of u
and T'. In other words, let u,¢,er as in (E7), then there is p > 0, such that if T > T,

Vw: |Jwll < p=> Jim ()" (u +w) = w (8.21)
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Here, it is crucial that p be independent of u, T and e.
If we set for any w € X7,

N(w) = fl(w+u) = fe(u) = dfe(u)(w),

then, if v = sup{|®j(z)|: |z] < 1}, it is a simple calculation to see that

IN(w)] < (I * w)*.
Now, as in (8.9), we first show that

(T * w)?|lu < (1 + Dler))*[Jwlf3.

We take M > ||w]||,, and recall that J¢© preserves the order <,

[T x w| < MJT % u.
Thus, by invoking Lemma 7.5 and Remark 8.1

[Joxw| < MI sxu+(J =JT)sxw—Mx(J = JT)xu
< MJ¢ xu+ D(ep)||w||uu + MD(er)u < M(1 4 2D(eg))u

and therefore
(J* w)? < M*(1 4 2D(er))u, (8.22)

where we have used that u € Cr and |ufe < 1. Thus,
IN(w)llu < (1 +2D(er))?|Jwl[:. (8.23)
Using Lemma 7.6 and (8.23), we have for ey small enough

fe(u +w) = fe(ulll < Hdfe(u)llullw|lu + [N (w)]]
< wllwlly + 29wl (8.24)

Hence, if p = {1 — x)/4y, then ||w||, < p implies that

el w) =l < =55 ol (5.25)

and the claim (8.21) follows easily from (8.25).
Assume that there is v and @ two distinct fixed points of f with

vE Kr\{0}: Ju—v| <elv|, and &€ Kp\{0}: |G~ 0| < eld].
Theorem 7.4 tells us that for T' > T5,
n = max(||df (u)*|lu, [|df (@)*|[2) <1

independently of T. To be able to use the same proof as that of Proposition 8.2 to obtain
fixed point of f.,. in a neighborhood of u and 4, we only need that er be small enough so that
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we can define R which satisfies conditions identical to (8.4} and (8.5) but where 7 replaces
. Thus, R is much smaller than p appearing in (8.21) when T is large. The same proof as
that of Proposition 8.2 —which we omit— implies that f,, has fixed points in By and say
Bp. However, _
Bgr C {v:|ju —v|l. < p}, Br C {v:||& — ||z < p},
and by (8.21)
fo:llu = vlly < p} 0 {0 13— vlla < p} =0.

Furthermore, by Proposition 7.1, 0 ¢ Bgr U Bg. Indeed, lul > a*/2, and |i]e > a*/2.
Thus, this implies that f.. has two non trivial fixed points in Cp, which is a contradiction
to Theorem 2.3. P

9 Examples.

Our first example illustrates the non intuitive fact that J; may not be decreasing even though
J is decreasing in [0, o0).

Example 9.1 . Let a > 0 and suppose that J satisfies condition A, J is constant on [—a, a]
and J is strictly convex on [a, 00). A simple example of such a function is

eo—lzl

=3 A+a)

1
(1+a)
Then, for T' > 2a, Jr(z) is strictly increasing on [0, a]. For our specific example, Jr is strictly
decreasing on [a, T/2].

for |z| < a, and  J(z) = for |z| > a.

Proof. For 0 <z <y <T/2andn > 1, we claim that

JnT +y)+ J(nT —y) > J(nT + z) + J(nT — z). (9.1)
Inequality (9.1) is equivalent to proving that

JT —y) = J(nT — ) > J(nT + z) — J(nT +y).

Because o < nT' — y < nT — =, the latter inequality follows from the strict convexity of .J
on [a,00). Using the evenness of J, we see that

Jr(z) = J(@) + > (J(nT +2) + J(nT — 1)),

n>1

and,
Jr(y) = J(y) + Y (J(nT +y) + J(nT - y)).

n>1

For 0 <z <y <a, J(z) = J(y), so (9.1) implies that Jr(z) < Jr(y).
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For the explicit example given above, one can compute Jy(z) (assuming T > 2a)
for 0 < x £ T/2 and obtain

1 - . . o €T
JT(x)—2(1+a)[0(z)+Ce +Ce®], with C=¢ (l—e—T>’

§(z) = 1for 0 < z < @, and 9(z) = expla — z) for @ < z < T/2. Using this formula, one
verifies that Jr is strictly decreasing on [a,T/2]. ]

Example 9.2 . Assume & satisfies B and define ®4(z) = ®(fz). If

Ia) = <= exp(~a/2),

then, for any T > 0, ®4(Jr * K1) C Kr.

Also, let T := 27w /(1/21og(B)). For T' < Ty, f has no fixed point in Cy, while for
T > To, f has a unique fixed point in Cr.

Proof. First, we note that if Ji(z) = vAJ(Vkz), then
(J)* = J.

Thus, if Jy « Ky C Ky, then J « Kp C Kr. Also, Ji(z) is concave for z > 1/2/k and by

Lemma 2.5, Jp x Ky C Ky for T > 44/2/k. This means that for any T > 0, J * Ky C Kp.
The value of T} is obtained from
21

To =inf{T > 0: BJ(%ZE) = ,Bexp(——%( T ¥) >1,}

Example 9.3 . Let ®5 be as in Example 2 and let J(z) = exp(—|z|)/2. Here also,
Lemma 2.5 implies that for any T > 0, ®5(Jr * Kr) C Kr. Thus, the results of section 6

imply that if T is defined as
2y

then, for T < Ty, f has no fixed point in Cr, while for T > Tj, f has a unique fixed point
in CT.

We look now at an example where J is not continuous.

Example 9.4 . Let ®5 be as above and let J(z) = Ij_1/2,1/2). Then, we have the relations
(2.5).
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Proof. Let k € N and > 0 such that

§+kT§%<§+(k+l)T, and r=1/2— (T/2+kT) < T.

We consider the three cases. (i) 0 < r < T/2. A calculation gives, for z € [0,7/2],
Jr(z) = Ipja—ryrya + 2k + 1,

so that Jr is increasing and Jy(z +T'/2) is decreasing. Thus, by symmetry, Jp+ Kr C —Kr.
This case corresponds to T' € (1/(2n + 2),1/(2n + 1)).

(i) If r > T/2 and z € [0,T/2), then
Jr(z) = Tipro7y2) + 2k + 2,

and Jr(z) is decreasing in {z > 0}, and Jr * Kr C Kr.

(i) If T = 1/{n + 1), then Jr is constant on [-T/2,T/2] so that Jp*u = fu.

If T > 2, we derive from Lemma 1 that f(Kr) € Kr. If 1 < T < 2, a direct
calculation gives that Jr(z) = 1for 0 <z < T/2-1/2, Jr(z) =0for T/2 - 1/2 <z < 1/2
and Jr(z) = -1 for 1/2 < £ £ T/2, so Corollary 1 implies that f(Kr) C Kr. Also, the
spectrum is {89(2nn/T), n € 2Z + 1} with g(z) = sin(z/2)/x/2.

We define Ty = sup{T > 0: Bsin(w/T)/(x/T") > 1}. The results of section 6 imply
that if T > Ty, and T' € (1/2n + 3,1/2n + 2), n > 0, then the equation f(u) = u has a
unique nonzero fixed point in Cr. however, if T € {1/2n + 2,1/2n 4 1], n > 0, then there is
no nontrivial fixed point in Cp.

10 Appendix

Proof of Lemma 3.1. (i) Define the measurable function Jf' (€) = ¥j,<n J(€+nT). Because
J is non-negative, for each &, {JF(£), N = 1,2,...} is an increasing sequence and we can
define Jr{£) as iis pointwise limit. .Jp is thus measurable and it follows easily that Jr is
even and non-negative. Assume that Jr(€) < oo, then it is easy to see that Jp(£ +T) < oo
and that
Jol€ +T) = Jp(€) = J(E + T+ NT) — J(NT - €),

goesto 0 as N goes to infinity. Thus, Jr is periodic. (ii) follows by the monotone convergence
theorem. For (iii), let £ € [0,7/2] and write

Il = O+ X VET+6) + (T - )
J(é‘) . % Z[/-nT+E J +/~n§{‘—£ ]

IA

nT+E-T/2 nT—£~T/2

IA

4 o0 00
T+l I+ /T <o
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Remark 10.1 . If J is even, nonnegative and bounded and J]jg ) is decreasing, then .J
is automatically measurable. Furthermore, after modification on a countable set, we can
assume that J is continuous at 0, right continuous on (0, co) and left continuous on (—o0, 0).
To see this, note that because J|[p o) is decreasing, we know that J is continuous except
possibly at countable many points. We define
J(&) = xlff& J(z), for £ >0, J(¢) = z11)1?_ J(z), for £ <0 and J(0) = lim J(z).

J agrees with J except possibly at countable many points, J is continuous at 0, and right
continuous on (0,00). It is an elementary exercise (See Rudin,[9]) to show that Jljp o) is

Lebesgue measurable. Similarly, J l(=o0,0) is Liebesgue measurable, and therefore J and J are
measurable.

Proof of Lemma 3.2. Let 6, be the translation shift by x. Recall that 6, : L' — L' is a
continuous operator. Now,

(L) = Lraa)] < [ GoymarTolo) = ) uly + 22)dy]
< (’JTloo : IHII‘IZJT - JT|1)1/2 IUIT (10-1)

If we take zo = —11, then (10.1) shows that | Lru(z:)| < \/|Jr|e|u]r and that Ly (Hr) € Xp.

Actually, Ly defines a bounded linear map of Hr — X with norm less or equal to /|Jr|e
and Lr({u: u € Hr and |uly, < 1}) is a bounded, equicontinuous family in X7. This last
fact shows that Lr : Hr — Xp is compact.

Lemma 10.2 . Kp N C? is dense in Kr in the supremum norm topology.

Proof. Let u € Kr and for each n integer let v, be a piecewise linear function in K7
approximating u; i.e. if z; = T/(4n).i for i = 0,...,n, we set v,(z;) = u(z;) and complete
v, on [0,T/4] by straight lines joining the {v,(z;)}. We complete v, on [0, T] by symmetry.
Note that |u — vplee — 0. Now let ¢ be a C* function with support in [-1/2,1/2] and
on(x) = np(nz). We set w, = @, * v,. Note that w, € K7 N C*. Indeed, for z € [0,7/4],

T/2 N g
wal@) = [ enlw)in(e ~ v)dy,
where 9,(z) = v,(z) for z € [0,7/2], and 9,{x) = —zv,(z,)/x, for z < 0. We build &, so
as to be concave on [~7"/2,T/2], and so is @n * U, on [0,7/4]. Also, it is easy to see that
|t — Wy oo = 0. 2

Proof of Lemma 7.3. We leave to the reader the proof that (Y, || - ||.) is a normed linear
space when K is a closed cone. Suppose that K is also normal. If ||y|l, = M, we have
—Mu <y < Mu. Since 0 < y + Mu < 2Mwu, the normality of K implies that there exists a
constant C, independent of y, such that

lly + Mul| < C||2Mu|| = 2MC|Ju|].
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If follows that [|y|| < |ly + Mu]| + || — Mul|| = (2C + V)||u||M := Cyljyll., where C| is
independent of y.

Now suppose that {v,,n > 1} is a Cauchy sequence in Y. Since ||y|| < Cillyll.
for all y € Yy, it follows that {v,,n > 1} is a Cauchy sequence in Y, and that there exists
v € Y with lim ||y, — v]| = 0. Given € > 0, select ng so that |jv, — v,,|| < € for all n,m > ny.
Given n > ng, this implies that for all m > ny, —eu < v, — vy, < eu. Since K is closed in
Y, it follows by taking limits in Y as m — oo that —eu < v, — v < eu. Thus we see that
v €Y, and |ju, — v||, < € for all n > ng, so Y, is complete.

If L is as in the statement of Lemma 7.3 and v € Y, with ||v||, = M, we have
—Mu < v < Mu. Because L preserves the partial ordering, —~MNu < Lv < MNu, so
Lv € Yy and ||Lv|l, < N||v||y. It follows that £ : ¥, — Y, is a bounded linear map with

L]l < N. ¥
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