Global Continuation and Asymptotic Behaviour
for Pericdic Solutions of a Differential-Delay Equation (+).

JOHN MALLET-PARET (**) - ROGER D. NUSSBAUM (*%*)

‘Summary. — The singularly periurbed differentiol-delay equation
ed(t) = — a(0) + f(a(t—1)

is studied. Huwistence of periodic soluiions is shown using a global continuation technique
based on degree theory. For small s these solutions are proved to have a square-wave shape,
and are velated to periodic points of the mapping j: R — R. When [ is not monolone the
convergence of x(t) to the square-wave typically is not uniform, and resembles the Gibbs phe-
nomenon of Fourier series.

0. — Imntroduction.

In recent years the differential-delay equation
(0.1), e(t) = — w(t) + fo(t —1))

with gealar variable z € R, nonlinearity f: R — R, and parameter ¢ > 0, has been -
proposed as a mathematieal model for several problems in different areas of science.
In opties, for example, equation (0.1). with the trigonometriec nonlinearity

(0.2) 1(0) = -+ S0 (e + o)

where p,€ R, j =1, 2, 3, 4, are parameters, arises in the study of an optically bistable
device. See for example [13, 14, 21, 29, 31, 32, 33]. Equation (0.1). with a non-
linearity f of the form shown in Figure 1 has been proposed as a model for a variety
of physiological processes and conditions ineluding production of blood cells, respira-

(*) Entrata in Redazione il 6 agosto 1985.
(**) Partially suopported by NSF Grant MCS-8201768.
(***) Partially supported by NSF Grant MCS8-8201316 and as a visiting member at the
Courant Institute of Mathematical Sciences, 1983-84.
Indirizzo degli AA.: J. MALLET-PARET: Division of Applied Mathematics (Box F), Brown
TUniversity, Providence, RI 02912; R. D. Nusspaum: Department of Mathematics, Rutgers
Dniversity, New Brunswiek, NJ 08%03.



34 JoEN MALLET-PARET - RoGER D. NUSSBAUM: Global continuation, ete.

tion, and cardiac arrhythmias. See for example [22, 26, 27, 37, 38, 39, 40, 61] where,
in most cases, one of the model functions

0.3) fl) = pa’ exp [— ]
or

_ e
(0.4) o) =

with parameters g > 0 and v > 0 is considered. Hquation (0.1); also arises in popula-
tion models [2, 23, 30] where again f has the form depicted in Figure 1.

f(@)
AN

Fig. 1. Typical nonlinearity f{), with f(a) = a.

Note here that the assumption of a unit time delay A = 1 in (0.1); is merely a
normalization. In fact, if one rescales the time ¢ by setting

t=c¢s and ()= z(s),

then equation (0.1), is equivalent to

a7 (s)

(0.5) s

= —Z(s) + f(®#(s — 1)) where A=g¢1.

Thus one sees that the singular perturbation case & — 0+ in (0.1). is equivalent to
the case of large delay A1 — oo in equation (0.5),: Most of the results of this paper
concern this case.
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Many authors have studied equation (0.1). and similar equations. Local Hopf
bifureations were analyzed in [46]; see also [7]. In [4, 8, 24, 35, 36, 53] periodic
solutions were found through various topological and analytical techniques. See
also [47, 48, 49, 50] where a variety of equations are treated in this spirit. Numerieal
studies can be found in many of the applied works referenced earlier, as well as
in [6, 17, 56, 57]. Chaotic solutions were proved to exist in [28, b5, 60], for some
classes of f. Results on global dynamical behavior are found in [58, 59]. Following
this, a further description of the global picture as a Morse decomposition is given
in [41, 42]. A variety of singularly perturbed delay equations is treated in [3, 5,
9, 20, 51]; in particular, the basic results of Cookg [11] and CookE and MEYER [12]
concern linear equations. A general reference for singular perturbations of all types
is the book of O’MALLEY [54]. '

The results of this paper have been announced without proof by the same authors
in several other papers [41, 43] (See also [9]). Further results are presented in [44].
The reader may find these shorter presentations helpful while reading this paper,

Formally taking the limit ¢ — 07 in equation (0.1). leads to the difference equation

(0.6) a(t) = f(a(t —1))
which one may also write as a discrete system
(0.7) Byy = f{@n) -
A fundamental problem, which we study in this paper, is to determine how the
dynamics of the differential equation (0.1). mirror the dynamies of the (presumably
simpler) discrete system (0.7) when ¢ is small. Indeed, while the discrete system
has been extensively studied [10, 18, 19], not much is known about the differential
equation as & — 0. More specifically, suppose a,€ R is such that f(a,) = a, for
some n>2, but fi(a,) # a, if 1<j<<n. Define a function

oty =@a;, 1ij<t<j+1
where the points a; are given by the iterates

a; = fila,) for O<j<m.
If the function x,(f) is extended periodically, so that

Bolt + 1) = (1)

for all ¢, then x,(f) is a solution of the difference equation (0.6) of period #. One can

ask whether, for ¢ positive and small, the differential equation (0.1). has a periodic
solution w(¢) with period near n, such that x.(f) approaches z,(f) in some sense as ¢
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approaches zero. In this paper, we shall study this question for the case » = 2,
that is, when f(a,) = a; and f(a;) = a, for some points a, a,.

The situation we study could typically arise through a period-doubling bifurca-
tion from a fixed point ¢ == a{u) of a parametrized function f(x, u). If one has
f(a(w), p) = a(u) for seme function a(u) of the parameter y varying in an interval,
then consider the derivative

6(,“) = fx('”’ ‘u)|m=a(ﬂ)

evaluated at the fixed point a(u). If there exists a parameter value g = u, at which
the function 1 + e{u) changes sign, say '

elp) >—1 1f u<py

e(p) <—1 if u> py,

then it is known that a branch of period-two points {a,, a,}, as described above,
must bifurcate from the point (, u) = (@(uy), us). Indeed, under a generic condition
on the function j the bifurcating points @, and @, form, loeally, a smooth one-
parameter family which lies on one side only of the crifical paramefer value u,.
In such a case one has

a(p) < a(u) < ap(u) where lima;(p)= a(uy), 1==0,1

g

either for all p € (s, [u:—i— d) (supereritical bifurcation) or else for all € (pe— 0, )
(suberitical bifurcation), for some 8 > 0. The details of this bifurcation are given,
for example, in the book of CoLrET and ECEMANN [10]. In particular, the model
nonlinearity '

fle, ) = p— »*

is shown to undergo a supereritical period-two bifurcation at (@(uy), ux) = (%, ).
(In fact, an infinite cascade of period-doubling bifurcations occurs, giving rise to
points of period » = 2, 4, 8, 16, ...; see FEIGENBATM [18, 19]. Our modest efforts
here are devoted to studying those points of period n = 2.)

The basic hypotheses we impose on the function f are motivated by the situation
to the right of the supercritical bifurcation above. (Note, however, that in our
study here of equation (0.1). the function f is fixed: there is no bifurcation para-
meter u.) A typical agsumption on f is the existence of a fixed point # = @ at which
f'{a) < —1; by means of a linear translation one has @ = 0 without loss, and so

(0.8) f0)=0 and J(0)<—1
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are assumed. In addition, we generally assume the negative feedback condition
(0.9) #flx) <0, a#£0

for » in some sufficiently large interval of interest about the origin. (Clearly (0.8)
implies (0.9) near zero, at least.) Finally, the existence of period-two points

a<0<a,, fla)=a and fla)=a,

and possibly some stability conditions on these points (for the discrete map f) is
sometimes assumed. Monotonicity of f between a, and a, is not required; indeed,
out most interesting results concern the non-monotone case. Figure 2 depicts the
graph of a typical function f of interest.

f(@)
S

Fig. 2. Nonlinearity f(#) normalized so f(0) = 0.

The main results of this paper occupy Sections 3 and 4, and describe the
asymptotic behaviour of the periodic solutions z,(f) as ¢ — 0+ under the assumptions
on f outlined in the preceeding paragraph. (The existence of the periodic solutions
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we(t) was proved by HADELER and TOMIUK [24]; see also CHOW [4] and KAPLAN
and YORKE [35, 36] for some special cases and related equations. In Section 1 we
show there is a continuum of such solutions exfending from a Hopf bifurcation point
e=1">0 to ¢ =0.) TFollowing a preliminary estimate on the period of .(?)
given in Theorem 3.1, the nature of the convergence of #.(f) to the period-two step
function z,(t) (which we denote by sqw (f) for «square wave») is investigated in
detail in Section 4. In particular, our results confirm phenomena observed in
numerical and experimental studies by other authors. Namely, when f is monotone
between a, and a, the convergence of x.(t) to z,(f) is very regular (in the sense that
the graph of z.(f) resembles a square wave as ¢ — 0%), but that if f is not monotone
there, then w.(t) often exhibits a non-uniform convergence to wx,(f) reminiscent of
the Gibbs phenomenon of Fourier series.

The nature of this Gibbs-like convergences is as follows. The solution x.(f) con-
verges to the step function x,(f) uniformly on compact subsets of R — Z (where Z
denotes the integers). However, near integer points { = §, where x,(f) jumps, 2:(?)
can overshoot the values x,(f) = a,, ¢; by an amount which does not become small

aO*_.___._._jT__..______.__.__
)

oy

Py

Fig. 3. The Gibbs phenomenon for small e.
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as ¢ — 07: there exigts either a, > a, such that for each 6 <1

lim sup max x.(t) > tesx > o
e—0 lt—11< 6

or else there exists @, < @, such that for each 6 <1

lim inf min 2,(f) <@ << ay .

80 lt|<é
Figure 3 depicts such a solution x.(!). Theorem 4.2 describes the convergence on
R — Z, while the more delicate convergence near integer points is described in
Theorem 4.1 and Corollaries 4.1 and 4.2.

Although this Gibbs phenomenon does not occur if the function f satisfying
conditions described earlier is monotone for a,<x<a,, we prove in Proposition 4.1
that it must oceur for many (non-monotone) funetions f for which f([a,, a,]) properly
containg [a,, 4,]. The analytical device whieh allows one to describe the structure
of x.(t) near the jumps in z,(¢), and so prove these results, is a pair of transition
layer equations

(0.10) y(t) = y(t) — f(et — 1), 20) = 2() —fly(t—7r) .

For an appropriate choice of the parameter » > 0, there is a solution (y(?), 2(f)) such
that both |w:(— et) — y(#)| and |@(1 + er — et) — 2(2)] are small, uniformly on compact
t-intervals, for sequences &, — 0+. In addition,

lim (y(t), 2()) = (@, 1)

t—>— o0

51_132 (y(t), z(t)) = (a1, @)

that is, (y(t), 2(f)) is a heteroclinic orbit joining the critical point (a,, a;) of the system
(0.10) to the critical point (a,, a,). Such solutions of the transition layer equations
thus describe the fine structure of a;(f), in neighborhoods of width O(e), about the
jump points of x,(f). Further studies of the transition layer system (0.10) are found
in [562]. In [5] a transition layer equation was used to prove similar results for a
nonlinear integral equation.

In Sections 1 and 2 we prove some general results valid for larger ranges of e.
In this case we shall typically write equation (0.1); in the equivalent form

B(t) = — Aalt) -+ M(a(t —1))

where A = &1 Most of our results in these sections concern the global Hopf bifurca-
tions from the origin # == 0 at a sequence of parameter values A = 1, satisfying

v LAy A << O < Ay A< A< o,
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The local bifurcation from each of these points was deseribed by MARTELLI, SCHMITT
and SMITH [46]. We prove that the local Hopf branch emanating from the point
(@, A) = (0, 4,,) lies on a continuum X, of periodic solutions extending for all 1 > A,
if m>0, and all 2 < 4, if m < 0. The sets 2, are pairwise disjoint and the integer m
is related to the rate at which solutions oscillate. The solutions on 2, have con-
secutive zeros spaced a distance greater than one apart, and repeat after their second
zero: they are all «slowly oscillating » periodic solutions and in many cases are
observed numerically. The solutions on 2, for m = 0, in contrast, oscillate more
rapidly and seem generally to be unstable. Section 1 deals with the slowly oscillating
periodic solutions. 2, while in Section 2 we study Z,, for m = 0. The results of
Section 2 will not be needed for the remainder of the paper.

The appendix contains proofs of several facts related to the location of eigen-
values of the linear problem.

One issue which we have not addressed in this paper, for reasons of space, is
the problem of determining for which parameter ranges our results apply to the
specific nonlinearities (0.2), (0.3) and (0.4) in the applied models. This is treated
in a companion paper {45] by the same authors.

1. — The existence of a global continuum of periodic solutions.

We shall be interested in this section in finding a continuum of periodic solutions
of a parametrized family of differential-delay equations of the form

(1.1)2 () = — Aw(t) + M@t —1)), A>0.

We shall also explore some other aspects of equation (1.1); which relate the
dynamical behaviour of solutions (1.1), to the orbits {,} of the discrete dynamical
system

(1.2) Bny1= [(n)

obtained by iterating the map f.

It will often be necessary to consider an initial value problem for (1.1),. If
@ e C[0,1] is a given continuous function, f is continuous, and 1> 0, one can
easily prove there is a unique function #(¢) which is continuous on [0, oo), continuously
differentiable on [1, oo), and satisfies

#(t) = — Aw(t) + Af(w(t —1)) for all t>1,

m][07 1] = @ -

(1.3)2

We will denote the unique solution x(f) of (1.3), by (t; 4, ¢). Of course x(t; 4, ¢)
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also depends on f, but f will usually be fixed. The solution #(¢; 4, ¢) is obtained by
step by step integration on intervals of length one.
Qur first result concerns invariant intervals for cquations (1.1), and (1.2).

ProposITION 1.1. — (i) Let f: R — R be a continuous funclion and let A > 0. Let
IC R be a closed (possibly infinite) interval such that f(I)CI. If @€ O[0,1] satisfies

(1.4) pyel  for all 1€[0,1]
then the solution x(f; A, @) of (1.3)s satisfies

z(t; A, @)l for all t>1.

If in addition @(1) €int (I), where «int» denotes interior, then x(t; A, ) €int (I) for
all t>1.

(ii) Further, define the set

(1.5) L= FD;

necessorily I is a closed connected subset of I. If I+ 0, then the above solution
of (1.3), with (1.4) satisfies

dist (z(t; 4, ¢), I,) =0 ast—>oco
where « dist » denotes the distance from a point to & set.

Proor. — (i) With ¢ and #(f) = 2(t; 4, ¢) as in the statement of the proposition,
let

to=sup {t€[1, co): x(s) € I for all sel,1]}

and suppose that f,<< co. For definiteness suppose that I = [D, C] is a compact
interval. From (1.3),, (1.4), the definition of #,, and the invariance property f(I) C I
one obtains

(1.6)

gg(exp [As]@(s)) = A exp [As]f(w(s — 1)) <A exp [4s]C

for all se[1, % + 1]. Integrating (1.6) from 1 to te[l,?,+ 1] and noting #(1) =
= (1)< C gives

(1.7) 2(t) < C + exp [— A(f —1)](x(1) — 0) < C.
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A similar argament shows «(f)>D if te[1,%, + 1] and so «(?) € I for this range of {.
But this contradicts the definition of #,. Hence {,= co.

If in addition ¢(1) €int (I), then the second inequality in (1.7) is strict for each
t>1. And similarly «(f) > D, so z(¢) € int (I) for each {>1.

(ii) Again for definiteness assume I = [D, O] is compact. The sets f*(I) form a
nested decreasing sequence of compact intervals (or points), so one may write

f”(I):[Dan]; n>07

where
D= Dy<D <D, <...<0,<C,<Cy= C.
Note that |
I =[D,,C.]
where .

D,=1mD, and C_=1lmd,.

n—>co N—> 00

Suppose it is shown that for some #>0 one has
(1.8), dist (2(t), f/I)) —~0 as t —>oo,

or what is equivalent

D, <lim inf 2(t) <lim sup #(t) < 0, .
t=>o00 t—>c0

Then certainly

D, <lim inf f{a(f)) <lim sup f(2(t)) < Cpps

f—>co t—> 00

so that for each J > 0 there exists 7'>1 such that
(1.9) Dy —o<fle(t—1))<Cpy+ 96 for all t>T.

Integrating the equality in (1.6) from T to ¢, using (1.9), and letting ¢ — oo gives
D, ,— 6<g1£10 inf m(t)<}i>r£10 sup 2(t) <Oy + 6. But d is arbitrary, hence

dist (#(?), f~(I)) -0 as - oo,

Thus (1.8), implies (1.8),,,. As (1.8), already holds for n = 0 by part (i) above,
by induetion it holds for each n>0. But this proves

dist (#(?), I) =0 as ¢ — oo

as required.,
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It I is an infinite interval (and also I+ @ in part (ii)), then all the above
arguments are valid with only minor changes. [

REMARK 1.1. — If I =0 in Proposition 1.1, then either f+(I) = [D,, oo) for

large n, where D, — oo, or else f*(I) = (— oo, C,] where (, - — oco. In the former
case one can show lim #(¢) = co while in the latter case lim #(¢) = — oo for any solu-

{->co {— oo

tion of (1.3); satisfying (1.4).
COROLLARY 1.1. — Let f, A, I and I, be as in Proposition 1.1. If x(t) is a periodic
solution of (1.1): satisfying
z(tyel for all te R

then one has

vcc(t)eIo0 for all te R.

Further, if x(t) is non-constant, then
(1.10) 2(t) €int (I,) for all te R.

Proor. — That z(?) e I, for all ¢ is an immediate consequence of the periodicity
of x(t) and of (ii) of Proposition 1.1.

If z(¢) is non-constant, then (%) €int (1) for some {,€ R. By replacing x(?)
with the solution x(¢ + f,— 1) if necessary, we may assume withont loss of generality
that {,= 1. But then ¢(1) €int (I,) where ¢ = z|[0, 1], hence by (i) of Proposi-
tion 1.1, with I, replacing I, one has #(t) eint (I,) for all 1. As w(?) is periodic,
(1.10) is proved. O

REMARK 1.2. — Suppose f: R — R is a continuous function for which f(I)CI,
where I = [D, 0] is a compact interval. Define a new function f by

f(D) if <D,
fley =1 f@) if D<a<C,
f(¢) if #>0.

By Corollary 1.1 any non-constant periodic solution x(f) of

(1.11), B(t) = — da(t) + Af(x(t—1)), A>0

takes values only in the interior of I_= ()] f=(R)C[D, C] and hence satisfies
n=0

D<wit)y< O forall t.
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But then (1) is also a solution of (1.1). Thus if one only studies periodic solutions
of (1.1), taking values in [D, C], it suffices to look for periodie solutions of (1.11),:

REMARK 1.3. — Suppose f: I — I is continuous, where I = [D, (] is a compact
interval. Further suppose that I, = {a} for some a€&I. It iz easy then to see
that for any «,€ I one has w,€ f~(I) and hence }11_1)130 x, = a, where x, is defined by

{(1.2). What is not so obvious is the following converse.

PROPOSITION 1.2. — Suppose f: I — I is continuous where I is a compact interval.
Suppose further that there exists a €I such that

(1.12) lim %, = a

nN—> 00

whenever z,€ I and x, = f{x,) is the n-th iterate of x, by the map f. Then the set
I,= ) f*) is simply I, = {a}.
n=0 '

Proor. — First note that f has a unique fixed point in I, namely # = a. The
existence of a fixed point is clear, as f(I) € I'; that any fixed point 2 of f must in fact
equal ¢ follows from (1.12) upon iterating that peint: » = f*(») = #, — ¢ implies
# = a. A similar argument shows further that # = a.is the unique fixed point of
the composed function fof in I. Thus

@) =2l <rv=a,
and
ff@) =vel<aw=a.
Next observe that f maps the set I, onto itself; this is clear from the definition

(1.5) of I,. As I_ is a nonempty connected compaet set, it must contain a fixed
point of f, that is, the point e el,. As before, denote

I, =[D,,0,] where D,<a<C,.

‘We wish to prove that D, = C_.
As # = a is the unique fixed point of f in I_, one has that
fey>a if Do<ex<a,
(1.13) and

fy<z if a<agl.
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In the same way, for the composed function one hasg

f(f@) >z if D,<w<a,
(1.14) and
ff@) <e if a<z<0,.
From (1.13) one has f(z)#= C,, if a <2<0,. But O, el,= f(I,), so there exists

some & € [D,, a] such that f(&) = C,. Similary, there exists # € [a, C,] with f(y) =
= D_. Thus

ne€la, C.]Cf([& al)

so there exists ¢ € [£, a] such that f({) = 5. But then f(f({)) = D,<{, so (€ [a, C,]
by (1.14). Thus {€[&, alN [a, 0], implying { = a, and

D= f(f(0)) = {(f(a)) = a.

Tn a similar fashion one has ¢ = O, thus proving that ¢, = D,. O

A consequence of Propositions 1.1 and 1.2 is that if the point a attracts all
orbits #, of the discrete system (1.2) with initial condifion @,€I for a compact
interval I satisfying f(I) C I, then # = a is an equilibrium solution of the differential-
delay equation (1.1); which attracts solutions with initial conditions taking values
only in I. More precisely, the following result holds.

COROLLARY 1.2. — Let f, I = [D, C] and a be as in Proposition 1.2. If ¢ € C[0, 1]
satisfies

D<ot)y<C  for all te[0,1]
and 1> 0, then one has for the solution of (1.1),

limz(t; 4, ) = a.

t—>o00

REMARK 1.4. — One is tempted to relax the condition (1.12) in Proposition 1.2,
and replace it with a condition such as

(1.15) lim dist (z,, K) = 0

>0

where K C I is a compact interval, and « dist » denotes the distance from a point
to a set. However, the natural conclusion, that I, ¢ K, is unfortunately false in
general. For example, if f is a function mapping I = [0, 1] onto itself, and satisfying
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in addition that f(») = § whenever +<#<1, then one easily sees that (1.15) holds
with K = [0, }]. But I_= I is not a subset of K.

Whether the corresponding generalization of Corollary 1.2 holds is another mat-
ter. That is, if ¢(¢) eI for all {€][0, 1], does

lim dist («(t; 4, ), K) = 07

{00
This question remains open.

REMARK 1.5. ~ One may ask whether a generalization of Proposition 1.2 holds
with (1.12), but for compact sets I other than intervals. This, unfortunately, is
also false in general. For example, if §* denotes the unit circle in the complex

a = (1’ 0)

Fig. 4. The counterexample of Remark 1.5.

plane, define f: 81— 8* by f(exp [27i6]) = exp [2niV/#] for 6<f<1. Then f*z,) —
—a =1 for any x,€ 8%, yet ] f+(S!) = 8* as f maps S* onto S

n=0
A slightly more complicated example can be constructed on the closed unit
disc .D? in the plane. Note that D? can be written as a union of circles, any two of
which have only the point ¢ = {1, 0) in common; sec Figure 4. Map each circle

onto itself by a map of the kind above. This gives a continuous map f of D? onto

itself, for which f*(z,) —> a for any x,€ D2. Again () #(D?) = D? so the conclusion
of Proposition 1.2 fails. n=0
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Similar examples can be constructed on the sphere 82 and many other spaces.
The examples here and in Remark 1.4 thus indicate the hypotheses of Proposition 1.2
are, in some sense, best possible.

We shall be interested in poriodie solutions of (1.1), which oscillate about a fixed
point a of f. Without loss of generality we may take a = 0; for if a = 0 we may
introduce # = # —a and define f(Z) = f(& + a) — f(a). Then f(0) = 0, and equa-
tion (1.1)s is equivalent to the equation

dfl—it) = — AZ(t) + AM(=(t—1)).

Generally, then, we shall assume f(0) = 0. In contrast to Proposition 1.2 and
Corollary 1.2 however, we shall nof assume this fixed point is attractive. In fact,
we will often require that |f/(0)| > 1, so that 2 = 0 repels iterates x,. In addition, a
negative feedback condition af(x) < 0 will be assumed for certain values of x on either
side of zero. Typically, this condition causes solutions of (1.1), to oscillate about
= 0.

We state precisely several hypotheses which f can satisfy. Conditions (H1) and
(H2) will usually be assumed. In addition, condition (H3), which strengthens (H1),
will eccasionally be assumed.

(H1)  The function f: R — R is continuous. There ewist positive constants A and B
such that

f((— B, 4]) ¢ [— B, 4]
and

of() <0 if xe[— B, A], €= 0.
Further f(x) = f(— B) if a<— B and f(z) = f(4) if »>A.

(H2)  The function f: R — R is continuous, satisfies f(0) = 0, and is differentiable.
at © = 0 with

—f0) & E>1.

Further, f is monotone decreasing (*) on some neighborhood of o = 0.

(H3) The function f: R — R satisfies (H1). In addition, there exist positive con-
stants a and b satisfying a < A and b< B, such that if z,€ (0, A] and z,= f*(x,)
18 the n-th iterate of x, under f, for each n>0, then

lim2y,=a and limay,,,=—>b.

fi—> o0 N> 00

(1) We say a function f is monotone decreasing on an interval I in case x; < &, implies
f(®,) > f(»,) and that f is strictly decreasing on I if &, < w, implies f(x,) > f(#,), for @,, @, €1
We also make the analogous definitions of monotone increasing and strictly increasing.
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If f satisfies all the conditions in (H1) except the last sentence (i.e., that f(x) is
constant on (— oo, — B] and on [4, o)), then we may define a new function f by

f(—=B) if »<—B,
fo) =1 fte)  if —B<a<4,
f(4) if x> 4.

Clearly f does satisfy (H1). Remark 1.2 shows that every non-constant periodie
solution of

() = — Aw(t) + Af(w(t—1)), A>0

satisfies — B << a(t) < A for all #, hence is a pericdic solution of (1.1),. As these
are the solutions we shall be interested in, we lose no generality by considering the
modified funetion f in place of f. That is, the final sentence of hypothesis (H1)
essentially imposes no additional restriction on f for our purposes. To emphasize
this, we state the following result.

ProposirioN 1.3. — Let f satisfy (H1). Then any periodic solution of equation (1.1)s
satisfies

—B<at)<< A for all .

Hypothesis (H3) implies that f(a) = — b and f(— b) = a. Further, the set {— b, a}
attracts iterates of any nonzero x,& [— B, A] under the discrete dynamical system
(1.2); compare this assumption with the hypotheses of Proposition 1.2. Observe
that the iterates x, = f*(x,) alternate in sign, due to the negative feedback condition
zf(z) < 0 of (H1). A function satisfying (H3) could typically arise in a parametrized
family f(x, x) in which the fixed point # = 0 underwent a period doubling bifurcation
as the derivative f (0, u) passed through —1, as described in the introduction.

We shall study a subclass of periodic solutions of (1.1)a.

DEFINITION 1.1. — A periodic solution 2(f) of (1.1); is called a slowly oscillating
periodic solution if there exist numbers ¢ >1 and 7> ¢ -1 such that
%(0) =0,
#(t) > 0 when 0<<t<gq,

o(f) < 0 when g<it<q,
and
ot +q) = 2(t) for all £.

(Ot course x(q) = @(g) = O)
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Fig. 5. A slowly oscillating periodic solution.

«Slowly » in Definition 1.1 refers to the fact that the separation of zeros of x(f)
is greater than the time lag. Note that w(f) is assumeéd to repeat after two zeros.
Also note that when f satisfies (H1), then all its zeros are simple, so that #(g) < 0
and #(0) = £(7) > 0. Figure 5 illustrates a slowly ogcillating periodic solution.

We shall now convert the problem of finding slowly oscillating periodic solutions
of equation (1.1); with hypothesis (H1) holding, to an equivalent problem of finding
fixed points of a map ¥, from a space K, to itself. Such fixed points will then be
found by ‘using topological techniques. ’ ) »

If 2(t) is a slowly oscillating periodic solution of (1.1), for some 4> 0, then one
can see that x(f) is uniquely determmed by (4, ¢) where ¢ = x}[O 1]. If the set K
is defined by

= {yp € C[0,1]: »(0) = 0 and w(f);o for. all ¢t [0, 1]}

then (4, ¢) € (0, o) X K. . Actually, more can be said when (H1) holds. If § is the
second positive zero of «(f) (as in Definition 1.1), then z(¢ + §) = «(¢), so that

%(exp [M)a(f)) = A exp [Ae]f(2x(t — 1)) = A exp [M]]‘(a‘a}(t +7—1)>0 if 0<t<1.
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It follows that ¢ € K1 where

(1.16) K= {y e K: exp [At]y(t) is monotone increasing on [0, 1]} .

Conversely, suppose (4, ¢) € (0, oo) XK, and let z(t; 4, ¢) be the solution of the
initial value problem (1.3),. If ¢ is not identically zero, then ¢(1)> 0. In this
case define

g = q(4, ¢) = inf {t > 1: z(t; 4, ¢) = 0}

to be the first zero of 2(t; 4, ¢) in (1, oo), if such exists. From the negative feedback
condition #f(z) < 0 of (H1), and because ¢ € K,, one can easily show that

1.17) Eq; Ay @) < 0.

If a set I' is defined by

(1.18) I'={(2,9) € (0, o) xK: g € K}

then (1.17) implies that the function ¢(4, ¢) is defined on an open subset of I, and
is continuous on this domain of definition.
If ¢(4, @) is defined for some (4, ¢)€e I', then (1.1), and (H1) imply

d .
7 (exp [Mtla(t; 4, @) <0 if ¢ = q(4 g)<t<g+1.

Thus «(t; 4, ¢) < 0 if ¢<t<q +1. We may now define
!7(17 ) = inf {t > Q(A; @) +1: a(t; la @) = 0}

to be the next zero of #(t; 4, ¢) beyond ¢(4, ¢), if such exists. As before, g is a simple
zero of x(t; 4, ¢), and the function g(4, ) is defined on an open subset of I', and
is continuous on this domain. Further, because z(¢; A, p) < 0 if ¢ <t < g, one sees
that

(1.19) d%(exp [Atle(t + G5 4, @))>0 if 0<t<1.

Equation (1.19) allows us to define a map ¥: K; — K; for each 1> 0 as follows.
If 9 e K, and g(4, ¢) is defined, then set

(1.20) WFap)®) = 2(t + 44, ¢); 4, 9) for 0<i<1.
If §(4, ) is undefined (in particular if ¢ is the zero function), then set

Wip)®) =0 for O<i<l.,
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More or less standard arguments show that ¥, is a continuous compact map from K,
into itself. In fact if we define W(4, ¢) = Yi(g), then ¥: I' -~ K is continuous and
compact. One sees that under hypothesis (H1), there is a one-to-one correspondence
between slowly oscillating periodic solutions of (1.1), and nontrivial fixed points
of ¥,. That is, #(f) is a slowly oscillating periodic solution if and only if Pi(p) = ¢
where @ € K;— {0} is the initial value ¢ = #|[0, 1].

Let us define then

(1.21) Z={4 ) €0, o)xK: pc Ki— {0} and Pilp) = ¢}

which represents the set of all such solutions. The main result of this section, Theo-
rem 1.1 below, asserts that 2’ contains a continuum X, which extends from a Hopf
bifurcation point (4,, 0) throughout the range A,<< A << co. Before stating Theo-
rem 1.1 we must define the bifurcation point 4,.

If f(0) is assumed to exist, and equation (1.1), is linearized about # = 0, one
obtains

(1.22); &(t) = — Aw(t) — Aka(t —1), where k = —f(0).

If one seeks a solution x(f) = exp [{t] (for { complex) of (1.22)s, then one is led to
the characteristic equation

(1.23) {=—24—Akexp[—{].

If one assumes % > 1 (as in (H2) for example), then the results of the appendix (see
also [46]) show that (1.23) has a solution

§ =i

with real part zero, for some A = A,> 0. The values of », and the parameter A,
are unique under the condition
7
Vo€ 5’76 .

Indeed, », and 4, are obtained by solving

—1 7T W
(124) GOSVO——T, VDE(Q,TE), Zn——ﬁ.

Observe that because », << 7, the eigensolution x(t) = sin »,¢ of (1.22), has consec-
utive zeros spaced a distance s/v,>1 apart, hence is a slowly oscillating periodic
solution of (1.22), . The parameter value 1, may be characterized as the only value
of 2> 0 for whiech (1.22), has such a solution; this is a consequence of the results
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of the appendix. Further, it is proved there that when 4 = A, the solutions { = i,
aré simple roots of the characteristic equation (1.23), and they cross the imaginary
C-axis transversally gs A increases; also, when 1 = 4, equation (1.23), has no other
roots on-the imaginary axis. These results and the Hopf bifureation theorem in [25]
show that if f(z) is O' near & = 0, then oné obtains a loeal Hopf bifurcation of
periodic solutions of (1.1); from (4, #) = (4, 0). One expects that these solutions
are slowly oscillating periodic solutions, and so the bifurcation point (4, 0) should
belong to the closure of X in (0, oo) X K. This is indeed the case, as the following
theorem shows. Tn:faet there is a global Hopf bifurcation from (4,, 0), giving rise
to an unbounded continuum X,C z

THEOREM 1.1 - Assume that f satisfies - (H1) and is differentiable at & = 0 with
f(0)= —k, where k= 1. Let the set X C (0, oo) ><K be defmed by (1.21) and 3> 0
be gwen by (1.24). Then one has the followmg '

(i) There exists 6 >0 suoh that if (A, @), then A>6 and || < A (with A
as in hypothesis (HL1) and | || denoting the sup norm).

(ii) The closure X of X in (0, co) X K is
Z=2ZU{(d,0)}.

(ili) Let Z,C X be the mawimal connected component of  containing (20-, 0).
Then 2y is an unbounded subset of (0, co) X K.

(iv) For each A > A, there exists a slowly oscillating periodic solution x(t) of (1.1)s
such that (A, @) € X, where ¢ = 2([0,1], and — B < 2(f) < 4 for all t.

REMARK 1.6. — As noted in the introduction, the fac’o that equation (1.1) has a
slowly oscillating perlodlc solution for each 1> 1o was proved in [24], and the local
Hopf bifurcation was studied in [46].

Before giving the proof of Theorem 1.1, we shall present several lemmas. The
first of these is used to extend the domain of definition of ¥ from I" to all of
(0, o) X K. As there are difficulties in trying to use directly the definition (1.20)
of ¥ to do this, a different approach is needed.

LEMMA 1.1. - Ther‘e»»‘aa?:i.sts a continuous retraction o of (0, oo) X K onto I' (where I
s given by (1.18)). This retraction has the form

(1.25) o2y @) = (4, 0ulg))  for all (3, 9).€ (0, o) XK

where 0;%(0) = {0}.
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Proor. - If K, is defined by (1.16), note that for any real numbers « and § the
sets K, and K, are homeomorphic by a homeomorphism k, ;: K,— K, defined by

(1.26) (hs 5#)(t) = exp [(a — f)t]e(?), O<i<1.

The inverse of h, ;5 is h; .. Note that the formula (1.26) in fact defined an extension
of k, ;5 to a homeomorphism from K onto K; we denote the extended maps by H, ;.
One can easily check that the map g,: K — K, defined by

(009)(t) = max @(s) for 0<t<1

[ 344

is a continuous retraction of X onto K, and that g;*(0) = {0}. Define a continuous
retraction of K onto K, by

0:(®) = By (00 (Hy,0(9))) -

Then (1.25) defined a continuous retraction g: (0, cc) x K — [I"; observe that g;*(0) ==
={0}. O ’

In our case the existence of g, is easy. Mors generally, the existence of a retrac-
tion from & Banach space Y onto an arbitrary non-empty closed convex subset of ¥
follows from a deep theorem of DUGUNDJI [15]. '

With the aid of Lemma 1.1 define an extension & of ¥ by

G(}H @) = T(Q(A’ (P)) ’

and define G»: K — K, by

Gulp) = G(4, ) .

One easily sees that the set of fixed points of G, is precisely the same as the set of
fixed points of ¥,, and hence

2= {(A, p) € (0, co) xK: Gis(¢) = ¢ and ¢ is not the zero function} .

To prove that X, is unbounded (in part (iii) of Theorem 1.1} we shall use Theo-
rem 1.2 in [49]. First we need to recall some definitions. Recall that if Y is &
topological space and ¢: Y — Y a continuous map with fixed point y,, then y, is
an attractive fized point if there exists an open neighborhood U of ¥, such that for
every open neighborhood V of ,, there exists an integer n = n(V) such that f/(y)e V
for all j>n and y € U. The fixed point ¥, is called an ejective fixed point if there
exists an open neighborhood W of y, such that for every y € W — {y,} there is an
integer m = n(y) such that g*(y) ¢ W.
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Given the fact (proved in the appendix) that the characteristic equation (1.23)
has only roots with negative real part if 0<< 1< 4y, the following lemma is a
standard result (see [25]) in the stability theory of differential-delay equations.
As a special case, it implies that 0 € K is an attractive fixed point of G4: K —+ K
if 0<<A< .

LEMMA 1.2. — Assume thot | satisfies (H1) and is differentiable at © = 0 with
f(0) = —Fk. Assume that 0 <A<<l, with A, as n (1.24) if k>1 and Ay= oo if
0<k<1. Then there exists 6 > 0 such that for every » > 0 there is a number T,>0
such that

sup |#(t; 4, @) < %

t=Tx

whenever @ € C[0, 1] satisfies |¢| < 6.

If, on the other hand A > 4,, then 0 is an ejective fixed point of ¥i: K; — Ki:
This is proved by HADELER and ToMIUK in Lemma 11 of [24]. Some checking is
necessary because Hadeler and Tomiuk use different parameters from ours, but
this is mostly a question of notation.

Next, recall that our retraction g,: K. — K; is chosen so that ¢;%(0) = {0}. Using
this fact and the fact that for any ¢ € K one has G;(¢) = ¥7(g,(¢)), one sees that
ejectivity of ¥, implies ejectivity of G1, so one obtains the following result.

LemMuma 1.3 (See Lemma 11 of [24]). — Assume that f satisfies (H1) and is differen-
tiable at © = 0 with ['(0) = — k, where k> 1. Assume that 1 > 2, with A, as in (1.24).
Then 0 € K is an ejective fized point of G.

The next lemma gives most of part (i) of Theorem 1.1.

LEMMA 1.4. — Assume that | satisfies (H1) and is differentiable at © = 0. Then
there exists & > 0 such that if x(t) is a slowly oscillating periodic solution of (1.1)x for
some A >0, then A>0. Hence

2'C[d, oo) XK .

Proor. — We know from Proposition 1.3 that every slowly oscillating periodie
solution a(¢) of (1.1), satisfies

—B<ait)y<A forallt

where A and B are as in (H1). Because f is differentiable at the origin, there exists a
constant 2 such that

f@)| <O if —B<gz<d.
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Let x(t) be a slowly oscillating periodic solution of (1.1), for some A > 0 with
first zero ¢ and second zero g, and set

M, = maxz(t) and M_= max [x(t)|.
0<t<a <I<T

The assumptions of f imply from (1.1), that #(t)<0 on [1, q] and &(t)>0 on [¢ + 1,
ql; so

(1.27) M, =maxz(t) and M_= max [x(f)],

0<i1 e<i<etl

and periodicity gives

M_ = max ().
<<y +1

Integrating (1.1), from ¢ to ¢ gives

t
(t) = f A exp [A(s — t)]f(a(s — 1)) ds
which implies

()| <(1 —exp [Mg— 1)) QM if ¢g<ti<q+1

so that

(1.28) M_<(1—exp[— 4]) QM. .
A similar argument shows M, < (1 —exp[— A]) QM _, and combining this with (1.28)
gives
(1.29) M, <(1—exp[—Ai])202°M, .
But if 6> 0 is chosen so that (1 —exp [— 0])222<1, then (1.29) is impossible for
0<A<dand M, >0. O

It will be convenient to obtain an a priori bound on the minimal period of any

slowly oscillating periodie solution; the following lemma does that.

LuMMA 1.5. — Assume the hypotheses of Lemma 1.4. There exists a number Q > 0
such that if x(t) is a slowly oscillating periodic solution of (1.1)s for some A > 0, then
the minimal period § of x(t) salisfies )

7<@Q.

The number @ depends only on f, and not on A
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ProoOF. — Let the notation be as in the proof of Lemma 1.4, and suppose #(f)
is a slowly oscillating periodic solution of (1.1); for some A > 0. Lemma 1.4 therefore
implies 4> 4.

From (1.1), one has

oﬁlli (exp [A(t — D)]z(t)) <0 if 1<t<yq

and hence
(1.30) x(t) <exp [— A(t —1)]2(1) <exp [Q— E—1) M, if 1<i<q.
Equation (1.30) impiies
O<a(t)<exp[—d(g—2)]M, if ¢—1<i<q;
using this fact and integrating (1.1), from ¢ to t€[q, ¢ + 1] gives
¢ ‘
exp [4(t — @)la(t)] =% exp [A(s — @)]lf(o(s —1))| ds<

<(exp [A(t — )] —1) exp [— 6(¢ — 2)] 2 M, .
This and (1.27) imply

(1.31) M_<exp[—d(g—2)]1Q2M, .

A similar argument shows M, <exp [— 6(F — ¢ — 2)]Q2M _, and combining this with
(1.31) gives

M, <exp [— 07 —4)]22 M, .

Because M > 0 one has exp [— (7 —4)]2%>1, hence

as required. O

Our last lemma shows that X C (0, oo) X K remains bounded away from (0, co) X
% {0} except possibly at the point (4,, 0).

LEMMA 1.6. — Assume the hypotheses of Lemma 1.4, set k = — f'(0), and let J C
€ (0, o) be any compact set. Further, if k> 1 let A be as in (1.24) and assume thai
ot J. Then there exists x = x(J) > 0 such that if ®(t) is a slowly oscillating periodic
solution of (1.1), for some A€, then max |#(t)] > ». Consequently one has

(1.32) S X C{(2,0)} .
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Proor. - Suppose for some J there is no ». Then it is easy to show there is a
sequence of slowly oscillating periodic solutions #,(t) of {(1.1); for some sequence
An€dJ, such that max |, (t)] =0 as n —oco. Define y,(t) by

_ ()
0= ]
where |#.| = max |z,(¢)]; then
b
(1.33) Ialt) = — 2a¥n(t) = Znkya(t — 1) + L B(ya(t —1), [|@a])

Whefe R is the continuous function defined by

ky + & f(Gy) i &~ 0,

(1.34) R(y, &) ={ . Hi0,

Also, let ¢, and @, denote the first and second zeros of #,(f).
By taking subsequences one can now assume

;Ln —Aied
(1.35) ¢»—>¢q and §,—¢q,

Yult) = y(t) and ¢.(¢) —y(¢) uniformly on compact sets
for some 4, ¢ and @, and some continuously differentiable function y: R — R. These
claims follow from Lemma 1.5, from an application of Ascoli’s thecrem 1o ¥,(?)

upon observing in (1.33) that y,(¢) and ¢,(!) are both uniformly bounded, and by
taking the limit in (1.33) where one uses |#,| — 0. In fact, one further sees that

{1.36) gty = — Ay(t) — Aky{t — 1) for all ¢,
(1.37) y()>0 on (0,¢) and  y()<O0 on (¢,7),
(1.38) y(t +-q) = y(t) for all 7,
(1.39) g>1 and g—g>1,
and
max ly®)=1.

The standard theory for linear differential-delay equations [1, 16, 25] implies
that (1.36) ‘cannot have a periodic solution’ unless the characteristic equation (1.23)
has a root with real part zero. It is proved in the sppendix that if this is so, and
A>0 and k>0 (as is the case here), then necessarily k> 1 and 2 = 4, for some
m >0 where

Vi

Zm:vz;ﬁ’ V= v0+ 2mm
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with v,€ (/2, ) as in (1.24). And further, for 1 = 1, the only roots of the charac-
teristic equation (1.23) on the imaginary axis are a pair of simple complex conjugate
roots

= +iv,.

Thus, the theory of linear differential-delay equations implies that for A = 4,, the
only periodic solutions of (1.36) are linear combinations of sin »,¢ and cosv,f. And
formulas (1.37), (1.38) and (1.39) imply that y(¢) is & multiple of sin »,¢, that v,<um,
hence m = 0. But then i = A,¢J, contradicting (1.35).

Because X' consists of those (4, ¢) for which A>4 and Gulp) = ¢ =0, it follows
that X — 2'C (0, o0) X {0} C (0, o) XK. And the above results show further the
inclusion (1.32). O

We now present the proof of Theorem 1.1.

Proor oF THEOREM 1.1. — (i) The claim that A>¢ is simply Lemma 1.4. If
(A, ¢) € X then ¢ = x|[0, 1] where x(t) = x(¢; 4, ¢) is a slowly oscillating periodic
solution of (1.1);. By Proposition 1.3 one has — B << #(f) << A for all #, hence
0<o(t) < 4 if 0<i<1, hence |¢] < 4.

(ii) and (iii) These parts of the theorem are a specialization of Theorem 1.2
of [49] to our situation. Let

B,={pek: ¢ <.

By Lemma 1.6, for each 4> 0 with A=~ A, there exists x»(4) such that the map Ga
has no nontrivial fixed points in B,,,. Hence the fixed point index iy(G;, B,;)
is defined (see [50] for a summary of the properties of the fixed point index). To
apply Theorem 1.2 of [49] here it suffices to show

(1.40) o 1 f0<i<lh,
(1'41) ZK( A Bk(l)) = 0 it 2 ~ Zﬂ .

But Lemma 1.4 in [49] implies (1.40) because 0 is an attractive fixed point of G,
(by Lemma 1.2 above); and Corollary 1.2 in [47] (also Theorem 1 in [50]) implies
(1.41) because 0 is an ejective fixed point of G, (by Lemma 1.3 above).

(iv) As Z,C (0, oo) X K is unbounded, and each (4, ¢) € 2y satisfies (i) of this
theorem, and (4,, 0) € Z,, one sees there exists (4, ¢) € 2, for each 4> 4,. And as
noted, each (4, ¢) € 2 with @£ 0 corresponds to a slowly oseillating periodic solution
of (11);. O

If the function f(x) is odd, it is natural to look for slowly oscillating periodic
solutions #(f) of (1.1)2 such that

(1.42) alt + q) = —a(t) for all ¢



JOHN MALLET-PARET - ROGER D. NUSSBAUM: Qlobal continuation, ete. 59

where ¢ is the first zero of x{¢). Following SAUPE [56, 57], we shall call such a solu-
tion an S-solution. If f is odd and satisfies (H1), then one has B = 4, For ¢ € K;
and 4> 0, define Si(¢) by

(SZQD)(t) - _w(t + Q(Zy ¢)§ ;‘y (P) for 0<t<1

if ¢(A, @) is defined, and
(S2¢)(t) =0 for O0<i<1

if ¢(4, ¢) is undefined or if ¢ = 0. The S-solutions thus correspond to nonzero fixed
points of §;. Define

S ={(4 ¢)€ (0, co) xK: p € K;,— {0} and Si(p) = ¢} .

By suitably modifying the lemmas leading up to the proof of Theorem 1.1, one can
prove the following analog of this theorem for S-solutions.

THEOREM 1.2, — Assume that f is as in Theorem 1.1. In addition, assume that f
is an odd function, so that B = A in (H1). Then the conclusions of Theorem 1.1 hold
with 2, 2y, and « slowly oscillating periodic solution » being replaced with 8, 8, and
« S-solution » respectively.

2. - Global continua of rapidly oscillating periodic solutions.

Consider again the characteristic equation
(2.1) L4+ A+ Akexp[—L]=0

of the linear equation (1.22);; we assume that % > 1, and that A # 0 is real but not
necessarily positive. It is proved in the appendix (see also [46]) that (2.1) has a
solution { with real part zero if and only if 2 = A, for some integer m, where

v -+ 27tm
(2:2) Vir—1

and v, satisfies (1.24). Moreover, if 1 = 4, then equation (2.1) has exaetly two
solutions with zero real part, namely

{ = 4iv, where v,=v,+ 2am

and that both of these are simple roots of (2.1). Finally, it is shown that for A near
A there is a unique solution { = £,.(4) of (2.1} near v, that {,.(A) varies analytically
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as a function of 4, and that {.(4) together with its complex conjugate (,(4) cross
the imaginary axis transversally. In fact one has

Cm(}'m) = Wp, and sgn (}m) Re C:n(zm) >0

where £,,(4) denotes the derivative of [,(A) with respect to 2.
It follows from the above facts and from the Hopf bifurcation theorem for dif-
ferential-delay equations (see [25]) that the nonlinear equation

3(t) = — Aa(t) + M(w(t —1))

has a one-parameter family of periodic solutions near (4, z) = (4,,0), where f ig
assumed to be C' in a neighborhood of # = 0 and satisfy f(0) = 0 and f'(0) = — L.
A basic question is whether this family, which is given only locally by the Hopf
bifurcation theorem, can be extended to an unbounded connected set of periodic
solutions. For m = 0 such an extension is provided by the set X, obtained in Theo-
rem 1.1. We shall reduce the problem for general m to the case m = 0 by employing
a change of variables which ean be found in [34] and which is attributed to K. L.
COOKE. ‘ o
Consider a- parametrized family of differential-delay equations of the form

(©.3); &(t) = Ag(alt — V), w(t — Ny), ..., @(t — N,))

where 4 € R and each N, is an integer. Suppose for some 4 that x(f) is a periodie
solution of equation (2.3), of period p. Fix an integer m and define & funiction Z(#)
and real number 1 by

) = w(wt) and 1= lo
where o is given by
w=mp +1.

A simple calculation now shows that Z(t) satisfies

‘-l%? = 1g(Z(t — N,), & — No), ..., B — N,)) .
That is, Z(?) is a solution of the differential equation (2.3); with the new parameter
value 1. Also, if & 7= 0 then Z(t) is periodic with period p/|w|, and if p is the minimal
period of 2(f) then p/lw| is the minimal period of Z(f).

‘We shall use this change of variables to obtain branches of « rapidly oseillating »
periodic solutions from the branch X2, of slowly oscillating periodic solutions. To
do this we need the following lemma. '
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LuvMmA 2.1. — Assume that f satisfies (H1) and is differentiable at x = 0 with
f'(0) = —k, where k> 1. Let X be as in Theorem 1.1. For each (1, ¢) e X define
g(4, ) to be the minimal period of the slowly oscillating periodic solution z(t; A, ¢) of
equation (1.1)z. In addition, set
2n

q(4oy 0) =

Yo
where A, and v, are as in (1.24), so that § is a well-defined function

g: 2= 2V {(A, 0)} > (0, oo .

Then § is a continuous function on the space X.

ProOF. — As noted in Section 1, if (4, ¢) € 2" then the slowly oscillating periodic
solution (t; 4, ¢) satisfies #(g(4, ¢); 4, ¢) > 0, and this implies the function (4, ¢)
is continuous at (4, ¢). Therefore, it remaing to prove that g is continuous at the
point (A, 0)e X — 2.

Suppose there exists a sequence (o,,¢,) €2 such that (on., ¢,) = (4, 0) but
q(0,, gn) does not approach 2zfv,. By taking a subsequence and using Lemma 1.5
to bound g(v,, ¢.) one can assume without loss that

— R 4
(2.4) q(0ny Pn) =G0  ADAd  G(On, @) —> o7 .
o

where, as in Section 1, ¢(4, ¢) denotes the first positive zero of #(?; 4, ¢). The limits
¢, and g, satisfy ¢,>1 and g,>1 -+ ¢,. Denote :

() = @(t; 6wy @) and [z, = max [w.(0)]

note that [#.] — 0, and set y,.(¢) = x,(t)/|#.]. As in the proof of Lemma 1.6 one
may take limits of some subsequence of ¥,(f) to obtain a O function y(t) satisfying

(2.5) J(2) = — Aoy(t) — Aky(t—1) for all z,
y()>0 on (0,9) and  y(*)<O0 on (g, ),
y(t + q) = y@) for all 7,

and

max [y(t)| =1.
i

Clearly, the minimal period of the function y(?) is g,.
When A = A, the only roots of the characteristic equation (2.1) on the imaginary
axis are the simple roots { = 4iv,. Therefore, by the theory of linear differential-
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delay equations the solution y(t) of (2.5) must have the form y(¢) = K sin (v,t + 6)
for some K+ 0 and 8, and so the minimal period g, of y(f) equals 2z/v,. This,
however, contradiets (2.4). OO

Assume now that f and X,C X are as in Theorem 1.1. Fix an integer m ('which
may be negative) and for each (4, ¢) € X5 define, as above Z(t) = @(wf) and 1= iw
where

o = mg(d, ) +1.

Let § = Z|[0, 1] denote the initial condition of Z(f) in C[0, 1] and define a map »
D,.: 2, RxC[0,1)]

by setting

D,.(4, ¢) = (Zy @) .
Let 2, denote the image of the map @,,, namely the set

(2.6) 2= Dn(Z,) .

Lemma 2.1 implies that @,, is continuous, so 2, is a connected set. As noted above,
each (1, §) € X, with @7 0 gives rise to a solution a(t; 1, §) of equation (1.1); of
period (2, )/|mg(4, ¢) + 1| (note that g(4, ) > 2, so the denominator is not zero;
also note that 1 < 0 is possible). One also sees that (1, 0) € X, if and only if A = Amy
the quantity given by (2.2), so that X, must agree with the local Hopf bifurcation
at (4., 0) for (4, ¢) near (4,,0). We leave to the reader to show that if (1, §) e 2,

then

(2.7 i<0 iftm<o,

(2.8) >0 itm>o0,

and

(2.9) —~B<@ty<A for all te[0,1]

and that X, is an unbounded subset of Rx ([0, 1].

THEOREM 2.1. — Assume that | satisfies (H1) and is differentiable at © = 0 with
1'(0) = —k, where k> 1. For each integer m define the set X,C R X [0, 1] by (2.6).
Then X, is an unbounded connected set, and (3,0) € X, if and only if A = A,, where A,
is given by (2.2). For each (1, §) € X, one has (2.7), (2.8), and (2.9), and if §+# 0,
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then z(t; 1, @) is a solution of equation (1.1); with minimal period p satisfying

(2.10) |_717;} p<|m—}|_%—| if m<O0,
(2.11) p>2 if m=20,
and

(2.12) mj——;—<p<%t if m>0.

The sets X,, are pairwise disjoint. If m>0 and A > A,, then equation (1.1), has at
least m + 1 distinct periodic solutions, while ¢f m < 0 and A < A, then it has at least
|m| periodic solutions.

Proor. — The first part of the theorem has already been proved. The bounds
(2.10), (2.11), and (2.12) on the minimal period p follow immediately from the
formula p = (4, ¢)/|mg(4, ¢) + 1| noted above, and the fact that g(4,¢) > 2 for
(4, p) € 2,. These bounds also imply that the sets X, are pairwise disjoint: one
can easily check that the intervals of values p given in (2.10), (2.11), and (2.12) for
various integers m are pairwise digjoint. Finally, the connectedness, unboundedness
and disjointness of the X, the bounds (2.7), (2.8), and (2.9) for (1, ) € X, and
the ordering

LA AL<O< A << A<

imply the last sentence in the statement of the theorem. [

Figure 6 depicts schematically the branches 2.

=
N

v
P

—r T

Za 'y Ja

Fig. 6. The global Hopf branches Z,.
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REMARK 2.1. — If m== 0, then any nontrivial solution a(t; 4, ¢) for (2, ¢)e Z,
has period p <1. Such a solution may be described as «rapidly oscillating », in
contrast to the slowly oscillating solutions obtained when m == 0. Global families
of rapidly oscillating periodic solutions, analogous to the families 2, have been
obtained for a class of differential-delay equations including many of the form

B(t) = [Aa(t —1) + Ao(t — 2)]1f(2(1))

using the Fuller index. See CHow and MALLET-PARET [8].

REMARK 2.2. — With only slightly more effort, Theorem 2.1 can be sharpened.
We claim that 2, is a closed subset of RxC[0,1] and that @,: 2, > 2, is a
homeomorphism of X, onto X, for each integer m. To see this, observe first that D,
is one-to-one when considered as a map from X into R x [0, 1]. For suppose that

(2.13) D,.(4, ) = Do, )

for some points (1, ¢) and (o, ) in X. If @,(4, ¢) = 0, then one easily concludes
that (4, ¢) = (o, ) = (o, 0), so assume that D.(4, ¢)7# 0. Let a(t) = 2({; 4, ¢) and
y(t) = 2(t; o, p), extended to R as periodic functions. Then equation (2.13) implies
that

A= Aw=10§6=ox
and
(2.14) Z(t) = x(wt) = §(¢) = y(«t) for all ¢
whers w = 0 and o= 0 are given by

w=mgA¢)+1 and «=mgo,yp)+1.

Because §(4, ¢) > 2 and g(o, v) > 2, one sees that o 7= 0 and « = 0 have the same
sign, so one may define the positive quantity » = a/w. Indeed, by relabelling if
necessary one can assume that

(2.15) 0<x<l.

Also note that

(2.16) o(t) = y(ut) for all ¢,

by (2.14).
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By differentiating (2.16) and using the fact that 1 = x0, one obtains from the
defining differential-delay equations for () and y(¢) that

#(t) = — Jo(t) — M(alt — 1)) = dy((;” — — Ay(t) — Myt — 1))
and this yields
(2.17) fle(t —1)) = f(y(xt —1))  for all ¢.
Setting ¢ =1 in (2.17), one finds
(2.18) fly(x—1)) =0 hence y(x—1) ==0;

and because y(f) is a slowly oscillating periodic solution of equation (1.1), one
concludes from (2.15) and (2.18) that x = 1. It follows immediately that A = ¢
and 2(f) = y(f) for all . This proves that @, is one-to-one.

To complete the proof of our claim, suppose that D,(0,, ¢.) = (G, §») for some
sequence (o, ¢,) € X, and that (5,,@,) — (5, ) for some (5, @) e RxC[0,1]. It
suffices (because we know @,, is continuous on the closed set Z) to prove that there
exists a convergent subsequence of (o,, @.). Let x,(t) = 2(¢; 0., ¢,.) (extended pe-
riodically) and Z,(f) = ,(w,?), where

(2.19) Wn = MG(Cu, Pa) + 1,

80 G, = o,w, and ¢,= %,|[0,1]. By using Lemma 1.5 to bound g(o., ¢.) above,
one may take a convergent subsequence in (2.19) to yield w,— w for some w. As
§(0n, @a) > 2, one has w0 and hence the limit ¢, — &/w exists. Proposition 1.3
now implies that — B < @,(f) < A4 for all &. As ,({) is a solution of equation (1.1),
and o, is a bounded sequence, it follows that #.(#) is uniformly bounded. Thus
Ascoli’s theorem implies that for a further subsequence ¢, converges uniformly fo
some ¢ € C[0,1]. As remarked, this completes the proof.

There is another change of variables for periodic solutions of parametrized dif-
ferential-delay equations which will prove extremely useful in studying asymptotic
properties of equation (1.1); in Section 4. Oonsider a differential-delay equation
of the form

(2.20) ei(t) = g(o(t), ot —1), 2t —2), ..., a(t — (n —1)))

for some integer n. Omne could think of ¢ as a small positive parameter related to
the parameter 4 by ¢ = A-1; however, it i3 not essential here that ¢ be small. Let
#(t) be a periodie solution of equation (2.20) for some ¢ 54 0, of period p, and define
re R by

p=n(l+e).
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Define funetions y,(f), where the subscripts j are taken mod =, by
y](t) = w(?—f— Gt) B
Then one can verify that the y,() satisfy the system of » equations

(2.21) Yi(t) = — g(ﬁ'/a‘(t% Yot — 1), Y5t — 2¢), ..., yi—(ﬂ—l)(t ~—(n— 1)7')) .

Note that the parameter & is absent from (2.21), having been replaced with the
parameter r.

Applying this change of variables to equation (1.1), with &= A1 and n = 2,
one finds

(2.22) gty = y(t) — fle(t — 1)),  2(t) = 2(t) — f(y(t — 1)

where y(f) = y,(t) = x(—et) and 2(t) = ¥,(t) = x(3p —et). If f is an odd funetion
and 2(f) is an S-solution, then 2(t) = — y(f) and the system (2.22) reduces to the
single equation

y(t) = y() + (y(t —r)) .

If f satisfies the conditions of Theorem 1.1, then using this change of variables one
can obtain from the set X, a connected set of periodic solutions of the system (2.22),
bifurcating from the zero solution at the value 7= Ay(zfv,—1).

3. — Asymptotic estimates for the period as ¢ — 0" and derivation of the transition
layer equations.

In this section we begin the study of the asymptotic behaviour of slowly oscil-
lating periodic solutions of

(3.1)c edb(t) = —a(t) + flet—1)), &>0,

as ¢ - 0+. Observe that this is just equation (1.1); with ¢ = A-'; we write our
equation in this equivalent form to emphasize the fact that we are interested in
the case when ¢ is small. In Theorem 3.2 we shall prove that if f satisfies hypotheses
(H1) and (H2), then the distance between consecutive zeros of any slowly oscillating
periodic solution is 1 - O{g). Such solutions, therefore, have minimal period 2 -+ O(e).
An important role in our work will be played by Theorem 3.1, which provides
information about the shape of slowly oscillating periodie solutions and (see Re-
mark 3.4) other kinds of periodic solutions. In Proposition 3.1 we shall use our
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estimate on the period to derive a pair of «transition layer equations» associated
with equation (3.1).. In Section 4 these transition layer equations will play a central
role in obtaining very precise results about the asymptotic form of solutions of
(3.1): for small e.

We start our work with a simple ealculus lemma.

&
N

vV

Fig. 7. The function z(¢) of Lemma 3.1.

LemMa 3.1. — Let x: [, f] — R be a C! function such thet x{a) = x(f) = 0 and
z(t) > 0 when o <<t << §. Suppose that ¢ is a positive number and that there are numbers
b<<t,<<ty in (x,) such that

o(ty) < aft;) for j=1,3,
and

o(t,) < e.
Then there ewist numbers &, < t,<t, in (a, B) such that

w(t) < at)<e and E(E)>0 for j=1,3,
and

wty) <wx(t,) and () = 0.

Proor. — This lemma is obvious if one graphs x(f); see Figure 7. Alternatively,
select t,€ [#;, ts] such that

a(ty) = min {w(t): t,<t<ty} .



68 JoHN MALLET-PARET - RoGER D. NUSSBAUM: Global continuation, ele.

Let s,€ [«, t;] and s;€ [t;, 8] satisfy

#(s,) = max {2(t): a <<y},
and

o(s;) = max {z(t): ,<t<f} .
If x(s,)<c define #; = s;; otherwise define

t, = inf {t € [, £,]: alt) = o .
If @(s;)<e define # = s;; otherwise define |

) — inf {telt,, fl: o(t) = ¢} .

We leave to the reader the verification that ¢, ,t, and ¢, so defined satisfy the condi-
tions of the lemma. [

Numerical studies (see the references in the introduction) have clearly suggested
that slowly oscillating periodic solutions (i) of (3.1). may have complicated graphs
with multiple relative extrema, especially when the nonlinearity f(z) in the differential
equation is not a monotone function of #. Nevertheless, throughout part of its cycle
the solution x(t) is often nicely behaved: there may be numbers —d < 0 < ¢ such
that #(f) oscillates about zero in a «niee» (i.e., monotone) way for those values of ¢
such that —d < #(?) < e. The following definition and theorem make this concept
precise.

" DEFINITION 3.1. — Let #(t) be a slowly oscillating periodic solution of equation
(3.1); with (as in Definitions 1.1) first and second zeros ¢ and §. Fix numbers
—d&<0<e We say that x(f) satisfies Property M between — d and o if

(1) @ is monotone increasing on [0, ¢;];
(2) o) >cif oy <t < 1y

(3) x is monotone decreasing on [z, 6,];
(4) 2@)<—4d if o,<t <7, and

(5) @ is monotone increasing on [7,, g,

where the numbers ¢y, 7,, 0, and 7, are defined as follows. Select 0:€ (0, q) and
0:€ (¢, §) such that

2(p,) = max {o(t): 0<t<g} >0
and

#(0,) = min {w(t): ¢<i<F < 0.
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If 2(p,) > ¢ define
o, =1int {te[0, q]: 2(t) = ¢}
and

7, = sup {t€[0, ¢]: 2(t) = ¢} ;
if w(p,)<c define ¢, = 7, = g,. Similarly, if #(p,) < —d define

o,=1inf {teq, ql: 2(t) = —d}

and

T, = sup {t€ g, 7): o(t) = —d} ,

and if ®(g,)>—d define o,= 7,= g,. Note that even though p, and g, may not
be uniquely determined, the concept of Property M is well defined. Also note that
if 0,= 7, (or 0;=1,), then condition (2) (or (4)) is satisfied vacuously.

&
N

v vevw e
»
i
<t
<)

A4

Fig. 8. A slowly oscillating periodic solution sarisfying Property M.
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Figure 8 depicts a solution satisfying Property M between —d and ¢. The
following theorem implies that the slowly oscillating periodic solutions obtained in
Seetion 1 satisfy Property M for some —d and ¢ independent of e,

THEOREM 3.1. — Suppose that 4 and B are positive numbers and f: {(— B, A] - R
is & continuous function such that

(3.2) : of(x) <0 if ve[—B,A] and wx#0.

Suppose further that there are positive numbers c< A and d<B and a constant y > 1
such that

(1) f is monotone decreasing on [— d, ¢l;
(2) f(w)=ec if —B<ae<—d, and f(r)<—4d if c<ax< A, and

(3) f(f(@))] = y|x| whenever — d<w<c and the composition f(f(x)) is defined (i e,
when f(») € [— B, A]).

Let ¢ > 0 and suppose x(t) is a slowly oscillating periodic solution of equation (3.1):
which satisfies — B<x(t)<A for all t. Then a(t) satisfies Property M between — d
and e. "

PRrOOF. — Assume, by way of contradiction, that some slowly oscillating periodie
solution x(f) does not satisfy Property M between —d and e¢. For definiteness
assume that the conditions of Property M are not satisfied on the interval [0, ¢].

We first note that there exist triples of numbers ¥, < £,< t, in (0, ¢) which satisfy
the hypotheses of Lemma 3.1 with [«, f] = [0, ¢]. This is a consequence of the
assumption that Property M fails. If for example 2(f) is not monotone on [0, ¢y],
then there must exist ¢ € (0, ¢;) such that 2(t) << 0. For small enough d > 0 one then
has 0 <t—d <<t <oy and e>a(t — ) > x(t + &), so one can define ¢, = ¢ — 4,
t,=1% + J, and ¥ = ;. Similar choices of {; work if «(¢) is not monotone on [y, q].
If, on the other hand, Property M is violated because z(t) < ¢ at some ¢ € (o4, 74),
then one may set f, = oy, ;= 7,, and let i, be the loeation of the minimum of
2(t) in (o4, 7).

Having established the existence of such triples ¢, << t,< t,, we define the set S
to be the collection of all points like #,. More precisely, let

8 = {t€[0, g]: #(t) < ¢, and there exist ¢, and t; in (0, g) such that £,< £ <t
and x(t;) > () for j =1, 3}.

Of course the points ¢, and ¢; in the definition of § depend on ¢ Define

(3.3) ¢ = inf {x(1): t e 8}
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and note that £ > 0 because #(0) > 0 and #(qg) << 0. Also note that £ < ¢. Now fix
t,€ 8 so that

(3.4) o(ly) < pé

and let #, << ;<< {; be as in the definition of 8. These points ¢;, j = 1, 2, 8, will stay
fixed for the remainder of this proof.
Lemma 3.1 now implies there are points ¢, < #,< t, in (0, g) such that

(3.5) #(t) < o(t)<ec for j=1,3,
(3.6) w(ty) <x(t)
(3.7) @) =0 and &()>0 forj=1,3.

Equations (3.1)s, (3.5) and (3.7) imply
(3.8) L0 < ) = flelt,—1)) < a(t)<flo(t,—1)) for j=1,3

and hence t,—1 € (— (7 —g¢), 0) for j =1, 2,3, because #({;—1) < 0 by (3.2). Set
s;=t,—1. We now observe that the triple s,< s,< s, satisfies the hypotheses of
Lemma 3.1, but for the funection — «(t) in the interval [— (g — ¢), 0], and with 4
in place of ¢. Indeed, assumptions (1) and (2) in the statement of this theorem
together with (3.5) and (3.8) above easily imply that

z(s;) <#(s;) <0 for j=1,3,

and

(3.9) —d < o(s,) -

Applying Lemma 3.1 a second time, this time to — x(#), produees points 8 <
< s;< s; in (— (7 —q), 0) satisfying analogs of (3.5), (3.6) and (3.7), namely
—d<a(s) <as,) forj=1,3,
(3.10) w(ss) <a{s;) < O,
(3.11) i(s;)) =0 and &(s;)<0 for j=1,3.

Setting r; = s, - § —1 and arguing as before shows the points r,< r,<< 7, are in
(0, q) and satisfy the hypotheses of Lemma 3.1; in particular,

(3.12) z(ry) < €.
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Thus there are numbers », < 7,< 7, in (0, g) such that

(3.13) wir,) < afr))<e for j=1,3,
and

(3.14) w(ry) < (1)

so r,e .

We are now in a position to obtain a contradiction. Because r,e€ S, we know
from (3.3) that ' '

(3.15) w(r)>£.

On the other hand, by using the monotonicity property (1) of f in the statement
of this theorem, and the properties of t,, ,, s,, 8;, 7, and 7; in equations (3.6) through
(3.12), and (3.14), we obtain

(3.16)  @(t)>a(ts) = fla(ty—1)) = f(@(s.)) > f(x(s2)) =

= [{{(o(sa—1))) = f(H{w(r)) >1(f(z(rh) -

However, property (3) in the statement of this theorem, and equations (3.13) and
(3.15), imply

(3.17) 1(i(@(r,))) > yolr,) > ¢

so from (3.16) and (3.17) we obtain x(f,) >y& This contradicts (3.4). O

REMARK 3.1. — If the function f satisfies hypotheses (H1) and (H2), then the
conditions for Theorem 3.1 are fulfilled for some numbers ¢< A4 and d<B.

ReEmMARK 3.2, — If condition (1) in Theorem 3.1 is strengthened to assume that
(3.18) f is strictly decreasing on [—d, ¢],

then one obtains the stronger conclusion that in addition to x(f) satisfying Prop-
erty M between — d and ¢,

®(t) is strietly increasing on [0, o], strictly decreasing on [7,, 0,], and strictly
inereasing on [7,, q]- '

We shal prove this stronger conclusion for the intervals [0, 0y] and [z, ¢], as the
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proof for [q, o,] and [t,, §] is analogous. Suppose the conclusion is false; define sets

T, = {t€[0, o,]: there exists f,€[0, 0;] with ¢, ¢ and z(%) = a(t)} ,
T,= {t €7y, ¢q]: there exists t,€ [7, ¢] with £, ¢ and x(f,) = (1)},
and

T'=T9UT,.
By assumption T's= 0. Let
(3.19) £ = inf {w(t): te T} -

and note that & > 0 because #(0) > 0 and #(q) < 0. Select numbers ¢, ¢, T, with
t,<< t,, such that

(3.20) w(t) = a(t) it f<i<t,,
and
(3.21) w(t) < y§

where y is as in the statement of Theorem 3.1. Note that Theorem 3.1 and the
definition of T imply the existence of ¢, and ?,, and the definitions of oy and 7, imply
that

(3.22) z(t) <ec.
The differential equation (3.1):, and equation (3.20) imply that

(3.23) si(t) = 0 = — a(t) + flw(t—1)) if t<t<i,.

Equations (3.22) and (3.23), and condition (2) in the statement of Theorem 3.1,
and the strict monotonicity conditien (3.18) imply that x(t —1) is constant for
t,<t<t, and satisfies — d < #(t —1) < 0 there. Therefore one obtains

ei(t—1) =0 = —at—1) + fla(t—2)) if {,<i<t,.
A repetition of the argument just given implies further that 2(t —2) = x(t 4- ¢ — 2)
is eongtant for i, <i<t,, with a value 0 < 2(t —2) << ¢. One concludes that ¢, +

+g—2€T, and so

(3.24) w(t,—2) = a(t, +7—2)>¢
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by equation (3.19). However, using (3.24) and condition (3) in Theorem 3.1 gives
x(ty) = f(a(t,—1)) = f(f(w(tl— 2))) >ya(t,—2)>yE.

This contradicts (3.21).

REMARK 3.3. — If condition (1) in Theorem 3.1 is further strengthened to assume
that

f is differentiable on (—d, ¢), with f'(#) < 0 there,
then the corresponding stronger result that

Z(t)>0 on [0,0,) V (75, §]
and

()< 0 on (1, 0,)

s obtained. We omit the proof of this.

- T
S

Fig. 9. A slowly oscillating periodic solution with monotone f.
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The next result describes an important special case of Theorem 3.1 which occurs
when the nounlinearity f is monotone throughout the range of a slowly oscillating
periodic solution. Such a periodic solution then possesses a monotonicity property.
See Figure 9. ‘

COROLLARY 3.1. — Suppose that A and B are positive numbers and f: [— B, A] - R
is a continuous function such that of(x) << 0 if x € [— B, A] and © 5= 0. Suppose further
that f is nonincreasing on [— B, A] and satisfies |f(f(2))| > |x| whenever z € (— B, A),
x# 0, and f(x) e [— B, A]l. Also suppose that

(3.25) lim inf |—]i(f(i))|> 1.
[e]>0 ||

Then if x(t) is any slowly oscillating periodic solution of equation (3.1)c for some & > 0,
and if — B<x(t)< A for all t, there must exist g, € (0, q) and ¢,€ (q,7) such that ()
is monotone inereasing on [0, o1, is monotone decreasing on [0, 0,] and is monotone
increasing on [0s,q). (As before, ¢ and G are the first and sccond zeros respectively
of x(t).)

This result holds in particular if f satisfies hypotheses (H1) and (H2), is monotone
decreasing on [— B, A), and satisfies |f(f(x))| > |x| if ®€(— B, A) and =+ 0.

Proor. —- Let ¢, and d, be increasing sequences of positive numbers satisfying
(3.26) en>M_, d,—M_,

(3.27) fle,)<—d, and fl—d,)>c,

where M. <A and M_<B are the positive numbers

(3.28) M, = m?x z(t) and M_=-— mtin (1) .

Such sequences are easily constructed; for example let {¢,} be any strictly increasing
sequence which approaches M. If each d, is then chosen less than, but sufficiently
near the quantity min {— f(¢.), M_}, then one can verify that the required condi-
tions (3.26) and (3.27) hold. In so doing the inequalities

(3.29) (M )<—M_ and f—M )>M,

are needed. They are easily proved. For example, if 2(¢) attains its minimum at o,
then #(p) = 0, so we have from the differential equation and monotonicity of f

that — M_ = x(p) = f(x(0 —1)) >f(M,). The second inequality in (3.29) is proved
similarly.
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Having established the existence of ¢, and d,, one checks that the hypotheses
of Theorem 3.1 hold for these quantities. In partieular, (3.25) is needed to show
the quantity y =y, of condition (3) satisfies ¥, > 1. The solution () thus satisfies
Property M between — d, and ¢, for each n. This is easily seen to imply our result. [

REMARK 3.4. — The definition of Property M can be extended to include fune-
tions other than slowly oscillating periodic solutions. Let #(f) be a continuous real-
valued function defined for all ¢t € R, and let ¢ and d be positive constants. Let us
understand by an interval J of real numbers to be either the empty set, a single
point, or an interval (of either finite or infinite length) in the usual sense. We say
that x(f) satisfies Property M between — d and ¢ if it is possible to write

where each J, is an interval in the above sense, the sets J, are pairwise disjoint,
Jn lies to the left of J, whenever m < n, and such that whenever J,# § exactly
one of the following oceurs:

(1) @{t)y=c for all ted,;
(2) «() is monotone increasing in J, and —d << a{t) < ¢ for all t € J,;
(3) «(t) is monotone decreasing in J, and —d < #(f) < ¢ for all ted,, or

(4) 2(t)<—d for all ted,;

and that further, if J, is of type (2) or (3) above, then either J, has infinite length,
or else x(f) assumes both positive and negative values for tedJ,.

It is not hard to see that this definition of Property M is the same as the one
given in Definition 3.1 for slowly oscillating periodic solutions. Numerical studies [2,
6, 14, 17, 22, 33, 39, 40] suggest that for certain functions f satisfying the hypotheses
of Theorem 3.1, equation (3.1): has solutions »(f) which are not slowly oscillating
periodic solutions, but which do satisfy the property that any two consecutive
zeros ¢, and g,,., of x(f) satisfy gn..—¢,>1; and in addition, — B<at)<4 for
all real t. Although we do not prove the existence of such solutions in this paper, a
slight extension of the proof of Theorem 3.1 shows that such solutions, if they exist,
satisfy Property M between —d and e.

Solutions satisfying Property M also occur for the «transition layer equations »
associated with equation (3.1).. These are imporfant in describing the asymptotic
behaviour of solutions of (3.1); as ¢ — 0%, and will be discussed in Proposition 3.1
and in Section 4.

Before establishing another main result of this section it will be convenient to
give a lemma.
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LuMMA 3.2. — Suppose that A and B are positive numbers and f: [— B, A] - R
is a continuous function such that xf(x) < 0 if xe[— B, A} and v+ 0. Assume that
there exists 2 > 0 such that

lf@)| < Qx| i —B<z<4.

If %(t) is a slowly oscillating periodic solution of equation (3.1): for some &> 0, and
— B<at)<A for all ¢, then

(3.30) M_<OQM, ond M, <QM_

where — M_< 0 and M, > 0 are respectively the minimum and maximum values of
xz(t), as m (3.28).

ProoF. — Let #(t) achieve its minimum at ¢; then the differential equation (3.1):
implies that

M_= |o(g)] = [f(a(o —1))| < Qlx(e —1)[< LM, .

A similar argument gives the other part of (3.30). O

We want to prove that under hypotheses (H1) and (H2), the minimal period ¢
of any slowly oscillating periodie solution of (3.1) is less that 2(1 4 Ct) for some
constant C > 0 independent of . Once we have this, it follows immediately that
the separation between consecutive zeros of x(f) is 1 + O(e): just use the facts that
their separation is greater than one, and that #(f) has two zeros per period. More
precise information about the asymptotic forms as ¢ — 0+ of the zeros ¢ and g, and
of the solution x(t) itself, will be established in Section 4.

THEOREM 3.2. — Assume | satisfies hypotheses (H1) and (H2). Then there exist
constants C > 0 and C > 0 such that if x(t) is a slowly oscillating periodic solution of
equation (3.1). for some ¢ > 0, then its first two positive zeros q and § satisfy

(3.31) 1<g<1+ Ce,
and
(3.32) 2<g< 2+ Ce).

The constants C and C depend only on f, and not on & nor on the solution x(t).

ProOF. — The lower bounds ¢ > 1 and g > 2 follow from the definition of slowly
oscillating periodic solution. If the upper bound (3.32) for g holds, then the ine-
quality § — ¢ > 1 immediately implies the upper bound (3.31) for ¢, with 0 = 2C.
Thus, all our effort will be devoted to obtaining the upper bound (3.32) for g.
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From the assumptions (H1) and (H2) one sees there exist positive constants
¢y, v, and £ depending only on f, such that
f(#)  is monotone decreasing in [—¢,, 6],
f@)|>ylel and  [{(f@)[>yle] i |z]<e,
f@)>ye it [#]>e,
(3.33) [flz)| < 2lx| for all #,
y>1 and 0>1.

Now suppose that x(f) is a slowly oscillating periodic solution of (3.1). for some
£¢>0. Let || == max |2(t)] and set

_ el
(3.34) A= 0
and
{3.35) ¢ = min {co, 5‘%} .

One eagily sees that the hypotheses of Theorem 3.1 hold with d = ¢, hence the
solution x(t) satisfies Property M between — ¢ and ¢. Note also that

(3.36) f@)|=ye it |@|>ec.

Furthermore, one sees that Lemma 3.2 implies

(3.37) maxa(t)>A>¢ and minz@fl<—A<—e¢
t ¢

so that the range of x(f) contains the interval [— ¢, ¢] (see Figure 10). Finally,
recall from Proposition 1.3 that

(3.38) —B<at)< 4 for all t.

Define ¢, and 1; to be the first and lagt times respectively in (0, ¢) such that
#(t) = ¢; similarly let o, and 7, be the first and last times in (¢, g) such that #(f) =
= — ¢. Throughout this proof we shall repeatedly use the fact that x(f) satisfies
Property M between — ¢ and ¢. The quantities o, and 7; will also play a prom-
inent role,

We now claim the following: there exists a constant C,, independent of ¢ and
of the solution #(f), such that

(3.39) if v,—0,>C4e then [1 4+ 0y+ Chpe,1 4+ 74]C {05, 7],
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Fig. 10. A slowly oscillating periodic solution with small e.

and similarly
(3.40) if t1,—o0y>Che then [1+ 0,4+ Cheyl +1,]C (0046, 1,47].

We shall only prove (3.39) as the proof of (3.40) is analogous.
We first give the value of the constant C,. Set

4 n 2 1
O*Z:max%qu " gg BT Yl 1~%9;IZ}.

P—Da CTr—1)a ° y=1

Now suppose that 7,— o, > Cre. Thenfor 1 4 oy <t<<1 + 0,4 Cyeonehas 2t —1) >¢,
and hence

(3.41) cd(t) < — al(t) — yo

from (3.36). Integrating the inequality (3.41) over this range of ¢ gives, after some
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caleulation involving (3.34), (3.35) and (3.38), the inequalities

2(1 + oy + Cpe)<2(1 + 0y) exp [— O] — (1 — exXp [— O*]) ye<
<|l#|| exp [— Cx] — (1 — exp [— C*])pe<—e,

and this implies (by Property M and the definition of o¢,) that
(3.42) 1+ 0+ Cre>o,.

Next we show that 1 + 7,< 7,, which fogether with equation (3.42) will estab-
lish (3.39). We first claim that

(3.43) 1+0<7,.
If (3.43) were false, we would have
To<l + o<1+ g<§@
which implies (by the definition of 7,) that (1 + o;)>—c¢ and
(3.44) 1 + q1)>6 .
As #(0y) = ¢, were have from equation (3.1). and from (3.36) that
eB(l + o) = — a1 + 01) + f(@(o)) <e—ype < 0.

This contradicts (3.44) and thereby proves (3.43).
By Property M one has #(7;)>0 and so

— ¢ = 2(1y) <f(#(r,— 1))
which implies, by (3.36), that
(3.45) z(r,—1)<e.
The inequalities (3.43) and (3.45) together imply that z,—1 > 7, that is,
(3.46) 14+n<1,.

Equations (3.42) and (3.46) now give the desired inclusion in (3.39).
Having now established both the implications (3.39) and (3.40), we observe that
our theorem is easily proved if either 7,— ¢,>20,¢ or if 7,— 0, >20,e. For suppose
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that v,— 0,>20,e. Then the inclusion in (3.39) holds, and comparing the lengths
of the intervals there shows thad

Ty — 027, — 01— Cre>Cee,
hence the inelusion in‘ {3.40) also holds. From (3.39) and (3.40) one now has
0, +G<1 + o+ Cpe<d + (1 + 0y + Cye) + Cye
and so
(3.47) g<2(1 + Cye¢)

which proves the theorem in this case.
Thus, it suffices to prove our theorem under the additional assumptions

(3.48) 7,—0,<20,e and 7,—0,<<2C,¢.
Furthermore, we may also assume that ¢ is sufficiently small, to be specific, that

(3.49) 90, e<1.

(The case When 20,e>> 1 is easily handled using the bound §<@ of Lemma 1.5,
for then one has

(3.50) G<@<2 +20,@—2)z)
We first show that
(3.51) oo—17y<l and o -FQ—1,<1,

assuming that the conditions (3.48) and (3.49) hold. We shall prove only the first
inequality in (3.51). Assume, by way of contradiction, that 1 4 7,<< ¢, and select
0 €[0;, 7] to be a point at which «(?) attains its minimum:

2(p) = min z{t) << 0.
t

Equations (3.48) and (3.49) imply that the length of the interval (o,, 7») is less than
one, hence o —1< 0,. Also, 0 —1>0,—1> 7, and so [#(t—1)[<e for 1 4+ 1,<t<0.
Therefore, from (3.33) one has for this range of ¢ that

et (t) =— x(t) — Le .
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Integrating this inequaﬂity from 1 + 7, to o gives
0 > @(g) >exp [— x]o(l + 7,) — (1 —exp [—x]) Qo>— (1 + Q)¢
where x» = (9 — 1, —1)/e>0. Therefore
(o)< + Qe.
On. the other hand, (8.37) implies that |#{g)|> and so
(3.52) A< + Qe

But (3.52) and the definition (3.35) of ¢ are inconsistent with the fact that £ > 1.
"With this contradiction the inequalities (3.51} are proved.

To complete the proof of Theorem 3.2, add together the four inequalities in
(3.48) and (3.51). This yields the desired estimate

(8.53) g<2(1 4 20C.¢).

In summary, the various bounds (3.47), (3.50) and (3.53) for g imply that g <
< 2(1 + Ce) holds in any case, if C>max {20,, 0,(@—2)}. O

As a corollary of Theorem 3.2 we obtain information about the possible periods

of slowly oscillating periodic solutions of equation (3.1)..

COROLLARY 3.2. — Let f be as in Theorem 3.2 and let v, be defined as in equation
(1.24) (recall that k = — f'(0) there). Then for every number p such that 2 < p < 2m[v,
there exists ¢ > 0 and a slowly oscillating periodic solution x(t) of equation (3.1)s, such
that the minimal period of z(t) is p.

ProOF. — Let X,C (0, o) X K be the continuum obtained in Theorem 1.1, with
1, as in that theorem, and let G(4, ¢) denote the (minimal) period of the slowly
oscillating periodie solution #(t; 4, @) for each (4, ¢) € Zy— {(A, 0)}. It is proved in
Lemma 2.1 that if one defines (4o, 0) = 27/v, then g is a continuous funetion on
2. As (A, ¢) > 2 always holds, Theorems 1.1 and 3.2 imply (recall 4 = &%) that

inf {47(2, @): (4, p) € 20} =2.

Corollary 3.2 thus follows from the connectedness of X, and continuity of g. 0O

In analyzing equation (3.1), for small values of ¢ we shall make use of a system
of associated differential equations, namely

(3.54), y(t) = y(t) — f(2(t — 1))
(3.55), 4t) = e(t) — fly(t —1))

where the number >0 is a parameter. This system was introduced in Section 2.
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DrerFInNITION 3.2. — Equations (3.54), and (3.55), are known as the transition layer
equations associated with equation (3.1)..

The reason for the name «transition layer equation» will become clearer in
Section 4. In essence, slowly oscillating periodic solutions of equation (3.1). will
satisfy equations (3.54), and (3.58), after a time scaling by a factor ¢ is made. This
time secaling causes the parameter & to be absent from the new equations, but
introduces a parameter # which is related to the period §. The properties of solu-
tions of the transition layer equations are intimately related to those of equation
(3.1); for small e.

The following result clarifies the relation between equation (3.1). and equations
(3.54), and (3.55),.

ProPoSITION 3.1. — Assume that | satisfies hypotheses (H1) and (H2).

(i) Let e > 0, let 2(t) be a slowly oscillating periodic solution of equation (3.1).
of minimal period q, and let 0 € R. Define

y(t) = o0 —et) and 2(t) = (0 + 7 —st) .

Then (y(t), 2(t) satisfies the transition layer equations (3.54), and (3.55), where r >0
is given by

7=2(1 +er).

(i1) Let &,, 0,(t), ¢, and 6,€ R be sequences such that &, — 0%, and

#.(t) s @ slowly oscillating periodic solution of equation (3.1)s of minimal
period q,.

Let v,> 0, and y,(t) and 2,(t) be defined by
(3.86)  Fn=2(1 + g,7a), Yult) = ®,(0, — &,t) and 2,(t) = (0. + $G» — €at) .

Then r, is a bounded sequence, and the sequences of functions y,(t) and 2,(t) are equi-
continuous and wuniformly bounded. If one takes limits

o> 1>0, ¥.(t)—>yt) and z.0) = 2(0)
uniformly on compact intervals for some subsequence n = n;—> oo, then the functions y(t)
and #(t) are O and satisfy the transition layer equations (3.54), and (3.55), for
all te R. For all t one has

—B<ylt)<xdA and —B<a(t)<A4.

Also, §.(t) and 2,(t) converge respectively to y(t) and (1) uniformly on compact intervals,
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- (iii) If y(t) and 2(t) are obtained by the limiting procedure in (ii), then y(t) has at
most one sign change on the real line. That is, there do mot ewist t,<t,<t, such that
y(E)y(t) < 0 and y(t,)y(t;) < 0. The same holds true of 2(t).

(iv) If y(t) and 2(t) are as in (ii) then they have opposite signs for large t. More
precisely, if y(t)>0 for large t, then 2(t)<0 for large i, and if y(?)<O for large t then
2(1)>0 for large t. Similarly, y(t) and z(t) have opposite signs as t — — oo, that is,
for —1t large. (Note that the signs of y(t) as .t —co and t ——co may or may not
be different, depending on whether or not y(t) undergoes a sign change.)

(v) If y(t) and 2(t) are as in (i) and if Jim y(f) = L exists for some real number L,
then lim 2(t) = f(L) and f(f(L)) = L. The corresponding result holds as i - — oo,
Also, the roles of y(t) and 2(t) may be ewchanged in these results.

ProOF. — (i) From the definitions of y(#), 2(t), and », and the g-periodicity of x(f),
one has

G(t) = — ed(0 — et) = a(0 — et) — [(2(0 — et —1)) = y(t) — f(alt — )

to give equation (3.54),. The derivation of equation (3.55), is similar.

(ii) Theorem 3.2 implies the sequence 7, is bounded. The functions y.(¢) and
2,(t) are uniformly bounded between — B and 4 because x,(f) also is, by Proposi-
tion 1.3. The equicontinuity of ¥,(t) and 2,(f) follows from the uniform boundedness
of g.(t) and 2,(f), by the transition layer equations (3.54), and (3.55), . The re-
mainder of (ii) involves standard limiting arguments using Aseoli’s theorem and
the integrated forms of equations (3.54),? and (3.55), .

(iii) If there exist t;<Cf,< ¢ as in the statement of the theorem, then y(i),
and hence y,(f) for large n, vanish at least twice in the interval (¢, ¢;). Thus equa-
tion (3.56) implies x,(¢) vanishes at least twice in an interval of length (f,—1?,)ea;
but (#;—#;)e,<<1 for large m, and this contradiets the fact that x,(?) is slowly
oscillating.

(iv) Suppose that y(¢) >0 for large ¢, say for all 1>T. From equation (3.55),
one has

) >2(t) Ht>T+r,

so if #(t) > 0 for some t,>T - r, then 2(t)>2(%) exp [t —?] for t>{,. This con-
tradiets the boundedness of #(¢). Thus it follows that 2(1)<0 if t>1 -+ r. A similar
agreement shows that if y(1)<0 for large ¢, then 2({)>0 for large .

The proof of (iv) as ¢ — — oo is slightly different. Suppose that y(t)>0 for all
t< T but that (iv) fails in this case. Because z(?) has at most one sign change, we
may assume (possibly by decreasing T') that #(f)>0 for all t< T, and that #(%) > 0
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for some #,<T. Define
ty = sup {t>1,: y(s)>0 and 2(s)>0 for all se[fy,1]}.

If ¢, < oo, then on [4, &, + #] one has y(¢)>y(t) and 2(f)>=(f) by equations (3.54),
and (3.55),, and hence y(f)>>0 and 2(¢)>0 there. This contradicts the definition
of , , so therefore f, = co. But then (1) > 2(t) for all £ >14,, and so 2(t) >2(t,) exp [t —1,] >0
for such #, which implies 2(f) —> co a8 t — co. This contradicts the boundedness of z(t)
and thereby proves (iv).

(v) Suppose lim y() = L. Rewriting equation (3.46), gives

d
(3.57) % (exp [t — s]z(s)) = — exp [t — sIf(y(s — 7))

for any ¢. Integrating equation (3.57) with respect to s from ¢ to oo, and unsing the
boundedness of the solutions, gives

(o]

(3.58) a(t) = f exp [t — s1f(y(s — 1)) ds .

3

It is now a simple exercise to show that equation (3.58) implies that }l}};lo 2(t) = f(L).
Repeating this argument with equation (3.45), shows that lim y(t) = f(f(L)), hence
(L)) = L.

If, on the other hand, one haslim y(t) = L, then upon rewriting (3.58) as

(=]

2(t) :fexp [— s1f(y(t + s —r)) ds

0
one easily sees that lim 2(t) = f(L). As before, ff(L) = L. O

DEFINITION 3.3. — Let g, > 07, let #,(f) be a slowly oscillating periodic solution
of equation (3.1); , let 0,€ R, and assume f satisfies hypotheses (H1) and (H2). Let
y(t), 2(1), and, r beﬂobta,ined by the limiting procedure in part (ii) of Proposition 3.1.
Then (y(t), #(t), ) is called a tramsition layer solution associated with the sequence
(eny @alt), 9,). Note that because one takes the limit of a subsequence, this defini-

tion allows the possibility that (y(t), 2(t), 7) might not be unique.

REMARK 3.5. — Observe that a priori it is possible that a transition layer solution
(y(?), 2(t)) might be identically zero. Part of our eiffort when we use Proposition 3.1
in the next section will be to exclude this possibility.

We end this section with a technical lemma about the transition layer equations;
this lemma will be used later,
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LEMMA 3.3. ~ Assume that | satisfies hypothesis (H3). Let r>0, and let y(t) and
#(t) be solutions to the transition layer equations (3.54), and (3.55), for te R. Suppose
that for some ¢ > 0 these solutions satisfy

e<y(t)<Ad and —B<z{t)<—c for all teR.

Then in fact

yi@) =a and 20E)=—b forallteR

where @ and b are as in (H3).

Proor. — Define two nonempty compact connected sets I and J by

I = closure {y(t): te R} and J = closure {2(t): t € R},
and denote them by
(3.59) I={[a,,a,]C[¢e, 4] and J =[—b,,—b]C[—B,—¢].

We wish to show that I = {a} and J = {—b}.

Clearly a,= sup y(t), so there exists a sequence t,€ R such that y(¢,) — a, as
f# — oo, Moreover, the differential equation (3.54), and the boundedness of y(t)
and 2(f) and their derivatives imply that the derivative %(t) is uniformly continuous
on R; from this it easily follows that #(t,) =0 as » —»co. Taking this limit in
equation (3.54), implies f(2(t,— r)) — a,, and consequently a,€ f(J). In the same
fashion one has a,€ f(J), and therefore I = [a,, a,] C f(J) holds because J is con-
nected. Similarly J C f(I), and hence '

(3.60) IS (D) -

Now consider the map f*= fof on the interval [¢, A]. Without loss of generality
we may assume f*([¢, A]) C[¢, A]; this inclusion holds if ¢ is chosen sufficiently
small, because (H3) implies that f(x) > x if # € (0, a). Therefore, Proposition 1.2
and hypothesis (H3) together imply that

(3.61) ﬁ fin(le, A1) = {a} .
7n=0
However, the inclusions (3.59) and (3.60) yield
(3.62) ﬁ f2r{ley A]) 2 F] ) = 1T,
. n=0 n=0

and combining (3.61) and (3.62) proves that I = {a}. A similar argument shows
that J = {—b}. O
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4. — The asymptotic shape of periodic solutions as ¢ — 07,

The work of the previous section provides only weak information about the
behaviour of slowly oscillating periodic solutions of equation (3.1). as ¢ — 0+. For
example, nothing proved so far precludes the norms of such solutions approaching
zero as & ->0%. In this seclion, we shall obtain sharp information about the
asymptotic shape of slowly oscillating periodie solutions of (3.1)s; in particular,
one of our lemmas below proves that the norms of such solutions are bounded away
from zero as & — 0+. Further results imply that |#(f)] remains uniformly bounded
away from zero, by an amount independent of &, everywhere on [0, §] except on
small neighborhoods of ¢ = 0, ¢ and g of size O(¢). (As before, ¢ and g are the first
two zeros of the slowly oscillating periodic solution #(¢).) The behaviour of #(f) within
these O(e)-neighborhoods is described by certain solutions of the transition layer
equations (3.54), and (3.55),.

If f satisfies hypotheses (H2) and (HS3), then we will show that slowly osecillating
periodic solutions z(f) econverge, as ¢ — 0+, to the discontinuous square wave function

a if 2n<t<2n 41
SIVH =Yy dtoent1<t<ont

uniformly on compact subsets of R — Z where Z is the set of integers. Near the
integers, where sqw (?) is discontinuous, the behaviour of (¢) can be very complicated.
Typically, a «non-uniform » convergence to sqw (), with features similar to that
of the Gibbs phenomenon of classical Fourier series, can be proved to oeccur. On
the other hand, if f is monotone throughout [— b, ¢], then the convergence of ()
to sqw () is niee.

We begin by proving that the norms of slowly oscillating periodic solutions do
not approach zero as ¢ — 0.

LeMMA 4.1. - Assume that f satisfies hypothesis (H2). Then there do not exist
sequences €, — 07 and x,(t) such that w,(t) is a slowly oscillating periodic solution of
equation (3.1)e , with norm |z,| = max |@.(t)| satisfying |@.| —0 as n — co.

ProoF. — Suppose to the confrary that such sequences e, and ,(f) exist. Let g,
denote the period of x,(t), define v, > 0 by ¢, = 2(1 + &,r.), and let g,€[0,7.] be a
point where |#.(t)] achieves its maximum |,)|. By Theorem 3.2 the sequence
7, > 0 is bounded (note that the hypotheses of Theorem 3.2 are satisfied once f is
modified appropriately outside a small neighborhood of zero). Define the functions

llowa]

Zn(0n— €nl)
n]

(4.1) Yal(t) = and  z,(t) =



88 JoHN MATLET-PARET - RoGER D. NUsSBAUM: Global continuation, ete.

and observe that they satisfy the system of equations

Yall) = Yall) + k2u(t —72) — B(2a(t — 12), [,])

(4.2)

2y(1) = 2,(t) + ky.(t — 1) — R(?/n<t — ), ”%H) 3
where E is the continuous function (1.34) considered in the proof of Lemma 1.6,
and k= —§f(0)>1 as in (H2). Also note that

[¥.(0)] =1 and |y.()], [2.()|]<1 for all teR.

Using the fact that R(y, 0) = 0, one sees that ths terms involving R in the right
hand sides of (4.2) tend to zero uniformly for € R. As in the proof of Lemma 1.6,
one may use Ascoli’s theorem to take limits in equations (4.2) after passing to a
subsequence. One thus obtains (' functions y(¢) and 2(f) which satisfy the linear
system

(4.3) gty = ylt) + ket —7), 2() = 2(t) + ky(t —r)
for all real ¢, and also satisfy

y(0)) =1 and |y(t)], |e(t)]<1l for all teR.

In addition, because z,(f) is a slowly oscillating periodic solution and because g, — 0t
one has from (4.1) that y(¢) has at most one sign change on the real line; that is,
there do not exist ¥, < t,<<#; such that y(t,)y(,) < 0 and y(&)y(t) < 0.

We note (see the appendix) that if W(t) is a nontrivial solution, for all { € R, of
an n-dimensional linear antonomous retarded functional differential equation, and
if sﬂgl%) |W(t)] < oo, then W(#) has the form

(4.4) ’ W) = w; exp [iv;t]

s

J

where for each § the coefficient w;e C* is a nonzero constant vector, where »,€ R,
and where the exponent ;= iy, is a root of the characteristic equation of the
differential equation. Also, it is proved in the appendix that for our system (4.3)
the characteristie equation

- (-1 —kexp(—{r]
o Clekepr-o) ¢-1 |70

has at most two roots { (counting multiplicity) with real part zero, and that { = 0
is not a root of (4.3). Therefore, the solution W(#) = (y(?), 2()) obtained above
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=
AN
y-() _ 2.(t)
>
2 (1) ¥.(?)
Fig. 11. BSolutions y, (), 2.(f) -of Lemma 4.2,
must have the form (4.4) for p = 2, where v,= — 1,5 0. Because y(f) is real valued,

one may take the real part of (4.4) to obtain y(t) = K sin (vt -+ 6) for some real
numbers K == 0 and 0. This contradicts the fact, noted earlier, that y(¢) has at most
one sign change. O

The next lemma is essentially a linear perturbation result which deseribes the
behaviour of solutions on the stable and unstable manifolds of zero for the transi-
tion layer equations (3.54), and (3.55),. Figure 11 depicts nontrivial solution (y.(t),
z,(1)) and (y_(f), z_(t)) of these equations which satisfy the hypotheses of this lemma.
The conclusion of the lemma is that such golutions cannot, in fact, simultaneously
exist for these equations. : '

LevmMa 4.2. — Assume that f: R — R is a continuous function which satisfies
f(0) = 0, and is differentiable at » = 0 with — f'(0) = k> 1. Suppose also that r >0,
that y_,%,.: [—7, oo) = R are O functions satisfying the tranmsition layer equations
(8.54), and (3.55), for all t>0, and that y_, 2_: (—oo, 0] =R are C* functions salisfy-
ing (3.54), and (3.55), for the same v, for all t<0. Finally, suppose there exist constants
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T,20 and T_>0 such that

(4.6) yN<0, g()>0, ad e {)>0 if t>T,,
(4.7) y_(t)=0, g_()>0, and 2 (t)<0 if t<—T_,
and

(4.8) lim (y(0),2.(9) = lim (y_(9), 2-(9) = (0, 0) .

Then either (y.(t), 2.(t)) = (0, 0) for all t>—r, or ese (y_(t),2_()) = (0, 0) for all
<0, '

Rather than prove Lemma 4.2 directly, it will be convenient first to establish
various properties of the solutions (y,(¢),#,(t)) and (y_(t), 2_(?)).

LuEMMA 4.2A. — Let the assumplions and notation be as in Lemma 4.2 and assume
the strict inequality v > 0. Fix a constant » > 1. Then there exists a constant Ty=
== Ty(»)>max {T, T} such that if To<t<s, then

(4.9) 2. (s)<uz, (1),
and if s<t<—1T,, then
(4.10) jo(s)] <le_(0)] -

If there exists t,> Ty such that either y_ (t,) = 0 or 2, (t,) == 0, then (y (1), 2,(t)) = (0, 0)
for all t>—r; and if either y_(t,) = 0 or z_(t,) = 0 for some t,<— T\, then (y_(t),
z_(t)) = (0, 0) for all 1<0.

The functions ¥, (t) and 2,(t) are intégrable on [— r, co) and the functions y_(I} and
z_(t) are integrable on (— oo, 0]. There ewists a number Ty, >max {T ,T_} and a
constant 8> 0 such that

(4.11) 0] + 101>l )] + @) s if £ T,
and t

t
(4.12) ly-)] + 1> B[ly_(s)] + olo) ds if t<—Ts.

Proor. - It will be convenient in this proof and in the proof of Lemma 4.2 to
introduce functions R, and % defined by the formuls

(4.13) fy) = — ky + Ey(y)
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and
R
(4.14) n(0) = sup |2
o<lvigs| Y
The assumptions on f insure that
(4.15) tim 29 _ tim 7(6) = 0.
y—>0 i’/ -0

(Compare R, with the funetion B given by (1.34).) Also, note that % is monotone
increasing.

Suppose these exists a constant » > 1 such that the first part of the lemma is
false. For definiteness we shall assume that for every real number 7, there exist ¢
and s with T<t< s such that (4.9) fails, so that

nz, (1) < 2.(s) .
We shall obtain a contradiction. The analogous argument for the funection z_(?)
will be omitted.
We shall construet a sequence

T,o<r << 8; < <one KT < << 8 <1 < oo

such that for each »n one has

(4.16) %2, (L) < 2.(sa),
(4.17) 4 (r) <0,
and

(4.18) . .t = 2,(8,) = 0

and that moreover

(4.19) limt, = oo.

A—> o0

We proceed by induction. If 7, has been defined and satisfies (4.17), then by as-
sumption there exist #, and s, such that r,<t,<s, and xz.(t,) < 2.(s,). Select
ta €[4, 5,] such that

2,(t,) = min {e,(t): r,<t<s,}

and select s,>t, such that

2,(s,) = max {2,(t): t>1,} .
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Our construction insures that r,<f,<C s, and that (4.16) and (4.18) hold; this follows
from the assumptions (4.6) and (4.8) on #.(f) and becauss #(r,)<0. Now select
Tn1>1 4 s, such that 2,(r,1) <0 (such a point must exigt). To begin the induction
select 7, > T, such that 2,(r)<0. It is clear that the sequence ?, now defined
satisfies (4.19). ' :

% The transition layer equation (3.55), now gives, using (4.18),

2ult) = [yt — 1)) = — s (b — 1) -+ Bu(y, (b — 1))
and
0u(50) = [, (3 ) = — Eyy(5u—1) -+ Bu(y(80—1)) ,

and it follows, using (4.16), that
(4.20) w— ky (t,—r) + By, (t—1)] <— ky (sn,—7) + Ry(y,(sn—1)) .

From (4.20), from the inequality y, (f,—#)<y.(s,—7)<0 (which follows from the
monotonicity (4.6) of y,(t)), and from the definition (4.14) of n(6) one obtains

(4.21) (e — D) kly, (to— 1) < (¢ + L) n(|ly (ta— 7)) [yt —7)] .

The striet inequality in (4.21) implies that y_ (f.—r) 7 0, and so cancelling |y, (1,— )]
gives

(4.22) o e—=D k< (% + D)n(lyta—1n) -

Beeause }}_,1101077(]?1%(%—”1) =0 (by (4.8), (4.15), and (4.19)), the inequality (4.22)
gives a contradiction for large .

Next, we wish to prove that if y (f,) = 0 or 2,.(f,) = 0 for seme #,>T,, then
(y,(8), 2,.(2)) = (0, 0) for all t>—r. The corresponding proof for (y_(t), z_(¢)) will
be treated later. Suppose without loss of generality that 2, (f,) = 0 for some #,> T;
then the first part of the lemma implies that 2z, (f) = 0 for all ¢>1,, so from equation -
(3.55), one hasg

(4.23) ' Hyt—1) =0 if t4,.

Because there exists § > 0 such that f(z) + 0 if 0 < |#| < 6, and because ;IL% Y (l—r)=0,
it follows from (4.23) that there exists #,>¢— such that y (1) = 0 if i>4,. We
thus conelude that (y.(?),2,.(t)) = (0, 0) for all t>max {f,, t,}.

To complete the proof (in the case of (y.(t), 2 +(t))) define t, by

(4.24) oy = inf {t € [— 7, co): (y,(8), 2.(s)) = (0, 0) for all s>1} .
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Thus #, <max {t,,t,}, and one wants t, = —r. Because (y,(t),2,(¢) = (0,0) if >
>max {t,, 0}, the transition layer equations (3.54), and (3.55), imply that

(4.25) Hyalt—1) = flest—r) = 0 if t>max 1, 0} .

By using equation (4.25) and the faet that » = 0 is an isolated solution of f(z) = 0
it is not hard to see that the set F defined by

’

(4.26) H = {t € [ty, o0): (y,(t),2,(t)) = (0,0)} where t,, = max {,, 0} —r

is both open and closed in the relative topology on [i.., oo). Connectedness then
implies # = [f,4, o0), 80 one concludes

by <lyse

from the definition (4.24) of t,. From this, from (4.26), and from the inequalities
t,>—7 and 7> 0, one concludes that {, = —r, as desired.

Xt y_(t,) == 0 or 2_(,) = 0 for some f,<—T,, essentially the same argument used
above shows that there exists #, such that (y_(t),2_()) = (0,0) if ¢<?,. Note,
however, the remainder of the proof is much easier than in the case of (y,(t), 2,(?)).
The transition layer equations (3.54), and (3.55), give

y_() =y_(F) and 2 () =-e_() if t,<ti<t,+ 7.

As (y_(t), 2_(t:)) = (0, 0), it follows that (y_(¢),2_(t)) = (0, 0) if t,<t<? + 7. Con-
tinuing in this way, one obtains (y_(?), 2_(¢)) = (0, 0) for all ¢<0.

It remaing to prove the integrability of y.(f) and 2.(f), and to establish the
inequalities (4.11) and (4.12). We shall restrict attention to the case of (y,(t), 2.(t))
since the proof of the corresponding result for (y_(t), #_(f)) is analogous, but easier.

Fix 6> 0 and y > 1 so that

(4.27) f@)>ylal it o)<

and fix T, >T, so that |y (?)]<d and |z, ()] <0 for all t>T,. Recalling from (4.6)
that ¥, (t)<0<&,(t) for all £>T , one obtains from equations (3.54), and (3.55),
that for any numbers ¢ and ¢’ satisfying T, <t < ¢
v
(4.98) [y, 0)] + 12 (0)] + Y. ¢) —2.0) =[5.05) — 2,(5) s =
t'—r 4

3
= [ [026) + s )] — [0 + fen(9)] ds + [ 1 () —F(es(e) ds +

¢ i—r

i ' —r t
[ 9,0) = 2.09) @55 (7 = 1) [ 19.6)] + Je6)] ds + [9,0) — 7.(5) ds -
i

t'—r ¥—r
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Letting ¢ — oo in (4.28) and using the fact that (y, ('), 2.(")) — (0, 0), one obtains

920 + 0> 7 — D[l @)] + [24()] ds
: i
which is the desired estimate. [

REMARK 4.1. — Formulas (4.9) and (4.10) of Lemma 4.2A say that the solutions
¢ (t) and 2_(¢) are «almost monotone» as ¢ — oo and ¢ — — oo respectively. If in
addition to the hypotheses of this lemma one assumes that the function f is monotone
on some neighborhood of the origin (whieh is the case if f is (), then z,(¢) and 2_(t)
are indeed monotone for sufficiently large ¢ and —3#. Moreover, the proof in this
case is considerably simpler. Assume, to be definite, that f is monotone (decreasing)
on an open interval I containing the origin. We claim that one can seleet T so
that 2, (f)<0 for all t>1T,, and 2_(t)<0 for all ¢<— T,. To prove this result for
2,(t), choose T\, >T, -+ r so that y, () and 2 (¢) lie in I for all ¢>T,—r, and so
that £ (To)<0. If 2, (¢) were not monotone decreasing in the interval [T, oo), the
same argument used in the first part of the proof of Lemma 4.2A would show that
there exist numbers ¢, and s, with To<?,<< s, such that 2, (t,) < 2,(s,) and 2,(t,) =
= 2,(s,) = 0. The transition layer equations now imply that

2. (t) = f(f'/-i-(to— 7')) < 2.(8) = f(y+(30“‘ 7')) .

However, this contradicts the fact that y,(!) is monotone increasing in [7',, oo)
and f is monotone decreasing in I. The proof of the corresponding result for z_(¢)
iy analogous and will be omitted.

REMARK 4.2. — The assumption that » > 0 was needed in the proof of Lemma 4.24,
although this result is still true when r = 0 (however, we will not need to know this
fact to establish our later results). In the case r = 0, observe that the transition,
layer equations (3.54), and (3.55), become the system of ordinary differential equations

(4.29) g=y—fe), 2=2—1y.

The only change in the proof of Lemma 4.2A that must be made when r = 0 is in
showing that if y,(f,) = 0 or 2,.(4,) = 0 for some #,>T, then (y.(?),2.(t)) = (0, 0)
for all t>—ry, and in proving the corresponding result for (y _() z_(t)). If, say,
2, (t,) = 0 for some #,>T,, then as before one sees that (y,(t),z.()) = (0, 0) for all
sufficiently large £, say t>t,. To prove now that (y,(f), z.()) = (0, 0) for all t>-—

one needs to know that the initial value problem

(4.30) (y(t), 2(8)) = (0, 0)
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for the system (4.29) has a unique solution. If the function f were lipschitz in a
neighborhood of the origin, then the vector field for (4.29) would satisfy a lipschitz
condition at (0, 0) so the uniqueness theorem for ordinary differential equation would
apply. However, there are pathological examples of functions f for which f/(0) exists
but which are not lipschitz near zero. Nevertheless, by using the fact that f(0) = 0
and f'(0) exists, one ean still conclude that the zero solution iz the unique solution
of the initial value problem (4.29) and (4.30), and hence that (y,(¢), 2.(f)) = (0, 0)
for all t>—r. The proof of this is similar to that of the standard uniqueness theo-
rem; details are left to the reader. The corresponding result for (y_(¢), z_(f)) also
follows from this uniqueness argument.

As noted earlier, Lemma 4.2 can be viewed as a perturbation result for the
linearization (4.3) of the transition layer equations (3.54), and (3.35), about the
origin. The basic idea of the proof is simple, but there are some technical complica-
tions, and it may be useful to discuss its outline before giving details. If one secks a
solution of (4.3) of the form (y(7), 2(t)) = w exp [{f] for a nonzero complex vector
we C? and { € C, one is led to the characteristic equation (4.5) for {. This equation
can be rewritten as

({—1)2—k2exp[—2{r] =0

and then factored, so that each root { satisfies either

(4.31) { =1+ kexp[—{r]
or
(4.32) {=1—Fkexp|[—{r].

If { satisfies equation (4.31) then one can verify that

(w(8), 2(2)) = (1, 1) exp [{2]
is a solution of the linearized system (4.3), whereas if { satisfies (4.32), then
(4.33) (y(®), 2(t)) = (1, —1) exp [{1]

is a solution.

From the sign conditions (4.6) and (4.7) one expects that if neither (y,(2), 2.(t))
nor (y_(t), z_(t)) is identically zero, then the asymptotic behavior of these solutions
should be similar to the behavior of the eigensolution (4.33) for certain eigenvalues
{.<< 0 and {_> 0, both of which are roots of equation (4.32). However, it is not
difficult to see that since k¥ > 1, equation (4.32) cannot simultaneously have solutions
{ € (—00,0) and {_e (0, oo). Hence one expects to conclude that either (y,(¢),
2, (1) or (y_(t),2_(t)) is identically zero. '



96 JOHN MALLET-PARET - ROGER D). NUSSBAUM: Global continuation, ete.

Although one could probably prove Lemma 4.2 directly with the above argrment
if f(#) dependend linearly on x, the general nonlinear sitnation is not quite as simple,
For example, it is not @ priori clear that if the solution (y(t), 2.(?)) of the nonlinear
equation is not identieally zero, then it must be asymptotic to some eigensolution.
One has to consider the possibility that

lim _Yall) =0 or lim—z“L(t") =0

N> 00 y-)_(tn‘” 7~) n—> 00 z-}-(tn_ ’I‘)

for some sequence ¢, —> oo, so that the solution would decay in & «super-exponen-
tial » fashion in contrast to the exponential decay of (4.33).

Rather than deal with such matters, the proof of Lemma 4.2 given below fol-
lows a somewhat different outline. The transition layer equations (3.54), and (3.55),
are viewed as & non-autonomous perburbation of the linear system (4.3), that is, as

(4.34) W) = L(W,) + ol?)

where

) , WU(s)=W(E+ s for —r<s<0,

L: O([—r, 0], R?) — R? is the linear operator

(0) -+ Fyp(— )
(4.39) - (Zf) =(i<o> £ ol r)) for g,y € 0=, 01,

and where o(t) is given by

— Ry(2(t — 7))
o) = (— R(y(t — r))) ’

(Recall the definition (4.13) of the remainder function R,))

Following [25] one may associate with any eigensolution W(t) = w exp [{1] of a
linear autonomous differential-delay equation in R” a eanonical projection onto the
eigenspace in C{[—r, 0], R*). Applying such a projection to the solution W, of an
inhomogeneous linear equation of the form (4.34) yields a linear constant coefficient
ordinary differential equation, with an inhomogeneous forcing term related to g(?).
In the particular case of the operator L given by (4.35) and eigensolution (4.33)
above (where ¢ satisfies equation (4.32)), the eanonical projection has a one-dimen-
sional range. With respect to a conveniently chosen basis element in this range,
the coordinate value w(¢) of this projection is given by the formula

3
o(t) = #(t) — (1) — kexp [L(t — 5 —)](els) — y(s) ds .

t—7
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Indeed, one easily sees that if { is a root of equation (4.32) and (y(¢), 2(t)) satisfies
the transition layer equations (3.54), and (3.55), on some interval, then »(f) satisfies
the ordinary differential equation

(4.36) b(t) = {v(t) + o(t) where o(t) = Ri(2(t — 7)) — Ri(y(t —1)) .

The idea of the following proof is that beeause 2(f) — y(t) is « almost monotonie »
and of one sign (Where (y(®), =) = (y,.(1), 2.(1)) or (y_(¢), z_(t))), it is possible to
choose { so that the magnitude of v({) is comparable to the wvalue [¢(f) —y(t)| =
= [2(t)] + |y(¥)|. However, the forcing term ¢(f) is of smalier order due to the
estimate (4.15). Using the variation of constants formula to equate these two
quantities yields a contradiction, unless (y(t),2(t)) is in fact the zero solution.
Figure 12 schematically illustrates the situation in the phase space O([—r, 0], R?)

compleinentary space
7N

Fig. 12. The phase space setting in the proof of Lemma 4.2.

for the first case considered below, namely > 0. The horizontal axis represents
the coordinate v(f) in the range of the projection while the vertical axis is an infinite
dimensional complement. Let W(t) = (y,(?), 2,(¢)). Then the sign and monotonicity
conditions on y,(¢) and 2,(?) insure that W, lies in the shaded cone. The arrows in
the cone represent the vector field, and point outward because { > 0. Therefore,
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the only way that W, can lie in the cone and follow the vector field to the origin
as { —> oo, is for W, to lie at the vertex of the cone, that is, for W(t) = (y, (1), 2.(?))
to be identically zero. .

We make one final remark. Because r>0, the roles of (y, (1), 2.(?) and (y_(¢),
z_(t)) are not entirely symmetric. Typically, the corresponding argument involving
(y_(t), 2_(t)) is simpler.

Proor oF LimMumA 4.2. — Consider the equation (4.32), each of whose solutions
also satisfies the characteristic equation (4.5). We shall heed the following fact
whose proof is given in the appendix. If » > 0 and %k > 1 then equation (4.32) has a
(possibly complex) solution £ satisfying

(4.37) 0<1m«:<%’_
and
(4.38) ££0.

Assume that » > 0 (the case r = 0 will be considered later) and fix a root  of
(4.32) satisfying (4.37) and (4.38). Several cases must now be considered, depending
on whether { is real or complex, and depending on the sign of Re {. As the argu-
ments in these cases are quite similar, we shall only present one of them fully, and
merely outline the modifications needed to handle the remaining cases.

Let us consider the case that the root { of (4.32) chosen above is real and positive;
assume that

£>0.

We shall work with the solutions (y,(f),2.()) of the transition layer equations
defined for f>—#, and prove that

(4.39) (7,.(), 2:(t) = (0,0) for all t>—r.

Suppose that (4.39) is false; then (4.6) and Lemma 4.2A impiy that one has the
strict inequalities

Yty <O0<e (t) iftxT,

where T,= Ty(x) and » > 1 is fixed but arbitrary. (We use the notation of Lem-
ma 4.2A throughout this proof.) To be specific, fix » so that it satigfies the
inequalities

(4.40) 1<wn<l+EYk—1).
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Following the discussion above, introduce the functions

[
(441) () = 2,() —y.() and  o(t) = u(t) —k f oxp [£(t — s — r)]u(s) ds

t—r

and observe that for t>0, v(t) satisfies the linear ordinary differential equation (4.36)
with the inhomogeneous term o(t) given by

o(t) = Ry, (t — 1)) — Byt — 1)) .

One also sees the following properties of w(f) and o(t), which follow from Lemma 4.2A
and from the definition (4.14) of #(d):

(4.42) 0 << u(s) < »u(?) it s>t=>1,,
and
(4.43) o) <n(ut —r)ut—r) 1T+ 7.

In addition, u(f) and hence |o(t)| are integrable on [T\, oo), satisfying
(4.44) f u(s) ds<fiu@) i t>T,.

i

The variation of constants formula applied to equation (4.36) yields

t
(4.45) o(t) = exp [t —¥)ot) = [exp [t — 5)]o(s) ds
t .

whenever ¢, ' >0. Because exp [— {t']o(f') — 0 as ¢’ — co and because exp [— £slo(s)
is integrable, one may let ¢ — co in (4.45) to give

(4.46) o(t) = — f exp [£(t — 5)]a(s) ds .
t

The inequalities (4.42), (4.43), and (4.44) can now be used to bound the right
hand side of (4.46) below; by doing this one obtains for ¢t>max {7y, Ty} + 7

co

v(t) >——fexp [Z(t — )1 (uls — 7)) u(s — ) ds >—|n(xu(t)) u(s —r) ds —
13 r

i+r t+

— [ exp 12t — s)]m et — 1)) wls —r) ds > —nen(t)) B-1ut) —
13

t+r

— n(xu(t — w))fexp [E(t—s)]u(s—r) ds .

t
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Combining the above with (4.41) and using (4.9) to make further estimates, one
obtains

t+r

(4.47)  [1 + n(eeu(®) f-1Ju(t) > [k — n(eeult — r))]fexp [C(t — 8)]u(s — ) ds>
11

i-tr

>[k— n(nu(i — 7)) Jeu(t) f exp [L(t—s)] ds =
= [k —n(xu(t —r)) ]! C-l-t(l —exp [— {r]) u(t) .
Note that one requires
(4.48) | b — (et — 1)) > 0
in order to obtain the second inequality in (4.47); this certainly holds if ¢ is suf-

ficiently large. Assuming this to be so, upon cancelling «(f) > 0 in (4.47) and letting
t — oo one obtaing the inequality

(4.49) 1>k 011 —exp [— 7))

and substituting

(4.50) exp [—{r] = k(1 —{)

(obtained from (4.32)) into (4.49) and rearranging terms gives
(4.51) %>1 4+ (Yk—1).

However, (4.51) contradicts (4.40). This completes the proof of the lemma in the
case [ > 0.

A few minor modifications must be made in the above argument to handle
other ranges of the eigenvalue {, but for the most part the analysis in these cases
is the same. For example, if { = yu - v is complex and satisfies

(4.52) Rel = u>0 and 0<Imz=v<;f

then the proof is almost the same as the one above up to and including the integral
formula (4.46) for »(?); the only change to be made up to this point is that one may
choose % > 1 arbitrarily rather than restricting it as in (4.40). Before making further
estimates in (4.46), however, one first takes the negative of the imaginary parts
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of this equation. Doing so and then estimating as before yields

—Imo(t) = f exp [u(t — 8)] sin (vt — $)) o(s) ds >

11

) t+r
>—~f17(;m(t)) u(s —r) ds —J—fexp [(t — 8)]sin (v(t — 8)) p(xeu(t — 7)) u(s — r) ds>
t+r

t4r

>— neu(t)) f1u(t) + n(%u(t — r))fexp [u(t —s)] sin (v(t — 8)) u(s —r) ds .

13

Observe that the inequality sin (v(t —s)) <0 for t<s<{ + r, which follows from
(4.52), is used in deriving the above estimate. Proceeding much as before, one
substitutes the equation
13
—Imo(t) = k‘jexp [u(t—s — )] sin (vt — s — ) u(s) ds

i~r

obtained from (4.41) into the above inequality and obtains (after a short calculation,
in which (4.48) is assumed)

ttr

n{xwu(t)) 1 u(t) >— [k — nleeu(t — r) )]fexp [p(t — s)] sin (v(t — s)) u(s — r) ds >

t+r

>—[k —n(xu (t—r) ] tul fexp [u(t —s)] sin (»(t —s)) ds =
t
= — [k —n{eu(t — r))]»* Im [{-1(1 — exp [— {r]) Ju(?)
Cancelling u(f) > 0 in the above inequality and letting { — oo gives

(4.58) 0>— ko' Im [£-(1 —exp [— {r])]

however, using (4.50) and (4.52) one obtains

— k' Im [Y1 —exp [— {r])] = — wi(k — 1) Im (£1) = Nk — 1) >0

v
lu2 + ,”2
which contradicts (4.53) and completes the proof in this case.

If the eigenvalue J satisfies Re { <0, and if r > 0, then the lemma is proved
by considering the solution (y_(),2_(t)) defined for #<0, rather than (y.(t),2 L (8)
as above; otherwise the proof follows the scheme of the preceeding arguments, but
is simpler. We leave thig case to the reader.

The final case t0 be considered is when » = 0, so the transition layer equations
are in fact the system of ordinary differential equations (4 29). Here one shows that

(4.54) (y_(1), 2_()) = (0,0) for all t<0
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whenever (y_(1), 2,(t)) satisfies (4.7) and (4.8) Fix 6> 0 and y > 1 so that (4.27)
holds, and fix T,,>T_ so that |y_(£)|<d and |¢_(f}|<d for all t<—T,. Define

uft) = y_(t) — 2_(1)

From (4.7), (4.27) and (4.29) one sees that

(4.55) w(t)>0 and )<~ (y —Lu{t) for all i<—T,
and hence
(4.56) %(exp [(y — l)t]u(t)) <0 for all i<—T,.

Because y > 1 one concludes from (4.56) that

w(— Ty) < lim exp [(y — 1)tlu(t) = 0,

f—>— o0

so from (4.55) and then (4.7) one has u{— T,) = 0 and hence
(4.57) (y_(— Ty); 2_(— Tx)) = (0, 0).

As noted in Remark 4.2, the unique solution of initial value problem (4.57) for the
system (4.29) is the trivial solution. This completes the proof of (4.54). O

Before presenting a main resﬁ\l't of this seetion, we must introduce a bit of nota-
tion. If ¢, ¢ and ¢ dre positive numbers, and if 7 > g, define the set

- N(g, gy ¢) = [0, 6]V [g—e g +e]U[g—eq].

THEOREM 4.1. ~ Assume that f satisfies (H1) and (H2), let ¢ and d be positive
constants satisfying the conditions in the statement of Theorem 3.1 for some vy > 1, and
let ¢, and d, be positive constants satisfying

(4.58) c<<c¢ and dy<d.

Then there exists e,> 0 such that if e<e, and x(t) is a slowly oscillating periodic solu-
tion of equation (3.1):, then

max #(t) >¢, and minz{)<<—d,.
[ i

Furthermore, there ewists o constant K > 0 such that if x(1) is a slowly oscillating
periodic solution of (3.1): for some &> 0, then

(4.59) {te[0,7): — dy<a(t)<e} C N(g, 7, Ke)
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where g and g are the first two zeros of x(t). The constanis £, and K depend on ¢, and
dy, but not on the solution wx(t); in addition, K does not depend on e.

Proor. — Fix a number x satisfying

< %6, dy<zxd and O0<zx<1.

If x(t) is any slowly oscillating periodic solution of equation (3.1):, define quantities ¢,
and d, depending on the solution x(f) by

(4.60) ¢4 = min {6,, max xw(t)} > 0 “and d; = min {do, — min kw(t)} >0.
t 11

In order to prove the theorem, it is sufficient to show that there exist &> 0 and
K, > 0 not depending on the solution, such that if s<e, then

(4.61)  {tel0,7]: — dy<a(t) <o} S N(g, T Koe)

and

(4.62) max #(t) > xte, and minx(f) < — xd,
13 i

whenever #(t) is a slowly oscillating periodic solution of (3.1). with first two zeros ¢
and g. If (4.62) holds, then ¢, = ¢, and d, = d,, so (4.61) implies (4 59) with K = K,.
To obtain (4.59) for values of the parameter s3> ¢, it may be necessary to increase K ;
this can be done independent of the solution #(f) because by Lemma 1.5 one has
§<Q, 50 (4.59) always holds if e>e¢, and Keo>Q.

‘We shall now prove the inclusion (4.61) for some K, and all sufficiently small &,
Noting that (4.61) holds for any fixed e provided K, is large enough (specifically,
if K,e>Q), one sees that if this part of the theorem is false then there exist sequences
&, — 07 and K, oo, and a sequence «,(t} of slowly oscillating periodic solutions
of (3.1) , such that

(4.63) {t € [0, qn] - dn*<wn(t) <On*} ¢ N(qew Gns K, z,) ’

where ¢, and d_, are given by (4.60) with @,(t) replacing «(f). Suppose this to be so.
Noting that » < 1 in (4.60), one may define quantities o,, and 7., to be respectively
the smallest and largest t e [0, ¢,] such that z,(f) = ¢, . Similarly, let 6., and 7,,
be respectively the smallest and largest te€lg,,q,] such that #.({) =—d. By
Theorem 3.1, 2,(f) satisfies Property M between — d and ¢, and therefore by (4.58)
and (4.60) it also satisfies Property M between —d , and ¢,. This implies that
x,(t) is monotone increasing in [7,,— G, 0] and monotone decreasing in [Ty, Oro)
as shown in Figure 13. In addition, the relation (4.63) implies that for each n either
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Cpgp | o om e e e e e e - e o e o e o e -

Fig. 13. The function z,(f) in the proof of Theorem 4.1.

Ony+ Gn— Tns> K&, or else 0,,— 1., > K,¢,. By taking a subsequence one may
assume one of these inequalities holds for all ». For definiteness, assume that

(4.64) Opg— Ty > Kpe, for all n.

Now let (y.(3), 2,.(t), r) and (y_(), 2_(?), r) be transition layer solutions associated
with the sequences (s,, @a(t), Ons) and (en, Za(t), T) respectively, as described in
Proposition 3.1 and Definition 3.3. The monotonicity of ».(f) in [7.i, O], the
definitions of 7,, and o.., and the inequality (4.64) imply that —d<y . (f)<e if
+¢>0, and that

g hy=0 if 10
(4.65) and
J_H=0 if 1<0.
Therefore the limitstl)iinmyi(t) = L, exist for some quantities L, L_e[—d, ¢]. From

part (v) of Proposition 3.1 one sees that L, and L_ are both fixed points of the
composed function fof. The inequality (3) in the statement of Theorem 3.1 and the
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fact that y > 1, both of which are assumed here, imply that the only such fixed
point is zero; thus L, = L_= 0 so that
—d<y, (t)<0 if 10
(4.66) and
O<y_(H<e if 1<0.

In addition, parts (iv) and (v) of Proposition 3.1 imply that there exist T, >0 and
T_>0 such that

2,() =0 ift>T,
(4.67) and

2_(ty<0  ift<—T_,
and that

(4.68) lim (y.(t),2.(f)) = lm (y_(1),2_(t)) = (0, 0) .

t—>ca t—>—o0
Finally, one notes that neither y_ () nor y_(t) is identically zero: by definition one has

y+(0) = lim Zn(Cng) = lim — dn*

f—> o0 H—> 00
(4.69) and
y_(0) = lim 2,(1,,) = lim ¢,
n~> 0 Nn—> o0

for some subsequences, and from Lemmas 3.2 and 4.1 it follows that for some £ > 1
one has

(4.70) lim inf ¢,4 > min {co, lim inf = ||acn][} >0
> 00 N—> 00 .Q

and similarly

(4.71) liminfd,.>0.

One concludes from (4.69), (4.70) and (4.71) that

(4.72) ¥.(0)0<0 and % (0)>0.

We are now able to obtain a contradiction. One sees from formulas (4.65), (4.66),
(4.67), and (4.68) that the solutions (y_,(3), 2,(¢)) satisfy the hypotheses of Lemma 4.2,
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and that Lemma 4.2 implies either

(@:00),2.(0) = (0,0) i t>—r,

or else

(y_(t), 2_(t)) = (0,0) if £<0.

This conclusion immediately contradicts (4.72), and one concludes from this con-
tradiction that inclusion (4.61) indeed holds.

New now prove the inequalities in (4.62) for small e. Suppose that at least one
of these inequalities is violated for a sequence #,(t) of slowly oscillating periodic
solutions of (1.3)s,, where g, — 0"; for definiteness suppose

(4.73) max z,(f) <x'¢,<< ¢ for each n.
11

Let 0,€ [0, ¢.] be the location of the maximum of ,(t); then, as »,(t) satisfies prop-
erty M between — d and ¢, it follows that

Z(l) =0 if 0 <t<p,
(4.74) and
Z8)<0 i 0. <I<qn -
As before, consider the first and last points ¢ € [0, g.] such that @,(f) = ¢,,; denote

these points by o, and 7,, and observe that @.(t)>c¢,, in [o,, 7.], and that by the
result (4.61) just proved

- T
and """ are bounded sequences .

n En

(4.75) On

Let (y(¢), 2(t), ¥) be a transition layer solution associated with (e., #,(f), 6,). From
the definition of (), and from conditions (4.73), (4.74) and (4.75) one sees that
y(0)<y(f) < ¢ if 1<0 and also that y(I) is eventually monotone as ¢ — — co. Using
(4.70) one sees that

¥(0)>1lim inf »,(0,) = lim inf ¢, > 0

fi—> 00 H—> 00

and sotljglwy(t) = L exists and satisfies 0 << L<ec. By (v) of Proposition 3.1 the

number L is a fixed point of fof; but as noted above, fof has no fixed point in (0, ¢].
This contradiction completes the proof of the theorem. [I

The following corollary describes the behaviour of slowly oscillating solutions
in the transition layers as ¢ — 0t. Figure 14 illustrates solutions y(¢) and 2(¢) of the
transition layer equations obtained in this result.
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Tig. 14. Solutions of the transition layer eQuations in Corollary 4.1.

COROLLARY 4.1. — Assume that f satisfies (H1) and (H2), and let ¢ and d be positive
constants satisfying the conditions in the statement of Theorem 3.1 for some y > 1. Let
#,(t) be a slowly oscillating periodic solution of equation (3.1). for some sequence
£, —> 0%, and define r,> 0 by G,= 2(1 + ea.7.) where G, is the minimal period of
2,(t). Then, upon taking a subsequence, one has

(4.76) (= &al) > y(t)  and  2u(3Ta— eat) —>2(0)

uniformly on compact subsets of R for some C' funciions y(f) and 2(f). In addition,
one has convergence of the first derivatives with respect to t in (4.76), and the funciions
(y(2), 2(t)) satisfy the tramsition layer equations

(4.77), glt) = y(&) — felt —1)
(4.78), 4t) = &(t) — fly(t — 1))
for t€ R, where

{4.79) r=lmvr, s stricily positive.

n—> oo

Further, the solutions y(t) and 2(t) satisfy the bounds

(4.80) — B<yt), 2(t)<A  for oll 1,
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and have the asymplotic properties

lim inf y(#) oand lim inf 2(t)>e¢,

f—>— 00 t—o0

(4.81) limsup y(?) eand limsupz(t)i<—4d,
o0 t—>—co - .

and .
Hmsup y(¢) and limsupz(t) > ¢,

t—>—co t>oo

(4.82) lim inf y(¢) and lim inf 2(t) < —d.

> 00 t—>—o0

Finally, y(t) and 2(t) satisfy the monotonicity conditions

—d<yit)<e= §H)<O0
(4.83) and

—d<z() <e= £1)>0.

PROOF. — One sees that the limits (4.76) exist for some subsequence, as (y(t),
#(1), r) is simply a transition layer solution associated with the sequence (g, , #.(t), 0).
Thus y(t) and #(t) satisfy the transition layer equations (4.77), and (4.78), where
r>0. The bound (4.80) follows from Proposition 1.3. The inclusion (4.59) (where
6< ¢ and d,<< d are arbitrary positive numbers), the fact that @,(¢) satisfies Prop-
erty M between —d and ¢, the faet that ¢.= 17, + O(e,) where g, is the first
zero of w,(t), and the definitions of y(f) and z(f) together imply the inequalities in
(4.81) but with ¢, and d, in place of ¢ and d. However, as ¢, and d, can be chosen
arbitrarily near ¢ and d, one concludes that (4.81) holds as stated. The same
properties .of x,(¢), in particular Property M, also imply the monotonicity condi-
tions (4.83).

Now suppose that (4.82) is false. In view of (4.81) one may assume that one of
the limits in (4.82) actually exists and is an equality rather than a strict inequality.
Yor definiteness suppose ‘uhatt_ljggo y(t) =c¢. By (v) of Proposition 3.1 one has
f(f(c)) = ¢. However, this contradicts f(f(c)) >ye > ¢ obtained from our assumption
of condition (3) in the statement of Theorem 3.1.

Finally, to prove that »>0 is strietly positive, suppose to the contrary that
r = 0 so that y(¢) and #(t) satisfy the ordinary differential equations (4.29) obtained
from the transition layer equations. Consider the subset

Q.= {(y,2) e R*: —B<y<0 and 0<z<4}

of the second quadrant of the plane and observe that there exists some first time ¢,
for which (y(t), 2(t)) € @,; in fact,

(@), 2()) €Q. it t<t,
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and
(y(to), 2(ts)) € ((— B, 0] x{0}) L ({0} x[0, A]) € 20, .

The existence of #, and the above properties follow immediately from (4.80) and
(4.81). One now sees, using the negative feedback condition #f(x) < 0 in [— B, 4] —
— {0}, that the vector field (4.29) for (y(7), »(t)) points strictly outward from @, at
all points (y,#) in the set ([— B, 0]x{0}) U ({0} X[0, A]) except at the stationary
point (0, 0). Therefore it follows from this simple phase plane consideration that

(?/(Ito)y &(t)) = (0,0).

However, as noted in Remark 4.2, this forces (y(t), 2(t)) = (0, 0) for all t, which is a
contradiction. [

REMARK 4.3. — Observe that Corollary 4.1 does not assert that the limits (4.76)
and (4.79) exist for the full sequence &,, but only for some subsequence; we have
not ruled out the possibility of multiple limit points. If one could show for some f
that the parameter » > 0 and the solution (y(¢), 2(t)) of the transition layer equations
were unique among those functions satisfying conditions (4.80), (4.81), (4.82), and
(4.83), then it would follow that the limits (4.76) and (4.79) would exist for the full
sequence &,. ‘

The following result illustrates the interplay between the differential equation
(8.1); and its transition layer equations (4.77), and (4.78),: an analysis of the transi-
tion layer equations is used to obtain results about equation (3.1); which refine
those of Theorem 4.1.

COROLLARY 4.2. — Assume that f satisfies (H1) and (H2), and let ¢ and d be positive
constants satisfying the conditions in the statement of Theorem 3.1 for some y > 1. Let I
be an interval containing the origin, such that f is differentiable at each x € I and satisfies

(4.84) vel = f(x)<0.
Let J be any compact interval such that
(4.85) 0edC(—d,e)n fI)N {{I) .

Then there exist positive constants ¢, and K such that if x(t) is a slowly oscillating pe-
riodic solution of equation (3.1): for some positive &< e,, then

w(t) € J = |&(t)| > Kie

Proor. — We first establish some elementary consequences of the assumptions
(4.84) and (4.85) and the conditions involving ¢, d; and  in the statement of Theo-
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rem 3.1. Consider any number 7 edJ. We claim that there exist unique £, £e R
such that

(4.86) 7 = (L) = f(f(§)) ;
moreover, one has
(4.87) Lée(—d,e)n .

The existence of £ and & satisfying (4.86) and (4.87) follows easily from the inclusion
(4.85) and from property (2) in the statement of Theorem 3.1. What is not so ob-
vious is the uniqueness of { and &, not only in (—d, ¢) N I, but in all of R. Suppose,
therefore, that # = f({,) for some {,€ R with [, {. Condition (2) in Theorem 3.1
implies that {,€ (—d, ¢). The monotonicity condition (1) in that theorem further
implies that the funcfion f is monotone decreasing on the interval between { and
£,, hence is constant on that interval beecause f({) = f({,). However, this cannot
be, since { e I implies f'({) < 0 by (4.84). This contradiction proves that { is unique.
A similar argument proves that £ also is unique.

Suppose now that the conclusion of the corollary is false. Then there exist
sequences &, — 0%, t,€ [0, ¢.], and #,(?) such that x,() is a slowly oscillating periodic
solution of equation (3.1);, of minimal period ¢,, and such that

(4.88) Za(t,) €J
and
(4.89) lime, 2,(¢,) = 0.

Theorem 4.1 (with ¢,<< ¢ and d,<< & positive constants such that J C[—d,, ¢,]) implies
there exists a constant K, such that ¢,€ N(q,, q,, K,£,) for large n, where as usual
¢. denotes the first zero of x,(f). Therefore, after taking a subsequence one may
assume that either ¢./e,, (¢n— ts)[€n, OF (Gn—%.)/e. i3 & bounded sequence. To be
definite, assume that ¢,/e, is bounded; in fact, assume without loss that

(4.90) lim =4,

00 En
exists for some real number {,.
Now let (y(?), 2(t), ¥) be as in Corollary 4.1. The definition of y(¢) and equations
(4.88) and (4.89) imply that
(4.91) Y(t,) €J
and

(4.92) glt)) = 0;
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thus the differential equation (4.77), for () and equation (4.92) yield
(4.93) Y(to) = f(e(te—1)) -

The results (4.86) and (4.87) established above imply that

(4.94) ty—rye(—d,e)N I,

and so f is differentiable at 2(f,— #) and satisfies

(4.95) f'(a(te—1)) < 0.

The existence of the derivative (4.95) in turn allows the differential equation (4.77),
to be differentiated at ¢ = ¢, to give, using (4.92),

(4.96) Glte) = Ylto) — f'(2ts— 7)) &lts— 1) = — f'(2(to~— 7)) &lts—1) .

Now from (4.83), (4.85), and (4.91) one sees that y(?) is monotone decreasing in a
neighborhood of #,. As the first derivative (4.92) vanishes at ¢,, one sees that the
second. derivative #(f,) also equals zero. Thus the right-hand side of equation (4.96)
equals zero, so one coneludes using (4.95) that

(4.97) ft,—r) = 0.

One may now switch the roles of ¥ and 2 in the above argument and replace %,
with #,—r, and obtain from (4.94) and (4.97) in a similar fashion the conclusions

(4.98) 2ty —r) = f(y(t,—2r)) ,
(4.99) yto—2r)e(—d,e)N I,
and

(4.100) Jlte—2r) = 0.

Equations (4.93) and (4.98) yield
y(t) = f(i(y(t,—27))

and this together with condition (3) in the statement of Theorem 3.1, and equa-
tions (4.91) and (4.99), imply that

(4.101) [y(to— 27) [ <y~[y(t)]
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and that
Y(to—2r) ey = {yw: e d}.

Because J is an interval containing the origin, and ¢ > 1, one has y*J <J and
hence

(4.102) ylt,—2rVed .

At this point note that we have concluded (4.100), (4.101), and (4.102) from
(4.91) and (4.92) using only the properties of the function f, the solution (y(t), 2(¢)),
and the sets I and J; the definition (4.90) of ¢, has not been used. Therefore, this
entire argument may be repeated indefinitely; one concludes by doing this that
for each integer n>1 '

Ylto—2nr)ed , gt,—2nr) =0 and  |y(t,—2n7)[<yy(lo— 2(n — 1))
and hence

(4.103) [y(to— 2nr)| <y~"ly(t)] —0 as m —>oo.

However, (4.103) contradicts (4.81). This completes the proof of the corollary. [

The next two results deseribe the solutions of the transition layer equations
obtained in Corollary 4.1 under the additional assumptions of monotonicity of f
(Corollary 4.3) and hypothesis (H3) (Corollary.4.4).

COROLLARY 4.3. — Assume that | satisfies (H1) and (H2), and that in addition f
is monotone decreasing in [— B, A), and satisfies |f(f(x))| > |@] whenever x € (— B, A)
and x = 0. Let y(t), 2(t), and r be as in Corollary 4.1. Then y(t) and 2(t) satisfy the
monotonicity conditions

(4.104) JO)<0  and  )>0  for all t
and possess the limits

t->ro00

(4.105) t_}lfn (y(t),2(t)) = (4, — B) and lim (y(?),2(t)) = (— B, 4).
Thus (y(#), z(t)) is @ heteroclinic orbit joiming the stationary poinis (4, —B) and
(— B, A) of the transition layer equations (4.77), and (4.78),.

Proor. — Note that the hypotheses of Corollary 4.1 are satisfied if ¢ << 4 is any
positive number and & is a positive number less than, but sufficiently near — f(c).
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Also note that f(4) == — B and f(— B) = A; in particular, the number d can be
chosen arbitrarily near B. By choosing ¢ and d in this manner, one sees from the
conclusions (4.80), (4.81) and (4.82) of Corollary 4.1 that (4.104) and {4.105) hold. O

COROLLARY 4.4. — Assume that | satisfies (H2) and (H3) (so the hypotheses of
Corollary 4.1 are satisfied for some ¢, d, and ). Let y(t), 2(t), and r be as in Corol-
lary 4.1. Then, with ¢ and b as in (H3), one has

(4.106) Lm (y(1),2(8) = (a,—b) and lim (y(i),2(f)) = (— b, a) .

t->— oo t—> oo

Thus (y(t), 2(t)) is a heteroclinic orbit joining the stationary points (@, — b) and (— b, a)
of the transition layer equations (4.77), and (4.78),. ‘

ProoF. ~ Suppose one of the limits in (4.106) fails to hold; to be definite, suppose
lim y(¢) = a is false. Let ¢, - — oo be a sequence such that

(4.107) im y(t,) = a5~ a

>0

for some a,, and such that the limits

Hm y(t 4 2.) = 9o(t) and  lim2(f 4 &) = &(1) ,

fi->00 n—>0a

together with their first derivatives, exist uniformly on compact subsets of R. Using
Ascoli’s theorem one can show such a sequence exists; moreover, y,(f) and 2,(t) are
solutions of the transition layer equations (4.77), and (4.78), for all ¢ € R. Further-
more, the inequalities (4.80) and (4.81) hold for some positive ¢ and d, so it follows
that '

e<y(t)<4 and —Bgefl<—d JorallieR.

Lemma 3.3 therefore implies that #,(0) = a. However, (4.107) and the definition
of y,(f) imply that ,(0) = a,7 a. This contradiction completes the proof. - O

REMARK 4.4. — It is interesting that if one does not establish the connection
between periodic solutions of (3.1). and solutions of the transition layer equations
(4.77), and. (4.78),, then it is highly nontrivial even to prove the existence of v > 0
and solutions y(?) and 2(t) satisfying the conclusions of Corollaries 4.1, 4.3, or 4.4.

REMARK 4.5. — Under the asgumptions of Corollary 4.3 one sees the sense in
which slowly oscillating periodic solutions wx(f) approach the square wave function

A ifon<t<2n41
SIVO =\ _p iomtl<i<2nt2
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B& Fig. 15 A slowly oscillating periodic solution for small ¢, with monotone f.

a8 ¢ — 0+, Indeed, #(¢) has the simple form shown in Figure 15. This follows from
Corollary 4.3, and from the fact that for any positive ¢ << 4 and d < B the solution
o(t) satisfies Property M between —d and e.

If f satisfies (H2) and (H3) then the limits (4.106) of the transition layer solu-
tions (y(t), #(f)) exist as ¢ — 4 oco. However, the existence of these limits still gives
no information about how slowly oscillating periodic solutions x(f) behave away
from the transition layers as ¢ — 0*. One cannot conclude from (4.83) that x(?) is
uniformly near

a if 2n<t<2n-+1
(4.108) SOV =1 _p itomti1<i<ont2

on compact subsets of R Z. Nevertheless, this fact is true, as is shown in the
following result. ’

THREOREM 4.2. — Assume that | satisfies (H2) and (H3), and that ay, ay, by, and b,
are positive numbers such that a,< a < @, and b, << b < b,, where a and b are as in
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(H3). Then there exists a number K > 0 such that if 2(t) is a slowly oscillating periodic
solution of (3.1): for some positive &, then

(4.109) {te[0,q]: x(t) & (— by, — b)) U (a1, a,)} C N(g, q, Ke)
where q and g are the first two zeros of x(t).

ProoF. — Assume that the conclusion (4.109) of the theorem is false. Then
there exist sequences &, — 0%, K, — oo, t,€[0,¢,], and x,(t) such that =z, is a

slowly oscillating periodic solution of equation (3.1)., of minimal period g,, and
such that

(4.110) Batn) & (— byy — b1) U (a4, 85)
and
(4.111) bt N(Gns Gy Katy) -

Here ¢, denotes the first zero of #,(f). One may also assume, without loss, that
t,€ [0, g,] for each n. Clearly (4.111) now implies that one has

(4.112) im 2= lim 27 o

#—> 00 En N—~> 00 sn

Now fix positive numbers ¢ and d satisfying the conditions in the statement of
Theorem 3.1 for some y > 1. By Theorem 4.1 and (4.112) one has for each t€ R

(4.113) lim inf o,(t, — e.f)>c¢;

>0

also, using the result 3§,= ¢, + O(e,) = 1 + O(e,) of Theorem 3.2 one has

(4.114) lim sup @,(f, + 3G — eal) <— d .

> 00

Let (y(t), 2(t), #) be a transition layer solution associated with the sequence (s,
@a(t), ts). Then the inequalities (4.113) and (4.114) and the definitions of y(f) and
2(t) imply that

yty>e¢ and 2f)<—d for all ¢
and from (4.110) one obtains y(0) ¢ (a,, a,), so in particular

(4.115) y(0) = a,
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One also has the bounds »(f)<A4 and 2(f)>— B from (ii) of Proposition 3.1. Now
observe that the hypotheses of Lemma 3.3 are satisfied. One therefore conecludes
that

(4.116) ' yt) = a for all i;

however, (4.116) contradicts (4.115), completing the proof of the theorem. ~[I

REMARK 4.6. — Corollary 4.4 and Theorem 4.2 give a very precise description
of the way in which slowly oscillating periodic solutions #(f) converge to the step
function sqw () given by (4.108) as ¢ —> 0%, if f satisfies (H2) and (H3). In contrast
to the situation in Corollary 4.3 where the nonlinearity f and the solutions y(f)-and
#(t) were monotone functions, it is possible in Corollary 4.4 that either y(f) or z(?)
is not a monotone function of 7. Indeed, it is possible for the range of y(t) or #() to
properly contain [— b, @], as will be shown in Proposition 4.1. If this is so, then
Corollary 4.4 and Theorem 4.2 imply that a peculiar type of « non-uniform » con-
vergence of x(f) to sqw (t), similar to the Gibbs phenomenon of classical Fourier
series, must oceur as & — 0%, '

To be specific, suppose that

(4.117) sup 2(t) = a5 > @
t

Oy

— b,

Fig. 16. A slowly oscillating periodic solution displaywmg the Gibbs Phenomenon.-
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for some number a,, and that one considers a sequence x,(!} of slowly oscillating
periodic solutions of (3.1), where e, — 0" and 2(f) is given by the limit (4.76) as
in Corollary 4.1. If fis assumed fo satisfy (H2) and (H3), then by Theorem 4.2 #,(t)
converges uniformly to a on compact subsets of (0,1), and uniformly to — b on -
compact subsets of (1,2). However, near the transition point ¢ = 1, z(t) will over-
shoot the value a by an amount which does nof become small as &, — 0. More
precisely, one has from (4.117) and the definition of #() that if 0 < § < 1, then

(4.118) lim max a,(l) = 4> a.

n—>co |i—1|<8
In the same fashion, if one has

inf y(t) = — by
¢

for gome positive number b, > b, then

(4.119) lim min #,(t) = — by << — b

nsoo |6

for each 6 <<1.
Figure 16 illustrates this phenomenon for a typical solution, for small &. The
following result gives a sufficient condition on f for this Gibbs phenomenon to. occur.

PRrOPOSITION 4.1. = Assume that | satisfies (H2) and (H3), and that there exists a
positive number-a,<< & such that ' '

(4.120) - << a = fl&)<<—0b.

Let y(t), 2(t), and r be as in Corollary 4.1. Then either

(4.121) infy(t) <—0
t
or else
(4.122) sup 2(1) > a,
. ¢

80 that either the Gibbs phenomenon (4.1185 or (4.119) described in Remark 4.6 must
ocour. The same conclusion holds if in place of (4.120) one assumes - o

(4.123) ' —b<ag<—by= fix)>a

for some positive number b,<< b.
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PRrOOF. ~ Assuming condition (4.120) let us suppose that both (4.121) and (4.122)
are false. By Corollary 4.4 one has Jim #(t) = @, so there exists a number T such
that

a<2t)<a L t>T and 2T) = a,.
From (4.77), and (4.120), and the fact that y(f)>—b for all ¢, it follows that
(4.124) JO) =yt) +b>—b+b=0 ifi>T+r
with the strict inequality
{4.125) g +r>0

because f(z(T)) = f(a,) < b. From (4.124), from the fact that (4.121) is assumed
false, and from the fact that Jim y(t) = —b, one concludes that

{4.126) y(fy =—>b Ht>T +7r.

However, (4.126) contradicts (4.125).
If (4.123) is assumed in place of (4.120) then the proof is similar. [

If the function f is odd, then the results of this section, in particular Corol-
laries 4.1, 4.3, and 4.4, have analogs in which «slowly oscillating periodic solution »
is replaced with « S-solution». Recall that an S-solution is a slowly oscillating
periodic solution satisfying the symmetry condition (1.42), and that the existence
of S-solutions was proved in. Theorem 1.2. In this situation one easily sees from
(1.42) and the oddness of f that the system of transition layer equations (4.77), and
(4.78), reduces to the single equation

(4.127), yt) = y(t) + fyt—1),
because the symmetry of the S-solution x(f) yields the relation
(4.128) 2(t) = —y() for all ¢.

One therefore obtains the following result.

COROLLARY 4.5. — Assume, tw addition o the hypotheses of either Corollary 4.1, 4.3,
or 4.4, that the function f is odd (and hence A = B, a = b, and without loss ¢ = d).
Then the analog of the respective Corollary 4.1; 4.3, or 4.4 holds but with « S-solution »
replacing « slowly oscillating periodic solution », with 2(t) given by (4.128) and with
the single tramsition layer equation (4.127), replacing the system (4.77), and (4.78),.
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In particular, the solution y(t) of equation (4.127), obtained satisfies
—A<y@t)<A  for all t and —e<y(t)<e = y(t)<0.

In Corollaries 4.3 and 4.4 y(t) is a heteroclinic orbit of (4.127),, as it satisfies

lim y(t) = F4
>4 oo

in Corollary 4.3, and
lim %(t) = Fa
t—+t oo

in Corollary 4.4.

Appendix: Results on linear autonomous differential-delay equations.

In this appendix we obtain some results on the characteristic equation of the
linear differential-delay equation

(A.1) B(t) = — Aw(t) — Aka(t —1)

and on the characteristic equation of the linear system

(A.2) yt) = y(t) + ket —r),  2(t) = 2(0) + ky(t —r).

We assume throughout that x(¢), y(¢), and 2(t) are scalars, that A, k, and r are real
parametery, and that r>0. Many of the results on the characteristic equation of
(A.1) are stated in [46]; for completeness, however, we provide proofs here.

We shall also summarize in this appendix some results on the general linear
system

(A.3) W(t) = I(W,) .
Here W(t) is an n-vector, W,e ¢ = C([—r, 0], R*) denotes the translate
Wis) =W +s) for —r<s<0
where »>0 is fixed, and L is a given bounded linear transformation
L: C—~>R".
Our setting for equation (A.3) is identical to that of HALE [25, Chapter 7], and we

shall assume that the reader is familiar with the results there. See also BELLMAN
and, Cookk [1] and Evr'scor’ts and NORKIN [16].
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Recall that the characteristic equation of the system (A.3) is given by
4y =0
where 4 is the entire function defined by

A(¢) = det [¢I — Liexp [£-1)]

for e C. (Here L(exp [£-]) is the # X n matrix obtained from the vector L(y, exp [¢-]),
where #4, ..., 1j» is the standard basis in R». Also, one complexifies the space C and
the transformation L in the usual fashion.) There exigts a solution of (A.3) of the
form W(t) = wexp [{t] for some nonzero vector w € C» if and only if 4(f) = 0; in
general if { is a zero of the funetion 4 of multiplicity d, then there exists a d-dimen-
sional linear space of solutions of the form W(t) = w(t) exp [{t] where w(f) is a
polynomial taking values in C». In addition, the degree of the polynomial w(¢#) for
any such solution is strietly less than d. These facts generally follow from the
theory presented in [25]. '

If W(2) is a solution of (A.3) for all { € R, and in addition is bounded on (— oo, 0],
then using Theorem 7.4.1 of [25] one can easily show

(A4) W) = 3 w0 exp 14,4

where each term w;(f) exp [£;#]-is an exponential-polynomial solution as described
above (in particular A({;) = 0), and for each j one has that

Ref; >0, and w,(f) is a constant if . -Rel,=0.

That is, W(t)}lis a finite- sum of»;exponéntial-polynomial solutions each of which is
bounded as t - —oo. If in addition one has

sup' ]W(t)[ < oo

teR

then it is an exercise to show that each of the exponential-polynomial terms in (A.4)
is also bounded as ¢ — oo, that is, one has

P
Wt) =3 w; exp [iv;1]
= Vi
for constant vectors w; and roots ;== 4v; of the function A with zero real part.
This is the case in particular if W(z) is a periodic solution.

One sees that the characteristic equation of the differential equation (A.1l) is

(A.5) F4+A+dkbexp[—{]=0
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and that of the system (A.2) is

(-1 —kexp[={l|

(4.6) —kexp[—]  t-1 |~

Note that the determinant in (A.6) factors to give
4.4 (L) =0

where the functions A_ are given by

(A7) A8y = —1tkexp[—2].

We now prove some results about sclutions of the characteristic equations (A.5)
and (A.6).

PROPOSITION A.l. — If 1> 0 and — 1 < k<1, then each solution of equation (A.5)
satisfies Re { < 0.

PROOF. — If there were a solution [ = y + @ with u>0 and » € R, then taking
the norms of both sides of { + 4 = — Ak exp [— {] yields

(A8)  A<V(p+ APt o2= [0+ A = [k exp [~ {1| = Alblexp [— ul<A.

Thus the inequa,litiesrin ‘(A.8_) are actually equali’oie's, and this is ;seen- to imply £ = 0.
However, { = 0 is not a solution of (A.B) if —1 <kl - O -

PROPOSITION A.2. — Assume that k> 1. Then there ewisis a sequence

e LA A <O < A< A< A< e

such that if A<= 0, then equation (A.B) has a solution with real paﬂ zero if and only if
A= A, for some m. If 0 << <Ay, then all solutions { of (A.B) satisfy Rel << 0. If
A= 1,, then (A.B) has a pair of complex conjugate roots

L= vy £ 03

these are simple-roots; and there. are no other roots with zero real part. Far A near A,

there is a uniqué pair £,(1), €. (7) of complex conjugate roots near tiv,. The function
Ln(A) depends analytically on 2, satisfies £, (A,) = iv,,, and its derivative satisfies

(A.9) sgn (An) Re {p(2a) >0
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The values of v, and i, are given by

(A.10) P == Vg + 270
and
Ve + 2mtm
(A1) V-1
where v, 18 the unique solution of
—1 7
(A.12) CO8 VY, = 5 voe(g, n)

Proor. - Assume that 1% 0 and that [ = iv is a solution of (A.5) for some real
number », where we assume without loss that

(A.13) >0,

Taking the real and imaginary parts of (A.5) yields

(A.14) Al + kecosy) =0
and
(A.15) vy = Aksiny

respectively. Equations (A.13) and (A.15) imply that sin»>0, and so (A.14) holds
if and only if » = »,, for some integer m, where », is given by (A.10) and (A.12).
Equation (A.15) and the fact that :

(A.16) sin v, = Vl ~1

then imply that 4 = 4,, where 4, is as in (A.11).
Now consider the left-hand side of (A.5) as an analytic function

A B =L + 4 + Mk exp [— ]
of both ¢ and A. One has A(iv,, A,) = 0, and an easy caleulation using (A.12) and
(A.16) reveals that

%?(@'vm, Am) =1 — Ankexp[— wn,] =14 An-+ A VE— 1#£0.

Therefore iv,, is a simple root of the charactoristic equation, and by the implicit
function theorem there is an analytic function (,(A), defined for A near 4, and
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satisfying {,(A.) = v, and

(A.17) A(Cw(A), A) =0 for all A near 4, .

Of course one also has A(Z (A), A) = 0 for (real) 1 near i,. Implicit differentiation
of (A.17) yields

- gﬁl(ivwn }'m) %?— (7:1),,,, }-m)—_1 = @ng_ 1 (1 + Am + ’I'zm \/kg— 1)—1

and one sees from this that Re (,(4,) is non-zero and has the same sign as i,
thereby proving (A.9).

It remains to prove that Re { < 0 for each solution of (A.5) when 0 << A < 4,.
For this range of 4 any solution { of (A.5) with Re (>0 also satisfies

Il =14 + Ak exp [—(]|<A(1 +- k) and Rel>0
and so lies in the open half-disc
H(Ay, k) ={{eC: |{] < A + k) and Re{ > 0} .

In particular, no solution lies on the boundary 9H(4,, k) so by Rouché’s theorem
the number of solutions inside H{4,, k) is independent of A in the range 0 < 4 < 4,.
Now consider A near zero. If A = 0, then { = 0 is the only solution of equation
(A.B) in the closed half-disc H(A,, k); moreover, this solution is a simple root and
lies on the boundary oH(4,, k). For A near A, an application of the implicit funec-
tion theorem, as above, shows that this root continues as an analytic function {(4)
and satisfies

(A.18) F(0)=—1—k<0.

In particular, (A.18) implies that {(A) ¢ H(4,, k) for A positive and sufficiently small.
Therefore, a simple continuity argument proves that H(A,, k) contains no roots of
the equation (A.5) for small 4 > 0. As noted above, all roots of equation (A.5) in
the closed right-hand plane lie in H(4,, k) for 0 << A < 44, and the number of such
roots is constant for this range of A. One concludes from this that if 0 < A< 4,,
then equation (A.5) has no solutions satisfying Re(>0. O

The next proposition econcerns the characteristic equation of the system (A.2).
PROPOSITION A.3. — Assume that k > 1. Then equation (A.6) has at most two solu-

tions (counting multiplicity) with real part zero. Such solutions, if they exist, are
complex conjugates { = -Liv where v > 0.
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Proor. — Assume that { = i» is a solution of (A.6) for some real number »;
without loss one can assume »>0. Writing equation (A.6) as

(A.19) (¢ —1)* = k* exp [— 927]

and taking the norms of each side at the solution { = ¢y yields 1 -+ v?= £?, and
hence » = v/ k2 — 1 is uniquely determined and strictly positive. It remains then to
show that if £ = 4» is a root of equation (A.6), then it is a simple root. That is, one
must show the derivative

(A.20) (L —1) + 2rk® exp [— 207]

of the left-hand side of (A.6) is not zero if £ == iy satisfies equation (A.19). This is
easily done by using (A.19) to replace k2 exp [—2{r] with ({ —1)? in (A.20), then
removing the factor 2({ — 1) % 0. What remains is the quantity

149 —1)=1—r+irVkE—1£0.

This completes the proof. [l

The last result concerns the fuﬁction A, in equation (A.7).
PEOPOSITION A4 — Assume that k>0 and v > 0. Then the equation
(A.21) —1+4kexp[—lr]=0
has a solution satisfying

(A.22) 0<{mc<j~f.

Proor. - Fix quantities k, and k, satisfying 0 < 7c1< 1< k,, and consider k as a
parameter in the closed interval k, <k<k,, while » > 0 is fixed. Let E(XK, r) denote
the rectangle

R(K,?"):{Ce 0: |Rel|< K and |Im§[<:—f}

Where the constant K is chogen so that

(A.23) E>1+F,

and -

(A.24) : %y exp [Kr]>1 + K +_:7’.
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It is sufficient to prove that B(K, r) contains a root of (A.21), for either such a root
or its complex conjugate will satisfy (A.22).

One first observes that if k,<k<Fk,, then the equation (A.21) has no solution
on the boundary oR(K,r) of the above rectangle. First, if |Im{|= njr, then
exp [— {r] is real, and this implies (by taking the imaginary part of the left-hand
side) that equation (A.21) cannot hold. Next, if Re { = K for a root of (A.21), then
one has

K —1<[l—1] = [k exp [ r]| < k,

which contradiets (A.23). Finally, if { is a root of (A.21) satisfying Re{ = — K
and |Im {| < zfr, then

ky exp [Kr]<k exp.[Kr] =

hexp[— 0= L —1| <14+ K+

contradicting (A.24).

Rouché’s theorem therefore implies that the number of solutions of equation
(A.21) in R(K,r) is independent cf k in the range k <k<k,. Setting ¥ =1, one
obgerves that { = 0 is indeed a solution in R(X, r), hence R(XK, r) contains a solu-
tion of (A.21) for each k in this range. As k, and k, are arbitrary, this completes
the proof. [ -
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