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ABSTRACT. In this paper we obtain theorems which give the Hausdorff dimen-
sion of the invariant set for a finite family of contraction mappings which are
“infinitesimal similitudes” on a complete, perfect metric space. Our work gen-
eralizes the graph-directed construction of Mauldin and Williams [13] and is
related in its general setting to results of Schief [22], but differs crucially in that
the mappings need not be similitudes. We use the theory of positive linear op-
erators and generalizations of the Krein-Rutman theorem to characterize the
Hausdorff dimension as the unique value of ¢ > 0 for which r(Ls) = 1, where
Ly, 0 > 0, is a naturally associated family of positive linear operators and
r(Ls) denotes the spectral radius of L,. We also indicate how these results
can be generalized to countable families of infinitesimal similitudes. The intent
here is foundational: to derive a basic formula in its proper generality and to
emphasize the utility of the theory of positive linear operators in this setting.
Later work will explore the usefulness of the basic theorem and its functional
analytic setting in studying questions about Hausdorff dimension.

1. INTRODUCTION

Given N contraction mappings 6;, 1 < ¢ < N, on a complete metric space (X, d),
there exists a unique, nonempty compact set C' such that C' = vazl 0:(C). Cis
called an invariant set or an attractor for the family {6;}2,. A general problem is
to obtain theorems which allow the accurate estimation of the Hausdorff dimension
of C. A well studied case is when the maps 6; are “similitudes”, i.e., when for
1 < i < N, there exists r;, 0 < r; < 1, with d(0;(z),0;(y) = rid(z,y) for all
z,y € X. If, in addition, X is a normed linear space with metric d derived from
the norm on X and if the similitudes 6; are onto maps (which is necessarily true
if X is finite dimensional), then a theorem of Mazur and Ulam (see [14] or [23])
implies that each 6; is an affine linear map. Moran [15] and Hutchinson [7] have
studied the case that each 6;, 1 < ¢ < N, is an affine linear similitude on a finite
dimensional normed linear space X. Provided the “pieces” 6;(C) do not overlap
too much, they have proved that the Hausdorff dimension of C is the same as the
“similarity dimension” « and is determined by the equation Zfil ry = 1. More
precisely, one needs the “open set condition”, i.e., the assumption that there exists
a nonempty, open set U such that the sets 0;(U) are contained in U and are pairwise
disjoint. Mauldin and Williams [13] have generalized the idea of “self-similarity” to
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“graph self-similarity” which allows a larger class of sets like C', but still the maps
in question are affine linear similitudes. Schief [22] works in a setting similar to ours
and considers similitudes on general complete metric spaces and obtains analogous
results. Interestingly, he has shown that in this generality, the open set condition is
no longer sufficient and must be strengthened to the “strong open set condition”.

It is of considerable interest (see [2, 3]) to allow maps 6; which may not be
affine linear. For example, in studying subsets of R defined by properties of their
continued fraction expansions, one is led to maps 6; : [0,1] — [0, 1] defined by
0;(x) = (x +m;)~1, m; a positive integer.

In this paper we shall consider a complete, perfect metric space (X, d) and maps
0; : X — X, 1<i< N, where 6; is a contraction mapping and an “infinitesimal
similitude” (instead of a similitude) for 1 < ¢ < N. If G is a bounded open subset
of C, 0; : G — G is analytic and 6;(G) C Gfor 1 < j < N and X = U;VZI 0;(G)
with appropriate metric d, we obtain an important example for which the mappings
0; : X — X are contractions and infinitesimal similitudes. For the general definition
of infinitesimal similitudes and their properties, see the beginning of Section 3. If
C denotes the nonempty, compact invariant set for {6;}¥ ; and if 6;(C) and 6;(C)
are disjoint for 1 < ¢ < j < N, we shall obtain below a formula for the Hausdorff
dimension of C. In fact, we shall obtain such a formula in a setting similar to
that of Mauldin and Williams, but using contractions and infinitesimal similitudes,
rather than affine linear contractions which are similitudes.

The classical Krein-Rutman theorem (see [8]) considers a positive (in the sense
of mapping a suitable cone to itself), compact, linear map 7' : X — X which has
positive spectral radius r and asserts the existence of a positive eigenvector v with
T(v) = rv. Generalizations, particularly allowing noncompact T', can be found in
[1,9, 10, 18, 19, 21]. Our approach in this paper will be to use generalizations of the
Krein-Rutman theorem. To each nonnegative real ¢ we shall associate a positive
linear operator L, on a Banach space Y of continuous functions. We shall prove
that L, has a positive eigenvector with eigenvalue r(L, ), the spectral radius of L.
‘We shall prove that og, the desired Hausdorff dimension, is the unique value of o > 0
for which r(L,) = 1. We shall not use the thermodynamic formalism. Curiously, we
have found no references to the Krein-Rutman theorem in the Hausdorff dimension
literature, despite its relevance. Analogues of the operator L, we consider are
sometimes called “Perron-Frobenius operators” or “Frobenius-Ruelle operators”,
although the theory originally developed by Perron and Frobenius is restricted to
matrices with nonnegative entries, and generalizations to infinite dimensions pose
substantial difficulties.

For the convenience of the reader we shall now state our main theorem in the
simpler setting of iterated function systems on a compact, perfect metric space. For
the more general case see section 3.

Let (S,d) be a compact, perfect metric space. If 6 : S — S, we shall say that
6 is an infinitesimal similitude at ¢ € S if for any sequences (s), and (i), with
sk £ty for k> 1 and s — t, t, — t, the limit
(1.1) lim M =: (DO)(1)

k—oo d(Sk, tk)
exists and is independent of the particular sequences (si), and (t;),. We shall say
that 0 is an infinitesimal similitude on S if § is an infinitesimal similitude at ¢ for
allt € S.
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Assume that for 1 < i < N, 6; : S — S is a Lipschitz map with Lipschitz
constant ¢; < ¢ < 1. Then we know that there exists a unique nonempty, compact
set C' C S with

N
C=|Jo:(0).

Assume the map 60; : S — S is an infinitesimal similitude on S and the map

t — (D0;)(t) is a strictly positive Holder continuous function on S for 1 <4 < N.
For o > 0, define L, : C(S) — C(S) by

N
(1.2) (Lo f)(8) =D _((DO:) ()7 £(6:(1)).-

i=1
It follows (see Theorem 5.4 in [19]) that L, has a strictly positive eigenvector u,
with eigenvalue equal to the spectral radius r(L,) of L,. We also have the following
lemma.

Lemma 1.1. The map o — r(L,) is continuous and strictly decreasing. Further-
more, there is a unique og > 0 such that r(Ls,) = 1.

We are now ready to state the theorem about the Hausdorff dimension of the
invariant set C.

Theorem 1.2. Let§; : S — S, 1 <i < N, be infinitesimal similitudes and assume
that the map t — (D6;)(t) is a strictly positive Holder continuous function on S.
Assume that 0; : S — S is a Lipschitz map with Lipschitz constant ¢; < ¢ < 1 and
let C denote the unique, nonempty, compact set such that

N
C=|Jo:(0).

Further, assume that 0;, 1 <1i < N, satisfy
0,(C)NO;(C)=0 for 1 <i,j < N,i#j

and are one-to-one on C. Then the Hausdorff dimension, dim(C) of C is given by
the unique oo such that r(Ly,) = 1.

To see that this is a special case of our general theory of later sections, let
V={1}€={1,2,...,N} and I' = V x € in the terminology below.

We should remark that our proofs require that the pieces 6;(C), 1 < i < N,
be pairwise disjoint. It would be very interesting to find variant arguments which
allowed some overlap. For instance, we do not know if the strong open set condition
is sufficient to get the results in this generality.

The paper is organised as follows. In §2 we introduce the basic set-up and prove
the existence of the invariant set. In §3 we discuss the Perron-Frobenius operators.
In §4 we give the main theorems about the Hausdorff dimension of the invariant set.
In §5 the results are extended to infinite iterated function systems, and we show that
a class of complex continued fraction previously studied by Mauldin and Urbanski
[12] is also covered by our theorems. In §6 we show that choosing an appropriate
metric gives a large class of examples of iterated function systems to which our
theory can be applied. For instance, we discuss the Carathéodory-Reiffen-Finsler
(CRF) metric on bounded open subsets of C.



4 ROGER D. NUSSBAUM, AMIT PRIYADARSHI, AND SJOERD VERDUYN LUNEL

2. INVARIANT SETS

Let V and & be finite sets and for each v € V, let (S,,d,) be a complete metric
space. Let I'" be a subset of V x &, and o : I' — V. For each (v,e) € T, let
O(v,e) : Su — Sa(v,e) be a Lipschitz map with Lip(6, ) < ¢ < 1. Recall that a
map ¢ : (S1,d1) — (S2,ds) is said to be Lipschitz if there is a constant ¢ such that
da(9(s), (1)) < cdy(s,t) Vs, t € Sy, and

Lip(®) := sup{W :s8,t€81,s ;ét}.

Notation and assumptions will be as in the preceding paragraph for the remainder
of the paper. We shall keep in mind two important particular cases.

Example 2.1. (The Mauldin- Williams graph) Let V' be the set of vertices and &
be the set of edges of a directed multigraph. Let i(e) and ¢(e) denote the initial
and terminal vertices of edge e € £. The set I' is defined by (v,e) € T if and only
if v = t(e). The map « in this case is a(v,e) = i(e). See chapter 4.3 in [4] for a
discussion of the Mauldin-Williams graph.
Example 2.2. Let (T,d) be a bounded complete metric space. Assume that T =
UZ:1 T}, , where each T} is a closed subset of T and T, NT; = @ for k # 1. For
1 <i<m,let 6 :T — T be a continuous map such that 0;(Ty) C T, r),
1 < k < p, where v(i,k) € {1,2,...,p}, and Lip(0;|T;) < ¢ < 1. In this case, we
take V={k:1<k<p}, Sp=Tpfor 1<k<p, E={i:1<i<m}, T =VxE.
The map a(k,i) = v(i,k),1 <k <p,1 <i<m,and 0 ;) = 0;|Tk.

For u € V| define

I, ={(v,e) €T :a(v,e) =u}
and
E,={e€&:(u,e) eT}.

For n > 1, define

™ = {[(v1,€e1),. .., (Un,en)] : (vs,€5) €T, a(vigr, €i41) = v, 1 < i <n—1}.
For u € V,n > 1, define

™ = {[(v1,e1),..., (Un,en)] €T vy, e1) = ul.

Define Voo = {u eV : r{ £0 Vn>1}.

Before we prove the next theorem we need to recall the definition of the Hausdorff
metric. Let (S,d) be a complete metric space. If A C S, we define the diameter of
A by

diam(A) = sup{d(s,t) : s,t € A}.

We shall say that A is bounded if diam(A) < co. For A C S and s € S we define

d(s,A) = inf{d(s,a) : a € A}.
If AcC S and é > 0, we define Ns(A) by

Ns(A)={se S:d(s,A) < d}.
If A and B are nonempty, closed, bounded subsets of S, we define

D(A,B) =inf{0 > 0: A C Ns(B) and B C Ns(A4)}.

If B(S) denotes the collection of nonempty, closed, bounded subsets of S, then it
follows that (B(S), D) is a metric space. The metric D is called the Hausdorff
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metric. It is known (see [16], Exercise 7, pages 280-281) that if (S, d) is a complete
metric space, then (B(S), D) is also a complete metric space.

Theorem 2.3. Let V.E,T',a be given as before, and 0, ) : Sy — Sa(v,e) be a
Lipschitz map with Lip(0(,.¢)) < ¢ < 1 for all (v,e) € T. Assume I'y # 0 for all
u € V. Then there exists a unique list (Cy)vev of nonempty closed bounded sets
C, C S, such that

(2'1) Cy= U e(v,e) (C

(v,e)€ly,

for allu € V. Furthermore, C, is indeed compact for allv € V, so we may remove
the closure in the above equation.

Proof. Let B(S,) denote the collection of closed, bounded nonempty subsets of
S, with the Hausdorff metric D,. Then since S, is a complete metric space,
we know that B(S,) is a complete metric space. So the finite cartesian product
[I,cv B(Sy) with the sup metric is also a complete metric space. Define the map

@ : H’UEV B(SU) - HUEV B(S'U) by

O(A)ver) = | U bo(A)

(v,e)eTl, wev

Note that for any u € V, U(v,e)el‘u 0(v,¢)(Ay) is nonempty because I', is nonempty
by assumption, and A, is nonempty for each v € V. Also it is bounded because
0(v,e)(Ay), being the image of a bounded set A, under a Lipschitz map 6,), is
bounded, and a finite union of bounded sets is bounded. Thus the map © is well
defined.

We claim that © is a contraction map. Let A = (A4, )yey and B = (B,)yev be
in [],cy B(Sy). Then D(A, B) = max,cy Dy(Ay, B,) and

D(©(A),0(B)) =maxDy | | J bue(dn), | 0ueB

ueV
(v,e)€ly (v e)ely,

Let § > D(A, B), and take any (v,e) € Ty, a, € A,. Since D,(4,,B,) <
D(A, B) < 4, there exists b, € B, such that d,(a,b,) < . Then

du(a(v,e) (av)a a(v,e)(bv)) < Cdv(avv bv) < cd.
This shows that (J, .)er, O(v,e)(Av) is contained in a cé-neighborhood of
U a(v,e)(B
(v,e)ely

Interchanging the roles of A, and B, yields a corresponding inclusion, so

D, U a(v e) U a(v e) <cd

(v,e)€Ty, (v e)el,

for all w € V. Hence, D(©(A),0(B)) < ¢d. Since 6 > D(A, B) was arbitrary, we
have proved that D(©(A),0(B)) < cD(A, B).
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Therefore we have a contraction map © on a complete metric space. By the
contraction mapping theorem, © has a unique fixed point, say (C,)ycy. Thus we
have Cu = U(v,e)el"u 9(1,76)(01,).

To see that C, is compact for all v € V' let us restrict the map © to [], o K(S,),
where IC(S,) denotes the collection of nonempty compact subsets of S, with the
Hausdorff metric D,. It is a straightforward exercise to prove that [], ., K(S,) is
a closed subset of the complete metric space [], .y B(Sy), so [, e K(Sy) is itself a
complete metric space. Then © maps the complete metric space [], o K(S,) into
itself, and is a contraction map as seen above. Thus © has a unique fixed point in
[T,ev K£(Sy). The fixed point must be the same as (C,)yev, since otherwise the
original map © would have two fixed points. Therefore C,, is compact for all v € V,
and the theorem is proved. O

Remark 2.4. The assumption ', # @) for all w € V in the above theorem may be
too strong for some examples. A weaker assumption under which we can prove the
existence of an invariant list is Vo # (). Note that I';, # @ for all v € V implies
Voo =V, 50 Vo # 0.

First we claim that u € V, implies that there exists v € V,, with (v,e) € T,
for some e € £. Suppose not. Then for all (v,e) € 'y, v ¢ V. This implies, since

V is a finite set, that there exists n > 1 such that FE,") = () for all (v,e) € T,,.

But since u € V., there exists [(vi,e1), (v2,€2),..., (Vnt1,ent1)] € Fq(L"H), which
implies [(ve,e2),..., (Vnt1,€nt1)] € FE,?) and since a(vi,e1) = u, (v1,e1) € Ty.

This contradicts T\ = @ for all (v,e) € T',. Hence the claim.
Now consider the map © : [[,cy.  B(Su) — [[, ey, B(Sy) by

O((Av)vev,,) = U Ov,e) (A
(v,e)ely,
vEV WE Voo

Note that © is well defined because of the above claim. Again by the contraction
mapping theorem, we have (Cy)yev..,Cy C S, is compact such that

Cu = U 9(1),@) (Cv)

(v,e)ely,

veEV
Equwalently, under the assumption that Vo, # (), all we have done is replaced V
by V i= Vi, I by I' := {(v,e) € Tlv € V} and a by & := a|l', and applied
Theorem 2.3.

Remark 2.5. Applying the previous result to Example 2.2, we get nonempty com-
pact sets Cy C T}, for k € V, such that

lJ 6;(C) for k € V.

v(i,l)=k
1€V

If we let C' = Ulevoo Cj, then C' is a nonempty compact set and it satisfies

C:GMQ

Thus we have a compact invariant set for the family of maps 6;, 1 < i < m.
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Remark 2.6. We can relax the condition Lip(f,.)) < ¢ < 1 for all (v,e) € T'in
the previous theorem to the following weaker condition. Suppose for some fixed
n > 1 the composition of any n of the maps 0, ), whenever the composition is
defined, is Lipschitz with Lipschitz constant < ¢ < 1. Then it is easy to see that
O™ is a contraction map on a complete metric space, where © is the map defined
in the proof of the theorem. It is then well known that the map © has a unique
fixed point. Thus the conclusion of the previous theorem holds under this weaker
assumption.

3. PERRON-FROBENIUS OPERATORS

From now on, let V = {1,2,...,p} with S1,S5,...,S, the corresponding com-
plete metric spaces. We do not necessarily assume that S;, 1 < j < p, is compact.
Let

X; =Cp(S;) ={f:S: — R: fis continuous and bounded}
for 1< i < p with |[f]| = sup.cs, |/(5)].

Define a linear map A : X7 X Xo x -+- x X, = Xj X Xo x -+ x X, by

(3.1) (AF);(8) =D bije)(8) faie)Oe)(5)) for s € S;
eckE;
where f = (fi, f2,..., fp) and the functions b(;.) € X; are given. We assume

throughout this section that E; = {e € £ : (j,e) € I'} is nonempty for all j € V.
Define for M > 0,2 >0,1<j<p

(3.2) K;(M,\) ={f€X;:0< f(s) < f(t)exp(M(d;(s,1))) for all s,t € S;}.

Remark 3.1. From the definition, it follows that if f € K;(M,\) and f(t) = 0 for

some t € S;, then f(s) =0 for all s € S;. Thus f € K;(M,\) implies that either f
is identically zero on S; or f is strictly positive on S;.

If Y is a real Banach space, a closed set K C Y is called a closed cone if
MK+ pK C K forall A >0,u>0and KN (—K) = {0}.

The following lemma follows by the same argument used in Lemma 5.4, p.89, in
[19]. We give the proof for the reader’s convenience.

Lemma 3.2. Let K; := K;(M,\) be as defined by eq. (3.2) with A > 0. Then K;
is a closed cone in (Xj,|.l]), and {f € K; : || f|| <1} is equicontinuous.

Proof. It is easy to verify that K is a closed cone, and the proof is left to the reader.
To prove the equicontinuity of {f € K : || f|| < 1} let f € K; with ||f|| < 1. We
claim that for any s,t € S; we have

[f(s) = f(t)] < M(d;(s, ).
According to the previous remark, either f is identically zero on S; or f is strictly

positive on S;. The inequality is obvious in the first case. In the later case, we may
assume that 0 < f(s) < f(¢t) < 1. The definition of K; implies that

[ In(f(s)) = In(f(1))| < M(d;(s,t))*.
The mean value theorem implies that for some £ with In(f(s)) < & < 1In(f(¢)) <0
we have

£ (s) = f(#)] = exp(In(f(#))) — exp(In(f(s)))
= exp(§)| In(f (1)) — In(f(s))| < M(d;(s,t))*.
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Since this is true for any f € K; with || f|| < 1, equicontinuity follows. O

Lemma 3.3. Assume for some My > 0 and XA > 0, b ) € K;(Mo, M) for all (j,e) €
I'. Then there exists M > 0 so that the map A defined above maps [15_, K;(M,\)
into itself.

Proof. Let f; € Ki(M )\) for 1 <i<pands,teS;. Then
Z bje fa(ge (9(] e)( ))

eck;
Since byj ) € K; (Mo, A), bije)(s) < bije)(t) exp((Mo(d; (s, t))*). Also
Fat,0)(05.6)(9) < Fate)(B,e) (1) exp(M (dase)(Os,e)(5), 0j.e) (1))
< fatie)Og,e) (1) exp(McM(dj(s, 1))

Thus
=" by (8) faie) (0.0 (5))
eeE
<37 by () Fatge) (O, (1) exp((Mo + Mc*)(dy (s, 1))
ec Ej

= (Af);(t) exp((Mo + Mc*)(d; (s, 1)).
So, if we choose M such that My 4+ Mc* < M, which can be done because ¢ < 1
and A > 0, then
(Af);(5) < (Af);(t) exp(M (d;(s, 1)),
so (Af); € K;j(M,A) for 1 < j <p. O
We should note that observations similar to Lemma 3.3 have been made earlier

by other authors. See the proof of Theorem 5.4 in [19] and [2], for example.
We shall use the following notations.

T = {[(j1,e1)s - Gnren)] : (Giyei) €T,1 <i <m,a(fs,e) = jir1,1 <i<n}.

fg)ZHUhm%~wUm%ﬂ6fwrﬁ=j}
We shall also use (J, E) where J = (j1,...,4n), E = (e1,...,€,) as a shorthand
notation for [(j1,e1),- .-, (jn,en)] € T,
For (J,E) = [(jl,el), e vy (Jnsen)] € T define for s € S,

b(1,5)(8) = b(js,en) (8)b(jzien) Oir.en) (5)) ) O —senn) © 0 O 1) (5))
and

H(J,E)(s) = G(jmen) o---0 @(jhel)(s).
Let us compute AZ2.

(A21);,(s) = (A(AS));, (5)
= Z b(jlyel)( )<Af) jl,el)(e(Jl 61)(S>)
e1:(j1,e1)€r
Using
(Af)a(jl,el)(e(jhel)(s)) = Z b(j2’62)(0(j1,€1)(3))fa(j2,62)(9(j2762)(0(j1,€1)(8)))7

e2:(j2,e2)€T
J2=a(j1,e1)
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we get

(A%f);,(s) = Z b(1.5)(8) fa(jnsen) (01,5 (8))-

(J,E)efg’f
This computation suggests the formula for A™ given in the following lemma.
Lemma 3.4. Let n > 1. Then for f = (f1,fos..., fp) €[, Xi and 1 < j; <p
(3.3) (A1), ()= > b)) fagmenOur)(s), s€S
(J,B)er{™

Also the operator norm of A™ is given by

3.4 A"™|| = max su b s).
(3.4 147 = s wp 3 (o)
(J,E)el“j

Proof. The equation for A™ follows by a simple induction on n. If f € [[7_, X;
with [[f[| <1, ie., [f;(s)] < 1Vs € Sj,1 < j < p then the equation for (A" f);(s)
gives

AmF);) < DY bup(s)
(J,B)er(™

Taking supremum over s € S; and then maximum over 1 < j < p gives

n
< .
1< ey 2, ba(e)
' (JE)er{™

If we take f = (f1, fa,..., fp) where f; is identically equal to one on S; then
(A"f);(s) = Z b (s)
(J.E)er(™
Therefore we get the equation for | A™||. O

Lemma 3.5. Let (Sj)§:1 be bounded complete metric spaces, assume that I'; :=
{(k,e) € T : a(k,e) = j} is nonempty for 1 < j < p, and let (C;)5_; be
the unique invariant list of compact sets given by Theorem 2.3. Let (JJE) =

[(41,€1)y -y (nyen)] € '™ and 01,5)(8) = O(nen) © 003, e)(5), s €S-
Then there exists My > 0 such that for alln > 1

dajnen) (0(1,)(5); Cagjpen)) < Mrc" Vs €S
where ¢ < 1 is the constant such that Lip(0(;.)) < c for all (j,e) € T

Proof. Since the metric spaces (S;), 1 < j < p are bounded we can find M; so that
d;(s,C;) < My Vs € S;,1 <j<p. Let (je) €I and s € S;. Then we can find
t € Cj such that d;(s,t) < My. Since 0;,.)(t) € Cqjie),

d@(jﬁ)(a(j,e)(s)’ Ca(j,@)) < da(j,e)(g(j,e)(s)ye(j,e) () < cdj(s,t) < cMj.
The result now follows easily by an induction on n. O

Let us recall the definition of Kuratowski’s measure of noncompactness §. If
(S,d) is a metric space and B C S is a bounded set, then 3(B) is defined by

B(B) =inf{d >0: B = U?ZlBj,k < oo and diam(B;) < 6 for 1 < j < k}.
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Suppose that K is a closed cone in a Banach space Y and L : Y — Y is a bounded
linear map with L(K) C K. Define

ILl|x = sup{[[L(y)|| : y € K, [[yl| < 1}.
Define ri (L), the cone spectral radius of L, and ok (L), by

ric(L) = lim IL™|3/™ and

ok (L) :=lim sup(ﬁ(L"(U)))l/n

n—oo

where U ={y € K : |ly|| < 1}.

It is a special case of Theorem 4.10 in [10] that if ok (L) < rx (L), then there
exists y € K \ {0} with L(y) = ry, r = rx(L). (Note that the definition in [10]
of pr (L), the cone essential spectral radius of L, satisfies px (L) < ox(L). The
definition of px (L) in [10] differs from that in [9] and [18]. It is shown in [10] that
the earlier definition has some serious deficiencies.) We shall use this result to prove
the existence of a non-zero eigenvector for the map A given by (3.1). Alternately, if
all the sets S; were compact, an argument similar to the one used to prove Theorem
5.4 in [19] would give the following theorem.

Theorem 3.6. Consider the map A defined on H:;:l Cy(S;) by
(AN;(s) =D b)) fage)OGe(s)  forseS;

ecE;

where f = (fi, fa,..., fp). Assume that S; is a bounded, complete metric space
for 1 < j < p. Assume also that T'; # 0 and E; # 0 for 1 < j < p and that for
some Mo > 0 and A > 0, bi; oy € K;(Mo, ) for all (j,e) € I'. Let K be the cone

" Kj(M, ), where My +cAM < M. Then ||A"||x = ||A™|| for alln > 1, where
|A™|| is given by equation (3.4), and ri(A) = lim,_oo ||A"||%. If r(A) > 0,
there exists u = (u1,us,...,up) € K\ {0} with Au = ru, where r = rg(A). If
bije)(s) >0 for all (j,e) € T and all s € Sy, then ri(A) > 0.

Proof. Tt is enough to show that ox(A) < rx(A). Let (C;)’_, be the unique
invariant list of nonempty compact sets given by Theorem 2.3 and let C' = Hle Cj.
Let U = {f € K :||f|| <1}. From Lemma 3.2, we know that U is equicontinuous.
Let us write U|c = {f|c : f € U}. Then U|¢ is a bounded equicontinuous family
of functions from the compact set C into RP. So, by Ascoli’s theorem, it is totally
bounded. Therefore, given € > 0, we can write Y = U;;lul, q < oo, such that
lflc — glcll < € provided f and ¢ are in the same U;. Let f,g e Y and 1 < j < p.
Then using Lemma 3.4, we have for s € S

(A" f);(s)—(A"g),(s)| < Z b(1,5) () fa(in.en) (07.2) () =Ga(jn.en) (O(1,2)(5))]-
(J.E)er{™
Using Lemma 3.5, there exists 7 € Cy(j,, e,) With d(0(s,g)(s),7) < Myc™.
Since fo(inen) € Kain,en) (M, A) and || f|| < 1, we have as in the proof of Lemma 3.2
| Fatimen) 0.5 (8) = Faginen) (T < Md(0 .5 (s), 7)* < M(Myc").

The same is true for g. Also, if we assume that f, g € U for some [, 1 <1 < g then
| faGn.en)(T) = Ga(jn,en) (T)] < €. Therefore, by triangle inequality

| FaGimen) 01.8)(8)) = GaGinen) Orm)(5)] < €+ 2M (Mic™) if f,g € U.
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So,if fgelUyand 1 < j <p,
(A" £);(5) = (A"g);(s)] < (e +2M(Myc™)*) > bmy(s).

p(n)
(J,E)er;

Taking supremum over s € S; and max over 1 < j < p and using equation (3.4),
we get
|A™ f — A"g|| < (e +2M (Mic")™)[| A"
for f,gel;, 1 <1<q.
Thus A™(U) = U}, A™(U;) with

diam(A"™(U))) < (e +2M (Myc™)™) | A™|

So, BA™(U)) < (e + 2M (Myc")*) [ A
Since € > 0 was arbitrary, 3(A™(U)) < 2M (M;c™)*||A™|| which implies
(BA™U)))" < (2MM) 7 | A™| .

In general, it is obviously true that ||A"||x < ||A™]]. On the other hand, if
f=(f1,f2...,fp) and f;(s) = 1 for all s € S}, then f € K; and we have seen
in the proof of Lemma 3.4 that ||[A™(f)|| = ||A™||. It follows that ||A™||x = ||A™]|
for all n > 1 and that rx(A) = lim,_o ||A"||* = r(A), where ||A"|| is given by
equation (3.4) and r(A) denotes the spectral radius of A. Taking the limit in our
estimate for (3(A™(U)))" gives

ox(4) = lim (BA"U))* < (Mr(A).

If rx(A) > 0, it follows (because 0 < ¢ < 1) that ox(A4) < rx(A), and we are
done. If we assume that by (s) > 0 for all (j,e) € I and s € s;, then because
bij,e) € K;(Mo, M), there exists 6 > 0 such that b(;.)(s) > 0 for all (j,e) € I and
s € §;, and it follows easily that rg(A) > 6 > 0. O

Remark 3.7. Suppose u = (u1,ug, .. ., Up) is a nonzero eigenvector of the linear map
A with eigenvalue 7(A) given by Theorem 3.6. Then for any 1 < j < p, either u; is
identically zero or u; is strictly positive on S;. To see this note that u; € K;(M, \),
S0

0 < uj(s) < uj(t)exp(M(d;(s,t))*) for all s,t € S;.

Thus u,;(t) = 0 for some ¢ € S; will imply that u;(s) = 0 for all s € §;. Also, since
u is nonzero, at least one of the coordinate functions u; is strictly positive.

Remark 3.8. In general (in the context of the Krein-Rutman Theorem), if rx (L) =
0, it need not be true that there exist v € K \ {0} with L(v) = 0. Suppose,
however, that K and A are as in Theorem 3.6, that b .y € K;(Mo, ) for all
(j,e) € T and that rx(A) = 0. We claim that there exists an integer N such
that ANV = 0 and that there exists v € K \ {0} with A(v) = 0. Because S; is
bounded and b(;.) € K;(Mo, ), we have already seen that either b(;.y(s) = 0
for all s € S; or there exists 0(;) > 0 with b(;c)(s) > dj,e) for all s € S;. Let
P ={(j,e) €T :b(e(s) > 0forall s € S;}. Because P is a finite set (since I' is
finite), there exists § > 0 with b;¢)(s) > ¢ for all s € S; and for all (j,e) € P. For
n > 1, define P(™ c T by

P = {(J,E) e T™ : (j,er) € P for 1 <k <n}.
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If P(") is nonempty, it easily follows from equation (3.4) that ||A”|| > 6", so if P(™)
is nonempty for all n > 1, rx (A4) > §, contrary to our assumption. Thus there must
exist an integer N such that P is empty for all n > N. However, if (J, E) € T(")
and (J, E) ¢ P™, b s p)(s) =0 for all s € S, so we find that A™ =0 for all n > N.
If w e K\ {0}, let p < N be the least positive integer such that AP(w) = 0. If we
define v = AP~ 1(w) € K \ {0}, A(v) = 0.

Remark 3.9. If 8 denotes the Kuratowski measure of noncompactness on a Banach
space X, K denotes a closed cone in X and A : X — X is a bounded linear map
such that A(K) C K, define Bx(A) by

Br(A) :==inf{\ > 0: B(A(T)) < AB(T) for all bounded sets T' C K}.

If L: X — X is a bounded linear map such that L(K) C K, one can prove that
limy, o0 (B (L") exists. If limy, oo (Bx (L") % < rg(L), Theorem 2.2 in [18]
implies that there exists u € K \ {0} with L(u) = ru and r := rg(L).

One might hope that Theorem 2.2 in [18] could be used to prove Theorem 3.6.
However, if the metric spaces S;, 1 < j < p, in Theorem 3.6 are not compact,
Theorem 2.2 in [18] is, in general, not applicable, even in very simple special cases.
To illustrate this we work in the Hilbert space (?(N), and we let {e;|j > 1} denote
the usual orthonormal basis of [?(N). In the notation of Theorem 3.6, we take
Sy ={z € I’(N) : ||z]| <1}, V = {1}, € to be a set with exactly one point. Let
X1 = Cy(S1) and, in the notation of Lemma 3.2, let K = K(M, 1), where M is a
fixed constant with M > 1. Define a bounded linear operator A : X; — X; by

1

(Af)(@) = £(52)

for x € S1. Obviously, A is a trivial example of the operators considered in The-
orem 3.6, and A(K(M,1)) C K(M,1) and Au = u, where u € K(M,1) denotes
the function identically equal to 1. However, we claim that for each integer n > 1,
there is a bounded set T,, C K(M,1) such that B(A™(T,)) = B(T,) = (3)"; and
this implies that lim,, . (8x (A"))# = 1 = rg(A), so Theorem 2.2 of [18] cannot
be used (at least with the cones K (M, 1)) even in this trivial situation.

To construct the sets T,,, for each integer n > 1 define ¢,, : [0,1] — [1,1 4 27"]
by ¢n(s) =1+2"for 27" <s<1and ¢,(s) =1+sfor 0 <s<27" s0 ¢, is
Lipschitz with Lipschitz constant 1. Let (-,-) denote the inner product on ?(N),
and define ¢, ,,(x) and T}, by

Vin(2) = on(|(z,¢5)]) and Ty = {¢jn 1 j > 1}

The reader can verify that T,, C K (M, 1) for all n > 1 and, that, for a fixed n > 1,
and for 1 < j < k < oo,

[jn = Vrnll = sup{|jn(z) = Yrn(@)] - 2 € S1} = [Yjn(e;) — Yrnle;)] =277

Since (A", ,)(z) = ¢n(27"|(z, e;)|), the same argument shows that for a fixed
n>1andfor 1 <j <k < oo,

[A™ () = A" (i)l = [$5,n (27" €¢5) = rn(27"es)| = 27"
Using these equations, it is easy to verify that 3(7T),) = B(A™(T,)) =27".
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4. HAUSDORFF DIMENSION

Recall that a metric space (S, d) is called perfect if every point of S is a limit
point of S, i.e., for each s € S, there exists a sequence (s3), in S such that si # s
for all £ and s — s as k — oo.

Let (S1,d1) be a perfect metric space and (S3,ds) a metric space. A map 0 :
S1 — Sy is said to be an infinitesimal similitude at s € Sy if for any sequences
(sk)y and (1), in Sy with sp # ty for k£ > 1 and s, — s, tp — s, the limit

(41) NN

k—o0 d1(8k7tk) = (D@)(S)

exists and is independent of the particular sequences (si), and (t;),. We shall say
that @ is an infinitesimal similitude on S7 if # is an infinitesimal similitude at s for
all s € S7. Notice that the assumption that S; is perfect implies that for every
s € S1, there exist sequences (sy), and (tx), as above.

We list some basic properties of infinitesimal similitudes that we shall need.

Lemma 4.1. Let (S1,d1) be a perfect metric space and (S2,ds) a metric space. If
0 : S1 — Sy is an infinitesimal similitude, then s — (D0)(s) is continuous.

Proof. We argue by contradiction and assume that s — (D#)(s) is not continuous.
Then there exist € > 0 and s € S; and a sequence (sy), in S with di(sx,s) — 0 as
k — oo such that

[(DO)(s1) — (DO)(s)| > € > 0.
Since S is perfect and € is an infinitesimal similitude, for each k > 1, there exist
tr and wy in Sy with ¢ # wi, 0 < dq (s, tx) < %, 0 < dy(sg,wg) < % and
da(0(tr), 0 (wr))
dl (tk, wk)

Since s — s as k — 00, it follows that ¢, — s and wy, — s as k — oo as well. So,
by definition,

—(DO)(s)| < 2.

d2(9(tk>79<wk)) _
di (tk, wi)
So, for k large enough, [(D)(sx) — (DO)(s)| < £

£, a contradiction. Hence, s —
(DO)(s) is continuous. O

(DO)(s) as k — oc.

The following lemma states an analogue of the chain rule for infinitesimal simil-
itudes.

Lemma 4.2. Let (S;,d;), j = 1,2, be perfect metric spaces and let (Ss,d3) be a
metric space. Let 8 : S1 — Sy and i : Sy — S3 be given. If 6 is an infinitesimal
similitude at s € S1 and v is an infinitesimal similitude at 0(s) € So, then 1 o0 is
an infinitesimal similitude at s and

(4.2) (D(¢ 0 0)(s) = (D)(0(s))(DO)(s)-

Proof. Let (si), and (tx), be sequences in Sy with sg # ¢, k > 1, s, — s, tp — s
as k — oo. Then 0(s;) — 0(s), 0(tx) — 0(s) as k — oco. We consider two cases.
Case 1. Assume that (D0)(s) # 0. We claim that there exists a positive integer
ko with (s) # 0(ty) for all k > ko. If not, there exists a subsequence k; — oo
such that O(sy,) = 0(tx,) for i« > 1. Writing o; = s, and 7, = tj,, we have that
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% = 0, which contradicts

our assumption. It follows that, for k > kg, we can write

ds((0(sk)), P(O(tr))) _ ds(4(0(sk)), (8(tr))) d2(8(sk), 0(tk))

dy(sk,t) da(0(sk), 0(t)) di(sk,tr)

As k — oo, the limit of the right hand side exists and equals (D1)(8(s))(D)(s),
so the limit of the left hand side exists and equation (4.2) is satisfied.

Notice that if s and t; are sequences with sy — s, tx — s, s # ti for all k£ and
O(sk) # 0(ty) for all k > ko, then the argument above proves that

i 3@ (00sk)), ¥ (0(tr)))
im
k=00 di(skstr)
even if (D0)(s) = 0.
Case II. Assume that (D#)(s) = 0. Let s and t; be sequences in Sy with s, — s,

tr — s and sy, # ti for all k > 1. If there exists kg > 1 such that 0(sg) # 0(tx) for
all k£ > kg, the argument above shows that

IR ACCENRIGT))

k—oo dl(sk,tk)

0; — 8, 7, — 8, 0; Z7; and (DO)(s) = lim;

= (D)(0(s))(DO)(s),

= (D¥)(6(s))(DO)(s) = 0.

If there exists k1 such that 6(s,) = 6(tx) for all & > k1, we certainly have that
L d(0(s0). ¥(0(t)))
k—o00 dy (Sk,tk)

Thus we can assume that K7 := {k > 1:0(s) # 0(tx)} and Ky :={k > 1:0(sy) =
O(tr)} are infinite sets. However, our previous argument (Case I) shows that

d3(¥(0(sk)), ¥ (0(tr)))

k—oo,ke K1 dl(sk?tk)

=0.

= (D9)(6(s))(DO)(s) =0,

and it is clear that

b a@(0(50). ¥(0(1)

k—oo,ke Ko d1(8k7tk)

207

so we conclude that

o B8O (0(11)))

=0.
k—oo d1 (Sk,tk)

O

The following lemma gives a “mean value theorem” and will be crucial in the
proof of the main theorem.

Lemma 4.3. Suppose that (S1,d1) and (Sa,d2) are bounded, complete metric
spaces, that (S1,d1) is perfect and that 6 : S; — Sa is an infinitesimal simili-
tude. Also, assume that 0 is Lipschitz and that (D0)(s) > 0 for all s € S1. Let
K C 51 be a compact, nonempty set. Then for each p > 1, there exists an open
neighborhood U,, of K and a positive number € = €(p) such that for every s,t € U,
with 0 < dyi(s,t) < e(p),

i Do) (s) < LOCLIE)

< oD < u(DO)(s)
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Proof. For (s,t) € S1x S with s # ¢, define F(s,t) = %. If (s, 8) € S1x51,
define F(s,s) = (D0)(s). Because we assume that 6 is Lipschitz on S;, there is a
constant M with F(s,t) < M; for all (s,t) € S1 x 5.

We claim that F' is continuous on S; x Sy. It suffices to prove that if (sg,tx) —
(s,s), then F(sg,tx) — F(s,s) = (DO)(s). If s # ty for all k > ko, we know
that F'(sg,tr) — (D0)(s) by the definition of (D@)(s). If sx = ti for all k > kq,
F(sg,tr) = (D0)(sy) for k > k1, and Lemma 4.1 implies that (D0)(sg) — (D0)(s).
Thus we can assume that Jy := {k : s # ¢} and Jy := {k : s = t;} are infinite
sets. But in this case, the same reasoning implies that limy_ o ke, F (S, tx) =
(DO)(s) and limy— o0 ket, F(sk,tr) = (DO)(s), so limg oo F'(sk, tr) = (DO)(s).

Lemma 4.1 implies that s — (D0)(s) is continuous on Sy, and (s,t) — F(s,t) is
continuous on Sy x Sy. Thus, since (DO)(s) > 0, if we define G(s,t) by G(s,t) =
(1;(95),8), (s,t) — G(s,t) is continuous on S; x S; and G(s,s) = 1. Since K x K
is compact, G|k« k is uniformly continuous, so given p > 1, there exists e(u) > 0
with

pt < G(s,t) < p
for all (s,t) € K x K with dy(s,t) < e(u). We claim that there exists an open
neighborhood U, of K such that for all s,t € U, with di(s,t) < e(u), p~! <
G(s,t) < p. We argue by contradiction and suppose not. For m a positive integer,
let V,,, ={s €851 :di(s,K) < %} By assumption, there exist s,,,t,, € V,, with
d1(Smsytm) < €(p) and G(spm,tm) < p= or G(Spm, tm) > p. Because di(spm, K) — 0
and di (t,, K) — 0, we can, by taking a subsequence, assume that s,, — s € K and
tm — t € K and d;(s,t) < e(u). By continuity of G, we either have G(s,t) < p~1
or G(s,t) > p. However, because s,t € K and dq(s,t) < e(u), p=! < G(s,t) < i, a
contradiction. Thus an open set U, exists and, in fact, we can take U, = V,, for
some m > 1. O

Remark 4.4. For each € > 0, define u(e) > 1 to be the infimum of numbers p > 1

such that p=1(D)(s) < W < u(DO)(s) for s,t € K with 0 < dy(s,t) <e.
Lemma 4.3 implies that lim._,o4 p(€) = 1, and clearly p(e) is an increasing function

of € for € > 0.

Throughout the remainder of this section we shall make the following assump-
tion.

H4.1 Let V = {1,2,...,p} and S1,55,...,5, be bounded, complete, perfect
metric spaces. Let £ be a finite set, ' C V x £ and a : I' — V. For each
(4,e) € I, ey : Sj — Sagj,e) is a Lipschitz map with Lip(6(;.)) < ¢ < 1. Also,
I''={(,e)eTl:a(j,e)=i}#0forl1<i<pand E; ={ec€ E: (j,e) e} #10
for1 <j<np.

If H4.1 is satisfied then Theorem 2.3 implies that there exists a unique list of
nonempty compact sets C; C S;, 1 < j < p with

(4.3) C; = U 0(j.e)(C;) for1<i<p.
(4,e)€r;
We shall further assume the following.
H4.2 For each (j,e) € I', the map 0.y : S; — Sa(je), given in H4.1, is an
infinitesimal similitude and (D6; .))(s) > m > 0 for all s € S;.
Notice that since 6y .y is Lipschitz with Lip(6; .)) < ¢, if 0(; ) is an infinitesimal
similitude, we have (D0 .))(s) < c for all s € S;.
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Assume that H4.1 and H4.2 are satisfied. For o > 0, define

L, : H Cy(S;) — HCb(Sj)
j=1 j=1
by
(44)  (Lof)j(s) = D ((DOG.))(5)) fatie) 0o () for s € S;,1 < j <p.

e€E;

Recall that a map f : (S,d) — R is said to be Hélder continuous with Hélder
exponent A > 0 if there exists a constant C' € (0, 00) such that

If(s) — f(t)| < C(d(s,t))* for all s,t € S.

Let us assume the following.
H4.3 For each (j,e) € T, the map s — (D6, .))(s) is Holder continuous with
Holder exponent A > 0, where X is independent of (j,e) € T.

Lemma 4.5. If H4.1, H}.2 and H4.3 hold, and o > 0, then the map
s ((Dbje))(5))”
is in the cone K;(My, \) defined by eq. (3.2) for some My > 0 (depending on o).

Proof. Fix (j,e) € I'and 0 > 0. Let f(s) = (D0(;))(s). The hypotheses H4.1 and
H4.2 imply that 0 < m < f(s) < c¢. By H4.3

|£(s) — f(t)] < C(d;(s,t))> for all s,t € S;.

Let s,t € S;. By the mean value theorem, there exists £ between f(s) and f(t)
such that

In(f(s)) — In(f ()] = %ms) — )] < %C(djw))* <

So, f(s) < f(1) eXp(%C’(dj(s,t)))‘) which implies

C(d;(s,1)*

1
m

17 < S0 exp(Mo(d; (s, 1)) where My = 7

This completes the proof. ([

Now applying Theorem 3.6 to the linear map L, defined in (4.4), we get an
eigenvector u, € K \ {0} with Lyu, = r(Ls)u, and (L) > 0.

Lemma 4.6. The map o — r(L,) is continuous and strictly decreasing. Further-
more, there is a unique oo > 0 such that r(Ls,) = 1.

Proof. Let u, be the positive eigenvector of L, with eigenvalue r(L,). Let us write
bij.e)(t) = (DO e (t)) for (j,e) € I'. We know that 0 < m < b 0 (t) < c <1 for all
teS;. Let 0 <o <o'. Then

(b)) = (bjoey (£))7 7 (bse) ()7 < €7 7 (bse) (£))°
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Therefore, (bgje)(t))7 > u(b(j)e)(t))"/, where p = (%)"l*" > 1. It follows that for
all t € 5

(Lotio); (8) = D (b)) (o) ase) (0,60 (1))

ecE;

> 1Y (0Gey ()7 (o )age) (0,0 (1)

ecE;
= (Lgugr)j(t) = pr(Lor)(uor);(t),

s0 Louy > p 7(Lys)uyr, where the inequality has the natural coordinate-wise in-
terpretation. Iterating this inequality k times, we obtain

nguo’ > (ur(Lor)) kucr’

If e denotes the function identically equal to one in each component, we have
U < ||ug|le. Thus

Lyuer < Ly(lluorlle) < [luor || LG (e)-
Taking norms, we get
luo LG @) > 1LGuo || > (pr(Lar)*[luo |
So, |[LE|| > ||ILE(e)|| > (ur(Lo+))* from which it follows that
P(Lo) = Jim L5 > pur(Lo)

Since p > 1, we have proved that r(L,) > 7(Ls/).
Next we prove the continuity of o — r(L,). Let o > 0 be fixed. Given v < 1,
select 6 > 0 such that

V(bij.e) ()7 < (bijey (1) < v b0 ()7 for t € Sy, |0 — o'| < 6.

Then, using the argument as above, we have vr(Ly) < 7(Ly/) < v~1r(L,) whenever
|o — ¢’| < 4. Since v < 1 was arbitrary, this proves that o +— r(L,) is continuous.

Since ||L§|| > ||[L&e| > 1, we see that r(Lg) > 1. Also if || denotes the
cardinality of £, then from the definition of L, and using the fact DO, .(t) < c
for all t € S; and (j,e) € T, it is clear that | L] < [€]c” — 0 as ¢ — o0, s0
7(Ly) < ||Lo|| = 0 as 0 — oo. It follows by the continuity and strict monotonicity
of 0 — r(L,) that there exists a unique o9 > 0 such that r(Ls,) = 1. O

Definition 4.7. We define strong connectedness to be the property that for each
pair j and k in V there exists for some n > 1, (J, E) = [(j1,€e1)s-- -, (Jn, €n)] such
that (ji,e;) €T, for 1 <i < n, j1 =7, a(ji, ;) = jir1, 1 <i < nand a(jn,e,) = k.
Note that in this case we have a map 0(;g) = 0(;, ¢,) © - ©0(j, e,) Which maps S;
into Si. Note also (compare H4.1) that strong connectedness implies that I'; # 0
for1<i<pand E; #0 for 1 <j <p.

From now on we shall always assume strong connectedness.
H4.4 The property of strong connectedness is satisfied.

Lemma 4.8. Assume that the hypotheses H4.1, H4.2, H}.3 and H4.J are satisfied
and let u, € K\ {0} be an eigenvector of L, with eigenvalue r(Ly). Then each
component (ug)j is a strictly positive function on S; for 1 < j < p. Furthermore,
there are constants | and L with 0 < < L < 0o such that for every j, 1 < j<p

(4.5) I < (us);(t) <L forallteS;
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Proof. Suppose for some j, 1 < j < p, (us); equals zero at some point in .S;. Then,
since (uq); € K;(M,A), it follows, as shown in Remark 3.1, that (u,); is identically
equal to zero on S;. Fix a k, 1 < k < p. By strong connectedness, there exist n > 1
and (J', E') = [(J1,€1)s- - (Jn,€n)] € I_’§.") with j; = j, and a(jn,e,) = k. Since
Louy = r(Ly)ug, it follows that Llu, = (r(Ly))"us. So, using the formula for L7
given by lemma 3.4 with A replaced by L., we get

(T(La))n(ua)j(s): Z b(J,E)(S)(ua)a(j,,“e")(Q(J,E)(S))v

()
(J,B)eT

where b ) (s) = ((D;,))(s))7. The left hand side in the above equation is zero
because (uq);(s) = 0. Thus, since each term in the sum in the right hand is
nonnegative, it follows that each term equals zero. In particular, (uq), (0.5 £)(s)) =
0 since b, g)(s) is strictly positive by H4.2. This implies (u, ), is identically equal
to zero on Sy. Since this is true for any k, 1 < k < p, we arrive at a contradiction
that u, is identically zero. Thus (us); is a strictly positive function on S; for
1<j<p.

Since each S; is bounded, there is a D < oo such that diam(S;) < D for 1 <
J < p. Then, since (uy); € K;(M,}), it follows that

0 < (uo),(s) < (us),;(t) exp(MD?) for all s,t € S;.
From this it is easy to see that there are constants 0 < [ < L < oo such that
1< (uo);(t) <L forallteS;,1<j<p.
(Il

Let C; € Sj, 1 < j < p be the invariant list of nonempty compact sets such that
Ci = U 0(j,e)(Cy) for 1 <i < p.
(]}6)61“7;

Our goal is to determine the Hausdorff dimension of the sets C;.
Let us recall the definition of Hausdorff measure and Hausdorff dimension. Sup-
pose (X, d) is a metric space and A C X. We define, for ¢ > 0 and o > 0,

HZ(A) = inf {i(diam(Ak))“ A C D A, diam(Ag) < e} .
k=1 k=1

It follows that HZ is an outer measure. For a given o > 0, the function e — H7(A)
is decreasing and we define
H(A) = lim HZ(A) =sup HI(A).
e—0+ >0

It follows that H? is a Borel measure and is called Hausdorff o-dimensional measure.
It is not hard to prove that there is a unique number oy > 0 such that H?(A) =
oo for 0 < o < o9 and H?(A) = 0for 0 > 0g. The number oy is called the
Hausdorff dimension of A. We refer the reader to [5] and [11] for the basic properties
of Hausdorff measure.

First we shall prove that Hausdorff dimension of C; is independent of ¢, 1 < i < p,
under the assumption of strong connectedness.
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Lemma 4.9. Assume that the hypotheses Hj.1, H4.2, H}.3 and Hj.J are satisfied
and let C; C S;,1 < j < p be the unique invariant list of compact, nonempty sets
such that

Ci= |J 0y.e(Cy) for1<i<p.
(4,e)er;

Then dim(C};), the Hausdorff dimension of Cj, is independent of j for 1 < j < p.

Proof. First we claim that dim(6; .)(C;)) = dim(C}) for any (j,e) € I'. Since 0; )
is a Lipschitz map with Lipschitz constant ¢, H7(0(; ) (C})) < c"H(C}) for any
o > 0. This implies dim(f;¢)(C;)) < dim(C;). To prove the other inequality,
we first claim that there exist mo > 0 and § > 0 such that d(0;)(s),0(;.) (1)) >
mod(s,t) for all s,t € C; with d(s,t) < 6. We abuse notation here by letting
d denote d; and dy(j.). We argue by contradiction. If the claim is false, then
for each positive integer k there exist s, ¢, € C; with 0 < d(sg,tr) < k=1 and
d(0j,e)(sk),0(j,e) (tr)) < k™ d(sp, tx). Since C; is compact, by taking a subsequence
we can assume that s; — s and t; — s. But this implies that D6(;.)(s) = 0, which
contradicts H4.2. Thus mo > 0 and § > 0 exist, and since C; is compact, we
can write C; = UY_,C;;, where diam(Cj;) < § and p < oo. It follows easily from
the definition of Hausdorff dimension that there exists [ such that the Hausdorff
dimension of C}; equals the Hausdorff dimension of C;. Also, by our construction,
0(j.e)lc;,., is one-to-one and (6;.)|c,,)”" is Lipschitz. This implies that

dlm(CJ) = dim(ijl) S dim(ﬁ(jye) (Cj’l)) S dim(G(j7e)(C’j)),

and we have shown that dim(C}) = dim(6;,.)(C})).

Now, since H(j@)((]j) C Ca(j’e), dim(Ca(j,e)) > dim(H(j,e)(Cj)) = dim(Cj) for all
(j,e) eT. Let 1 < j <pand 1<k < p. By strong connectedness, there exists
[(41se1), .-+ (Jn,en)] such that j1 = 7, a(ji, ;) = jit1, 1 <i < nand a(jn,en) = k.
So,

dim(Cy) = dim(Cu(j, o)) > dim(C;,) > dim(Cj, ) > -+ > dim(C;,) = dim(C;).

(Jnsen -1

Since j and k were arbitrary, it follows that dim(C;) = dim(C%) for all 1 < j, k <
p. [l

We introduce a ‘weighted’” Hausdorff measure using the strictly positive eigen-
vector u, of L, with eigenvalue r(L,). Let 1 < j < p. Define for A; C S; and
€ >0,

HI(A;) = inf{Z(ug)j(fjk)(diam(/ljk))a Ay c | A,
(4.6) k=1 k=1

fjk € Ajk,diam(Ajk) < 6}.
From Lemma 4.8, we know that there exist constants 0 < [ < L < oo such that

for1 <j<pl< (ug)j(t) < L for all t € §;. This implies that, for A; C 5},
HT(A;) and HZ (A;) are equivalent

(4.7) IHZ(A;) < H (A7) < LHI(A;))
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Theorem 4.10. Assume that the hypotheses Hj.1, H4.2, H/.8 and H/.4 are sat-
isfied and let C; C S5, 1 < j < p be the unique invariant list of compact, nonempty
sets such that
U 0(j,e)(Cj) for 1 <i < p.
(d:e)el
If dim(C;) denotes the Hausdorff dimension of (C;) and oo denotes the unique
nonnegative real number such that r(Ly,) = 1, then dim(C;) < og for 1 <i <p.

Proof. Fix € > 0. Take § > 0 and ¢ > 0. We can choose a covering {A,;}72, of C;
and points ;i € Aji such that diam(A;;) < € and

(4.8) > (ug) (&) (diam(Ajx))” < HZ(Cy) + 6.
k=1
Since C; = U 0(j,e)(C;), we have that {0 ) (Ajx) : 1 <k < oo,(j,e) € Ty} is

(j,e)€F1
a covering of C; with

diam(0(;,e)(Ajr)) < ¢ diam(Aj) < ce.

Furthermore, using Lemma 4.3 and Remark 4.4, it is easy to see that there exists
ey (€) > 1 with u(j )(€) — 1 as € — 0+ such that

(4.9) diam(6;.) (Ajx)) < 115.e)(€)(DO0)) (1) diam (A ).
Let p(e) = max; eyer H(j, e)(é)-

Z Y (We)ilO,e) (&) (diam (B o) (A1)

k=1 (j,e)el;
Z Z uo z Je gjk))((De(j,e))(gjk))g(diam(Ajk))U'
k=1 (j.e)er;

Summing over i, 1 < i < p, we have

Zﬂ& <)Y D D (ue)il0Ge) (Er)) (D)) (€5x)7 (diam(A;y))7

i=1 k=1 (je)el

Rearranging the sum, we get

Zﬁg < (€))7 D> (diam(A))7 D (ue)i(O.e)(&r) (DO .e)) (Ek))°

J=1k=1 i:(j,e)€l;
= ()7 Y > (Lotie) (&) (diam(Aj )
j=1k=1
= (()71(Lo) Y Y (ue) (&) (diam(A;)) .
j=1k=1

Thus, using (4.8), we get

> RLC) < (@) r(La) Y (R () +9).
i=1

Jj=1
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Since ¢ < 1, H7(C;) <

HY
(4.10) Zﬂg 1) < e))“r(LU)Z’I:(Z(C

Using Lemma 4.6, (L, ) < 1 for all 0 > 0¢. Since p(e) — 1 as € — 0, given o > oy,
we can choose € > 0 small so that (u(€))?r(Ly) < 1. By the definition, H?(C;) < oo
because we can take a finite e-cover of the compact set C;. Thus, if o > ¢, (4.10)
can hold only if

o.(C;). Also 6 > 0 was arbitrary. Therefore,

ELI%LZH” -

This implies for each i, 1 < i < p and ¢ > 09, lime_ o4 7'2?(01) = 0, and hence
using (4.7), lime_o+ HZ(C;) = 0, i.e., H?(C;) = 0 for all ¢ > og. Thus, by the
definition of Hausdorff dimension, dim(C;) < oy. O

We define for 0 <n <€, and 4; C S;

HE (A;) = inf{Z(ug)j(fjk)(diam(z‘ljk))o A; | A,
k=1 k=1

(4.11)
gjk € Ajkvn < diam(Ajk) < 6}.

The quantity 7:(2’,7 (A;) will be technically useful later, primarily because it is
strictly positive whenever it is defined. However, caution is necessary in using this
tool. Tt is easy to see that H7(A;) and HZ(A;) depend only on the metric space
(Aj,d;). In contrast, ﬂgn(Aj) depends also on §;. If A; C T; C S; one could give
an analogous definition in which one only allows sets A, C T} :

HE (A Tj) = inf{Z(uU)j(§jk)(diam(Ajk))a A;c AT
k=1 k=1

(4.12)
gjk S Ajk,n < dlam(Ajk) < E}.

In this cumbersome notation, H? (A;) = H" 2(4;43S;) for A; C S;. If Aj is compact
and A; C T; C S;, it may happen that He,n(Aj;Tj) and ﬂgn(Aj;Sj) are both
defined but are unequal. For the unique list of nonempty compact sets C; C S;,
1 < j < p, ensured by Theorem 2.3 and for A; C Cj;, we shall, in our later work,
sometimes consider ﬂg,n(Aj; C;) rather than 7:{‘;77(14]»; S;).

In general, if A; C T; C S; and A; is compact and 0 < n < ¢, in order that
ﬂgn(Aj;Tj) be defined and finite, it is necessary and sufficient that there exist
sets Ajp, C Tj, 1 <k <m < oo, with n < diam(4;,) < e for 1 < k < m and
A; C Ui, Aji. The existence or non-existence of such sets may be a delicate
question. If A; contains an isolated point of T}, such sets Aj; do not exist for
all small € and all n with 0 < n < e. If T; is a complete perfect metric space,
A; C T} is compact and € > 0, 7:(2’,7 (A;; T;) will be defined for all sufficiently small
1 > 0. To see this, use compactness of A; to find finitely many open balls By, C T},
1 <k <n, with radius r < ¢/2 and centers in A;, such that A; C UZ=1 Bjy,. Since
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T; is perfect, each By contains an accumulation point, so diam(Bj) > n, > 0 and
diam(By) > n:=min{n; : 1 <k <n} and diam(By) < 2r < e.

Lemma 4.11. Assume that H4.1, H}.2, H4.3 and H4.4 are satisfied. Let 1 < j <p
and let A; be a compact subset of S;. If o > 0 and € > 0, then

Jim HE, (A7) = HI(4)).

Proof. For 0 < n < €, we have 7:(‘67,7 (Aj) > HZ(A;) because the infimum is taken
over a smaller set. So,

S HE,(A;) 2 HE(Aj).

To prove the reverse inequality, take § > 0 and choose a covering {4, : 1 < k < oo}
of A; by sets Aj, with diam(A4;;) < e, 1 <k < oo such that

inf {Z(u(,)j(gjk)(diam(Ajk))" &Gk € Ajk} < HI(A) +6.
k=1
Without loss of generality, we can assume that the sets A;i,k > 1 are open. Since

Aj is compact, there exists a finite open subcover of A;, so there exists an integer
| < oo such that

l
Aj - U Ajk.
k=1

Let 0 < 19 < € be such that 7y < minj<g<;diam(A;x). Then, for 0 < n < ny, we
have

l

HZW(Aj) < inf {Z(ug)j(fjk)(diam(fljk))a : gjk: € Ajk} .
k=1

So, for every § > 0, there exists 1y, 0 < 19 < €, such that

HZ,(Aj) S HI(Aj)+6  for 0 <n <.

This shows
i 7, (A7) < He(4))
and completes the proof of the lemma. [

Lemma 4.12. Assume that H4.1, H}.2, H4.3 and H4.4 are satisfied. Let 1 < j <p
and let A; be a compact subset of S;. Let ¢ > 0 be such that H? (A;) = 0. Then for
every €1 and ez with 0 < €1 < eg, there exists an ng > 0 such that for any B; C A;

ﬂglin(Bj) = 7:[(672,77

Proof. Since H?(A;) = 0, it follows that H7(A;) = 0 for every ¢ > 0. By using
(4.7), it also follows that HZ(A;) = 0 for every € > 0. So, by Lemma 4.11,

nli%leH (Aj) =0.

(Bj) for 0 <n<no.

€2,7
This implies that there exists 79 > 0 such that for 0 < n < g
H, . (4) < le”,

where, as before, [ > 0 is such that (us);(t) > [ for all t € S;.
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If B; C Aj, then 7:{?2777(334) < 7:{;'2777(Aj) < le1?. Therefore, given § > 0, there
exists a covering {Bjj : k > 1} of B; such that n < diam(Bj) < € for k > 1 and

inf {Z(ua)j(fjk)(diam(Bjk))” ik € Bjk} < HZ, ,(Bj) +6 <ler”.
k=1

Next we claim that actually diam(B;;) < € for all ¥ > 1. Suppose not, then

there exists an index ki such that diam(Bjg,) > €1. By considering the term

corresponding to index k7 in the sum and using (ug)j (&x) > 1, we get

oo

inf {Z(uo)j(ﬁjk)(diam(Bjk))a &Gk € Bjk} > ley?
k=1

which gives a contradiction. Thus diam(B;) < €; for all £ > 1 and we conclude

that ~ ~
Hg‘w(Bj) < HgQ’n(Bj) +4§ for 0 <n <.

Since § > 0 was arbitrary, we conclude

HC (B;) <H, ,(B;) for 0.<n <.

Since ﬂgn(Bj) is a decreasing function of €, the reverse inequality is obvious. Thus,
we obtain R R
Hglﬂ](Bj) = ng,n(Bj) for 0 < n <no.

O

If C; € §5,1 < j <p,is the unique invariant list guaranteed by Theorem 2.3, it
is convenient in the arguments below to work in the compact sets C; rather than
S;. For this to be permissible, we must first show that each set C; is a perfect
metric space. Our first lemma in this direction has essentially been established in
the proof of Lemma 4.9 and is left to the reader.

Lemma 4.13. Assume hypotheses Hj.1, H{.2, H{.3 and Hj.4 and let C; C Sj,
1 <5 < p, be the invariant sets guaranteed by Theorem 2.3. Then there exist
mo > 0 and 69 > 0 such that for all (j,e) € ' and for all s,t € S; with s € C;j and
dj (S,t) < 50,

da(j,e) (9(j76)(8),9(j76)(t)) Z modj(s,t).

Lemma 4.14. Assume hypotheses Hj.1, H{.2, H4.3 and Hj.4 and let C; C Sj,
1 < j < p, be the invariant sets guaranteed by Theorem 2.3. Then either (a) each
C;, 1 < j <p, is a perfect metric space or (b) each Cj, 1 < j < p, is a finite set.
If 0(;.)|C; is one-to-one for all (j,e) € T' and each C; is a finite set, then each C;
contains exactly one element for 1 < j < p.

Proof. Assume that C; is not a finite set for some i, 1 < i < p. It follows that
there exists 7; € C; such that 7; is an accumulation point of C;. If 1 < k < p,
H4.4 implies that there exist (j;,e;) € I', 1 <1 < n, with a(j,e;) = ji41 for
1<l<n,j =iand a(jn,e,) = k. Writing (J, E) = [(j1,e1), (J2,€2)s - - -, (Jn, €n)],
0(1,£)(:) € Ck. Also, because each ;) is a contraction, Lemma 4.13 implies that
0(J,) is one-to-one on By (7;) := {t € C; : di(t, 7;) < ro}, where rq = do/2 and Jy is
as in Lemma 4.13. Using this fact, we see that 0(,],}3)(7@) := T} is an accumulation
point of Cj.

IfV ={1,2,...,p}, © is as in the proof of Theorem 2.3 and A; is any closed,
bounded, nonempty subset of S; for 1 < j < p, then, because © is a contraction map
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in the Hausdorff metric, ©"((A1, Az, ..., Ap)) converges in the Hausdorft metric to
(C1,C4,...,Cp) as n — oo. We apply this result to A; = {7;}, where 7; is an
accumulation point of C; for 1 < j <p. If k, 1 <k < p, and o € C}, are fixed, it
follows that for each n > 1, there exists (J™, E™) = [(j7,e7), (45, €5) ..., (47, e)]
with (ji,ef') € T for 1 <i <n, a(ji',ef) = (i1, efy) for 1 <i <o, Oé(jn, er)y=k
and 0(jn gny(7jn) — 0 as n — oo. For notational convenience, write i,, := ji'. If rg
and dy are as above and V,, = {t € Cy, : d(t,7;,) < 0}, O(yn gn)|Va is one-to-one
and diam (0 j» gn)(Vy)) < doc”, where Lip(f(;.)) < ¢ < 1 for all (j,e) € I'. Because
we also know that 7;, is an accumulation point of C; , it follows that there exist
points s,,,t, € O(n gn)(Va), 8n # tn and necessarily lim, oo 8, = limy, o0ty = 0.
This, in turn, implies that ¢ is an accumulation point of Cj, and that Cj, is a perfect
metric space for 1 < k < p.

If 0(;,¢)|C; is one-to-one for each (j,e) € I' and if each C; is a finite set, we
claim that each C; is a one point set. If not, there exists j, 1 < j < p, such
that C; contains at least two points. Using H4.4 and the fact that each 0; .y|C; is
one-to-one, it follows that C) contains at least two points for 1 < k < p. Define
p = inf{d;(s,t) : s,t € Cj,s #t,1 < j < p}, so p > 0, and select j and s,t € C}
with dj;(s,t) = p. Because 6, ) is a contraction and is one-to-one on Cj, 0(; () (s) #
Oj,e)(t) and dyj.e)(0(5,e)(5), 0(5,e)(t)) < p, a contradiction.

Assume H4.1, H42, H43 and HAd. If f = (fi.fo,.... f,) € [}, C(C)),
where (Cq,Cy,...,Cp) is as in Theorem 2.3, we can define A, ?:1 c(Cj) —

?:1 C(Cj) by eq. (4.4). Furthermore, if each C; is a perfect metric space (com-
pare Lemma 4.14) and ¢ ) : C; — Cyje) is defined by 9 ¢)(s) = 0. (s) for
s € Oy, then D .)(s) is defined for all s € C; and Doy (s) = DO(j¢)(s) for
s € (. In any event, by using Lemma 4.8, it follows easily that the spectral radius
of L, equals the spectral radius of A, and is the eigenvalue of the strictly positive
eigenvector u, of Lemma 4.8. The corresponding positive eigenvector v, for A, is
given by (v5);(s) = (uy);(s) for s € Cj. If each Cj is a finite set, [[f_, C(Cj) is
finite dimensional and determining r(A,) = r(L,) is a finite dimensional problem.

Lemma 4.15. Assume that hypotheses H 5.1, H 5.2, H 5.8 and H 5.4 are satisfied
and let C; C S;, 1 < j < p be the unique invariant list such that

C; = U 0(j,e)(Cj) for 1 <i < p.
(d:e)el

Also assume that the map 0; .)|C; is one-to-one for all (j,e) € T' and that, for some
J, Cj has more than one element. Suppose that for all (j,e) € T and (j',€') € T such
that (j,e) # (j',€') and a(j,e) = a(j’, e) we have that 0(; y(C;) N O oy (Cyr) = 0.

Finally, suppose, for v > 0, that {A’ﬂ : B € A;i(v)} is a partition of C; conszstmg of
compact subsets Ag of C; with diam(A},) < v. Then there exist eg > 0 and vy > 0
such that for 0 < e <€y, 0 <v <vy, 0<n<meandl <i<p,

pn1(v)em Aﬁ’ Z Hme n\Y(i,e) A,B) Oa(i,e))a
eck;

(4.13) w()r(Ley )7:[

where p(v) — 1 and py(v) — 1 as v — 0+ and (DO o)) (t) > m for all t € C; and
all (i,e) € T.
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Remark. For compact sets B C C}, we shall always use Hel m (B; Cy) in the
following proof, so for notational simplicity we shall write 7—{61 .y, (B) instead of
H‘E’l (B3 C).

- We interpret eq. (4.13) as meaning that n with 0 < 1 < me is such that
ane’n(G(i,e)(A%)) is defined and finite for all e € F; and that this implies that for

e = p1(v)e, Hgn(Ag) is defined and finite and eq. (4.13) is satisfied.

Proof. Lemma 4.14 implies that each C, 1 < j < p, is a compact, perfect metric
space. Since we assume that 6;.)(C;) N0 ) (Cjr) = O whenever (j,e) # (j',¢’)
and «a(j,e) = a(j’,e’), we can select €y so that di(s,t) > €y whenever (j,e) #
(j',¢') € T, a(j,e) = a(j’,e') =k, s € 0(;,)(C)) and t € 0(js .)(Cj). Since, for
1<k<p Cy= U(j,e)erk 0(5,e)(Cj), it follows that, as a subset of the metric space
(Ck,dg), 0(j,)(C;) is both compact and open for all (j,e) € I' with a(j,e) = k.
Furthermore, denoting by Ns(B) the closed § neighborhood in Cj, of a compact set
B C Cg, N5(0(;,e)(Cj)) = 0(5,¢)(Cj) for all (j,e) € I' with a(j,e) = k and all 6 with
0< (S S €0.

Fix v > 0,1 < i < p, Af} with § € A;(v). Suppose that ¢y is as above. By
decreasing € further we can also assume that ¢y < (1 — ¢)v/2m. Suppose that
0 <e< e, 0<n < meand that Hmén(H(i’e)(Az,)) is defined and finite for all
e € E;. For any 0 > 0, there exists an open (in the relative topology of Cys.e)),
necessarily finite covering of 0(; . (A%), {A4; 1 < j <k}, in Cype), such that
n < diam(A;) < me for 1 < j < k and

k
(414) i { S (U)o () (diam(47))7 & € Ay ¢ < Fo (Bsr (M) + 6.

j=1
We denote by Noe(6(i,e)(Aj)) the closed me neighborhood of 6(; ¢)(Af) in Cose);
and because me < €y, we observe that Np,(0;, )(Aﬁ)) C O(i,e)(Ci). We have that
diam(A;) < me, and we can assume that A; intersects 0;, e)(A ) for 1 <j <k, so

(415) 0(1 e) A@ j C Nine 0(1 e) (Aﬁ)) - e(i,e) (Ot)

I\C?r

Since diam(f; ) (Af)) < ¢ diam(Aj) < cv,
(4.16) diam(Nme(O(i’e)(A%))) <cv+2me<v

since we assume that € < ¢g < (1 —c)v/2m. Since 0(; »)|C; is one-to-one, we derive
from eq. (4.15) that we have 0(1_6) 0(i,e)(Ci) — C; and

(4.17) Ajy C U 9@ (A

Using Lemma 4.3 and Remark 4.4, there exists u1(v) with py(v) — 1+ as v — 0+
and

d(o(_i,le) (), '9(_1 e)( y))
d(z,y)

(418) )DL < < m@)(DL)(w)
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for all z,y € 03¢ (C;) with 0 < d(z,y) < v and, in particular, for all z,y €
None(B(i,e)(Af)). Note that i (v) can be chosen independent of (i,e) € T'. We write
d instead of d; or d; ¢) here and below. In particular, for any z,y € A;, 1 < j <k,

1
(DOi.e)) (0 2yy)

Using the compactness of 9(_i,1e)(NMG(0(i,e)(AIi5*))), we see that there exists
e 9(1 e)( (a(i,e) (Alg))) with

A0 (@), 05% () < i () (DL W), y) < i (v)( )diam(4,).

1

(4.19) diam(0;%(4;)) < ’“MW

diam(A4;).
Since diam(A;) < me, eq. (4.19) implies

1
iam (01 (A))) < (V) (- )me = (v
By choosing xo, 50 € Nime(0i,e) (Azﬁ)) with d(xg,y0) = diam(A4;), we also obtain
1

(D00 (O (40))
Since diam(A;) > nand (D0 ¢ )(9(1 ¢)(®0)) < ¢ <1, we find that diam(6; 1)( 5)) =
p1(v)~temin. Tt follows that, assuming we originally chose v such that ,ul( Je< 1
for 0 < v < vy, we have dlam(t?(Z E)(A-)) > 7. Since Ajy C UJ 1 (le (4;), we

conclude that

diam(6

iy (A7) = d(0 (20), 651 (30)) = 4 (v) ™ )diam(A;)

k
ﬁ,‘ilwm(%)ﬁnf{Z( o)i(G)(diam (0, (4;)))7 : G € O, (A )}-

Using eq. (4.19) and writing €* = uq (v)e,

k
ua « ze) i,e)(Cj))(dlam(A )) ( ) (CJ)
2 (o )a(ie) Oie) (G)

HJ ( )<((D0(ze) () 1nf{

Jj=1
R (Aj)}.
Choose 75 € 0; 6)( None(B(i,e)(A%))) such that

(ug)i(T2) (ug)i(C5)
(Uo)aie)(Oae)(12)) ~ (Uo)atie)(Oie)(Cs))

for all ¢; € 0(;16)(14]-), 1 < j < k. Using this together with eq. (4.14), we get

Y

i (V) (ug)i(T2) o Al
(A ) ((DH(Z 0 )( ))a (ua)a(i,e) (9(1‘,6) (7_2)) (Hme,n(a(z,e)(/\g)) + 5)

Since § > 0 was arbitrary,

p(v)° (uo)i(72)
((DOi,e))(11))7 (o) a(ie) (B(ie) (T2))

(420) 7:[0 ( A} ) H'rane 7](9 (i e)( 7[43))
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The final step consists of replacing 71,72 by a £ € A,iB' From eq. (4.18), it follows
that

o . 1
dlam(e(i}e)(Nme(Q(i’e) (A3)))) < ul(v)ay < kv,

where « is independent of v. In particular, we have that d(71,72) < kv, so by
continuity, there exists a function ps(v) such that us(v) — 1 as v — 0 and

(uo)a(i,e) (G(i,e) (5))
(1) (€)
¢ € A!,. Using this, eq. (4.20) implies
(ua)a(i,e)(e(i,e) (5))
(u0)i(€)
where pu(v) = p2(v)(p1(v))~7. Now, we sum over e € E;, and use the fact that
3 (DB () (a0 ) = (Lt )i(6) = (L) )i(6)
eckE;

to obtain (4.13). 0

(to)ai,e) (O(i,e) (T2))
(ug)i(T2)

p2(V) (D)) (€))7 < (D)) (11))7

ﬂ;e,n(e(i,e) (Azﬂ)) > M(V) ((De(i,e))(f))aﬂg*,n(A%)7

Now we are ready to prove the remaining inequality.

Theorem 4.16. Assume that the hypotheses Hj.1, Hj}.2, H}.3 and H/.4 are sat-
isfied and let C; C S;, 1 < j < p be the unique invariant list such that

Ci= |J 040(C) for1<i<p.

(4,e)€T;

Also assume that 0; )|C; is one-to-one for all (j,e) € T' and that 6(;.)(C;) N
01y (Cjr) = O whenever a(j,e) = a(j',e’) and (j,e) # (j',€’). Let og be the
unique nonnegative real number such that r(L,,) = 1 and By denote the common
Hausdorff dimension of C; for 1 <i <p. Then By > oy.

Proof. We make the same notational conventions as in Lemma 4.15. If B is any
compact subset of C;, 1 < j < p, and € > 0, it is convenient to note that there is a
positive, decreasing function ¢(¢), independent of j and B, such that ﬂzn(B; C;) =
HQW(B) is defined whenever 0 < 1 < ¢(¢€). The proof is left to the reader.

By Lemma 4.14 either (a) each C; is a compact, perfect metric space or (b) each
Cj; is a single point. In case (b), our assumptions imply that for each ¢, 1 < i <p,
there is a unique (j,e) € I" with «(j,e) = i. The linear map L, then takes a simple
form and the reader can verify that oy = fp = 0 in case (b). Thus we shall assume
that we are in case (a).

Suppose By < 0g. Then there exists a 0 < o¢ such that H7(C;) =0for 1 < i < p.
This implies for every € > 0, HZ(C;) = 0 and using (4.7), we have

(4.21) HI(C;) =0 fore>0.

Let (J,E) = [(j1, 1), (jn,en)] €T and 0y ) = 0(j,e0) 0+ 0 05 en)-
Then diam(6 s, (Cj,)) < c"diam(C}, ). So, given v > 0, we can choose n = n(v)
large enough such that

diam(0s,g)(Cy,)) < v for all (J,E) € ™,
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For 1 <i < p, we have
(4.22) = | 0ump)
(J,B)er™

with the union being pairwise disjoint because of the disjointness assumption and
the assumption that 6; .)|C; is one-to-one for (j,e) € I'. By Lemma 4.15, writing

e = (v)e,
p()r(LoYHE (001,5)(Ci,) < Y Hone n(0i.e) (005 (C5))
eckE;

where p(v) — 1 as v — 0. Since H?(C;) =0 for 1 < j < p, using Lemma 4.12, we
get 179 > 0 such that for 0 < n < ng

HGenOi,0) (001, (C5.))) = HZ (00i.e) (0(,5)(C5,)))

and

H. (000,12 (C.) = HE (00,5 (Cj,))
Therefore, the previous inequality becomes
(4.23) pW)r(Le)YHE ) (00,8)(Cj)) < D HE W (000.0) (001, (C5,)))
eckE;

Now from eq. (4.22), since the union is disjoint, we can choose € > 0 so small that
Ne(0(.2)(Cj,)) N N0 2y (Cy,)) =0
for all (J, E), (J',E") € T\, (J,E) # (J', E'). This implies that
HI,(C) = Y H,(0um(Ch)
(J,E)er{™

Therefore, we can sum eq. (4.23) over all (J, E) € an) to obtain

p(v)r(Lo)YHZ ,(Ci) < Z Z7'1?,7,(9(1',5)(9(J,E)(C'jn)))-

(J,E)EF(.n) eckE;

Now we sum over ¢ = 1,2,...,p to get

p(v)r(Lq) Zﬂzn(ci) <N D AL (06 (0,5 (Ci,)))-

i=1 (7, g)er(™ €

Note that 0¢; ¢)(0(,£)(Cj,)) C Caie), so collecting the terms with a(i,e) = j,
1 <5 <p, we get

pr(Le) > HI(CH<DI T > Y H (060 (01,)(Cj,)))-
i=1 j=1

(i,e)€L; (J,E)er(™

Since Cj = U ¢)er, U(JE)GF(.") O(i,e)(0(s,2)(Cy,)) with disjoint union, we get

(424 pIN(Le) Y HEL(C) < 3L (C))

i=1 j=1
Since o < 0¢, Lemma 4.6 implies r(L,) > 1, so we can choose v > 0 small enough
so that p(v)r(Ls) > 1. But, for 1 <4 < p, we have HZ,(C;) > 0 by the definition
of ﬁgn Also, we know that 'Hé’n(Cl) is defined and finite for n small enough. So,
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(4.24) cannot be true. Therefore, our initial assumption must be wrong. Thus,
Bo = oo. O

Combining Theorem 4.10 and Theorem 4.16, we have proved the following the-
orem.

Theorem 4.17. Assume that the hypotheses Hj.1, H4.2, H/.3 and H/.4 are sat-
isfied and let C; C S;, 1 < j < p be the unique invariant list such that

Ci= |J 0y.e(Cy) for1<i<p.
(4,e)€T
Also assume that 0; )|C; is one-to-one for all (j,e) € T' and that 6(;.)(C;) N
01y (Cyr) = O whenever afj,e) = a(j',e’) and (j,e) # (j'.¢’). Let og be the
unique nonnegative real number such that r(L,,) = 1. Then the Hausdorff dimen-
sion of each C; for 1 < i < p is the same, and if By denotes the common Hausdorff
dimension of C;, then By = 0g.

Remark 4.18. With the aid of Theorem 4.17 and elementary facts about positive
linear operators, it is straightforward to prove that the Hausdorff dimension varies
continuously with the functions 0(; ., (j,e) € I', in Theorem 4.17. Details will
be given elsewhere, but we sketch the basic idea here. For each integer m > 1
and (j,e) € I' suppose that 0 c)m : S; — Saje). Assume that, for m > 1,
{0¢j,e),m : (J, €) € I'} satisfies the assumptions of Theorem 4.17 and let 0¢,, denote
the corresponding Hausdorff dimension. For (j,e) € I' and « € S; assume that
im0 0(j,e),m (%) = 0(j,e)(x) and lim,, o0 DO o) m(x) = DO oy (x), where these
limits define 6(; .)(z) and we assume the limits are uniform in x € S;. Assume the
0j,¢) satisfies H4.1-H4.4 and that 0, .)|c, is one-to-one, where {C; : 1 < j < p}isas
in Theorem 2.3. For o > 0, we have, in the obvious notation, linear operators L. p,
corresponding to {6 ¢).m : (j,e) € I'} and L, corresponding to {0(;.) : (j,e) € I'}.
If 0y denotes the unique value of o for which r(L,) = 1, then lim,,_,oc 00.m = 00.
If we assume, in addition, that 0; .y (C;) N0 ) (Cjr) = O whenever (j,¢e) # (j',¢')
and a(j,e) = a(j’,e’), Theorem 4.17 implies that o¢ is the Hausdorff dimension of
Cjfor1<j5<p.

5. INFINITE ITERATED FUNCTION SYSTEMS

Let (S,d) be a compact metric space and let I be a countable set. For i € I,
let §; : S — S be a Lipschitz map with Lip(6;) < ¢ < 1. Let I* be the collection
of all infinite sequences w = (i1,42,...,4n,...) such that 4, € I for each n € N.
Fix w € I*®*. For x € S and n € N define z,(w) = 0;, 00;, 0o---086; (x). Since
Lip(6;) < c for each i € I, if m > n we have

d(xp (W), Tm(w)) < *diam(S).

It follows that {x,(w) : » > 1} is a Cauchy sequence. Since (5,d) is a complete
metric space, x,(w) must converge to a point £(z,w) in S. If x and y are any two
points in S, then we have

d(@n(w), yn(w)) = d(0;,00;,0- - -00;, (x), 03, 00,0 - -0b;, (y) < "d(x,y) < c"diam(5),
which goes to zero as n approaches co. This implies that &(z,w) = £(y,w). Thus
given w € I, we can define 7(w) = lim;, o 03, 060, 0 -+ 00; (x), where z is any
point in S. Let us consider the set J := {7(w) : w € I*°}, which will be called the
limit set associated to the system {6, : i € I}.
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Lemma 5.1. Let J be the limit set defined above. Then

(5.1) J=J0:().

icl
Proof. Since for any i € I, §;(m(w)) = 7(iw), we see that (J;c;0:(J) C J. Also
if w = (i1,42,143,...), then m(w) = 6;,(7(iz,i3,...)) € 6;;(J). Thus we have that
J C U;er 0i(J), and the lemma is proved. O

Remark 5.2. Notice that if [ is finite, then the limit set J is compact. Therefore,
J is the unique nonempty, compact set satisfying (5.1). If I is infinite, J need not
be compact.

Let I = N and 6; : S — S be a Lipschitz map with Lip(f;) < ¢ < 1 for each
i € I. Let J be the limit set associated with this infinite iterated function system.
We wish to find a formula for the Hausdorff dimension of J. As in the case of finite
iterated function systems, we study a Perron-Frobenius operator L : C(S) — C(S)
of the form

(5-2) (L)) = Z bi(t) f(0i(t))

We shall make the following assumptions.

H5.1 For 1 < i < oo, the function b; : S — R is nonnegative and continuous.
Furthermore, for each ¢ € S, b(t) = >~ b;(t) < oo and b: S — R is continuous.

H5.2 For 1 <i < 00, 6; : S — S is a Lipschitz map with Lip(6;) < ¢ < 1.

If H5.1 is satisfied and the maps 6; are all continuous, it is easy to verify that L
defines a bounded linear map on C(S). We refer the reader to Section 5 of [19] for
a detailed discussion of such operators.

Let K(M,\) = {f € C(S):0< f(s) < f(t)exp(Md(s,t)*) for all 5,t € S}.

Lemma 5.3. Let (S,d) be a compact metric space and let L : C(S) — C(S) be
defined by eq. (5.2). Assume that H5.1 and H5.2 are satisfied and assume that
there exist Mo > 0 and A > 0 such that for each i > 1, b; € K(My, \) and no b; is
identically zero. Then there exists M > 0 such that L(K(M,\)) C K(M,\) and L
has a strictly positive eigenvector u € K(M, \) with eigenvalue r(L) > 0.

Proof. Since ¢ < 1 and A > 0, we can choose M > 0 so that My + Mc* < M. We
claim that L(K) C K, where K := K(M,\). Let f € K,i>1 and s,t € S. Then
we have

F(0:(5)) < F(0:(1)) exp(Md(0;(s), 0:(1)") < F(0:(t)) exp(Mctd(s, t)*) and

bi(s) < bi(t) exp(Mod(s, t)*).
Thus

This proves that L(K) C K.
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By Lemma 3.2, {f € K : ||f|| < 1} is equicontinuous, and hence it is compact
by Ascoli’s theorem. It follows that L|k is a compact map. The constant function
e=1isin K, so

ric(L) 2 lim |[L"(e)][* = r(L)
n—oo

The opposite inequality is obviously true, so rx (L) = r(L). By assumption b(t) =
Yoo bi(t) > 0forallt € S, and b : S — R is continuous by H5.1. Therefore,
there exists § > 0 with Y .o b;(t) > 6. So L(e) > de from which it follows that
r(L) > § > 0. Since L|g is a compact map and rg (L) = r(L) > 0, a theorem of
Bonsall [1] implies that there exists u € K, |Ju|| = 1, with L(u) = ru, r = r(L).
From the definition of K (M, \) it is clear that v € K \ {0} implies u(¢) > 0 for all
tes. O

Throughout the remainder of this section we shall make the following assump-
tion.

H5.3 Let (S,d) be a compact, perfect metric space and assume that for 1 <
i < o0, 0; : S— S is an infinitesimal similitude on S and is a Lipschitz map with
Lip(6;) < ¢ < 1. Assume that there exist My > 0 and A > 0 such that for all ¢ > 1,
Do, € K(My, A\) and D0;(t) > 0 for all t € S. Assume, also, that there exist ¢ > 0
and ¢t € S with Y .2 (D0;(t))7 < oo.

Lemma 5.4. Assume H5.3 is satisfied. If Y .o (D;(t.))* < oo for some t, € S
and s > 0, then for any o > s, > o=, (D0;(t))? < oo for allt € S.

Proof. Since D;(t) < 1 for all ¢ € S, (D6;(t))° < (DO;(t))® for ¢ > s. So
Yoo (DO;(ts))® < oo implies that Y .o (D0;(t.))° < oo for ¢ > s. Thus we
only have to prove that for any ¢ € S, Y .2 (D0;(t))* < co. Let t € S. Since
DO; € K(My, ), Db;(t) < D;(t,) exp(Mod(t,t,)*). Therefore,

(DO;(t))* < (D;(t.))* exp(sMod(t, t.)*)
from which the result follows. O

Assume H5.3 is satisfied. Define for o > 0 with Y2, (D#;(t))? < o,

(L)) = S (DO:(1)7 F(B:(2)).
i=1

Let o > 0 satisfying the above condition be fixed. If H5.1 is satisfied with b;(¢) :=
(D;(t))? for i > 1, we know that L, defines a bounded linear map on C(S). By
H5.3, DO; € K(My,\) for some My > 0, A > 0. This implies that b; € K (oM, \)
for all 4 > 1. Therefore, if we choose 0 < M < oo such that oMy + Mc* < M,
L, maps K (M, \) into itself and has an eigenvector u, € K (M, \) with eigenvalue
r(Ly).

Let og = inf{o > 0: >_72,(D0;(t))° < oo for all t € S}. If H5.3 holds, note that
if Y200, (D;(t,))° < oo for some t, € S, then > .2 (DO;(t))* < oo for all s > o
and t € S. Assuming that H5.3 holds, there are two possible cases:

Casel: Y2, (D0;(t))° < ocoforallo > ogand allt € Sbut Y .o, (D0;(t))7 = oo
forallt e S.

Case IL: Y72 (D;(t))° < oo forallo > ogand allt € Sbut Y .o, (D;(t))7 =
for all o0 < op and all t € S.

Note that L, is defined for ¢ > o in case I and for o > o in case II.
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Lemma 5.5. The map o — 1(L,) is strictly decreasing and continuous for o > og
in case I and for o > og in case II. Also, r(L,) — 0 as 0 — 0.

Proof. The proof that o — r(L,) is strictly decreasing and continuous for o > gq
(Case I) or o > op (Case II) is exactly the same as in the proof of Lemma 4.6,
and we omit the details. To prove the last part of the lemma, fix s > 0 with
SUPyeg D ieq (DOi(t))* < K < c0. Let 0 > s. Then, since D#;(t) < c,

(oo} (oo}

S (Do,(1)7 < 7 S (D0i(1))

1=1 i=1
Therefore, ||Ly|| < supyeg Y ioq(D0i(t))7 < ¢ K, which implies ||L,|| — 0 as
o — o0 because ¢ < 1. Since r(Ly) < || Ly||, the result follows. O

We should note that in the case of infinite iterated function systems there need
not be a value of ¢ for which r(L,) = 1 because we cannot guarantee a o for which
r(Ly) > 1. Tt is possible that 7(L,) < 1 for all the values of ¢ for which L, is
defined. Let

(5.3) O =inf{oc > 0:7(L,) < 1}

We claim that, under natural further assumptions, the Hausdorff dimension of
the invariant set J is equal to 0.

By Lemma 4.3 and Remark 4.4 we know that given e > 0, there exists a p;(€)
such that for every ¢,s € S with 0 < d(s,t) <,

d(0:(s), 0;(t

ple) (D8 (1) < D)
and lim, o4 p;(€) = 1. In the case of finitely many 6;’s a uniform pu(e€) satisfying
the above property could be chosen by taking the maximum over i. But for the
infinite case we cannot guarantee a uniform p(e) which would work for each 0;.
So instead we shall make the assumption that a uniform p(e) can be chosen. For
a specific problem we would have to check that this condition is indeed satisfied.
For some important examples like complex continued fractions, which have been
studied by other authors (see Section 6 of [12]), this condition can be easily verified.

H5.4 Given € > 0, there exists a pu(e) > 1 such that for any ¢« > 1 and for every
t,s € S with 0 < d(s,t) <,

()~ (DO;)(t) <

and lim¢_,o4 p(e) = 1.

Now we are ready to prove the upper bound for the Hausdorff dimension of K.
The proof is very similar to the proof of Theorem 4.10 but we provide the proof for
the sake of completeness.

Theorem 5.6. Assume that H5.3 and H5.4 are satisfied. Let dim(J) denote the
Hausdorff dimension of the invariant set J and let 0o, be as defined in eq. (5.3).
Then dim(J) < 0oo.-

Proof. Fix € > 0. Take 6 > 0 and ¢ > 0. We can choose a covering {A;}72, of J
and points & € Ay such that diam(Ay) < € and

< pi(e)(DO;)(t)

d(8i(s),0:(1))

S < D)0

(5.4) > " ug (&) (diam(Ay))” < HZ(J) + 0.
k=1
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o0
Since J = U 0;(J), we have that {0;(A) : 1 <k < 00,1 <i< oo} is a covering of
i=1
J with
diam(6;(Ag)) < ¢ diam(Ay) < ce.
Furthermore, by H5.4 there exists p(e) > 1 with p€) — 1 as € — 0+ such that
(5.5) diam(0:(Ax)) < p(e)(D6) (&) diam(Ay)

forall 2 >1and k > 1.

HZ(J) < Zua(@-(&))(diam(ﬂi(Ak)))"

Z uo (0i (§x)) (1(€))7 ((DO;)(Ek))7 (diam(Ag))”

= (n(e)7 ) {Z((D&)(ﬁk))”ua(@(ﬁk))} (diam(Ay))”

=1

= (1(€)7 Y_(Loug) (&) (diam(Ay))”

= (1()7r(Lo) Y o (&) (diam(A))".

k=1
Thus, using (5.4), we get
HZ(J) < (ule)7r(La) (RE() +5)
Since ¢ < 1, H(J) < HZ.(J). Also § > 0 was arbitrary. Therefore,
(5.6) HI () < (ul€)7r (Lo )HI ().
For 0 > 0o, r(Ls) < 1. Since p(e) — 1 as e — 0, given o > 0, we can choose
e > 0 small so that (u(e€))°r(Ly,) < 1. By the definition, H7(J) < oo because

we can take a finite e-cover of the totally bounded set J as it is contained in the
compact set S. Thus, if 0 > 0, €q.(5.6) can hold only if

Elirgl+ HZ(J)=0.

Hence using (4.7), limc_o4+ HZ(J) = 0, i.e., H°(J) = 0 for all ¢ > 0. Thus, by
the definition of Hausdorff dimension, dim(J) < 0w. O

To prove the other half, dim(J) > 0., we shall consider the infinite iterated
system as the limit of finite iterated systems and use the result that we have for
the finite case.

Define for N > 1 and f € C(S5),

N
(Lo f)(t) = Y _(DO:(1))" f(0:(t))-
i=1
For N > 1, let Jy be the unique nonempty, compact invariant set satisfying
N
Iy = J0:(In)

i=1
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and let o be the unique positive real number such r(L,, ) = 1. We shall assume
the following hypothesis.

H5.5 For each N > 1, 0;(Jy) N0;(Jy) =0 for 1 <i < j < N, and 6;];, is
one-to-one for 1 < ¢ < N.

By Theorem 4.17 we know that, assuming H5.3 and H5.5, dim(Jx) = on.

Lemma 5.7. For each N > 1, Jy C Jy41 and Jy C J. Hence, dim(J) >
dim(Jy) = on for all N > 1.

Proof. By Remark 5.2, we know that Jy = {w(w) cwe {L,2,... 7N}""} for any
N > 1. It follows that Jy C Jyy1 for all N > 1. Also since J = {7(w) : w € N},
we have Jy C J for all N > 1. O

It is easy to see that ||L, — Lo n|| — 0 as N — oo for ¢ > o0 in case I and for
o > o0g in case 1I.

Remark 5.8. Let X be a real or complex Banach space and L : X — X, Ly :
X — X, k > 1 be bounded linear operators. Assume that limy_, ||Lr — L|| = 0.
Then we have that limsup,_, . 7(Lg) < r(L). But, in general, it is not true that
limg 00 7(Lg) — r(L). In fact, Kakutani has given an example of a sequence of
bounded linear operators Lj on a Hilbert space which converges in the operator
norm to an operator L and satisfies (L) = 0 for all £k > 1 and (L) > 0. The
example can be found on pages 282-283 of [20]. If, in addition, we know that
p(L) < r(L), where p(L) is the essential spectral radius of L, then it is true that
r(Li) — r(L). To see this, note that by using the natural extension of L to the
complexification of X, we can assume that X is a complex Banach space. If o(L)
denotes the spectrum of L, recall that o(L) N {z € C : |z|] > p(L)} consists of
isolated points each of which is an eigenvalue of L of finite algebraic multiplicity.
Then exactly the argument on pages 227-228 of [17] proves that r(Ly) — r(L).

The following lemma is known. The proof is included for the reader’s conve-
nience.

Lemma 5.9. Let (S,d) be a compact metric space and suppose that L : X =
C(S) — X is a positive bounded linear map, i.e., f(t) > 0 for allt € S implies that
(Lf)(t) >0 for allt € S. Let e denotes the function identically equal to 1. If r(L)
denotes the spectral radius of L, we have r(L) = lim, oo || L™€||7 . Furthermore, if
u € X is such that u(t) > 0 for all t € S, then r(L) = limp_o | L% . Finally, if
Lu = ru with u(t) > 0 for allt € S, then r(L) =r.

Proof. We shall write f < g to mean f(t) < g(t) for all ¢ € S. Since L is linear
and maps nonnegative functions to nonnegative functions, it follows that Lf < Lg
whenever f < g. If f € X with ||f]| <1, we have —e < f <e. So, —L"e < L"f <
L™e which implies that |(L™f)(¢)] < |L"e(t)| for all t € S. Thus ||[L™f|| < ||L™e]|
whenever || f|| < 1 which gives ||[L™|| = ||L™e||. Taking the nth root and taking the
limit as n goes to oo, we get r(L) = limy,_oo || L™e]|7 .

Now let u € X such that u(¢) > 0 for all ¢ € S. Since S is compact, there exist
0 <m < M < oo such that me < u < Me. This implies mL"e < L™u < ML"e,
so m|[L™e| < ||L™u| < M||L™e||. Taking the nth root and taking the limit, we
get limy, oo | L™u||" = lim, o |L™€||* = 7(L). To see the last part, note that
Lu = ru implies L™u = r™u. So, ||L™u||% = r|lul|=. Since |lu| > 0, [jul|= — 1.
Thus we get r(L) = 7.
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Corollary 5.10. Let (S,d) be a compact metric space and suppose that L : X =
C(S) — X and Ly : X — X, k > 1, are positive bounded linear maps. Assume
that || Ly — L|| — 0 as k — oco. Suppose Lu = ru with u(t) > 0 for allt € S. Then
r(Ly) —r(L)=r.

Proof. First we know that r = r(L) by Lemma 5.9. Now we have that | Lyu—Lu|| —
0 as k — oo. Because u is strictly positive, given § > 0, there exists kg such that
Lyu > (1= 96)ru for all k > ko. This implies for any n > 1, ||Lul| > (1 —6)™r"™||ul]
for k > ko. By Lemma 5.9, (L) = lim, .o | Lulx > (1 — 6)r for k > ko. Since
0 > 0 was arbitrary, liminfy_. . r(Lg) > r. Thus we are done because we always
have limsup,,_, . 7(Lx) < r(L). O

Lemma 5.11. Assume that H5.83 and H5.J are satisfied. Then we have that
(Lon) 1 7(Ls) as N — oo for o > og in case I and for o > o¢ in case IL.

Proof. Let 0 > o¢ if we are in case I or ¢ > o0¢ if we are in case IL. If b;(t) =
(DO;(t))?, then H5.3 implies that b; € K(ocMp, A), and using this fact and H5.3,
the reader can verify that b(t) :== Y .o, b;j(t) > 0 for all ¢ € S and b is continuous.
It follows that L, defines a positive bounded linear operator on C(S). Clearly
Ly ne < Lo nyi€, 80 || Lo ne|| < || Lo, nti1€]|. By Lemma 5.9, we get that r(L, n) <
(Lyn+1). It is easy to see, using H5.3, that |[L, — Ly n|| — 0 as N — oc.
Since we know that L, has a strictly positive eigenvector with eigenvalue r(L,), by
Corollary 5.10, we must have (L, n) — 7(Le). O

Now we can prove the lower bound for the Hausdorff dimension of J.

Theorem 5.12. Assume that H5.3, H5.4 and H5.5 are satisfied. Let dim(.J) denote
the Hausdorff dimension of J and oo be as defined in eq. (5.3). Then dim(J) = 0.

Proof. By Theorem 5.6, it suffices to prove that dim(J) > 0. If 09 < 0 then
for 09 < 0 < 0s0, Ly is defined and r(L,) > 1 by the definition of o and the
fact that o — r(L,) is strictly decreasing. So, by Lemma 5.11, there exists N,
such that r(Ls n) > 1 for all N > N,. Since r(Lyy,n) = 1, oy > o for all
N > N,. Therefore, by Lemma 5.7, we have that dim(J) > dim(Jy,) = on, > 0.
Since this is true for any o with 09 < 0 < 04, it follows that dim(J) > oo If
00 = 0o then for 0 < 0o, D50y (D;(t))° = 00, so for large N (depending on o),
Zilil(DGi(t))" > 1 for all ¢ € S. This implies that r(Ls x) > 1, so oy > 0. Thus
dim(J) > o for all 0 < 04, and hence dim(J) > 0. This completes the proof of
the theorem. (]

To illustrate Theorem 5.12; we discuss a special infinite iterated function system
that is generated by complex continued fractions. This has been studied in Section
6 of [12]. We show that our theory is applicable to this particular example.

Example 5.13. (Complex continued fractions) Let I be an infinite subset of {m +
ni : m € Nyn € Z}, where Z is the set of integers and N is the set of positive
integers. Let X C C be the closed disc centered at the point % with radius % For
b € I one can easily verify that 6,(X) C X, where

1
Oy(2) = .
b(2) b+ z
The mappings 6y, b € I, may not all be strict contractions in the Euclidean metric;
61 is not a strict contraction because |0;(0)| = 1. Therefore we consider the system
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{0p00.:b,ceI}. Itis easy to verify that 8, o 8. is a strict contraction for each
b,c € I with a uniform Lipschitz constant k < 1. Let J be the limit set for this
system. First note that 0,(z) = 0.(w) implies that |z —w| = [b—¢|. So, if |[b—¢| > 1
then 6,(X)N0.(X) = 0. Furthermore, if |b—c| = 1 then 6,(z) = 6.(w) implies that
z and w belong to the boundary of X and |z — w| = 1.

Lemma 5.14. 6, 0 0.(X) is contatined in the interior of X.

Proof. First we claim that 6,(z) € 90X implies 2 = 0. Let b = m + ni, m € N,
n € Zand z =2+ yi € X. Then 0,(z) € 0X implies |b+—z — 1| = 1 which implies
|2—b— 2| = |b+z|. Therefore, (2—m —x)?+ (n+y)? = (m+x)?+ (n+y)? which
implies m +x =1, i.e., z =1 —m. Since m > 1 and x > 0 for z € X, it follows
that m =1 and =z = 0. But x = 0 implies that z = 0.

Now suppose that 6, 0 6.(z) € 0X for some z € X. Then, by the above claim,

0.(z) = 0, which is impossible by the definition of 6.(z). O

Let us verify H5.5. By the previous lemma, we know that for any b,c¢ € I,
0y00.(X) is a compact set contained in the interior of X. So if we take finitely many
b;, c;, the union of the images would still be a compact subset of the interior of X.
So, for any N, Jy is a compact subset of the interior of X which means diam(K N) <
1. We claim that if X C int(X) with diam(X) < 1 then 8y, 08, (X)N6y,00.,(X) = 0
for any (by,c1) # (ba,c). Suppose instead that 6y, (0 (2)) = 6p, (0, (w)) with
z,w € X. This implies that by + 6., (2) = by + 0., (w). If by = by, this would imply
that 6., (z) = 0., (w), i.e., ¢; + z = ca + w, which is impossible because |z — w| < 1
and |c; — cg| > 1. If by # by, we must have |0, (2) — 0., (w)| = 1 which is possible
only if both ., (z) and 0., (w) belong to the boundary of X, which is possible only
if z = w = 0. This is a contradiction to the fact that X is in the interior of X.
Thus the disjointness condition in H5.5 is satisfied. Also for any b € I, the map 6,
is clearly one-to-one.

For b € I, we have DO,(z) = |0}(2)| = ﬁ So, DOy(z) > 0 for all z € X. We
claim that there exists 0 < My < oo such that DO, € K(My, \) with A = 1. Let
z,w € X. We have

(D) (2) < (DOp)(w) exp(Mo|z — wl)
1
TR S Twrop

exp(Mo|z — wl)

‘w+b|
z+b
lw — 2|

< My > 2

b - - In | 22|
But In |22 | = In |1+ %] < In(1+ Ir;_fl‘) < w+lf|" Therefore, 221 < 2 <
2. So, we can choose My independent of b € I.

To complete the verification of H5.3 note that

ZDGZ’ Z||20'_ZZ 2+n2

bel bel nez mEN

which converges for o > 1.
To verify H5.4 it is enough to show that given e > 0 there exist p;(e) and
pa(€e) such that lime o4 p1(€) = limeo4 pa(e) = 1 and if 0 < |z — w| < € then

ui(e) < (Dﬁi)(z) ‘91’(‘; w‘( wl < pa(e) for all b € I. But using 0,(z) =

1
0 we get
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and

1 106 (2)—0p(w)| __ | 24b| _ 3 -
DagE Tl = = L :

Jw+b|
1+ RZ_’Z" Since for any w € X |w + b|~! = |0,(w)| < 1, taking p1(€) = 1 — € and
t2(€) = 1+ € does the job.
Thus we see that all the hypotheses of the theorem are satisfied for this particular
example and hence the Hausdorff dimension of the limit set J is given by the value
of 0. Simpler versions of these arguments show that the results of Section 4 are

applicable if I is a finite set.

|, which is bounded between 1 —

In the next section we shall see that sometimes it is important to look at another
metric rather than the Euclidean metric.

6. CHOICE OF APPROPRIATE METRIC

We need to recall the definition of the Carathéodory-Reiffen-Finsler (CRF) met-
ric on bounded domains in Banach spaces. Let G be a bounded domain in a complex
Banach space X and let U denote the open unit disc in C. Let Hol(G,U) be the
family of all holomorphic functions f : G — U. Define a: G x X — R by

a(a,v) = sup{| Dg(a)v| : g € Hol(G,U)}

where Dg(z) denotes the Fréchet derivative of g at . Given any two points x and
y in G, consider the family of curves « : [0,1] — G that have piecewise continuous
derivatives and v(0) = z, y(1) = y. Call such a curve admissible and define its
length by

We now define the distance between x and y by
p(x,y) = inf{L(~) : v is admissible with v(0) = z and (1) = y}.

p is called the CRF metric on G. For a detailed discussion of the CRF metric we
refer the reader to [6].

Let G be a bounded open set in C and let # : G — G be a holomorphic map such
that 6(G) is a compact subset of G. If p denotes the CRF metric on G then it is
known (see Theorem 13.1 in [6]) that 6 is a strict contraction on G with respect to
the CRF metric p. Also, on a compact subset C of G, p is a complete metric and
is equivalent to the standard Euclidean metric, i.e., there exist positive constants
m and M such that

mlz —w| < p(z,w) < M|z —w| for all z,w in C.

Let G be a bounded open set in C and assume for 1 < i < N that 0, : G — G isa
holomorphic map such that C; = 0;(G) is a compact subset of G and 6;(z) # 0 for all
z € G. Define C := J;_, C;. Then, by Theorem 2.3 and the above remarks, there
exists a unique nonempty compact set K with K = Uivzl 0;(K). For k > 1, define
T = {I: (il,ig,...,ik) 1< ij < N for 1l <j< k‘} For I = (il,ig,...,ik) € Iy,
define 07 = 0;, 0 ---00;, 006;,. It is easy to see that K = {J;c7, 01(K). We claim
that, for large k, 05 is a strict contraction map with respect to the Euclidean metric.
Suppose z,w € C, z # w. Then

01(2) = Or(w)| _ 7p(01(2),61(w) _ M

|z — wl - a7 p(z,w) m

)
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where ¢ < 1 is the maximum of the contraction ratios of the maps 6;, 1 <1 < N,
with respect to the metric p. If we choose k large enough so that %ck < 1, then
it follows that 6 is a contraction map for all I € 7, with respect to the Euclidean
metric. Thus, if 0;(K)N0,;(K) =0 for I,J € Iy, I # J (which is certainly true
if {0;(K)}Y., are pairwise disjoint and 6;|r is one-to-one for 1 < i < N), the
Hausdorff dimension of the invariant set K is given by Theorem 1.2 by considering
the iterated function system given by the maps {01} ez, and the standard Euclidean
metric. Note that in this case (D0)(z) is nothing but |67 (2)|. If we write, for o > 0,

(Lo f)(2) = 0L, 10(2)17 f(8:(2)) and (Lo f)(2) = ez, 105(2)]7 £ (01(2)), where k
is as chosen above, then it is easy to see that L, = LE. Tt follows from Lemma 6.1
below that 7(Ls,) = 1 if and only if 7(L,,) = 1. Thus, to find the Hausdorff
dimension of the invariant set K it is enough to find oy such that r(Ly,) = 1.

The following lemma is well known, and the proof is given only for completeness.

Lemma 6.1. Let X be a Banach space, L : X — X be a bounded linear map and
k > 1 be a positive integer. Then r(L¥) = (r(L))*, where r(L) denotes the spectral
radius of L.

Proof. We have that
r(L¥)

lim_ || (LF)" /"

( lim HLanl/kn)k

= (r(L)".
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