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AMINE ASSELAH, ROGER D. NUSSBAUM 

We study existence, uniqueness and analyticity for periodic solutions of 

u(x) = @(f~ J(y)u(x - y)dy) for x E/R. 

1 I n t r o d u c t i o n  

We study the periodic solutions u of the equation 

Vz e~:~, u(x) = @(/m J(y)u(x - y)dy). (1.i) 

This problem is motivated by the case where @(x) = tanh(x) and J(x) = fl exp ( -~x  2) with 
fl > 1. Indeed, to study phase separation in a system where the total density is conserved, 
Lebowitz, Orlandi and Presutti [7] proposed the evolution law 

(1.2) 
L-- - - ~  J 

In (1.2), u represents the density of magnetization and takes values in [-1,1]. Intuitively, 
the first term on the right hand side of (1.2) is a diffusive term which tends to homogenize 
the magnetization, while the second term corresponds to an interaction between particles 
countering the diffusive term with the net result, when fi := f J > 1, of favoring clumps of 
the "pure phases" { a , - a } ,  where a = tanh(fla) > 0. 

From the standpoint of statistical physics, the precise form of the "interaction" 
kernel J is not known, and we will restrict ourselves to the assumptions that J is even, 
non-negative and d(x) > J(y) for 0 < x < y. In other words, we deal with a symmetric, 
attractive interaction decaying with the distance. It is known [4], in the case where J has 
compact support and @ = tanh, that there is a solution u~ of (1.1) odd and increasing 
from - a  to a unique in the class of functions with liminf+oou > 0 and limsup_o~u < 0. 
The profile u~ represents coexistence between the two pure phases with a diffusive interface. 
Phenomenologically, we expect a conservative system to settle at low temperature (large 
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here) in a crystal-like equilibrium state. Thus, periodic profiles, oscillating between the two 
pure phases should be stat ionary solutions of (1.2) for/3 large. Thus, we study here periodic 
solutions of (1.1). An interesting open problem is the stability of these periodic solutions. 

When u is T-periodic and x E [-T/2, T/2] and some further assumptions are made, 

:= f j ( y ) u ( x - y ) d v  = 
fiT~2 

J_T/JT(y)u(x--y)dy, with JT(X)= E 3(x+nT). (1.3) 
nE2g 

The fixed point problem for a given period on the circle, was studied by Comets,  
Eisele and Schatzmann [3]. However, they assumed that  J was such that  for some integer 
p, f g(x)exp(i27rnx/T)dx vanishes for n E (22~ + 1 ) p \ { p , - p } ,  and they looked for fixed 
points u such that  f u(x) exp(i27rnx/T)dx = 0 for all n • (22~ + 1)p. 

Besides the fact tha t  we do not assume such features on J ,  our start ing point is 
Y on the whole line. Our goal is to go beyond existence results, to give some information 
about  the fixed points and to show uniqueness in some natural  classes of functions. 

2 N o t a t i o n s  and R e s u l t s  

For T > 0, we work in the Banach space, (XT, I " I~), of continuous functions of period T, 
odd with respect to 0 and even with respect to T/4 

XT = {u E C~162 u(-x) =-u(x) ,  and u(x + T/2) = -u(x),Vx}, 

with the supremum norm I" Ioo. Also, we often consider the Hilbert space 7-/T, obtained by 
completion of XT under the scalar product 

/0 := for r e XT. (2.1) 

We label the different properties of J.  (Aa) J : /R --+/R is Lebesgue measurable, 
nonnegative, and even; (Ab) J is integrable; (Ac) J is bounded; (Ad) J(x) > J(y) for 
0 < x < y. We say that  A holds if (Aa), (Ab), (Ac) and (Ad) hold. 

Similarly, we label the properties of 55. (Ba) 55 :/R --+/R is odd, bounded, continu- 
ously differentiable and 55'(0) = 1; (Bb) 55 is increasing; (Be) 55 is concave in [0, oo); (Bd) 55 
is C a in a neighborhood of 0, and 55"(0) < 0. 

R e m a r k  2.1 . With no less generality, we wilt assume that  sup{55(x) : x > 0} = 1. 
Indeed, for any positive constant c, solving the equation u = 55(J* u) is equivalent to solving 

= ~ ( J  �9 fi), where ~(y) := 55(cy)/c. Also, we call/3 := f J(x)dx 

Our approach is based on the observation that  when .IT is decreasing on [0, T/2] and 55 
satisfies (Ba) (respectively (Ba)-(Bc)), then the map f(u) := 55(J * u) preserves the cone 

CT = {u E "tit : u(x) >_ 0 a . e . - d x  for x E [0, T/2]}, 

(respectively KT = {u E XT: u(x) concave and increasing in [0, T/4]}).  

If we do not assume that  JT is decreasing, no obvious cone is left invariant, and our 
main result is 
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T h e o r e m  2.2 . Assume A, B and that /3 > 1. Then, there are To > 0 and eo 6 (0,1) 
such that for T > To, th, ere is a fixed point, u, of f in Cr\{0} ,  where f is defined by 
f (u)(x)  = r J ( y ) u ( z -  y)dy). Moreover, f has no other" fixed point w e X r  satisfying 
Iw(x) - v(x)[ <_ eolV(X)] for some v e K r \ { 0 }  and all x EIR. Also, if ~ is real analytic, 
then u is real analytic. 

It is based on the weaker but more satisfactory result. 

T h e o r e m  2.3 . Assume A, B, and f(CT) C Cr. I f T  is such that 

27r 
3*(~'~ ~) : = / m  J(x) cos("~xldx > I (2.2) 

then, there is a unique fixed point, u, of f in CT\{0}, and u E KT. I f  G is a bounded, 
relatively open neighborhood of u in CT and 0 r G, then ic~(f,a) = 1, where icT(f,a) 
denotes the fixed point index of f : G ~ CT (see [8]). Also, if 

DT = {v e XT : v(x) > O, for 0 < x < T/2},  

if H is a relatively open neighborhood of u in DT with 0 f~ [I and if @ is a relatively open 
neighborhood of u e KT with 0 q~ (3, then iDT(f, H) = 1 and iKr(f,  0)  = 1. Moreover, if 
is real analytic, then u is real analytic. 

R e m a r k  2.4 . (i) We have stated Theorem 2.3 with assumptions A and B because our 
primary purpose is Theorem 2.2. However, we can treat more general cases than A. For 
instance, there are cases where f J -- oo (e.g. J(y) = 1/log(1 -t- log(1 + [Yl))), which can be 
treated by the same method, when we use the oddness of u to interpret J * u as 

Thus, if 

fo ~176 ( J(x  - y) - J(x + y) ) u(y)dy. 

f 

s u p / [ J ( y -  x) - J(Y)Idy < co, and f(CT) C CT 

then by analyzing the linear map u ~-+ J * u, we could obtain an analogue of Theorem 2.3. 
(ii) For simplicity, in Theorem 2.3 we have made the hypotheses on ~ stronger than necessary. 
Assume A, B(a) and B(b) and suppose that  ~ is C k for some k > 1, ~'(0) - 1, �9 is concave 
in [0,(x~) and 'I~(x)/x is strictly decreasing on (0, o~). If equation (2.2) holds, then the 
argument we shall give proves that  there is a unique fixed point u of f in CT\{0} and that  
u E C k, u'(0) > 0 and u(x) > 0 for 0 < x < T/4. Moreover, if u E KT and G, H and O are 
as in Theorem 2.3, ice(f,  G) = iDr(f, H) = igr(f ,  @) = 1. 

Furthermore, we have characterized some d's  for which f(CT) C CT. 

L e m m a  2.5 . Assume A, (Ba), and that there is C > 0 such that J'(z) exists for all x > C 
and J' is concave in {x > C}. Then, for T > 4C, f(CT) C CT. 
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To give a complete picture, we recall a known result [3] 

L e m m a  2.6 . Assume A and B. If T is such that 

s u p / J ( z )  cos( 2=(2n + 1)x)dz < i 
~>0 Jm T - 

then, 0 is the only fized point in 7iT. 

Existence results for periodic solutions of (1.1) are simpler and do not require all 
these hypotheses for @. For the sake of completeness, we will provide a variational proof of 
the following�9 

L e m m a  2.7 . Assume that ~ :IR -+]R is increasing, continuously differentiable, bounded, 
@(0) = O, and ~'(0) = 1. Also, assume that J satisfies A and for T > 0 

^ 27r 2 sup J(-~-( n + 1)) > 1. (2.3) 

Then, there is a non-zero fixed point of f of period T. 

If we drop the assumption that  @ is increasing, then it becomes unclear whether our problem 
can be put in a variational form. However, we have the following result. Define 

vx e I-T~2, T/21 J (x) = - JT(T /2  + x)). (2.4) 

L e m m a  2.8 . Assume (Ba) and that @(x) > 0 for x > O. Also, assume A and that JT is 
decreasing in [O,T/2], JT is nonnegative a.e. on [0,T/4], and J((27r)/T) > 1. Then, there 
is a non-zero fixed point of f in DT. There exist p > 0 and R > p such that f (u)  # u for 
0 < lu[oo < p, u E DT and f(u)  # u for [uloo > R and u E DT; and if Gp,R = {u E DT : 
p < [uloo < R}, then iDr(f, Gp,R) = 1. Furthermore, if ~ is also increasing and concave on 
[0, co), then f (KT)  C KT; and if Hp,a = {u E KT : p < ]u[oo < t~}, then iKr(f, Hp,R) = 1. 

We now illustrate Theorem 2.3 with two examples. First, we consider J1 (z) equals 
fl/2 if Ixl < 1 and equals 0 otherwise. We will see in section 9 that for ~ satisfying B 

1 1 

f(CT) C --CT, for T E nU0(2n + 2' 2n + 1 )' 

( 1 1 
_ ' 

f(CT) C CT, for T E .~0 2n + 3 U (1, oc), 

and, f(CT) C {0}, for T e U { 1 / ( n +  1)}. (2.5) 
n_>0 

By Theorem 2.3, (and Lemma 2.6), f has a fixed point in CT\{0} if and only if 

�9 7r  71- 
/Ssm(~) > ~ and f(CT) C Cr. 
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Depending on 13, there will be an alternation of intervals where the period is such that  .f has 
a unique fixed point in CT\{0} with intervals with no fixed point in Cr \{0} .  

For the case J2(x) = ~e-~:2/2/(v/-~), we will see in section 9 (assuming B) that  

f(CT) C CT, for any T. Thus, if To = 27r/(~/2 log(13)) and T > To, I has a unique fixed 
point in CT\{O}, whereas if T _< To, 0 is the only fixed point in 7/r.  

An outline of the paper is as follows. We give in section 3 conditions on J equivalent 
to having f(CT) C CT. We show also that  a large class of kernels satisfies this condition. 
In section 4, we give two types of complementary existence results: when <I~ is increasing, 
we use a variational method, whereas when f(CT) C CT but ep not increasing, we use 
a fixed point index argument. In section 5, we establish that  the fixed points are real 
analytic functions. In section 6, we deal with the problem of uniqueness in the case where 
f(CT) C CT. When only A and B hold, we approximate the map f with f~ such that  
f~(CT) C CT. Results of section 6 tell us then that  f~ has a unique fixed point u~ in CT. We 
show then that  Ildf~(u~)ll < 1, uniformly in e, in an appropriate Bausch space: this is the 
content of Lemma T.6 of section 7.3. Many results of section 8 rely on a priori estimates of 
ue that  we have gathered in section 7. The implicit function argument is then developed in 
section 8.1. Finally, we illustrate our results on some concrete examples of J ' s  in section 9. 

3 I n v a r i a n t  C o n e s .  

Our task in this section is to give conditions on J which guarantee that  /(T is invariant 
under convolution with J. We emphasize that  the relation between J and JT is not trivial: 
see the first example of section 9. 

Fix T > 0 and define JT as in (1.3), allowing Jr to have the value +cx). We state 
two Lemmas whose proofs are given in the appendix. 

L e m m a  3.1 . If (An) holds, then JT is nonnegative, even, Lebesgue measurable and T- 
periodic. If (An) and (Ab) hold, then, JT is integrable on [0, T] and 

If A holds, then JT is bounded. 

L e m m a  3.2 . Assume A. For u C ~t~T, We define 

f [r/2 Jr(x - y)u(y)dy. (3.1) Lru(x) = Jln J(x - y)u(y)dy -= 
J-T~2 

Then, LTU E 7LT and LT defines a compact linear map of 7-IT into XT. 

We note that  J r  (see (2.4) is even, and odd with respect to z = T/4, i.e. JT(T/2 - z) = 
--JT(X). Also, for u e 7iT, 2JT * u(x) = Jr * u(x). Indeed, it is enough to note that  

F / 2  Jr(T~2 + y)u(  -  )dy = y + T/2)dy 
T/2 JO 
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]o T = - d~,(v)~(:~ - y)du = - J T ( v b ( x  - v)d~. 

Therefore, 

1 loT~ 2 ~ (LTU)(X) = ~ u(y)(JT(x  - y) - JT'(z + y))dy [by oddness of u] 
fT /4  

= ]o u(v) (JT(z  -- y) -- JT(x + y))dy. (3.2) 

L e m m a  3.3 . Assume A. Then, LT(CT) C CT if and only if JT decreases a.e.-dx in [0, T/4] 
a,~d 2 r ( x )  > 0 a.e.-dx for  ,~" �9 [0, T / 4 ] .  I f  r is odd, continuous, e ( x )  > 0 fo," ~ > 0 ~nd 

LT(CT) C CT, then f (CT) C CT. 

Proof. First, for u �9 XT, 

rT/4 _ 

(LT~)(~) : ]o ~(v)[J~(~ - y) - L-(~ + y)]dy 

For every ~ �9 [0, T/4] and almost all V �9 [0, T/4 - ~], we have I= - Vl <- ~ + V <- T/4, 

and our hypothesis implies tha t  ]T(X -- y) >_ JT(cc + y). For almost  all y �9 [T/4 - x, T/4], 
]T(Z + y) = - J T ( T / 2  - (x + 9)) < 0 because & >_ 0 a.e.-dx in [0, T/4]. 

Conversely, suppose A holds and L(CT) C CT. For any a < /3 in (0, T/4)  and 
e �9 (0, min(a,  (/3 - a ) /2 ,  T / 4  - / 3 )  we choose u'(x) = 1/e if [x - a] _< e and u'(x) -: - 1 / e  
if Ix - /31 < e and u'(x) = 0 for other z �9 [0, T/4]. This insures that  (LTU)(X) > 0 for 
x �9 [O,T/4]. We rewrite (LTu)(z)  as 

1 FT /2  _ 
(LTU)(X) = ~ Jo JT(y)(u(x + y) -- u(y ~g) )dy.  (3.3) 

As, IT is bounded, the Lebesgue dominated convergence theorem implies that  

( L ~ ) ( ~ )  ~:~/~ - ~ / ~  - 
lira --x -- ]o u '(y)JT(y)dy = 2 ]o u ' (y)JT(y)dy > 0, (3.4) x..-*O 

Therefore, 

> �9 

Now taking e -+ 0 and invoking the Lebesgue differentiation theorem, for c~ and/3 outside a 
subset of measure 0, & ( a )  _> Jr(~3). 

Finally, for any 7 E (0, T/4) ,  and e < min(7, T /4  - 7), we can define a piecewise 
linear continuous function w �9 CT such that  w'(x) = 1/e if ]x - ~/1 < e and w'(z)  = 0 if 
Ix - 3'1 > e. Thus, 

rT/4 _ 2 f l y  f T  lim (LTW)(X) __ 2 ]o w'(y)JT(y)dy > 0 = - (y)dy > O. 
x-~o+ x -- ~ -.~1<_ -- 

Therefore, for almost all 3, �9 [0, T/4] 2~(~) > o. 

We prove in the Appendix that  LT(CT) comprises continuous functions. It follows 
then, under our assumptions, that  f f 2 ( L T ( C T )  ) C CT. | 
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C o r o l l a r y  3.4 . Assume A. Then, LT(I(T) C I@ is equivalent to JT' decreasinq a.e.-dx in 
[0, T/41, and JT(x) >_ 0 a.e.-dz in [0, T/4]. If r is odd, continuous, increasing and concave 
and LT(KT) C Is then f(IfT) C I(T. 

Proof. (i) We first show that  JT decreasing a.e.-dx in [0, T/4], and JT(X) >_ 0 a.e.-dx in 
[0, T/4], implies that  LT(tfT) C t(7". It is enough to show that  LT(KT fl C 2) C IfT N C 2. 
Indeed, KT fl C 2 functions are dense in (KT, I loo) and LT is continuous on (XT, I Ico) (see 
Lemma 10.2 of the Appendix). Now, it is easy to see that  LT(C 2) C C 2 and that  u c IfTNC 2 
is equivalent to u E XT M C 2 and -u"  E CT. By Lemma 3.3, LT(U ) C X T N C 2 and 
--LT(U)" e CT, so that LT(U) e KT. 

(ii) Assume LT(KT) C KT. For any continuous r E CT one can find u C KT A C ~ 
such that  u" = - r  Then LT(U) E KT M C 2. Thus, --LT(U)" = LT(r C CT. LT(CT) C CT 
because continuous functions are dense in CT in the 7/T topology and LT is continuous. 
Lemma 3.3 implies that  JT is decreasing in [0, T/4] and JT(x) > 0 a.e.-dx in [0, T/4]. 

The proof is concluded by noting that  the composition of two increasing concave 
functions is still increasing and concave. | 

R e m a r k  3.5 . In general JT is not decreasing in [0, T/4] ( see example 9.1). However, if 
we choose T > 2M(e) and define J~ = JI[-M(~),M(~)], then (Y)T = J~ on [-T/2,T/2],  and 
Lemma 3.3 applies to J~. Here, for S C ~ ,  we use Is(x) to denote the characteristic function 
o f S ,  so Is(x) = 1 for z E S a n d  Is(z) = 0 f o r x  r S. A natural class of J l e a v i n g t @  
invariant are those of Lemma 2.5. This class is natural in most applications in physics where 
such a fixed point problem arises. 

Proof of Lemma 2.5. We write 

J(nT + T/2 + x) : ~ J(nT + T/2 + x) + ~ J ( - n T  + T/2 + x). 
n E 2 g  n : 0  n = l  

Then, using that  g is even 

c o  oo o o  

E 4 - n T  + T/2 + x ) :  E J ( -nT-  T/2 + x ) :  ~ J(.T + T/2-  ~), 

and therefore, for x 6 [0, T/4], Jr -- J(x) + ~n>_0 jn(x), with 

j~(x) = J(nT + T § x) + J(nT + T - x) - J(.T + If2 + x) - J(nT + T/2 - x). (3.5) 

Now, for n >_ O, Jn is decreasing in [0, T/4], as one can see by taking the derivative of jn and 
using the concavity of J' on [C, o~). As J is decreasing on [0, T/4], we conclude that JT is 
decreasing on [0,T/4]. Also, JT(T/4) = 0 implies that JT(X) >_ 0 for all x 6 [0, T/4]. | 
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R e m a r k  3.6 . Assume that  (An), (Ac) and (Ad) hold and tha t  f t J ( y - x ) - J ( y + , x ) l d y  < oc 
for all x. Then, fi(z) = d(z) - J ( z  - T/2)  is an integrable function and we can define 
fiT(Z) -= ~z~ J ( z  + nT).  Now, for u E XT, we interpret  f ( u )  as 

(/0 ) f (u )  = r [fiT(Y -- x) -- G ( Y  + x)]u(y)dy . 

In case where J '  is concave in {x > C}, then for T > 4C, f (CT)  C CT because the formula 
f i t  = Y(x)  + E,~>_oj~(x), with (3.5) still holds. 

4 E x i s t e n c e  R e s u l t s .  

Proof of Lemma 2.7. Because �9 is increasing, we can define its inverse r  For notat ional  
convenience, we will assume in the proof  that  ~ is odd and l im~ ~ = 1; these features play 
no role. Also, for x E [ -1 ,  1], we define 

/o x r = r (4.1) 

lu(x)l _< 1, a.e.}, a closed bounded convex set in 7tT, we define For u E GT := {u E ~ T  : 
the  energy as 

T 1 T T 
~[u] := fo ~(u(x))dx- ~ fo fo JT(X-- y)u(x)u(y)dxdy =--(~(u), 1)- ~(']r* u,u). (4.2) 

if  I~lo~ = 1, we set J=[~] -- ~ .  We first claim tha t  there is u E GT such that  Y[u] < 0 
(note tha t  .T[0] = 0). We assume that  the supremum in (2.3) is achieved for no and set 
uo = sin(2~r(2no + 1)x /T)  E GT SO tha t  JT * uo = Auo, and A > 1. Then, the claim follows 
by choosing e small enough and noticing that  ~ ( z )  ~ x2/2 close to  0. 

1 2 *u0, u0) = C2 Y'[cu0] = (qd(cu0), 1) - 5c (JT ~ ( 1  -- A)(uo, u0) + o(c2). (4.3) 

We now show tha t  we can always choose a minimizing sequence in {u : lu]~ _< 1 - 5 }  
for 5 small  enough. For, 6 E (0, 1/2), let u5 be a t runcation of u 

Z/,5 ~-- ?d,f{iul<_,_5} q -  ( 1  - -  ( ~ ) f { u > l - 5 }  - -  (1 - 5)I{_~>,_a}. (4.4) 

I t  follows from a simple computat ion tha t  

I ( J*  ~ , ~ ) -  ( J *  ~ ,u~) l  < 
F T  

C 

= C E [0, T] : [u(x)l > s}lds. (4.5) 

Now, sup I ~] = 1 implies tha t  liml r = cx~. Thus, it is always possible to choose 5 such that  
9(1 - 5) = C. Now, 
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Note that  

Thus, 

= _ r  >  }lds 

> - 5) : lu( )l > s } l d s .  (4.7) 

Now, let (u,) be a sequence in {u e CT:  lu]oo <_ 1-5} ,  such that  lim.T'[Un] - =  infY.  
There is a subsequence converging weakly to u* �9 GT with ]u*]oo _ 1 - 5. Now, it is well 
known [2] that  9 v is weakly lower semi-continuous so that  >'[u*] = inf ~-. Also, it is easy to 
see that  r - JT * u* -= O. | 

If we drop the assumption that  ~ is increasing, but demand that  �9 be odd, then 
there is a case, natural from our point of view, where we can still have an existence result 
through a fixed point index theorem. First, we recall that  a closed cone C with vertex at 
0 in a Banach space Y is a closed convex set such that (a) AC C C for all A > 0 and (b) 
C V~ ( - C )  = {0}. We say that  g : C ~ C is ~ c h e t  differentiable at 0 with respect to C if 
there exists a bounded linear map L = dgo : Y --+ Y such that  g(x) = g(O) + L(z)  + R(x )  
for all x �9 C, where [IR(x)I] < ~(p)p for all x �9 C with []zl] _< p, and limr-~0+ r/(r) = 0. The 
following theorem can be found in [8]. 

T h e o r e m  4.1 . Assume that C is a closed cone in a Banach space (]I, 1111). I f  (o) f :  C --+ C 
is a continuous map with f(O) = O, (i) f is compact, (ii) f is Frdchet differentiabIe at 0 
with respect to C and there exist v E C\{0} and A > 1 with dfo(v) = Av, 5ii) dfo(x) • x for 
x �9 C\{0},  (iv) there is a > 0 such that t f ( x )  # x Vt �9 [0, 1] for x �9 C\{0},  ]lxl] = a,  then 
f has a fixed point u �9 C with 0 < ]lull < a. 

Furthermore, if B~ = {x �9 C : IIx][ < e} and U~,~ = {x �9 C : c < ]N] < c~}, there 
exists eo such that 0 is the only fixed point of f in B~o; for 0 < e < eo, i t ( f ,  B~) = 0 and 
i t ( f ,  U~,,) -= 1. 

Proof of Lemma 2.8. We need to verify the hypotheses of Theorem 4.1. Our Banach space 
is (XT, I Ioo) and our closed cone is DT. Lemma 7 and Corollary 1 imply that  f ( D T )  C DT. 
Lemma 6 implies that  LT is continuous and compact as a map fro ~ T  to XT,  SO f : DT -+ DT 
is compact. Using these observations, it is easy to see that  f : DT --+ DT satisfies conditions 
(0) and (i) of Theorem 4.1. We can also consider f as a map from XT to XT,  and it is easy 
to check that  f is Fr~chet differentiable at 0 with Fr~chet derivative dfo : XT --~ XT  given by 
dfo = LT. Also, for v(x) = sin(2~rx/T), LT(V) = .~v with ;~ = 3(2~r/T) > 1. Thus, condition 
(ii) is satisfied. 

One can consider LT as a bounded linear map of ?~T into itself; since LT : 7iT ---~ 
X T  C 7iT is compact, the spectrum of LT : ~t~ T --+ ~-~T is the same as the spectrum of 
LT : XT  ~ XT.  Using Fourier series in 7{T, one can see that  a(dfo) is given by 

a(dfo) = {j(ZTr(2n + 1)), n = 0,1, .} U {0}, 
T ' '  
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and that the eigenvector corresponding to A,, = J(~) is u,,(x) = sin(~). 

Since un ~ Dr for n > 1 and A0 > 1, we conclude that d~o(U) # u for u C DT\{0}, 
and condition (iii) holds. 

Condition (iv). If R > Ir then for any x E DT If(x)]~ < R. Thus, for any 
t e [0, 1], t f (x)  # x when z e DT with IVloo = R. 

If ~ is chosen as in Theorem 3 and R is as above and G~,R is as in Lemma 4, then 
Theorem 3 implies that iDr(f, G~,R) = 1. The case for general p and R follows from the 
additivity property of the fixed point index. Since Joy(f, GE,R) = 1, the properties of the 
fixed point index imply that  f has a fixed point in G~,2~. If  r is also increasing and concave 
on [0, c~), we have seen that  f (KT)  C KT and the same argument given above, with I@ 
replacing/~T, shows that  iKr(f, He,R) = 1. | 

Finally, for the sake of completeness, we prove here Lemma 2.6 (compare with [3]). 

Proof of Lemma 2.6. Assume that  u E CT\{0} is such that f (u)  = u. Thus, 

r = u ~ u(x)nTu(z) > u(x) 2 (4.9) 

with equality only for x such that  u(x) = 0. Because u is continuous (Lemma 3.2) and not 
identically zero, we see that  (LTu, U)T > (U, U)T. As LT is self-adjoint, we have r(LT) > 1, 
which is a contradiction. | 

5 Regular i ty .  

T h e o r e m  5.1 . Assume A and suppose that �9 is real analytic. I f  u :IR --HR is measurable 
and bounded and ~( J * u) = u, then u is real analytic onlR. 

Proof. The proof will proceed in 3 steps. In step 1, we show that  u is Lipschitz; in step 2 
we show that  u is C ~ and in step 3 that  u is real analytic. 
S t ep  1. Our first claim is that  for x < z, 

] J ,  u ( z )  - J �9 u(x)l < 3J(O)]uloo(z - x). (~.1) 

Indeed, 

,F 
OOO 

~ ( y ) t J ( ~ - y ) -  4 z - ~ ) ) ~ 1  _< I~loo ( / ~  1 4 ~ -  y ) -  4 z  - ~ ) l @  

-< I~l~(f)oo[J(~ - ~) - J(z - ~)]dy 
+ s IJ(~ - ~) - J(z - y)ldy + /oo [J (y  - z) - J(~ - ~)]d~) 

_< 3J(0) l~l~(z  - ~). (5.2) 



Asselah, Nussbaum 395 

Note that  ] J ,  uloo < IJl~Moo and if we call 

= 3J(0), then I~(z)- ~(x)l _< ( snp I~'(Y)l/MIz- ~llul~ M 
\lyl_<lJIiMo~ / 

S t e p  2. We show that u is k times continuously differentiable (C e) for all k >_ 1, and 

]Dk(J * u)l~ _< M[Dk-lu[o~. (5.3) 

First, we show that  u is C 1 and 

ID(d * u)[oo _< M[ul~o. (5.4) 

Indeed, u Lipschitz implies that  u'(x) exists almost everywhere, lu'lr < 0% and 

/: vx, ~(x) = ~(0) + ~'(y)@. 

Thus, IJ * u'(z) - Y * u'(x)] < Mlu'loolz - x I and 

I J * u ( z + e ) - J * u ( z )  - J * u ' ( z ) l  I - = ~ ( J , u ' ( z + x )  J , u ' ( x ) ) d z  I < 

This implies that  J �9 u is differentiable and ( J  * u)' = J * (u'). It follows that  (5.4) holds, 
u E C 1 and 

lu'l~o =- I~ ' ( J  * u ) J  * u'loo < M sup I~'(x)l]uloo. (5.5) 
[xI~_IJ[lluIoo 

Now, we assume, by way of induction, that  u E C k and D~u is bounded for i < k. 
We note that  Da(J  �9 u) = d * Dau, and by arguing similarly as above, 

] D k Y * u ( z ) - D k J * u ( x ) l  < MIDau]oolz -x] ,  and D k u = e 2 ' ( d , u ) D a ( J , u ) + R a ,  (5.6) 

where Rk E C 1 and DRk is bounded. Thus, (5.6) shows that  Dku E C 1 and Dk+lu is 
bounded. The first inequality of (5.6) implies (5.3). 

S t e p  3. We show by induction that  there are positive numbers {Pn, n > 0} such that  

i! _< Pi, with pnx" < c~, 
n ~ 0  

for x positive and small enough. 

We define for any b > 0 a sequence {qn(b)}, with ql(b) = b and 

1 . 3 . . .  (2n - 3) b~2,,_1. 
Vn > 1, q,~(b) = n! 

It is known [6] (p.343-344) tha t  {q~(b)} satisfies 

Z q~(b)q._~(b) = q~(b). 
i = 1  
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We choose a 6 > 0 to be specified later, and 7 = 2p0 + 6. We take p0 = ]'u[~, Pt = ]u.']oo and 
f o r n >  1 

6 ,P l ,  p,, = q ~ T  ~ (5.8) 

Thus, the sequence {p~, n _> 0} satisfies 

n 

E PiPn-i <-- 3'Pn. 
i = 0  

Furthermore, 
pj,...pj,, _< 7m-~p~, (5.9) 

jESm(n) 

where the summation is taken over Sin(n) - {(J l , . . .  , jm) :  j l , . . - , j , ~  _ 0, ~ J i  = n}. First, 
(5.9) holds for m = 2. By induction, assume that  (5.9) is true for some m > 2 (and any n). 
Then, for any n, 

E Pjl"" "Pjm+, = EPi  Pj,'" "Pjm ~ EPi(~[m-lPn-i) ~ ~(mpn" 
jESm+l(n) i = 0  yES -i) i = 0  

We assume now that  (5.7) holds up to order n. We define h = J * u and g = h' and 
star t  with the equation 

u'(x) = ~ ' (h(x))g(x) .  (5.10) 

We fix Xo E/R. Taylor's theorem implies that  for ~ near h(x0), 

�9 '(~) = ~ c j ( ~ -  h(xo))  j, where ]cj[ < C j for j _> 1. (5.11) 
jko 

Indeed, as h :/R --+/R is bounded, C can be chosen independently of xo. Using (5.11), 

k k! 
n ~ ' ( h ( x ) )  ~=~o = E c,~ ~ (  m=, je �9 k) Jl!J2!...J.] [DJ'h(x~ DJ"h(zo)] ,  (5.12) 

where we have called Sm(k  ) = Sin(k) N {jl > 0 , . . .  , j , ,  > 0}. Starting from (5.10) and using 
Leibnitz formula, we obtain 

k = 0  

This gives, using (5.3) 

I~(~+l)(x0)l CMl~(~)l~ M 
(n + 1)! < (~ + 1)! + (n + 1)! 

Combining (5.12) and (5.14), we obtain 

[u (~+~) (zo)[ CMlu ('~) I~ 
(n + 1)! (n + 1)! 

~ (nk) nk+'(h(x)) ==~ol'~('~-~)too. 
k = l  

(5.14) 

) I~(~-~)l~176 (5.15) 
+ n + l k _ _  ~ j/! = m=l jeS~(k) i=l 
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Using the inductive hypothesis and (5.9), we obtain from (5.15) (and Ic.] <_ C '~) that  

(~+i)! < +77-f E MmIIp  .-, m=t k=m j e S ~ ( k )  i=l  ' / 

<--- (n -4- 1)! + ~ Cm "7 P n - k P k - m  
m=l  k=m 

CMlu(")l~, M k --< (n q-- 1)! q- ~ c m t l / I m ' T m p n - m "  
m:l  

If 0 < 6 < 1/2 and 0 <_ k < n, we obtain from (5.8) that  P.+l >_ (2~-~)k+tp.-k. 
assuming 6 so small that  e = (CM'76)/2pl < 1, we obtain 

~ ( Z  e");~+l +( )C"M"'7'%. b("+~)(x~ < (n + 1)'7 1 (n + 1)! 

Also, it is easy to see that  

Thus, we obtain 

(CM'7)"po < 2en(~l)pOp~+> 

(5.16) 

Thus, 

( n + l ) !  - (n +1 ) '7 (1 -  e) + M e  Po P,+l.  

Thus, for 6 small enough, independently of n and x0, we have [u(=+i)(x0) I < p=+i(n + 1)!. 
Taking the supremum over all x0, we have proved that  the induction is correct. The fact that  
the power series in (5.7) has a positive radius of convergence follows now from the explicit 
expression for the p~ and Stirling's formula for n!. U 

6 C a s e  w h e r e  f(CT) C CT. 

We assume in this section that  A and B hold and that  f(CT) C CT �9 

If there is C > 0 such that  J is continuously differentiable in [C, oo) and J '  is 
concave in [C, oo), then for T >_ 4C, Lemma 2.5 shows that  f(CT) C CT. 

R e m a r k  6.1 . If  we make the assumption tha t  JT itself is decreasing in [0, T/2],  then it is 
easy to see that  a cone larger than CT is invariant, namely 

CT = {u: odd and periodic and u(z) > 0 a.e. - dx for x e [0, T/2]}. 

All the results of this section hold in this larger setting (i.e. without the symmetry  with 
respect to x = T/4) with trivial modifications. 

Now, Lemma 3.3 implies tha t  JT is a.e.-dx decreasing and nonnegative on [0, T/4]. 
Let F C [0, T/4] be a measurable set of measure T/4 such that  JT iS decreasing and nonneg- 
ative on F. We define a right continuous, increasing function on [0, T/4) by 

F(x) = lim -JT(Y) ,  x e [O,T/4). 
y6F.--+x+ 
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We define F(T/4) = J ( T / 4 )  = 0 and F(x) = - F ( T / 2  - z) for T/4 < x <_ T/2. Finally, we 
define F(z) = F ( - x )  for - T / 2  < x < 0 and we extend F to be T-periodic.  The map F is 

bounded and increasing on [0, Z/41, so F is of bounded variation on [0, T/4]. It follows tha t  
for ~ c C([0, T /4] )  the Riemann-Stiel t j ies integral 

fo ~/~ ~(~)dm(~) = a(~,)  

is defined, and A is a bounded linear functional on C([0, T/4]).  The Riesz representat ion 
theorem implies tha t  there is a regular Borel measure ~ on [0, T/4] such that  

((0, x]) = F(x) - F(O), V x ~ [0, T/4]. 

It is impor tant  to note tha t  F = --IT a.e.-dx, and that  as JT always appears  
integrated against some function, we can replace IT by - F .  

The measure v may be singular with respect to Lebesgue measure, but  we know 
tha t  if JT is not equal to zero a.e.-dx on [0, T/4]: there is a point of increase. In other words, 
either (a) there is ~ E (0, T/4) such tha t  

Vx E [0, a) ,  Vy e (oz, T/4], F(x) < F(y), 

or (b) F i s  constant on [0, T /4)  and F(x) < F(T/4) = 0 for 0 _< x < T/4. Here is an 

i l lustrat ion of case (b): if Y(x) = 1 for Ixl _< T / 4  and J(fl) = 0 for Ixl > T / <  then IT(X) = 1 
for 0 _< x < T/4, IT(X) = --1 for T/4 < x <_ T/2 and JT(T/4) = O. 

In case (a), Ve > 0 small, u((c~ - e, c~ + e]) > 0; in case (b) Vc > 0 small, p ( (T /4  - 
e, T/4]) > 0. We recall also a s tandard  fact tha t  we will use repeatedly. If u E XT is 
continuously differentiable, and F is as above, 

lim fT/4u(y)F(y + x) - F(y - Z) dy loT~ 4 
�9 ~0+ J0 2z  = ~ ( y ) d , ( y ) .  (6.1) 

We are assuming here that  LT(CT) C CT. Observe tha t  7@ = CT -- CT and 
LT : 7iT --+ 7-@ is compact.  If r(LT) > 0, the Krein-Rutman theorem implies tha t  there 
exists ~2 C CT\{0} with LT(~) = r(LT)7). However the spectrum of LT is 

^ 27r k {0} U { J ( ~ - ( 2  + 1), k = 0, 1 , . . .} .  (6.2) 

Furthermore,  there is a unique eigenvector ~k(x) -- sin(2~r(2k + 1)x/T) corresponding to 
](2~r(2k + 1) /T) .  Clearly, g)~ E CT if and only if k : 0. Thus, if 

r(LT) = s u p { l J ( ~ ( 2 k + l ) l ,  k -- 0 ,1 , .  . .}} > 0, 

then r(LT) = J(27r/T).  Now, if r(nT) = 0, we also have r(nT) = 3(2~r/T). Also, because 
LT is self-adjoin% 

( nru, u )r 
r(LT) := lim IIn~,ll~/" = sup . (6.3) 

~-+oo ,~e'~T\{o} (u, U)T 
Our next lemma is a special case of Lemma 4, but  we prefer to give the simpler constructive 
proof which is available when A and B hold. If vt, v2 C 7-/T, or vl, v2 E XT, we shall write 
v~ ~- v2 if v~(x) - v2(x) > 0 for almost all 0 < x < T/4. 
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L e m m a  6.2 . I f  r(Z.r) > 1, there is u E t (T\{0} such that f (u )  = u. 

Proof. The eigenfunction corresponding to  r(LT) is ~(x) = sin(27rx/T). We note tha t  

E KT and that  fore small enough, f ( e~ )  = r ~- ~ .  Thus, {f'~(c~), n = 1, 2 , . . . }  
is an increasing sequence in I ( r .  Let u* be the pointwise l imit  of fn(e~2). Because f is 

continuous from (?-/T, [" IT) to (XT, [. leo), U* e I(T\{O} and f(u*) = u*. II 

L e m m a  6.3 . I f  u E CT\{0} is such that f (u )  = u, then u > 0 in (0, T/4], and u'(O) > O. 

Proof. Case a. There exists a E (0 ,T /4)  point of increase of F .  We recall tha t  u is 
continuously differentiable. We choose b E [0, T/4] such tha t  u(b) > 0. Now, let a be the 
smallest  number such tha t  u > 0 in (a,b). By definition o f u  E XT,  u(0) = 0, thus a _> 0 and 
u(a) = O. We claim tha t  a < a .  Indeed, if we assume tha t  a ~ (~ we reach a contradict ion 
in 

~- l (u(a) )  = JT * u(a) >_ fbu(y) (JT(Y -- a ) -  JT(Y + a)) dy > 0. (6.4) 

The last inequality of (6.4) follows because for y E (a, a + a) ,  we have y + a > a > y - a. 
Now, we rewrite (6.4) a t  

because ]{y E (a,b): y + a > a > [ y -  a[}] > 0. Thus, we can actual ly  choose (a,b) to 
be the maximal  interval in [0, T/4], containing a ,  such tha t  u > 0 in (a, b). Now, by (6.4), 
u(a) = 0 only if 

I {YE(a ,b ) :  y + a > a > y - a}l = O , (6.6) 

i.e., if l (a  - a, a + a)l = 0, which implies that  a = 0. On the other hand, u(b) • O, because 

I{Y E (a,b): y + b  > c~ > b -  Y}I = l[ b -  a,T/4]l  > O. 

Thus, b = T/4.  This proves the first claim of Lemma 6.3. We prove now the last claim. We 
write 

= [T /4  (y) + x) - F ( y -  
dy, 

:s Jo - -  x 

and, by (6.1), we have for e > 0 small  

lira u(x) = 2 u(y)du(y) > ' - e, a + e] > O. 
x---~O X 

Case b. Because f has a nonzero fixed point  in CT, JT cannot equal zero a.e.-dx on [0, T/4]. 
However, JT may be constant  a.e. on [0, T/4],  say JT(X) = c > 0 a.e. on [0, T/4] and 
JT(X) ---- --c a.e. on [T/4, T/2]. If  this is the case and u E C~-\{0} is a fixed point  of f we 
find tha t  

(LTu)(x)  = 0 < x < T/4 ,  
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and, 

u(x) = ~2 "(2ci  T/4 u ( y ) d y ) ,  \ 0 < x < T/4.  (6.7) 
\ JTI,t-z / 

It  follows that  u is increasing in [0, T/4], and since u ~ 0, we must have u(T/4)  > 0. It 
follows easily from (6.7) that  u(x) > 0 for 0 < x < T/4.  Also, (6.7) implies that  

= > o. 

T h e o r e m  6.4 . Assume that r(LT) > 1. I f  u is any fixed point of f in Cr \{0}  and if L 
denotes the Frdchet derivative of f at u in 7-lT, then r(L) < 1. 

Proof. We denote by g(x) = JT * u(z).  Then, for v E XT, the Fr~chet derivative of f at  u 
is 

L :  ~'~T -'~ ~-~T, nv = ff2'(g)j T �9 v. (6.8) 

Thus, L(CT) C CT and L is compact (as a consequence of Lemma 3.2). Thus, by the 
Krein-Rutman Theorem [8], if r(L) # O, there is w E CT\{0} with 

Lw = r(L)w. (6.9) 

Note that  w'(0) exists, and by Lemma 6.3, g(x) > 0 for x C (0, T/4]. Thus we define the 
linear operator L1 : 7-/T --+ 7-/T with 

VxG(O,T/4] ,  L ~ v ( x ) - - ~ ( g ( x ) ) J T * V ( X ) a n d ,  Llv(O)=O. (6.10) g(x) 

Ll is well defined, for ~(9(x) ) /g(x)  is continuous and bounded. L1 is such that  LWu = u 
and 

Lv = ALly, with A(z) = ~'(g(~c))g(x) Vx @ (0,T/4] and, A(0) = 1. (6.1]) 

As r < 0 and 9(x) > 0 for x E (0, T/4], we have that  

A(x) E [0, 1), for x E (0, T/4] and A(0) = 1. (6.12) 

Suppose we could prove that  nu >- L2u with a positive constant n < 1, and that  there is 
M > 0 such that  M u  ~- w. Then, by applying L 2 k-times, 

Mn~u ~- ML2ku ~- L2~w = r(L)2kw. (6.13) 

This would imply that  r2(L) < n < 1 which is the desired result, 

To prove that  nu >- L2u with n < 1, we write 

= L(L ) = =  L (Au) = 
J T * u  
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and n is given by 

= sup A(~) J~* (~'----~)(.~) (6.14) 
ze{O,T/4] JT * U 

Now, u and X are in XT, thus for x e [0, T/4] 

JT * (Au)(x) = f~ A(y)u(y)(JT(X - y) - J r (x  + y))dy < 1. (6.15) 

Y~;-~ f[/--~(y)(J~(------~-y-)-?~ + y))dy - 

Because A(x) < 1 for x E (0,T/4] ,  it remains to show that  the 1.h.s. of (6.15) is strictly less 
than 1 at  0. After dividing numerator  and denominator of (6.15) by x 

c~/2 I.T/4 
lira JT=* (Au)(x) = fo T/4 A(y)u(y)du(y)  < fo udu + (sup[a/2,T/4] A)J~/2 udu (6.16) 
�9 -~0 JT * u fT/4 u(y)du(y)  - fo/2 udu . '  J,/2~T/4 uau" 

which is strictly less than  1 because 

T/4udu > ( inf u)u(a /2 ,T /4]  > O. 
/2 [a/2,T/4] 

To prove that there is M > 0 such that Mu >- w, just recall that on one hand u'(0) > 0 
and u(x) > 0 for x E (0, T/4] by Lemma 6.3 and on the other hand, w'(0) < c~, and w is 
bounded so tha t  this last claim follows easily. | 

Proof of Theorem 2.3. The spectral radius of LT is r(LT) ---- j (2~r/T) ,  and we assume 
J(27r/T) > 1. Thus, by Lemma  6.2, there is at  least one u e KT\{0},  such tha t  f ( u )  = u. 
Assume tha t  there is u' C CT\{0, u} such that  f ( u  ~) = u'. We define fi E XT as 

5(x) := m a x ( u ( x ) , u ' ( x ) ) ,  Vx e [0,T/4]. (6.17) 

By definition, fi >- u and fi >-- u', thus f (5 )  >- 5. Also, we can assume tha t  .5. ~ u. For 
A E [0, 1] we define u~ = At + (1 - A)u, by concavity of (I), we have 

f(u),) > Af(~2) + (1 -- A)f(u) ~- A5 + (1 - A)u = u~. (6.18) 

Now, by Theorem 6.4, 
r(df(u))  = lim Ildf(u)nll 1/" < 1. (6.19) 

n--+OO 

Thus, there is no such that  Ildf(u)~oll < 1. Now, by definition 

f .O(v) = ~ + d f ( ~ ? o ( .  - ~) + n(~, u) and 
n(v,~) 

~im ~ -- O. (6.20) 

Thus, there is a neighborhood U of u such that  

Vv e U, 2im fkn~ =U. (6.21) 

However, we can always take A small enough so that  u~ E U and (6.18) contradicts (6.21). 
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If G, H and O are as in Theorem 2, the additivity property of the fixed point index 
and the uniqueness of the nonzero fixed point u of f imply that  the value of the fixed 
point index is independent of the particular relatively open sets G, H and O. Furthermore, 
because F(CT) C DT, the commutat iv i ty  property of the fixed point index implies tha t  
icr(f ,  G) = iDT(f, H). 

If we take p < luloo < R and define 

H = { V E D T :  p < l v l ~ < R }  and @ = { v E I ( T :  p < l v l ~ < n } ,  

Lemma 4 implies that  iDr(f, H) = iKr(f, ~),  which proves the result for general G, H and 
O. �9 

Counter-example to uniqueness. 

Assume A and B. If we suppose that  J ( 2 ~ / T )  > 1, then Theorem 2 establishes 
tha t  f(v)(x) := ~ ( J ,  v(x)) has a unique fixed point u E DT\{0}.  Furthermore, if G is 
any bounded, relatively open subset of DT with u E G and 0 r (~, then iOT (f,  G) = 1. 
Because f : (~ --+ DT is compact  and f (v)  ~ v for v E G - G, there exists 5 > 0 such that  
I [ v -  f (v) l  I >__ 5 for all v E Q -  G. 

Now, recall tha t  a > 0, is such tha t  (I)(f~a) = a and define 

2ax 
Of(x) = ( -~ ) (~aa ) ,  for Ix I _< fie~2, and (I)c(x) = (I)(x) for Ix I _> fie. 

Complete the definition of (I)e for fie/2 ~ IxI ~ / 3 e  so as (I)e is odd, increasing, and C 1. 
Note that  (~c(fl~/2) = e/2, and tha t  ~ is concave on [0, fie/2] but not on [0, oo). Define 
f~(v(x)) = (~,(J �9 v(x)). Thus, the same argument used in Lemma 8 shows that  fE has a 
fixed point v~ with 0 < ]v~Ioo < e/2. Now, notice that  

My, I ~ ( y ) - ~ 0 ( y ) l  < e, so Vv E Dr, I lL (v ) -  f(v)l l  _< c. 

If G is as above, we can arrange tha t  I[v[I > r ] >  0 f o r a l l v  E G. For 0 < ~ < min(5,7?), 
consider the homotopy (1 - t)f(v) + try(v), 0 < t < 1, v E G. If v E Q -- G, we have 

I [ v -  ( 1 -  t ) f ( v ) - t L ( v ) l  I > [Iv-  f(v)]l - t i l l ( v ) -  L(v)l l  _> 5 -  te > 0. 

It  follows from the homotopy property for the fixed point index tha t  iDr (f~, G) = iDr (f, G) = 
1, (Theorem 2 implies that  iDr(f,G) = 1). Thus, f~ has a second fixed point in G (v~ r G, 
because IIvdl < ~). 

7 A priori e s t i m a t e s  for the  general  case.  

We do not assume here that  f(VT) C CT, but only A and B. 

tt  will be convenient to modify notations. Henceforth, we normalize J to have 
integral one, and we set ~ ( x )  = ~(~x)  (recall that /~  > 1). 
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7 .1  T r u n c a t i o n  a n d  S e t t i n g .  

For any e �9 (0, 1), we can find M(e) such that 

fix J(z)dx = 1 - c. (7.1) 
I_<M(~) 

We denote by J~(x) := J(x)I[_u(c),M(e)] and by ]~ the corresponding map. We note that for 
T > 4M(e), (J*)T(X) = Y (x )  and (J~)T(X) - (J~)T(X + T/2) = Y(x)  for Ixl < T/4, so our 
previous lemmas imply that  f~(CT) C CT. 

If the support of J is compact, say supp(J) c [ -C,  C], and T > 4C, then our 
previous results imply that  the equation f(u) := r * u) = u has a unique nonzero 
solution u �9 KT. Thus, we shall also assume that J does not have compact support. Under 
our hypotheses, the map M ~-~ r  := f Ilv]<.MJ(y)dy is a strictly increasing, continuous 
function from [0,oo) onto [0, 1), so M(e) := r - e )  is a continuous function of c for 
0 < e _< 1. Now, we fix a period T and denote by ev the positive number such that  
T = 4M(er).  

We fix a number ~0 > 0 and consider two cases: 

(i) f ( u ) = u  and 3VeKT\{0} ,  l u - v  I<e01vl. 

and, 
(ii) /~r(u) = u and u e KT\{0}. 

We want to obtain a priori estimates of [[df(u)[ I and []df~r(u)l [ independent of T, in appro- 
priate Banach spaces. To avoid repetition, we will treat a case which is more general than 
both. We say that u satisfies (Er)  if for some e �9 [0, eT], 

f~(U)=U and 3 v � 9  ]u- -v]<e0[v] .  

Then, we need estimates independent of e when T is large. The larger e0, the larger the class 
of functions in which we can prove uniqueness. We will assume that ~0 < 1 to ensure that 
ueCr .  

7 .2  A p r i o r i  b o u n d s  f o r  n o n z e r o  s o l u t i o n s  o f  f ( u )  = u. 

An elementary but crucial observation is that if we assume that a solution of re(u) = u is 
"close enough" to an element of KT, say v, then there is ~, iudependent of T and c, such 
that u(~) is "large enough". 

First, we need some simple facts about ~ .  Define a, 5" > a* > 0 with 

�9 ~ ( a ) = a ,  ~ * : = i n f { x ~ 0 :  (I)~(x) <1},  and, a * : = s u p { x > 0 :  ff2~(x)> 1}. 

We claim that a > ~*. Indeed, suppose by contradiction that ~ ( a )  > 1. Then, concavity 
implies that for all x �9 [0,hi, (~(x)  > 1 and as (~(0) > 1, we find that ~ ( x )  > x for any 
x �9 a] which contradicts Cz(a) = a. We note also that 

(~t t ~* -[- a~ �9 - > 0.  
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Final ly ,  we define 

P r o p o s i t i o n  7.1 . 
with the following property: if u satisfies (ET) for eo sufficiently small, then 

and, 

ao :=  min(a  - a*, a__*)/2. (7.2) 

There is T1 such that for each T > T1, there exists a, 0 < a < T/4,  

_ ~._~, ( r 5*+a)ao (7 .3)  1%(a*)- p(--y-) 
a < M(~)  wi th  ~_> 

To be more  precise, we shal l  define a number  7 > 0 in the  p roo f  of L e m m a  10 below, and 
we shall  need 0 < eo < 1/2 such t h a t  

7ao 2 G0 1 +Go _ _  _ _  ~ ,  ta*~ Go 1 , 5* + a ao (7 .4)  
( l - -co)  < 5 ' 1--Co 1--2c0 

The  proof  of P ropos i t ion  7.1 will  re ly  on the following l emma,  which we prove first. 

L e m m a  7.2 . There is T1 such that if T > T1, and u satisfies (ET) for Go small enough, 
then 

I 1oo -> a - ao .  ( 7 . 5 )  

Proof. Recall that ~p is hounded by 1 so that lUloo _< 1. I f  u, v and Go are as in condition 
(ET), w e  deduce tha t ,  for al l  x, 

Iv(x)[ < ]u(x)] + Iv(x) - u(x) l  < 1 + eolv(x)], 

which implies  t ha t  tvloo _< 1 / (1  - Go), an es t imate  we shall  need below. 

We now argue in two steps.  In Step 1 we show t h a t  [uloo ~ [ao, a - no], and  in Step 
2 we show tha t  lulo~ > a*/2.  

S t e p  1. We define 3" > 0 by 

3' :=  min(O}(ao)  - 1, 1 - O~(a - ao)). 

The  concavi ty  of r in (0, a)  impl ies  t h a t  

~e[ionf_~o][~z(y ) - y] = min(~z(ao)  - ao, q~z(a - ao) - (a - ao)) _> 3'ao. 

Set  r 1 :=  3"a~/5 and  assume t h a t  0 < e < r/. We c la im t h a t  if  O ~ ( y - 5 e )  _< y,  then  
y ~ [ao, a - ao]. Indeed,  a s sume y E [ao, a - ao]; the  concavi ty  of ~ a  impl ies  t h a t  

�9 ~ ( y )  - ~ ( y  - 5c) < ~ ( a o )  - ~ ( o )  

5e - ao 

a + 5 *  
u ( a ) = a - a o >  2 ' 
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So~ 
5e 

@~(y - 5~) - y > ~>n(y) - y ~ n ( a o )  5~ > 7ao  - - -  > 0. 
ao ao 

Now let To = 4M(zh)(1  + 1/771), where  771 := (1 - Co)77, and assume  tha t  T > To. 
T h e  reader  can verify t ha t  CT < 771. Suppose  t ha t  u, v and e are as in condi t ion (ET).  Our  
initial  r emarks  and  the  fact  t ha t  v E K T  give v ( T I 4 )  = Ivloo _< 1/(1  - e0); and  using the  
concavi ty  of v on [0 ,T/2] ,  we obta in  for 0 < y _< M(771) 

v , ( T I 4  _ y)  < v ( T I 4  - y) - v(0) < (1 - c0) -1 (1 - e o ) - b h  
- (TI4 - y) - TI 4 - MOT1 ) <- M(771) 

T h e  s y m m e t r y  of v implies  t ha t  for ly l  <- M(771), 

Iv(Tl4 - y)  - v(ml4)l < l Y l l d ( T / 4  - Y)I  -< (1 - ~o) -b7, .  (7.6) 

I t  follows t h a t  

J ' * v ( T / 4 ) =  S[I~I<M(~)J(Y)v(T/4-y)dy 

= Sit,I<_M(,,)J(Y)'(TI4-u)du+i~M(,,)<I~,i<M(,)Ji(Y)v(TI4-y)dy 

>- v ( T l 4 ) ( 1  - ~7,) - S[I,JI<M(ngI(YI(v(TI4 -- Y) -- v ( m l 4 ) ) d y  - 17,1(1 - <o) 

>_ v(TI41  - 3771(1 - Co) -1 >_ u ( T I 4 )  - 417", (7.7) 

where  417" :=  (3771 + Co)(1 - Co) -1 < 477. We have used (7.4), (7.6 / and the  es t ima te  I v l .  _< 
( 1  - co) - i  to ob ta in  (7.7). Using (7.7), we see t h a t  

u ( T / 4 )  = (~/j(J" , u ( T / 4 ) )  > ~ n ( J  ~ * v ( T / 4 )  + J '  �9 (u - v ) ( T / 4 ) )  
>_ (~n(J~ ,  v ( T I 4 )  - Co(1 - ~o)-1).  (7.8 / 

Combin ing  (7.7) and  (7.8/, we obta in  

u ( T / 4 )  >_ ~ n ( u ( T / 4 )  - 577"/. 

Since ~7" < 17, our earlier r emarks  imply  t h a t  u ( T I 4 )  ~ [ao, a - ao]. 

S t e p  2. Choose  eo > 0 and 5 > 0 so smal l  t h a t  

1 + eo % - 5(1 + "7o) > 0. (7.9) - -  < ~ ( a * / 2 ) ,  and  B :=  1 ~ ( a * / 2 )  3'0 := i - ~ o  

For  this  5, and  To as in S tep  1, choose T1 > min (4M(5) ,  To) such t h a t  

3M(5)  < [ ~  - 2M(5)]  B .  (7.1o) 

Suppose  now t h a t  T > T1, u satisfies condi t ion  (ET).  



406 Asselah, Nussbaum 

For notational convenience, define g = Moo, and ~ = Iv[oo. Because ~ is concave 
on [0, oo), we obtain 

Vx E [0, T/2], f f ~ ( J ' ,  u(z)) > ff~(fi)J '  �9 u(x). (7.11) 

Let A = [0, T/2] and A+ = [ -M(5) ,  T /2  + M(6)]. By using (7.11) and condition (ET) we 
obtain, 

(1 + Go)f?>_ f2 = f?~( J'* ~)~ ~(~)fS ~*~ 
Because u E CT, we obtain that  for any interval I of length T/2 

Exploiting this fact, we obtain 

I [ (g  e * u -  Jt ,u ) l  JA 

f~ u(z)ldz = fA u(z)dz. 

= I f f f ~ ( J ' ( y )  - :%))  ~(x - u)auaxl 

Using this estimate, we find that  

Because (1 + eo)v(y) > u(y) > (1 - eo)v(y) for 0 < y < T/2, u,v E CT and T > 4M(5), 
Lemma 1 implies that  

(1+,o) fa~ >_ ~"~(~,) ( f / '  *~, - ' f 2 )  >_ (1- ,o)~'~(~,) ( f / '  *v - ",o k )  . 

It  is easy, using that  v E KT, to see that  

f / ~ . v  >_ f I  * [vIA --v(M(~))IA+\A]" 

We leave to the reader this simple check. Thus, we see that  

(1 q-~O)/~ ~-~ (1--~0)'~('~> (fA J5 �9 (VIA--v(M(~))IA+\A) (x)dx-~'~o /~)  �9 

Simple estimates give 

f / 5  , (v(M(~))IA+\A) 
M(~) 

= v(M(5)) f2~M(,~)J(y)IA+\A(X -- y)dydx 

= v(M(5)) f_:(il)J(Y) (f~,t+xa(z- y)dx) dy 
<_ M(5)v(M(5)) fM(6)j <_ M(5)v(M(5)). 

J-M(~) 
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It follows that 

(1 + to)fAY> (1--~0)0~('~)(f~#*+ (VIA)--[jA+\A J '*  (VIA)--M(,)v(M(,))-~7o fAY). 

If x �9 A+\A and lYl <- M(~). then using that v �9 KT one sees that v(M(6)) >_ v(z - 
y)IA(x -- y) >_ O. Using this inequality, one finds that 

(fA v ( z -  y)IA(x-y)dx)  dy < 2v(M(6))M(6). 

I t  follows that 

(1 + t o ) f f i > ( 1 -  eo)O5(e)(fA+J'*(VlA)--3v(M('))M(6)--67~ . f : )"  

One can easily verify that 

fAJ'  * = ( f : )  = (1--d) f2 , 
so one obtains that 

(T.12) 3v(M(6))M(6) > (jAy)[1 - 6 - 6% - ~ ] .  

Because v(x) > v(M(6)) in [M(6), T/2 - M(6)], we see that 

fA v > v(M(g))[T/2- M(6)]. (7.13) 

Assume, by way of contradiction, that ~ < (a*/2), so ~5~(~) > ~ ( a * / 2 )  > 1 and (using eq. 
(7.9)) 

1 70 _ ~ _ j T o _ >  B > 0. 
r  

We can use eq. (7.12) and (7.13) and divide by v(M(~)) to obtain 

3M(6) >_ [T/2 - 2M(6)]B, (7.14) 

which contradicts inequality (7.10) and completes Step2. The inequality (7.5) is obtained 
by combining Stepl and Step2. �9 

Proof of Proposition 7.1. By Lemma 7.2, there is T1 such that for T > T1, a - [u[oo _< a0. 
Thus, by continuity of u, there is a < :7'/4 such that a - u(a) = a0. Now, 

r - u(a) = a - r - (u(~) - CZ(u(a))) >_ (i - q~(u(c~)))(a - u(~)) 

_> - - r  a0.  ( 7 . 1 5 )  

Now, 
u(a) = ~Z (J~ * u(a)) > 9~(J~ �9 v(oe) + J( �9 (u - v)(a)) 
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Recall that  tvl~ < luto~/(1 - e0) _< 1/(1 - ~o), so we obtain 

IJ * �9 (u - v)(a)l < coJ ~ �9 Ivl(a) <_ <olvloo < co/(1 - eo). 

Combining these inequalities yields 

u(a)  __ r * v(~) - ~0/(1 - c0)). 

We can always choose a = M(~)(1 + 1/~). Because v is concave on [a - M(~), a + M(()],  
we have for y E [a - M(~), a + M(()],  

, ( y )  < - M f f ) )  - < 1 

c~ - M ( ~ )  (1 - c 0 ) ( a  - M ( ~ ) ) "  

We now argue as in the inequalities (7.7), in the proof of Lemma 10: 

g~ * v ( a )  > v ( a )  - 3 ~ / ( 1  - eo). 

Recalling that r  is increasing, the previous inequality gives 

u ( a )  > @#(v(c~) - (3 {  + e o ) / ( l  - eo)) 
_> ~ # ( u ( a )  - (3~ + 2co ) / ( I  - co)) >_ (1)#(u(oO) - fl(2Co + 3 ~ ) / ( I  - co). (7.16) 

We have used that [r < fl for all y. Combining (7.15) and (7.16) gives 

, a * +  
#(2Co + 3~)/(1 - c o )  _ - ( 7 . 1 7 )  

Inequalities (7.17) and (7.4) now yield (7.3). I 

7 . 3  N o r m  o f  d r ( u ) .  

Let (1I, ]].ll) be a real Banach space and suppose that  K is a closed cone in Y. K induces 
a partial ordering on Y: x -< y if and only if y - x E K. Recall that  K is called "normal" 
if there exists a constant C such that  Iix]] < Cllyil for all x , y  E Y with 0 -< x -< y. If 
u E K\{0} ,  we define a set Y~ by 

Y~ ----- {v E Y: 3 M > 0 ,  with - M u - < v - g M u } ,  (7.18) 

and for v E Y~, we define [[v][~ = inf{M: - M u  -< v -< Mu} .  

The following lemma is well known (see [10]). For the reader's convenience, a proof 
is given in the appendix. 

L e m m a  7.3 . Let (Y, t].]l) be a real Banach space and K a closed cone in Y .  I f  u E K\{0} ,  
then (Y,,  II" ]lu) is a normed linear space; i f  K is normal, then (Y~, ]l" ]]4) is a Banach space. 
I f  L : Y ~ Y is a linear map such that L ( K )  C K ,  and i f  there exists N > 0 such that 
- N u  -.< L(u)  -.< Nu ,  then L(Y~) C Y~ and L induces a bounded linear map s : Y~ --+ Y~ with 

II lk_< N. 
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Suppose now that u satisfies (ET) and that  e, eT, 0 < ~ <_ eT, are as in (ET), so that  

f~(u) -- u. Let L = df~(u) : XT  --+ XT  denote the Fr~chet derivative of f~ at u. We shall 

use Lemma 7.3 with Y := XT and K := DT = {w E XT : w ( x )  ~_ O, "fix E [0, T/2]}. For 
T large, we shall show that  L(Y~) C Y~ and L induces a bounded linear map L: : Y~ -~ Yu. 

Also, for w, Cv E XT  W -~ 5J is equivalent to ~(x)  -- w(x)  > 0 for 0 < x < T/4 .  Notice that  

if ~ E DT\{0} and w E XT,  then - M @  -~ w -~ M@ is equivalent to Iw(x)l < M l ~ ( x ) l  for 

all x. 

We now state the main result of this section. 

T h e o r e m  7.4 . Assume that u satisfies (ET) and that e, 0 < ~ < dT, i3 as in  (ET) .  Let 
dfu(u) : XT  -'+ XT  denote the Frdchet derivative of f~ at u. There is a number T2, such 
that if  T > T2 and 0 < 71 <_ eT, then df,(u) induces a bounded linear map E : Y~ ~ Y~. 
Furthermore, there exists n = n(T2) < I such that ]1s <_ ~ < 1. 

The proof of Theorem 7.4 will require several lemmas. 

L e m m a  7.5 . Let T1 be as in Proposition 7.1, and assume that u satisfies (ET) for  some 
T > T1. Then, there is a function D(p) for 0 < p <_ 1 such that lirn~-~0+ D(~) -- 0 and for 
any w E Yu and ~?, O < ~ < l 

I I J  * w - j , 7 ,  ~,11~, <- D( r j ) l lwl l , , .  

Furthermore, for any 71, 0 < ~ <_ 1, the bounded linear operator w ~-~ Jn * w on X T induces 
a bounded linear operator on Yu. 

Proof. We rewrite, for x >_ 0 and any w E Y~ 

[s = (y)(~(y - x) - ~ (v  + x))dy 

/;~ /;(')+x 
= (,)+x w(y)  (J (y  + x) - J (y  - x)) dy + (,)-x w ( y ) J ( y  + x)dy  (7.19) 

Exploiting the fact the J is decreasing and nonnegative on [0, oo), we obtain from eq.(7.19) 
tha t  for x >_ 0 

/ ; 7  tM(~)+z 
Is �9 ~(x)  - J , ,  ~(x)l  < (,)l~(y)l (J(y - x) - J(y + x)) dy +]M(,) ly(y)lJ(y + x)dy 

_ (f;~ f ~ ( ~  J(y+ x)dy) < ( supl~(z ) l )  ( , ) + x ( J ( y - x ) - J ( ~ + x ) ) d ~ + j M ( , ) _  ~ 

_< ( sup[w(z )0  m i n ( 4 J ( M ( ~ ) ) x ,  2rl). (7.20) 

Let v E K T  and e, 0 < e < eT, be as in (ET). Let a be as in Proposition 7.1, so u(a)  = 
a - ao > 6*. The concavity of v implies that  for 0 < x < a,  a v ( x ) / v ( a )  > x. Condition 
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(ET) impl ies  t ha t  (1 - eo)v -< u -< (1 + eo)v, so se t t ing  7a := (1 + co)/(1 - co), one derives 
t h a t  

~o , , ~ o u ( ~ )  ~(~) 
a.u~zj>_ u(----~>v--(-(-(~>_z, 0 < z < a .  

Using this  es t imate ,  we derive f rom eq.(7.20) t h a t  

Vx 6 [0, a], ]J  * w(x) - J~ * w(z)i  < 4J(M(7?))tlw]l~a-~u(x), (7.21) 

If  a < x < T/4 ,  v (x ) /v (a )  > 1 and one concludes t ha t  

~ou(~)  ,(~) 

I t  follows t h a t  for a < x < T/4,  

Ig * w(x)  - .yl , w(x)] <_ 27?sup [w(x)l < 2~_~,~ u(x). (7.22) 

Inequa l i ty  (7.3) impl ies  t ha t  there  is a cons tan t  &, independen t  of T > T1, ~, v, u and  T] such 
t h a t  a _< 5.  Combin ing  (7.20) and (7.22), we see t h a t  

IIJ * w -  j n ,  wll= ___ ~-,max(aJ(MOT))&, 2n)llwll= :=  D(n) l lwl l=-  

If 77 = 1 ,  J "  �9 w = 0 and we see that  IIJ * ~1t~ < D(1)ll~oll=, for w ~ Y=, so ~ ~ J * 
induces  a bounded  l inear  m a p  on Y,,. Our  es t ima tes  also show t h a t  w ~ J * w(z )  - Jn * w 
gives a bounded  l inear  m a p  on Y~, so does w ~+ J~ * w for 0 < 77 _< 1. | 

L e m m a  7 . 6  . Assume A and B. Let T1 be as in Proposition 7.1, assume that u satisfies 
(ET) for T > T1, and let c, 0 < ~ < eT, and v 6 KT be as 'in (ET). Define 

9(x) = J~ * u(x),  ),(z) - r  and Liw = r  j~r , w. (7.23) 
~ ( 9 ( ~ ) )  ' g 

(Also, we define ~ ( g ( x ) ) / g ( x )  = (I)~(0) = fl and )~(x) = 1 for g(x) = 0). Then, there is 
~o < 1 independent of u, e and T, such that for T > T1 

c : =  s u p  A(x) Ll(Au)(z) < no < 1. (7.24) 
~Eto,T/4J L l ( ~ ) ( x )  - 

Proof. For any  5 > 0, set  A(5) = sup{A(x)  : x e [5, T/4]}. Because  O~(g(x)) = u(x) 
and 0 -< ( 1 - c 0 ) v  -< u, we see t h a t  0 -< 9. Because of (Bc) and  (Bd),  we have t h a t  
O'~(y)y/O~(y) < 1 for all y > 0. Combin ing  these facts,  we conclude t h a t  A(5) < 1 for 
0 < 5 < T/4 .  Because lim~_~o+ A(x) = 1, we also see t h a t  lira6-+0+ A(5) = 1. Define for 
x ~ O ,  x, y 6 1 R  

K(x ,  y) :=  -t (oT~.T (y - x) - j~T(y + x)).  (7.25) 
:15 
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If x ,y  ~ [0,T/4], then K(x ,y )  >_ O. In fact, recalling tha t  J~r(z) = 0 for Izl > T/4,  
J~r(z)  = J~r(z) for 0 <__ z <_ T/4,  oT~.r(z) = - J~r (T /2  - z) for T/4  < z < T/2,  and for 
z, y E [0, T/4], we have that 

z K ( z , y )  = J~F(y - x) - j ) r (y  + x) for 0 < y + z <_ T/4,  

zig(x, y) = j~r(y _ x) + J~r(T/2 - y - x) for y + x > T/4.  

Now, notice that  

(Jr �9 ,Xu)(z) 
c =  sup a ( ~ ) ( U : ~ ; ; ~ -  sup a(z) ff /~K(x'y)a(y)~(y)@ 

We know from Lemma i or Lemma 7 that  v ~-~ j ~ r ,  v preserves the partial  ordering, so 
j ~ r ,  (Au) -< J~T ,  u and c < 1. Also, 

c <_ max X(5), sup uK(x , . )  + ](5)f~ u t f (x , . )  *-x 
o<~<8 

< ~(5) -4- (1 - X(5)) sup uK(z ,  .) 
o<z<5 

(7.26) 

We will est imate separately each term of (7.26). 

S t e p  1: We will show that  there is 51 > 0, C1 > 0 and Ca > 0 independen t  o f u ,  e and 
T > T1 such tha t  for 0 < 5 < 51, 

1 - C252 <_ ~(5) < 1 - C152. (7.27) 

Since g(x) = ~~l(u(x)),  we introduce the function r 

r := %(r162 such that a(~) = r (~(z)) 
Z 

We claim tha t  there exists 52 > 0 such that  r is strictly decreasing on [0, 52]. Since y ~-~ 
~5~1(y) is strictly increasing, it suffices to prove that  there exists 53 > 0 such that  y ~-~ 
�9 'z(y)y/~z(y) := O(y) is strictly decreasing on [0, 53]. A calculation gives, for x > 0, 

o' (z)  = :~,~; ; (x) r  + % ( x ) ( , ~ B ( x )  - x e i , ( x ) )  

If we call 01(x) the numerator,  then we need to show that  01(x) < 0 on (0, 6a], 53 > 0. Since 
01(0) = 0, it suffices to find 53 > 0 such tha t  O~(z) < 0 for 0 < x < 53. A calculation gives 

The concavity of ~r on [0, oo) implies tha t  for x _> 0 

,Y2'~(x) ( ~ ( x ) -  x~'~(x)) <_ 0 and, 0'1(x ) < ~ ( x ) ( q ~ ( x )  + x~'~'(x)). (7.28) 
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It follows that  if ~ ' ( z )  < 0 on [0, 53], then Or(x) < 0 for 0 K x K 63. Our hypotheses imply 
that  such a 63 exists. We recall now that  u' satisfies u' = ~'z(u)(Y ~ , u)' and therefore by the 
inequality (5.3) of Theorem 5.1 in section 5, we have 

M[u[o~ M v'(O) < u'(0) < < - - ,  M := 3J(0). (7.29) 
- 1 - e o  - 1 ~ o  - 1 - C o  

The concavity of v in [0, T/4], implies that 

M 
v(J) < 5. (7.30) 

1 - e0 

On the other hand, for a as in Proposition 7.1, the concavity of v implies that  for 0 < 5 <_ c~, 
imply that  for 5 < a, 

fi* 1 v(5) > v(a) > u(a)  1 > - - - .  (7.31) 
5 - a - l + e o a -  l + e o a  

It follows from (7.30) and (7.31) that, writing q'o = (1 + co)/(1 - eo), 

a*15 <_ u(5) < M,),oh, f o r 0 < 5 < a .  (7.32) 
7oh  

If we define 54 = min(a, 52/(M'7o)), we derive from (7.32) that 0 < u(x) _< J2 for 
0 < x < 54. It follows that for 0 < 5 < 54, 

r _< sup r _ r  (7.33) 
5<x<J4 "Yo oz 

We easily derive from (7.31) and (7.32) that u(x) > (~*/7o)(54/a) for 54 < z < T/4 ,  so 

~* 54 
sup r  < s u p { r  - - - -  < w < l } : = p <  1. 

j4<_x<T/4 ")f00L 

There exists 5~ > 0, independent of u, e and T, such that  for 0 < 5 < ~5, r  > p, and 
so that  

A(5)- :  max< sup r  sup r  = sup r  
5<x<_54 J4 <x<T/4 5<x<_64 

Thus we derive from (7.33) that  for 0 < J < 55, 

g* 5 (7.34) 

To estimate (7.34), we use Taylor's theorem to estimate r  near 0, and we obtain 

r = 1 + ~ - ' (0 )~  + o(x~), (7.35) 
3 

and from (7.35) and (7.34), we find that  there is 5t independent of c, u, v and T > T1 (but 
which depends on eo and J and {)  such that for 0 < 5 < 51 

2,I, ( 0 ) "  ,I,'"(0) a* 2 2 
1 + ~ -  "----=-=-:(7~ 2 < A(5) < 1 + ~ - - - ( 7 - ~ )  d . (7.36) 



Asselah, Nussbaum 413 

If we recall the estimates on c~ in Proposition 7.1, we obtain (7.27). 

S t e p  2: We show that there is A > 0 independent of T such that  for 6 < a 

inf J~T. U(X) >_ A. (7.37) 
ze[o,~) x 

First, if we use Lemma 7.5, then for x E [0, 6) 

j~r , u(x) _ Jr * u(x) + ( j e t  _ j~) ,  u(x) > ~~l(u(x)) - 2D(eT)U(X) 
X X X 

i x  

> ~ x ) ( 1  - 2flD(eT)). (7.38) 

Now, equation (7.31) implies that  for x < a,  

_ ~* 
~(x) > (1 ~0)v(x) > - - ~ o C l -  2flD(eT) ). 

Z x  - Z z  - ~ , 

and Step 2 follows. 

S t e p  3: Here, we estimate f~o K(x,  y)u(y)dy. 

L' ~ ,  ~ = ~- Z ~ ( J ~ - ~ _  j~,~ + ~) ~ .  

Because u(x) < sup{u(z)/z : 0 < z < 6} for 0 < x < 6, we find that  

Z - . 

We have already noted (Step 1) that  K(x, y) > 0 for x, y e [0, T/4], so 

L~ T/4 
0 < K(x, y)dy < [ K(x, y)dy. 

ao 

Using properties of j}r  as noted in Step 1, 

IT~4 i ss 1 rTI4+x_ 
ao K(x, y)dy = -x ~ j~r (z)dz - xJT/4-x Jr" (z)dz 

= 7 - 7 J T I 4 - x  J~'r(z)dz - - a~r(z)dz X JT/4 
< 3J(0).  

Recalling that  supz<~(u(z)/z ) <_ M := 3J(0), and combining these estimates gives 

// 0 <_ K(x, y)u(y)dy <_ 3or(O)M& 

S t e p  4: If we choose 6 _< min(6~, c~) in inequality (7.26) and use Steps 1,2, and 3, it follows 
that  

n0 _< 1 - C~62 + ~-~,2 (3J(0)M)63 (7.40) 
A t  
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and the result follows by taking 5 small enough, m 

Proof of Theorem 7.4. Let L1, ,\ and g be as defined in Lemma 7.6, and Av = e2'o(g)jCr * v. 
We note that  both Lx and A preserve the order -<. 

First, we claim that  
L~u -< (1 + 2D(<p)fl)u. (7.41) 

Indeed, by using Lemma 7.5, we have 

Llu - ~ ( g )  (J~ * u + (j~r _ g~) .  u) -.< (1 + 2flD(eT))u. (7.42) 
g 

Since 0 -~ Au -~ Llu --< (1 + 2D(eT)fl)u, we have 

flA[t= _< (1 + 2/3D(eT)). (7.43) 

By (7.42) and Lemma 7.6, we have 

Because A preserves the partial ordering -<, we have 

tlA2t],, < (1 + 2~3D(er))2~o, (7.44) 

where ~0 is given in (7.24) and D(e) tends to 0 as e goes to 0. 

A consequence of Lemma 7.5 and 0 < ~2'~(9(x)) < fl for all x is that  

I[s - a[[~ < 23D(e~). (7.45) 

It follows, from (7.43) and (7.45) that 

IIs _< [[A[I~ + [1s  < (1 + 4,3D(er)). 

We conclude that  

IIs < IIA=II= + [IA(s - a)lt= + I1(s - a)s ~ 
< Ila21l,, + IIAI],,[Iz: - All,, + l [ (z  - A)l ldlz: l l , ,  
< (1 + 2/3D(eT))2no + 2flD(eT)[(1 + 2/5'D(e:r)) + (1 + 4/3D(eT))] := n. 

The result follows for T > 2"2, for T 2 large enough. U 

8 P r o o f  o f  T h e o r e m  2 . 2 .  

8 . 1  P r o o f  o f  e x i s t e n c e .  

We note that, with the notations of section 7, feT(CT) C CT. By Theorem 2.3, there is T3, 
such that  for T > Ta, f~r has a unique fixed point in Cz-, say u~ r.  Moreover, u~ r C I ( r ,  and 
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by Theorem 6.4, the spectral  radius of dJ'~r(U~T ) in 7gT is str ict ly less than 1. On the other 
hand, once we know that  Uer G [(T, Theorem 7.4 of section 7, establishes tha t  there is ~: < 1 
independent of T > 7"2 such tha t  

We will consider T > max(T2, T3) and for simplici ty we henceforth drop the index T in f~: 
and U~T, and we denote the operator  norm in ( l~, ,  [t.]]~,) by [].][. 

For v E Y,,, define 

F ( J ,  v) = v - r  * v). (8.1) 

The Fr~chet derivative of F ( J  ~, v) with respect to v around u~ is 

dF(jo,,,)(~) = ~ - O'~(Y , u~)J ~ , ~ = ~ - df~(u~)~. (8.2) 

Lemma 7.6 establishes tha t  dF( j ,~ j  is invertible in Y~. In fact, let A denote df~(u~), viewed 
as a map from Yu~ to Y,,,, so dF(j,,,,,) = I - A, and 

-2 oo oo 

A := (dF(a~#,)) = (I  - A) -1 = ~7 Aj = (1 + A) ~ A 2i, 
j=O j=O 

80~ 
oo 

Before s ta t ing the main result,  we make a simple remark. 

( 8 . 3 )  

R e m a r k  8.1 . Assume A,B and u = CZ(J * u) with u C CT\{0}. Then, J * u -< u. Firs t ,  
we show tha t  [u]oo < a. Because of propert ies  B, x > a implies tha t  ~Z(x) < x. Now, by 
contradiction, assume there is 0 < xo <_ T / 4  such tha t  u(xo) = ]u[oo > a. Then, J �9 u(x0) _< 
U(Xo), so that  ~ ( J ,  U(Xo)) <_ a2~(u(xo)) < U(Xo), which is absurd. Thus, [ul~ _< a. This in 
tm'n implies tha t  0 <_ g �9 u(x) <_ a for 0 < x < T/4  so that  J .  u(x) <_ ~ ( J  * u(x))  = u(x). 

P r o p o s i t i o n  8.2 . Assume A and B. There is q > 0 such that for T > max(T2,T3) and 
eT < 6.1, f has a non trivial fixed point in Y~~ say u. Moreover, u E CT. 

Proof. We recall tha t  ]u~]~ <_ 1, and so is IJ~.u~[~ < 1. Let a be as in Proposi t ion 7.1, and 
let 0 be a uniform upper  bound for a as given by equation 7.3. Let e0 be as in Proposi t ion 
7.1. By remark 8.1 0 -< J~ * u~ -< u~. We define 

(1 + e0) max(e, 4&J(M(E))) .  
= s u p  and - ( 1  -  0)a* [~[_<z 

So D(E) can serve as the function in the s ta tement  of Lemma 7.5. We can always choose 
q > 0, el <_ e0, and R < 1 such tha t  

2 ( ~ R 2 + 2 f l D ( q ) ) < R ,  (8.4) 
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and, 
2 

1 - n (Tn + (27 + ~)D(~I)) < 1. (8.5) 

We define V: Yu, --~ Y by 
V ( u )  = u - A ( F ( J ,  u)) .  (8.6) 

We will show that there is a closed ball around ur say B n  such that V ( B n )  C BR ,  and 
then that  V is a contraction in B R  in Step 1 and Step 2, respectively. It is then routine to 
complete the proof. The fact that  u E CT  follows simply because R < 1: 

I l u -  ~r ~ R ~  (1 - R ) u ,  ~ u. 

Step  1. If B R  = {u e Y~,: ][u - ~11(~1 ~ R}, then V ( B n )  C B R .  First, by using that  
u - u,  = AdF(j , , ,~,)(u - u~), we rewrite (8.6) as 

V ( u )  - u~ = A [ F ( J  ~, u)  - F ( J ,  u)] - A [ F ( J  ~, u)  - F ( J  ~, ur - dF(j~,~,)(u - u~)]. (8.7) 

A pointwise estimate of the last term and an application of Taylor's theorem yields 

IF( J', u) - F (  Jr ur - dF(y, , , , , )(u - u~)l = 

[ ~ Z ( J ' ,  u) - r  �9 u , )  - r162 �9 ur  ~ , (u - u,)[ < 21(J r  (u - u~))2l. (8.8) 

To bound this term in norm, we establish that l[(J ~ * v)2ll(~,) _< [Ivl[~,). Assume that there 
is M such that  Ivl-< M ~ ,  the~ I J ' ,  vl -~ M J ~ *  u~ ~ M u , .  Thus, recalling that  lu,(z)l _< 1, 
we obtain 

(,ff �9 v(x)) 2 < IVl2u~(x) 2 <_/V/2u~(x), for x e [0, T/4] .  (8.9) 

Thus, 

I [ A [ F ( J ~ , u )  - F ( J ~ , u ~ )  - dF(z , , , , ) (u  - u,)][[(,,) _< i[[A[l[[u - udl(2,,). (8.10) 
'W 

We now consider the first term of (8.7). 

I I A [ F ( J ' , u )  - F(J,  u)]ll(~,) _< IIAII" II~B(J ~ * u) - ~z ( J*  ~)ll(u0)- (8.11) 

Now, a pointwise estimate yields 

[~Z(J~ * u) - ~Z(J  * u)[ < r - J ' )  �9 u[. (8.12) 

Thus, by Lemma 7.5, 
[[J * u - J~ * ull(~,) _< D(e)llull(~o). (8.13) 

Finally, (8.10) and (s.13) imply that  

IlV(~) - ~,11(~,> -< ~llAIIIlu- u,[l(\,)+/~llAllD(dll~ll(~,>. (8.14) 

Now tlull<~,) _< Ilu - ~,11(~1 + II~,tl<~0) -< 1 + R _< 2, ~o eq.(8.14) gives 

[IV(~) - '-,,11(,,,) -< 1 ~ 2  ~[(~)n ~ + 2~D(d], 
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and we obtain inequality (8.4). 

S t ep  2. We show that  V is a contraction in BR. 

For u and u' in BR, let ut = u' + t (u  - u') E BR. Also, 

Thus, we obtain 

j•01 
V ( u )  - V(u ' )  = dV~,(u - u')dt.  (8.18) 

j~01 IIv(*0 - v(~')ll(=,) <_ IIdV~,,(u - u')ll(,,4dt _%< (sup IIdVdl)lt~, - ~*'ll(=4" B,e 
Now, for { �9 Y~,, and any u �9 BR, 

Thus, 

Now, 

dVu(~) = ~ - A(dF(j ,~)( ( )  ) = A (dF(s~ ,u , ) (~ )  - dF(j,u)(()  ) . 

IIdVdl _< ] IA[[ .  IIdF(.,-,,u4- dF(j,,.,)l[. 

(8.~6) 

(s.17) 

(8.18) 

dF(j,~)(() - dF(j~,~,~)(() = (9 '~(J �9 u) - ~.~(J~ * u ~ ) ) Y  * ~ + ~ ( J  �9 u ) ( ( J  - Y )  * ~). 

Thus, 

II(dF(z~,) - dF(J.,~.))S[l(~4 _< 
_< 

~]l(J * u - J ~ ,  u ~ ) J  ~ �9 r176 + N I ( J  - J~) * r 
'~ ( l l ( J  - J~) * ull(,,~) + II J~ * (~ - ~)11(~,~ I1 .z~ * ~11{,,,) 

+/~ l l (J  - J~) �9 ~11(<. (8.19) 

Because 0 -< Je �9 ue -< ue and Je is order preserving, we see that  [ ]ye,  ~1[(~) -< []~[](~,), for 
all ~ E Y~. Using this fact, (8.13) (8.16), (8.19) and [lu]](~,) < 2, we obtain 

sup [[dVu][ < 7[IA[[ �9 ( ([[(J - g~) * u[[(~) + IIJ ~ �9 (u - ue)l[(~,) ) + flnA[[D(e) 
uEBa 

< IIAII ('YD(dllull(~,) + ~/R +/~D(e ) )  
2 

-< 1---~ (')'R + (23' + /5)D(e)) .  (8.20) 

Now, the estimates of Step 1, t[u]l(~,) ~ 2, and the conditions (8.4) and (8.5) on R and e 
imply that  V is a contraction in B ( R ) .  | 

8 . 2  P r o o f  o f  u n i q u e n e s s .  

We first show, as a corollary of Lemma 7.6, that  around any fixed point u of f ,  which is 
close enough to K T ,  there is a neighborhood at tracted to u whose width is independent of u 
and T. In other words, let u, E, eT as in (ET) ,  then there is p > 0, such that  if T > T2 

vw:  tlwlt,, < p==~ l im (L) '~(~ + ~ )  = ~. (8.2 i )  
- -  n - ~ o o  
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Here, it is crucial that p be independent of u, T and e. 

If we set for any w E -YT, 

N(w) := f , ( w  + u) - f , (u )  - d f , (u)(w) ,  

then, if 7 = sup{[ff~(x)[ : [z] < 1}, it is a simple calculation to see that 

IN(~)l _< 7(J '  * w) ~. 

Now, as in (8.9), we first show that  

II(J' * w)=ll~ _< (1 + D(eT))21IwlI~. 

We take M > [Iwll~, and recall that  J ' r  preserves the order -<, 

I J '~  * w[ -< M J  'r * u. 

Thus, by invoking Lemma 7.5 and Remark 8.1 

[ J ' ,  wJ -< M J ' . u + ( J ' - J ' r ) * w - M , ( J ' - J ' r ) , u  

-< M J '  �9 u + D(er) l lwll~u + M D ( e T ) u  -< M(1 + 2D(er))U 

and therefore 
(j '  �9 w) 2 < M2(1 + 2D(~))2~,  (8.22) 

where we have used that u E CT and [uloo < 1. Thus, 

IlN(w)llu _ ~(1 + 2D(er))21lwll]. (8.23) 

Using Lemma 7.6 and (8.23), we have for eT small enough 

IIL(~ + ~) - f,(~)llu -< Ildf,(u)ll~llwll~ + IIN(w)ll,, 
_< ~llwll~ + 2~llwll~. (8.24) 

Hence, if p = (1 - ~)/47, then Ilwll~ _< p implies that 

l+~c  
I l L ( ~ + w )  - u l l u  -< - T - l l w l l ~ ,  (8.25) 

and the claim (8.21) follows easily from (8.25). 

Assume that  there is u and ~ two distinct fixed points of f with 

v E K r \ { 0 }  : l u -  v I < eolv l, and ~5 E KT,\{0} : 1 5 -  ~31 < ~ol~l- 

Theorem 7.4 tells us that for T > T2, 

:= max(lldf(u)2li~, [Idf(~)2lld < x 

independently of T. To be able to use the same proof as that  of Proposition 8.2 to obtain 
fixed point of f , r  in a neighborhood of u and ~, we only need that er be small enough so that  
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we can define R which satisfies conditions identical to (8.4) and (8.5) but where 'q replaces 
~. Thus, R is much smaller than p appearing in (8.21) when T is large. The same proof as 
that  of Proposition 8.2 - -which  we o m i t - -  implies tha t  for has fixed points in B~ and say 
/3u. However, 

B~ c {v: l l ,~-  vii, < p}, BR C {v : l l~ -v l l~  _< P}, 
and by (8.21) 

{~: Itu - ,11, < p} n {,:  I1,~ - vll~ _< p} = ~. 
Furthermore: by Proposition 7.1, 0 ~t BR U ~ .  Indeed, lul~ > <,*/2, and I'~1~ >- a' /2.  
Thus, this implies that  for has two non trivial fixed points in CT, which is a contradiction 
to Theorem 2.3. R 

9 Examples. 

Our first example illustrates the non intuitive fact tha t  JT may not be decreasing even though 
J is decreasing in [0, oo). 

E x a m p l e  9.1 . Let a > 0 and suppose that  J satisfies condition A, J is constant on [ - a ,  a] 
and J is strictly convex on [a, oo). A simple example of such a function is 

1 e~-Ixl 
J (x )  - 2(1 + a) for Ixl _< a, and J (x )  - 2(1 + a--------) for Ixl > a. 

Then, for T > 2a, JT(X) is strictly increasing on [0, a]. For our specific example, JT is strictly 
decreasing on [a, T/2]. 

Proof. For 0 < x < y < T / 2  and n > 1, we claim that  

J ( n T  + y) + J ( n T  - y) > J ( n T  + x) + J ( n T  - x). 

Inequality (9.1) is equivalent to proving tha t  

(9.1) 

J(nT - y) - J(nT - x) > J(nT + x) - J(nT + y). 

Because a < n T  - y < n T  - x, the latter inequality follows from the strict convexity of ] 
on [a, oo). Using the evenness of J ,  we see that  

and, 

JT(X) : J (x )  + ~ ( J ( n T  + x) + J ( n T  - x ) ) ,  
n > l  

JT(Y) : J(y) + ~ (J(nT + y) + J(nT - y)). 
n>_l 

For 0 < x < y < a, J ( x )  = g(y) ,  so (9.1) implies that  JT(X) < JT(Y). 
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For the explicit example given above, one can compute J,r(X) (assuming T > 2a) 
for 0 < x < T/2 and obtain 

J r ( x ) - 2 ( 1 1 + a ~ [ O ( x  )+Ce_  x+Ce~] ' with C = e  a ~ , 

O(z) = I for 0 < z < a, and O(x) = exp(a - x) for a < z < T/2. Using this formula, one 
verifies that  J r  is strictly decreasing on [a, T/2]. | 

E x a m p l e  9.2 . Assume ff satisfies B and define ff~#(x) = g;(~x). If 

g(x) = ~ exp( -x2 /2) ,  

then, for any T > 0, ,I~Z(jr �9 KT) C KT. 

Also, let To := 27r/(~/2 log(j3)). For T < To, f has no fixed point in CT, while for 
T > To, f has a unique fixed point in CT. 

Proof. First, we note that  if Jk(x) = v/-kJ(v/kx), then 

( j k )  *~ = j 

Thus, if Jk * K~- C KT, then J �9 KT C KT. Also, J~(x) is concave for x _> f i - / k  and by 

Lemma 2.5, Jk * KT C KT for T > 4~/2/k. This means that  for any T > 0, J * KT C KT. 
The value of To is obtained from 

1 2~r 2 
T o = i n f { T > 0 :  ~ J (  ) : = p e x p ( - ~ ( ~ - ) ) > l , }  

| 

E x a m p l e  9.3 . Let ~# be as in Example 2 and let J (x)  = exp( - Ix [ ) /2 .  Here also, 
Lemma 2.5 implies that  for any T > 0, ~2#(jr �9 t@) C KT. Thus, the results of section 6 
imply that  if To is defined as 

( ~ ) 2  = # _ i, 
I 

then, for T < To, f has no fixed point in CT, while for T > To, f has a unique fixed point 
in C~. 

We look now at an example where J is not continuous. 

E x a m p l e  9.4 . Let ~# be as above and let J(x) = I[-1/2,i/2]. Then, we have the relations 
(2.5). 
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Proof. Let k �9 ~V and 7' > 0 such that 

T 1 T 
- ~ + k T  < ~ <  ~ + ( k + l ) T ,  and r = I / 2 - ( T / 2 + k T ) < T .  

We consider the three cases. (i) 0 < r < T/2. A calculation gives, for x �9 [0, T/2],  

JT(X) -~ I[r/2-r,r/2] + 2k + 1, 

so that  JT is increasing and Jr(x  + T/2)  is decreasing. Thus, by symmetry, Jr * I(T C --KT. 
This case corresponds to T �9 (1/(2n + 2), 1/(2n + 1)). 

(ii) If r > T/2  and x �9 [0, T/2], then 

Jr(x) = IEo,~_rm + 2k + 2, 

and JT(X) is decreasing in {x > 0}, and Jr * g r  C KT. 

(iii) If  T = 1/(n + 1), then JT is constant on [--5"/2, T/2] so that  JT * u = f u. 

I f  T > 2, we derive from Lemma i that  f (KT)  C I ( r .  If I < T < 2, a direct 
calculation gives that J r (x)  = 1 for 0 < x < T/2  - 1/2, JT(X) = 0 for T/2 - 1/2 < x < 1/2 
and JT(X) = --1 for 1/2 < x < T/2,  so Corollary 1 implies that  f (KT)  C KT. Also, the 
spectrum is {~9(2~n/T), n �9 22g + 1} with 9(x) = sin(x/2)/x/2.  

We define To = sup{T > 0: flsin(Tr/T)/(r:/T) >_ 1}. The results of section 6 imply 
that  if T > To, and T �9 (1/2n + 3 ,1 /2n + 2), n > 0, then the equation f (u)  = u has a 
unique nonzero fixed point in CT. however, if T �9 [1/2n + 2 ,1 /2n + 1], n > 0, then there is 
no nontrivial fixed point in CT. 

10 Appendix 

Proof of Lemma 3.1. (i) Define the measurable function J~(~) = EI,I<<_N J(~ + nT). Because 
J is non-negative, for each ~, {J~(~),  N = 1, 2 , . . .}  is an increasing sequence and we can 
define JT(4) as its pointwise limit. JT is thus measurable and it follows easily tha t  JT is 
even and non-negative. Assume that  JT(~) < oc, then it is easy to see that  JT(~ + T) < 
and that  

JT(~ + T) - JT(~) = J(~ + T + NT)  - J ( N T  - ~), 

goes to 0 as N goes to infinity. Thus, JT is periodic. (ii) follows by the monotone convergence 
theorem. For (iii), let ~ �9 [0, T/2] and write 

c o  

JT(~) -~ J([) + ~ [ J ( n T  + ~) + Y(nT - [)] 
n=l  

r~r+~ f . r - ~  ] 2E[J  J+ < J(~) + T J,T-~-T/2 n> 1 n T + ~ - r / 2  

<- + ;EIj+/ + Ij_/J 
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R e m a r k  10.1 . If J is even, nonnegative and bounded and J][0,oo) is decreasing, then J 
is automatically measurable. Furthermore, after modification on a countable set, we can 
assume that J is continuous at 0, right continuous on (0, co) and left continuous on ( -oc ,  0). 
To see this, note that  because J][0,oo) is decreasing, we know that J is continuous except 
possibly at countable many points. We define 

j ( { ) =  lim J(x) ,  f o r { > 0 ,  0v({)= ] im_J(x) ,  f o r { < 0  and ] ( 0 ) = l ~ J ( x ) .  
a:-+{+ 

0 7 agrees with J except possibly at countable many points, 07 is continuous at 0, and right 
continuous on (0, oo). It is an elementary exercise (See Rudin,[9]) to show that  oVl[o,_oo) is 
Lebesgue measurable. Similarly, 07](-00,0) is Lebesgue measurable, and therefore J and J are 
measurable. 

Proof of Lemma 3.2. Let 0z be the translation shift by x. Recall that  Oz : L 1 --+ L 1 is a 
continuous operator. Now, 

IL~(z~) - L~(x~)I  _< I [~ (0~-~J~(y)  - :~,(y)) ~(y + .~)dvl 

_< (l&loo I O x ~ - ~ J ~ :  - &l~) v~ Mr (10.1) 

If we take x2 = - x l ,  then (10.1) shows that  ILTu(x~)l <_ ~[u[r and that  LT('klT) C= XT. 

Actually, LT defines a bounded linear map of 7/r  ~ XT with norm less or equal to ~/[Jr[~ 
and L r ( { u  : u E 7iT and l u l ~  _< 1}) is a bounded, equicontinuous family in XT. This last 
fact shows that  LT : 7-@ --+ X T  is compact, a 

L e m m a  10.2 . KT N C 2 is dense in KT in the supremum norm topology. 

Proof. Let u C KT and for each n integer let v~ be a piecewise linear function in I@ 
approximating u; i.e. if xi = T/ (4n) . i  for i = 0 , . . .  ,n, we set v~(xi) = u(zi)  and complete 
v~ on [0, T/4] by straight lines joining the {v~(xi)}. We complete v,~ on [0, T] by symmetry. 
Note that  [u - v~[oo -+ 0. Now let ~ be a C ~ function with support in [ -1 /2 ,  1/2] and 
~,~(x) : ng~(nx). We set w~ = ~n * v~. Note that w~ E KT n C ~ Indeed, for x C [0, T/4], 

J-~/~ ~ ( v ) ~ ( ~  - v)dy, 

where ~ ( x )  = vn(x) for �9 e [0, r /2 ] ,  and ~ ( ~ )  = - ~ , ~ ( ~ ) / ~  for ~ < 0. We build ~,, so 
as to be concave on [ -T /2 ,  T/2], and so is ~,~ * ~n on [0, T/4]. Also, it is easy to see that 

Proof of Lemma 7.3. We leave to the reader the proof that (Yn, ][. II~) is a normed linear 
space when K is a closed cone. Suppose that K is also normal. If ][Y]t~ = M, we have 
- M u  -4 y -4 Mu.  Since 0 -4 y + M u  -< 2Mu,  the normality of K implies that  there exists a 
constant C, independent of y, such that  

[[y + Mull ~ CI[2M~I[ = 2MCllull- 
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If follows that  Ilyll Ily + + II - Mall  = (2C + 1 ) I M t M  := C, II:qll,,, where C1 is 
independent of y. 

Now suppose that  {v . ,n  >_ 1} is a Cauchy sequence in }~. Since IlYll < ClllylI~ 
for all y C Y., it follows tha t  {v., n >__ 1} is a Cauchy sequence in }', and tha t  there exists 
v ~ Y with lira IIv . - v i i  = o. Given e > 0, select no so that  ]]v~ - v,,ll _< e for all n , m  k no. 
Given n > no, this implies that  for all m > no, - ~ u  -< vn - vm ~< eu. Since K is closed in 
Y, it follows by taking limits in Y as m ~ c~ tha t  - e u  -< v~ - v -< eu. Thus we see that  
v E Y~, and IIv~ - vii ~ <_ e for all n _> no, so Y~ is complete. 

If L is as in the s ta tement  of Lemma 7.3 and v C Y~ with []vl[~ = M, we have 
- M u  -.< v -< Mu. Because L preserves the partial  ordering, - M N u  -< Lv -< MNu ,  so 
Lv E Y~ and Ilnvll~ < N]lvl] ~. It  follows that  s : Y~ --+ Y~ is a bounded linear map with 

IIz:II  _< N.  I 
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