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Abstract

We consider a class of compact positive operators L : X → X given by (Lx)(t) =
∫ t
η(t) x(s) ds,

acting on the space X of continuous 2π-periodic functions x. Here η is continuous with η(t) ≤ t

and η(t+2π) = η(t)+2π for all t ∈ R. We obtain necessary and sufficient conditions for the spectral

radius of L to be positive, in which case a nonnegative eigensolution to the problem κx = Lx exists

for some κ > 0 (equal to the spectral radius of L) by the Krein-Rutman Theorem. If additionally

η is analytic, we study the set A ⊆ R of points t at which x is analytic; in general A is a proper

subset of R, although x is C∞ everywhere. Among other results, we obtain conditions under which

the complement N = R \ A of A is a generalized Cantor set, namely, a nonempty closed set with

empty interior and no isolated points. The proofs of this and of other such results depend strongly

on the dynamical properties of the map t → η(t).
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1 Introduction

In this paper we study the equation

κx(t) =

∫ t

η(t)
x(s) ds, (1.1)

where η : R → R is a given continuous function which satisfies

η(t + 2π) = η(t) + 2π, η(t) ≤ t, (1.2)

for every t ∈ R. Here κ ∈ C is an unknown eigenvalue which is to be found along with the

eigenfunction x. We wish to find and study such eigenfunctions of period 2π, that is, lying in the

space

X = {x : R → C | x is continuous and x(t + 2π) = x(t) for all t ∈ R}. (1.3)

We endow X with the usual supremum norm ‖x‖ = sup
t∈R

|x(t)|, thereby making it a Banach space.

Associated to equation (1.1) is the compact linear operator L : X → X given by

(Lx)(t) =

∫ t

η(t)
x(s) ds (1.4)

for x ∈ X , and so (1.1) can be written as Lx = κx. In light of the inequality in (1.2), one sees that

L is a positive operator with respect to the cone

X+ = {x ∈ X | x(t) ≥ 0 for all t ∈ R}

of nonnegative functions in X ; that is, if x ∈ X+ then Lx ∈ X+.

One point of interest is whether or not a nontrivial nonnegative solution x ∈ X+ \ {0} of (1.1)

exists; we observe that necessarily κ ≥ 0 for such a solution. Another point of interest, perhaps the

main focus of this paper, concerns the regularity properties of solutions; specifically, if η is analytic

and x ∈ X is a solution to (1.1), is x analytic? We discuss this further below.

By the Krein-Rutman Theorem, if the spectral radius r(L) of L is strictly positive, that is if

r(L) > 0, then equation (1.1) has a solution x ∈ X+ \ {0} with κ = r(L). On the other hand,

if r(L) = 0 then the Krein-Rutman Theorem is silent, and a nontrivial nonnegative solution to

equation (1.1) with κ = 0 may or may not exist.

Among other results, in this paper we obtain necessary and sufficient conditions on the function

η for r(L) > 0 to hold; see Theorem A below.
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To see examples of both existence of, and nonexistence of, an eigenfunction in X+ \ {0} when

r(L) = 0, consider the case in which η is nondecreasing, that is, η(t1) ≤ η(t2) whenever t1 ≤ t2,

and where also η(a) = a for some a. Then by Theorem A necessarily r(L) = 0 must hold as

condition (2.1) fails. For such η denote S = {t ∈ R | η(t) = t}. Then if x ∈ X+ \ {0} satisfies

equation (1.1) with κ = 0, we claim that x(t0) = 0 for every t0 ∈ R \ S. One sees this by taking

t = t0 + ε with ε > 0 sufficiently small; then t0 ∈ (η(t), t) and x(s) = 0 for every s ∈ (η(t), t),

by equation (1.1) with κ = 0, and thus x(t0) = 0. One concludes from this that if S has empty

interior, that is if R \ S is dense, then there does not exist x ∈ X+ \ {0} satisfying (1.1) with

κ = 0. (This in particular is the case if η is analytic with η(t) 6≡ t.) On the other hand, suppose

that S has nonempty interior, say (p, q) ⊆ S where p < q < p + 2π. Then one easily checks that

if x ∈ X+ \ {0} is such that x(t) = 0 for every t ∈ [q, p + 2π] then x satisfies (1.1) with κ = 0. In

this case x(t) > 0 is permitted for t ∈ (p, q), and so solutions x ∈ X+ \ {0} to (1.1) with κ = 0 do

exist; in fact, there is an infinite dimensional set of them.

If η(t) < t for every t ∈ R then r(L) > 0 (again see Theorem A), and one easily sees from (1.1)

that x(t) > 0 for every t ∈ R, for every eigenfunction in X+\{0}; or equivalently, x ∈ int(X+\{0}).

(Here and in what follows we let int(S) denote the interior of a set S.) Indeed, if x(t0) > 0 for some

t0 ∈ R then by (1.1) we have that κx(t) > 0 for every t ∈ [t0, t0 + ε], where ε = min
t∈R

(t − η(t)) > 0,

as t0 ∈ [η(t), t] for such t. After a finite number of iterations of this argument one concludes that

x(t) > 0 for every t ∈ R, as desired.

In the above case where η(t) < t for every t ∈ R it is known that x ∈ X+\{0} with κ = r(L) > 0

is the unique solution of equation (1.1) in (X+ \ {0})× (0,∞) up to scalar multiple. On the other

hand, if η(t) = t for some t ∈ R but still r(L) > 0, then it is not known whether or not the above

solution (x, κ) ∈ (X+ \ {0})× (0,∞) with κ = r(L) > 0 is unique (up to scalar multiple). It would

be interesting to have an example of such a solution which is not unique in this sense; but so far

this eludes us.

Concerning the existence of eigenfunctions of L which do not belong to X+\{0} (more precisely,

for which no scalar multiple belongs to this space), we may consider the case in which η(t) = t− r0

where r0 > 0 is a constant. Then one easily checks that x(t) = eint is an eigenfunction for any

n ∈ Z \ {0} with eigenvalue κn = i(e−inr0 − 1)/n; this is in addition to the eigenfunction x(t) = 1

for κ0 = r0. By a standard spectral perturbation argument, these eigenvalues perturb continuously

if r0 is replaced by a continuous 2π-periodic function r(t) which is near r0. In particular, given any

n0 ≥ 1 and ε > 0, there exists δ > 0 such that if |r(t) − r0| ≤ δ for all t, then for every n with

|n| ≤ n0 the operator L, with η(t) = t − r(t), has an eigenvalue κ̃n for which |κ̃n − κn| ≤ ε.
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Note finally that in the above example with η(t) = t − r0, none of the eigenvalues are nonzero

real numbers except for κ0 = r0. We do not know of any example of an operator L as above, but

with η(t) = t − r(t), which has more than one nonzero real eigenvalue; it would be interesting to

find such an example, or to prove that none exists.

Our interest in equation (1.1) stems from our earlier studies of analyticity properties of solutions

of delay-differential equation, and particularly solutions of such equations with variable delays.

Early work in [13] showed that for a broad class of equations, including those of the form

ẋ(t) = f(x(t − r1), x(t− r2), . . . , x(t − rm))

where f : Rmn → Rn is analytic with x ∈ Rn and where rj ≥ 0 for 1 ≤ j ≤ m are given constants,

any solution x(t) which exists and is bounded as t → −∞ is analytic in t. The assumption that the

delays rj are constant is essential here; in general, if the rj vary with time, for example as explicitly

given functions rj = rj(t) which are analytic in t, then while a solution x(t) as above must be C∞

in t, it need not be analytic. Such issues were explored in [8]. Quite generally, if a solution x(t)

exists for all t ∈ R, then we may define sets A,N ⊆ R by

A = {t0 ∈ R | t → x(t) is analytic for |t − t0| < ε, for some ε > 0}, N = R \ A. (1.5)

Certainly A is an open subset of R, and N is closed. As was shown in [8], with f and each rj

analytic, it may occur that both A 6= ∅ and N 6= ∅ for the same solution x; in this case we speak

of coexistence of analyticity and non-analyticity.

Even in the case of constant delays subtleties abound. In [9] the results of [13] are extended to

a broader class of equations with constant delays, including nonautonomous systems. Nevertheless,

for equations such as

ẋ(t) = sin(tq)x(t − 1) and ẋ(t) = exp(itq)x(t − 1)

where q ≥ 2 is an integer, there exists a nontrivial solution x(t) which is bounded as t → −∞

(see [10]); but it is unknown whether or not this solution is analytic for any t, although it is

certainly C∞ for all t ∈ R.

It is worth mentioning that there are many classes of delay-differential equations, with variable

delays, which arise quite naturally as models in the sciences. In [14] Kuang and Smith study a

system of the form

ẋ(t) = −νx(t) + f(x(t − r)), where

∫ t

t−r
k(x(t), x(s)) ds = 1. (1.6)
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Here the function k is positive-valued and the delay r > 0 is implicitly determined by the second

equation in (1.6). Such systems occur in models of population growth, and they generalize the

much-studied Mackey-Glass equation [11], for which the delay is constant. The delay r in (1.6) is a

so-called state-dependent delay, in that it depends of the state of the system, namely on the history

x(s) for s ≤ t. Alternatively, one could consider the same Mackey-Glass differential equation (1.6)

but instead with the delay r = r(t) given as an explicit function of t; such a delay could model, for

example, external seasonal variations in the environment.

Another class of examples is given by Walther [15], who studies the problem of controlling a

vehicle by means of the echo of a signal. Here the finite signal speed gives a variable time-delay

which is dependent on the position of the vehicle.

In [2] Krisztin studies a class of models with analytic nonlinearities as in (1.6) in which the

delay r is implicitly defined by a simpler integral condition

∫ t

t−r
k(x(s)) ds = 1,

in which the kernel function does not depend on x(t). In this case he obtains analyticity of solutions

bounded at −∞, of course assuming all nonlinearities in the differential equation are analytic. (A

version of this for multiple delays also holds.) It was observed later [8] that following an analytic

change of the time variable, such a system can be transformed to a system with a constant delay

to which the results of [13] apply.

For other classes of variable-delay equations, such as ones where the delay r = r(x(t)) is an

explicit function of the present state x(t), see for example the references in [4], [5], [6], and [7]. Also

see [1] for a comprehensive survey of recent results on state-dependent delay-differential equations.

It is our belief that quite typically, solutions of delay-differential equations with analytic nonlin-

earities can fail to be analytic at some values of t, even for solutions which exist and are bounded

as t → −∞. (In this respect the above examples of Krisztin are an exception to the expected

behavior.) The examples studied in [8], for which coexistence of analyticity and non-analyticity

was established for some solution x, had the form of equation (1.1) with η analytic. When differ-

entiated, and assuming that κ 6= 0, one obtains a delay-differential equation with a variable delay,

namely

ẋ(t) =
1

κ

(
x(t) − x(η(t))η̇(t)

)
. (1.7)

In the present paper we explore these issues in more detail. Here we take equation (1.1) as a

tractable model example with a simple presentation, but which nonetheless exhibits a very rich
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and intricate structure of the analyticity set A and its complement N . In [8] it was shown that

A 6= ∅ and N 6= ∅ could occur simultaneously for a particular solution of this equation, although

the detailed structure of these sets was unclear. In the present paper we are able to give a complete

characterization and description of the sets A and N for a broad class of equations. In particular,

this characterization is intimately connected with the dynamics of the discrete map t → η(t), and

shows in certain cases that N has a fractal-like structure similar to the Cantor set.

In particular, in Theorem B we give general conditions, with η analytic, under which N is

uncountable and A has infinitely many connected components in any interval of length 2π. This

structure is extended in Theorem C. In Theorem D we give additional conditions under which N

is a generalized Cantor set, that is, a nonempty closed set with empty interior and with no isolated

points; and in addition in Theorem D we precisely characterize the set A in terms of the dynamical

properties of the map η : R → R. Finally, in Theorem E we verify the conditions of Theorem D

for an explicit and elementary class of examples.

Let us finally mention that we believe many of our results should extend naturally, and using

basically the same techniques, to certain classes of nonlinear equations. We have in mind equations

such as

κx(t) =

∫ t

η(t)
f(s, x(s)) ds (1.8)

where as before η : R → R is analytic and satisfies (1.2), and where, for example, f : R2 → R is

analytic and satisfies

xf(s, x) > 0 for all x 6= 0, f(s + 2π, x) = f(s, x),
∂f(s, 0)

∂x
> 0, lim

x→±∞

f(s, x)

x
= 0,

for all s and x, with the final limit uniform in s. Then if 0 < κ < r(L), with L as in (1.4), but with

x(s) replaced by (∂f(s, 0)/∂x)x(s), there exists x ∈ X+ \ {0} satisfying (1.8); such a result follows

from standard arguments involving degree theory for maps of cones. And in this situation it would

be natural to expect analogs of Theorems B, C, and D to hold.

2 The Main Results

Here we state our main results, namely Theorems A, B, C, D, and E; the proofs of these results will

be given in later sections. Throughout this section L is the linear operator given by (1.4), acting

on the space X given by (1.3). We let r(L) denote the spectral radius of L.

The first theorem gives a necessary and sufficient condition for r(L) to be positive.
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Theorem A. Let η : R → R be continuous and satisfy (1.2) for every t ∈ R. Then r(L) > 0 if

and only if

inf
t∈[a,∞)

η(t) < a whenever η(a) = a. (2.1)

In particular, if η(t) < t for every t ∈ R, so that the condition (2.1) is vacuously true, then

r(L) > 0.

As noted, we are interested in the case in which η is a real analytic function; and in particular,

we are interested in the sets A,N ⊆ R defined in (1.5) for a given solution x of (1.1). In studying

these sets, an important role is played by so-called Volterra intervals. We define the following.

Definition. Let η : R → R be continuous and satisfy η(t) ≤ t for every t ∈ R. Suppose that

I = [a, b] ⊆ R is a compact interval (possibly a single point). We say that I is a Volterra interval

if η(I) ⊆ I , equivalently, if

a ≤ η(t) for every t ∈ [a, b]. (2.2)

We say that I is a right-maximal Volterra interval (abbreviated RM-Volterra interval) if it

is a Volterra interval and if in addition

b = sup{t ∈ R | a ≤ t and a ≤ η(s) for every s ∈ [a, t]}, (2.3)

that is, if b is maximal for the given a. We say that I is a maximal Volterra interval if it is an

RM-Volterra interval which is not properly contained in another RM-Volterra interval.

The next proposition indicates the significance of Volterra intervals. The proposition that

follows it establishes half of Theorem A, namely the necessity of (2.1) for r(L) > 0 to hold.

Proposition 2.1. Let η : R → R be continuous and satisfy (1.2) for every t ∈ R. Suppose that

[a, b] is a Volterra interval. Also suppose that Lx = κx, that is, equation (1.1) holds, for some

x ∈ X and κ 6= 0. Then

x(t) = 0 for every t ∈ [a, b] (2.4)

holds.

Proof. For every t ∈ [a, b] we have that a ≤ η(t) ≤ t, and so from (1.1) we have that

|x(t)| =

∣∣∣∣
1

κ

∫ t

η(t)
x(s) ds

∣∣∣∣ ≤
1

|κ|

∫ t

a
|x(s)| ds. (2.5)
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Thus (2.4) follows directly from Gronwall’s inequality.

We remark that the terminology “Volterra interval” is motivated by the second integral in (2.5),

which has the form of a Volterra operator.

The following result proves half of Theorem A, namely the necessity of (2.1) for r(L) > 0 to

hold.

Corollary 2.2. Let η : R → R be continuous and satisfy (1.2) for every t ∈ R, and suppose

that (2.1) is false. Then r(L) = 0.

Proof. Suppose to the contrary that r(L) > 0. Then by the Krein-Rutman Theorem there exists

a solution x ∈ X+ \ {0} to (1.1) with κ = r(L). Since (2.1) is false, there exists a ∈ R such that

a ≤ η(t) for every t ≥ a, and in particular for every t ∈ [a, a + 2π]. Thus [a, a + 2π] is a Volterra

interval, and so x(t) = 0 for every t ∈ [a, a+2π] by Proposition 2.1. As x is 2π-periodic, it vanishes

identically, a contradiction. Thus r(L) = 0.

It is perhaps instructive to consider the case of a one-parameter family of delays, with ηµ(t) =

t − µr(t), where r : R → [0,∞) is 2π-periodic and µ > 0 is a parameter. Note that ηµ(a) = a if

and only if r(a) = 0; assume there exists some a ∈ R such that r(a) = 0. Also assume that r is C1

and that all zeros of r are isolated. Then whenever r(a) = 0 we have that r′(a) = 0 and thus

lim
t→a+

t − a

r(t)
= ∞.

One sees from this that there exists t∗ = t∗(a) ∈ (a, a + 2π) with r(t∗) 6= 0 such that

µ(a) =
t∗ − a

r(t∗)
= inf

t∈(a,a+2π)
r(t) 6=0

t − a

r(t)
, (2.6)

where the first equality in (2.6) serves as the definition of µ(a); and further,

d

dt

(
t − a

r(t)

)∣∣∣∣
t=t∗

= 0

for any such t∗. If we now define

µ∗ = max
a∈[0,2π)
r(a)=0

µ(a)

then one sees that condition (2.1) holds for η = ηµ if and only if µ > µ∗.
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We mention a simple example for which µ∗ can be calculated to high accuracy, and which is

relevant to Theorem E. Take r(t) = π(1− cos t), and so r(0) = 0 and r(t) > 0 for t ∈ (0, 2π). One

easily sees that

µ∗ = µ(0) = inf
t∈(0,2π)

h1(t), h1(t) =
t

π(1− cos t)
.

Using the identity 1 − cos t = 2 sin2( t
2), one finds that

h′
1(t) =

2 sin2(t/2)− t sin t

4π sin4(t/2)
=

sin(t/2)− t cos(t/2)

2π sin3(t/2)
.

Writing τ = t
2 , one sees that h′

1(t) = 0 with 0 < t < 2π if and only if

sin τ − 2τ cos τ = 0, with 0 < τ < π.

Since sin τ − 2τ cos τ > 0 for π
2 ≤ τ < π it is enough to consider τ satisfying 0 < τ < π

2 . Defining

h2(τ) = tan τ − 2τ , one observes that h2(0) = 0 and h′
2(0) < 0, with h′′

2(τ) > 0 for 0 < τ < π
2 , and

also lim
τ→π/2−

h2(τ) = ∞, and thus there exists a unique quantity τ∗ ∈ (0, π
2 ) such that h2(τ∗) = 0.

Now setting t∗ = 2τ∗, we have that h′
1(t∗) = 0 and

µ∗ = h1(t∗) =
τ∗

π sin2 τ∗
.

It is easy to check directly that h2(1.165) < 0 and h2(1.166) > 0, and thus 1.165 < τ∗ < 1.166.

Then, using Newton’s method, one can refine this to 1.16556118 < τ∗ < 1.16556119, and from that

conclude that 0.43928360 < µ∗ < 0.43928361.

The following lemma is not itself a “main result,” but it provides context for the statements of

Theorems B, C and D, in addition to being used in the proofs of these results; it will be proved at

the end of this section. In this lemma and in what follows, let us denote

E(S) =
⋃

t∈S

[η(t), t], (2.7)

for any set S ⊆ R provided that η(t) ≤ t for all t ∈ S. Note that S ⊆ E(S), and that if η is

continuous and if S is an interval then so is E(S), with S and E(S) having the same right-hand

endpoint.

Lemma 2.3. Let η : R → R be continuous and satisfy (1.2) for every t ∈ R. Assume in addition

that condition (2.1) holds. Then
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(a) if [a, b] is a Volterra interval then η(a) = a; if further [a, b] is an RM-Volterra interval then

η(b) = a; and

(b) if η(a) = a for some a ∈ R then there exists a unique b ≥ a such that [a, b] is an RM-Volterra

interval; and further, every Volterra interval is contained in an RM-Volterra interval.

Thus there exists a one-to-one correspondence between fixed points of η and RM-Volterra intervals;

and so if η is analytic then any finite interval contains only finitely many RM-Volterra intervals.

We further have that

(c) if I1, I2 ⊆ R are RM-Volterra intervals, then either I1 ∩ I2 = ∅, or I1 ⊆ I2, or I2 ⊆ I1;

(d) if I1, I2 ⊆ R are maximal Volterra intervals, then either I1 ∩ I2 = ∅ or I1 = I2;

(e) every Volterra interval (and thus every RM-Volterra interval) is contained in a maximal

Volterra interval, and every maximal Volterra interval has length strictly less than 2π; and

(f) if Lx = κx, that is, equation (1.1) holds, for some x ∈ X \ {0} and κ 6= 0, and if I ⊆ R is

a maximal Volterra interval, then x(t) = 0 for every t ∈ I; and further, I is maximal with

respect to this property, that is, if x(t) = 0 for every t ∈ J for some interval J where I ⊆ J,

then I = J.

Finally,

(g) for any b ∈ R, and inductively for k ≥ 1, let

J0(b) = {b}, Jk(b) = E(Jk−1(b)), J∗(b) =
⋃

k≥0

Jk(b); (2.8)

then either J∗(b) = [a, b] for some a ≤ b or J∗(b) = (−∞, b]; and J∗(b) = [a, b] if and only if b

is contained in a maximal Volterra interval; and further, there always exists b ∈ R such that

J∗(b) = (−∞, b].

Let us observe that by using part (e) of Lemma 2.3, a partial converse to part (f) can be proved.

Assume that conditions (1.2) and (2.1) hold, and that Lx = κx for some x ∈ X+ \ {0} and κ 6= 0.

(Thus we are assuming an additional condition, that x(t) ≥ 0 for all t, and so κ > 0.) Suppose for

some interval I that x(t) = 0 for every t ∈ I and that I is maximal with respect to this property;
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necessarily I is compact. We claim that I is a maximal Volterra interval. To prove this note that

for any t ∈ I we have that

0 = κx(t) =

∫ t

η(t)
x(s) ds,

hence x(s) = 0 identically on [η(t), t]; and this implies that η(t) ∈ I , due to the maximality of I .

Thus η(I) ⊆ I , that is, I is a Volterra interval. By part (e), I is contained in a maximal Volterra

interval J, and x(t) = 0 identically on J by Proposition 2.1. It follows that I = J, and so I is a

maximal Volterra interval, as claimed.

We have the following result for equation (1.1), which gives a condition for coexistence of

analyticity and non-analyticity, and which shows that the sets A and N can have a rather intricate

structure. In this result and elsewhere, recall that a connected component of a topological space Y

is a nonempty subset of Y which is connected and is maximal in the sense of set inclusion.

Theorem B. Let η : R → R be real analytic and satisfy (1.2) for every t ∈ R. Suppose that [a, b]

is a maximal Volterra interval. Also suppose that Lx = κx, that is, equation (1.1) holds, for some

x ∈ X \ {0} and κ 6= 0. Then

(a) x(t) = 0 for every t ∈ [a, b], and thus (a, b) ⊆ A; it is also the case that a, b ∈ N ;

(b) for every ε > 0 the interval [a−ε, a] contains infinitely many connected components of A and

uncountably many points of N ; and

(c) for every ε > 0 the interval [b, b + ε] contains infinitely many connected components of A and

uncountably many points of N .

Here A and N are as in (1.5). (Recall that A is an open set and N is a closed set.)

In the setting of Theorem B the interval [a, b] is a maximal interval on which the solution x

vanishes identically. It would be of interest to have an asymptotic description of x(t) for t in

a neighborhood of this interval; for example one might ask how rapidly x(t) approaches zero as

t → a− or as t → b+. Necessarily the rate of approach to zero would be more rapid than algebraic,

as x is a C∞ function. We note that η near a has the form η(t) = t−K(t− a)n + O(|t− a|n+1) for

some K > 0 and n ≥ 2 (in fact with n even, as η(t) ≤ t). The theory of parabolic renormalization,

and in particular the so-called Ecalle-Voronin modulus, applies here; it indicates that there is a

continuum of distinct equivalence classes of such local maps, up to analytic conjugacy; see, for
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example, [12]. While this theory might be useful here, we still expect a resolution of this question

could be quite challenging.

Theorem C below extends the results of Theorem B. Following this is Theorem D, which

describes a situation in which the set N is a generalized Cantor set, namely it is nonempty and

closed, with empty interior, and has no isolated points.

Theorem C. Let η : R → R be real analytic, let µ be a positive integer, and define

ξ(t) = −η(−t) − 2πµ.

Assume that

(a) η satisfies condition (1.2) for every t ∈ R;

(b) ξ satisfies condition (1.2) (with η replaced with ξ) for every t ∈ R;

(c) η(a) = a for at least one a ∈ R; and

(d) ξ(v) = v for at least one v ∈ R.

Then condition (2.1) holds for η, and also for ξ; in particular, r(L) > 0. Suppose further that

Lx = κx, that is, equation (1.1) holds, for some x ∈ X \ {0} and κ 6= 0. Then the conclusions of

Theorem B hold for any maximal Volterra interval [a, b] for η. Additionally, if [v, w] is any maximal

Volterra interval for ξ then −w,−v ∈ N , and also conclusions (b) and (c) of Theorem B hold, but

with a and b replaced, respectively, by −w and −v. If further we have that

(e) if [v, w] is a maximal Volterra interval for the function ξ, then the strict inequalities v <

ξ(t) < t hold for every t ∈ (v, w),

then (−w,−v) ⊆ A holds.

One sees in Theorem C that with condition (a) holding, condition (b) means simply that

η(t) ≥ t−2πµ for every t ∈ R, and condition (d) says that η(−v) = −v−2πµ for some v ∈ R. Also,

we shall see that if [v, w] is a maximal Volterra interval for ξ, then the solution x in the statement

of Theorem C need not vanish identically on [−w,−v]; by contrast, x does vanish identically on

[a, b] if [a, b] is a maximal Volterra interval for η. In particular, such [−w,−v] is not an invariant

interval for η while [a, b] is. But do observe that [−w,−v] is “mod 2π invariant,” in the sense that

if t ∈ [−w,−v] then η(t) + 2πµ ∈ [−w,−v].

11



The proof of Theorem C will be given in Section 5, along with the proof of Theorem D. We

need the following definition for Theorem D.

Definition. Suppose that η : R → R is C1 and that S ⊆ R. We say that η is expansive on S if

whenever t ∈ S is such that ηk(t) ∈ S for every k ≥ 1, then

lim inf
k→∞

|η̇k(t)| > 1. (2.9)

Here ηk denotes the kth iterate of the function η, and η̇k is the derivative of ηk.

Theorem D. Assume all the conditions and notation in the statement of Theorem C; in particular,

assume conditions (a) through (e) in the statement of that result. Let [ak, bk] and [vk, wk] be an

enumeration (in any order) of all the maximal Volterra intervals for η and for ξ, respectively, where

k ∈ Z. Let

Bη =

∞⋃

k=−∞

(ak, bk), Bξ =

∞⋃

k=−∞

(−wk,−vk), B = Bη ∪ Bξ, S = R \ B, (2.10)

and suppose that η is expansive on the set S. Then

(a) the set A is open and dense in R, and the set N is nonempty and closed, with empty interior;

(b) defining

G∗ = {t0 ∈ R | there exists n ≥ 1 and ε > 0 such that

ηn(t0) ∈ ∂B∗ and ηn(t) ∈ B for every t with |t − t0| ≤ ε}, ∗ = η or ξ,

G = Gη ∪ Gξ,

(2.11)

we have that
A \ G ⊆ {t ∈ R | ηn(t) ∈ B for some n ≥ 0},

N ⊆ {t ∈ R | ηn(t) 6∈ B for every n ≥ 0},
(2.12)

and thus in the case that G = ∅ both these two inclusions are equalities;

(c) the inclusion Gη ⊆ A holds; and

(d) letting I denote the set of isolated points of N , namely

I = {t ∈ R | (t − ε, t + ε) ∩N = {t} for some ε > 0},

we have that I ⊆ Gξ; in particular, if Gξ = ∅, then N is a perfect set, namely a nonempty

closed set with empty interior and with no isolated points.
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We remark that for each k ∈ Z we have that

η([ak, bk]) ⊆ [ak, bk], η([−wk,−vk]) ⊆ [−wk − 2πµ,−vk − 2πµ], hence η(B) ⊆ B,

and we know that the intervals [ak, bk] are pairwise disjoint by (d) of Lemma 2.3, as are the intervals

[−wk,−vk]. Additionally, it is the case that the intervals [aj, bj] and [−wk,−vk] are disjoint for

any j, k ∈ Z. To prove this, assume to the contrary that there exists t ∈ [aj, bj] ∩ [−wk,−vk]

for some j and k. Then η(t) ∈ [−wk − 2πµ,−vk − 2πµ], and one sees inductively that ηn(t) ∈

[−wk−2πµn,−vk−2πµn] for every n ≥ 0; thus lim
n→∞

ηn(t) = −∞. On the other hand, ηn(t) ∈ [aj, bj]

for every such n as η([aj, bj]) ⊆ [aj, bj], so ηn(t) is a bounded sequence. With this contradiction we

conclude that [aj, bj] ∩ [−wk,−vk] = ∅. This also implies that

∂Bη = {ak}
∞
k=−∞ ∪ {bk}

∞
k=−∞, ∂Bξ = {−wk}

∞
k=−∞ ∪ {−vk}

∞
k=−∞,

∂B = ∂Bη ∪ ∂Bξ,
(2.13)

and that the intervals [ak, bk] and [−wk,−vk] are the connected components in B.

One expects that “typically” the sets Gη and Gξ, and thus G, are empty. More precisely, suppose

that t0 ∈ G∗ where ∗ = η or ξ; say ∗ = η for definiteness. Let n ≥ 1 be as in the definition (2.11)

of Gη. Define the set

Mη = {t ∈ R | there exists an integer m ≥ 1 such that

η(k)(t) = 0 for 1 ≤ k ≤ 2m− 1 but η(2m)(t) 6= 0},
(2.14)

namely the points at which η has a local maximum or minimum. (Here η(k) denotes the kth

derivative of η; by contrast, as noted earlier, ηk denotes the kth iterate of η.) One sees ηn has

a local maximum or minimum at t0, and from this it follows that η has a local maximum or

minimum at ηk(t0) for some k with 0 ≤ k ≤ n − 1; that is, t∗ ∈ Mη where t∗ = ηk(t0). Further,

ηn−k(t∗) = ηn(t0) ∈ ∂Bη. Thus a necessary condition for Gη to be nonempty is that ηj(t∗) ∈ ∂Bη

for some t∗ ∈ Mη and some j ≥ 1. While such a condition is possible, one does not typically expect

it due to the fact that both Mη and Gη are discrete sets, containing only finitely many points in

any finite interval. Similar conclusions apply for ∗ = ξ.

One also sees that if G∗ 6= ∅ then G∗ is an infinite set. Indeed, for any t0 ∈ G∗ let ν(t0) ≥ 1

be the smallest integer n such that the defining condition (2.11) for G∗ holds for t0. Also, for each

n ≥ 1 let G∗n = {t0 ∈ G∗ | ν(t0) = n}. Then G∗ is the disjoint union of the sets G∗n. One easily sees

that G∗(n+1) is the inverse image of G∗n under the map ∗ = η or ∗ = ξ. It follows that G∗ 6= ∅ if

and only if G∗n 6= ∅ for every n ≥ 1, in which case G∗ is an infinite set.
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The next theorem provides an explicit and simple class of examples which satisfy the conditions

of Theorem D.

Theorem E. The function

η(t) = t − πµ(1 − cos t),

where µ ≥ 1 is an integer, satisfies the hypotheses of Theorem D. In particular, there exists a

quantity b ∈ (0, π
2 ) such that

[ak, bk] = [2πk, b + 2πk], [vk, wk] = [π + 2πk, b + π + 2πk], k ∈ Z, (2.15)

and therefore

S =

( ∞⋃

k=−∞

(−π + 2πk, 2πk)

)
∪

( ∞⋃

k=−∞

(b + 2πk,−b + π + 2πk)

)
. (2.16)

In addition G = ∅, and so the inclusions in (2.12) are equalities and N is a perfect set.

The following lemma provides a practical criterion with which expansiveness of η, defined above,

can be established. It will be used in the proof of Theorem E.

Lemma 2.4. Suppose that η : R → R is C1. Also suppose that S ⊆ R and that there exist

α ∈ (0, 1) and β > 0 such that αβ > 1 and such that the following holds. If t ∈ S is such that

ηk(t) ∈ S for every k ≥ 1 then |η̇(t)| ≥ α; and additionally, if |η̇(t)| ≤ 1 then there exists n ≥ 1

such that

|η̇(ηk(t))| > 1 for 1 ≤ k ≤ n − 1, and |η̇(ηn(t))| ≥ β. (2.17)

Then η is expansive on S.

Proof. Let S∗ = {t ∈ S | ηk(t) ∈ S for every k ≥ 1}. Fix any t ∈ S∗ and let tk = ηk(t) for k ≥ 0

(and thus t0 = t). Note here that tk ∈ S∗ for every k ≥ 0.

First suppose that there are infinitely many k ≥ 0 for which |η̇(tk)| ≤ 1; denote such k, in order,

by m1 < m2 < m3 < · · · . Then by assumption (2.17), and as tmj
∈ S∗ for each j ≥ 1, there exists

nj with mj < nj < mj+1 such that

|η̇(tk)|





≥ α, if k = mj for some j ≥ 1,

≥ β, if k = nj for some j ≥ 1,

> 1, otherwise.
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It follows that

|η̇k+1(t0)| =

k∏

i=0

|η̇(ti)|





≥ (αβ)j, for nj ≤ k < mj+1 with j ≥ 1,

≥ (αβ)jα, for mj+1 ≤ k < nj+1 with j ≥ 0,

and thus lim
k→∞

|η̇k(t0)| = ∞ and so (2.9) holds.

In case there are only finitely many k for which |η̇(tk)| ≤ 1, say j0 ≥ 1 of them, a slight

modification of the above argument shows that |η̇k+1(t0)| ≥ (αβ)j0 > 1 for all k ≥ nj0 . Finally, if

|η̇(tk)| ≤ 1 for no k, and so |η̇(tk)| > 1 for every k, then sees that |η̇k(t0)| > 1 for every k ≥ 1, and

that |η̇k(t0)| is strictly increasing in k. In any case condition (2.9) holds, as desired.

We end this section with the proof of Lemma 2.3. Here and elsewhere we let len(I) denote the

length of an interval I .

Proof of Lemma 2.3. We prove the seven parts of this lemma in sequence.

(a) We have a ≤ η(t) ≤ t for every t ∈ [a, b] by (1.2) and (2.2), and thus η(a) = a. If further [a, b]

is an RM-Volterra interval then η(b) = a follows immediately from (2.3).

(b) With η(a) = a, if [a, b] is an RM-Volterra interval then b is uniquely determined by (2.3).

Furthermore, for any a satisfying η(a) = a the right-hand side of (2.3) is a finite quantity in light

of condition (2.1); and moreover [a, b] is a Volterra interval as (2.2) holds. Thus [a, b] is an RM-

Volterra interval. And further, if [a, r] is a Volterra interval then b in (2.3) satisfies b ≥ r; thus

[a, r] is contained in the RM-Volterra interval [a, b].

(c) Suppose that I1 = [a1, b1] and I2 = [a2, b2] are RM-Volterra intervals which are not disjoint, and

that neither is a subset of the other. Without loss we have a1 < a2 ≤ b1 < b2. But then η(b1) = a1

by (a) above, so η(b1) < a2. This now contradicts (2.2) for [a, b] = [a2, b2] and t = b1 ∈ [a, b].

(d) This follows directly from (c) and from the definition of a maximal Volterra interval.

(e) Let us first note that if J = [p, q] is an RM-Volterra interval (in particular, if it is a maximal

Volterra interval) then len(J) < 2π. For if not, then J ′ = [p + 2π, q + 2π] is also an RM-Volterra

interval with J ∩ J ′ 6= ∅, but neither J nor J ′ is contained in the other. This contradicts (c).

Now suppose I = [a, r] is a Volterra interval, and consider

J = {J ⊆ R | J is an RM-Volterra interval with I ⊆ J}.

Then J is a nonempty set by (b). (We remark that the intervals J ∈ J need not have a as

their left-hand endpoint.) By (c), if J1, J2 ∈ J then either J1 ⊆ J2 or J2 ⊆ J1, and so the set
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J is totally ordered by inclusion. If J is a finite set then it contains a maximal element which

is necessarily a maximal Volterra interval. If on the other hand J is an infinite set then there

exists a sequence Jk = [pk, qk] ∈ J with Jk ⊆ Jk+1 for every k ≥ 1, such that lim
k→∞

len(Jk) = β,

where β = sup
J∈J

len(J) ≤ 2π. In this case lim
k→∞

pk = p∞ and lim
k→∞

qk = q∞ exist, and one sees

that J∞ = [p∞, q∞] is a Volterra interval with len(J∞) = β. In particular, J∞ is contained in an

RM-Volterra interval J∗. But from the definition of β necessarily β = len(J∞) ≤ len(J∗) ≤ β, hence

J∞ = J∗, and so J∞ is an RM-Volterra interval. Again from the definition of β it follows that J∞

is a maximal Volterra interval. This proves (e).

(f) By Proposition 2.1 we have that x(t) = 0 for every t ∈ I . Denoting I = [a, b], let [p, q] ⊇ [a, b]

be the maximal interval containing [a, b] on which x vanishes; that is,

p = inf{t ∈ R | t ≤ a and x(s) = 0 for every s ∈ [t, a]},

q = sup{t ∈ R | t ≥ b and x(s) = 0 for every s ∈ [b, t]}.
(2.18)

We wish to show that [p, q] = [a, b]. To begin, we shall show that

η(t) ≥ p for every t ∈ [p, a]. (2.19)

Let r1 = inf
t∈[p,a]

η(t). Certainly r1 ≤ p as η(p) ≤ p. Given any c1 ∈ [r1, a], then since η(a) = a there

exists t ∈ [p, a] such that η(t) = c1. For this t we have that x(t) = 0 and thus

κx(t) = 0 =

∫ t

η(t)
x(s) ds =

∫ p

c1

x(s) ds +

∫ t

p
x(s) ds =

∫ p

c1

x(s) ds.

As c1 ∈ [r1, a] is arbitrary, the vanishing of the final integral above implies that x(s) = 0 for every

s ∈ [r1, a]. If r1 < p this violates the definition of p; thus necessarily r1 = p and thus (2.19) holds.

Now η(t) ≥ a for every t ∈ [a, b], and thus by (2.19) η(t) ≥ p for every t ∈ [p, b]. This implies

that [p, b] is a Volterra interval and is thus contained in a maximal Volterra interval by (e) above.

But by assumption [a, b] is a maximal Volterra interval, and thus [p, b] = [a, b] must hold. Thus

p = a, as desired.

There remains to prove that q = b. Suppose to the contrary that q > b. Let r2 = inf
t∈[b,q]

η(t).

Then in light of (2.3) necessarily r2 < a. Now take any c2 ∈ [r2, a]. Then since η(b) = a, there

exists t ∈ [b, q] with η(t) = c2; and as x(t) = 0 for this t, we have that

κx(t) = 0 =

∫ t

η(t)
x(s) ds =

∫ a

c2

x(s) ds +

∫ t

a
x(s) ds =

∫ a

c2

x(s) ds.
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Again, as c2 ∈ [r2, a] is arbitrary, we have that x(s) = 0 for every s ∈ [r2, a]. But from (2.18) this

implies that p ≤ r2 < a, contradicting the above result that p = a. With this we have proved that

q = b.

(g) As noted above, using (1.2), for each k ≥ 0 the set Jk(b) is a compact interval whose right-hand

endpoint is b; and furthermore, these intervals are nested so that Jk−1(b) ⊆ Jk(b) for k ≥ 1. Thus

either J∗(b) = [a, b] for some a ≤ b or J∗(b) = (−∞, b].

Suppose that J∗(b) = [a, b]. Taking any t ∈ (a, b] we have that t ∈ Jk(b) for some k ≥ 0 and

thus η(t) ∈ Jk+1(b) ⊆ J∗(b). Thus η((a, b]) ⊆ [a, b], which implies that η([a, b]) ⊆ [a, b]; that is,

J∗(b) is a Volterra interval. Thus by (e) above J∗(b) is contained in a maximal Volterra interval

and so b is contained in a maximal Volterra interval, as claimed.

Now suppose that b ∈ [p, q] where [p, q] is a maximal Volterra interval. As η([p, q]) ⊆ [p, q], it

follows that Jk(b) ⊆ [p, q] for every k ≥ 0, and so J∗(b) ⊆ [p, q]. Thus J∗(b) = [a, b] for some a ≤ b,

again as claimed.

Finally, we need to show there exists some b ∈ R such that J∗(b) = (−∞, b], equivalently, that

b is not contained in any maximal Volterra interval. This is trivial if there are no maximal Volterra

intervals, so suppose there exists a maximal Volterra interval [a1, b1]. Necessarily inf
t∈[b1,b1+ε]

η(t) < a1

holds for any ε > 0, otherwise [a1, b1+ε] would be a Volterra interval, contradicting the maximality

of [a1, b1]. Fix any b > b1 so that η(b) < a1. We claim that b is not contained in any maximal

Volterra interval. Suppose to the contrary that b is contained in some maximal Volterra interval

[a2, b2]; we seek a contradiction. Certainly b1 < b ≤ b2. Also η([a2, b2]) ⊆ [a2, b2] and so a2 ≤

η(b) < a1. Thus [a1, b1] ⊆ [a2, b2] with [a1, b1] 6= [a2, b2] and this contradicts (d) above, completing

the proof.

3 Is the Spectral Radius Positive? The Proof of Theorem A

In this section we prove Theorem A. Again, L is the linear operator given by (1.4) acting on the

space X given by (1.3), and r(L) denotes the spectral radius of L.

We first need the following lemmas.

Lemma 3.1. Let η : R → R be continuous and satisfy (1.2) for every t ∈ R. Suppose there exist

points tk ∈ R for 0 ≤ k ≤ n, for some n ≥ 1, such that tk ∈ (η(tk−1), tk−1) for 1 ≤ k ≤ n, and

such that also tn ≡ t0 (mod 2π). Then r(L) > 0.
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Proof. It is enough to show the existence of some x ∈ X+ \ {0} and some α > 0 such that

(Lx)(t) ≥ αx(t) for every t ∈ R, (3.1)

that is, Lx ≥ αx where ≥ denotes the partial ordering in X given by the cone X+. For then

we have Lmx ≥ αmx for every m ≥ 1, and therefore ‖Lm‖ ≥ αm for the operator norm of Lm.

Taking mth roots and letting m → ∞ gives r(L) ≥ α > 0, as desired. (We use here the fact that

if y ≥ z ≥ 0 for y, z ∈ X , then ‖y‖ ≥ ‖z‖, which is a property of the cone X+. The reader might

compare this fact to [3, Lemma 2.2], which is a more general result valid for other cones.)

To establish (3.1) for some x and α as above, fix δ > 0 and define a set S ⊆ R and a function

x ∈ X+ \ {0} by

S = {tk + 2πj | 0 ≤ k ≤ n − 1 and j ∈ Z}, x(t) = max{δ − dist(t, S), 0},

for t ∈ R. Here dist(t, S) denotes the distance from a point t to the set S. It is clear that S is

closed, and in fact is a discrete set, and is 2π-periodic (meaning t ∈ S if and only if t + 2π ∈ S),

and that x ∈ X+ \ {0}. To choose δ, first let

ε = min
1≤k≤n

min{tk − η(tk−1), tk−1 − tk}

which is a positive quantity, namely the minimum of the distances of the points tk to the boundary

of the intervals (η(tk−1), tk−1). Then from the continuity of η, there exists δ > 0 such that if

|t − tk−1| ≤ δ for some k with 1 ≤ k ≤ n, then |η(t)− η(tk−1)| ≤ ε. Additionally, we may assume

that δ < ε, and denoting tk,j = tk + 2πj, we observe that

tk,j ∈ [η(tk−1,j) + ε, tk−1,j − δ) (3.2)

for 1 ≤ k ≤ n and j ∈ Z.

Now suppose that dist(t, S) ≤ δ. Then we have that |t − tk−1,j| ≤ δ for some k and j with

1 ≤ k ≤ n and j ∈ Z. We also have that |η(t)− η(tk−1,j)| ≤ ε, and therefore, using (3.2),

η(t) ≤ η(tk−1,j) + ε ≤ tk,j < tk−1,j − δ ≤ t.

Thus

(Lx)(t) =

∫ t

η(t)
x(s) ds ≥

∫ tk−1,j−δ

η(tk−1,j)+ε
x(s) ds > 0,

where the positivity of the final integral above holds because x(tk,j) = δ > 0, with (3.2) holding.

With this, we have established that (Lx)(t) > 0 for every t ∈ Q, where Q = {t ∈ R | dist(t, S) ≤ δ}.
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As the set Q is closed and 2π-periodic, and the function Lx is 2π-periodic, it follows that there

exists β > 0 such that (Lx)(t) ≥ β for every t ∈ Q.

We now establish (3.1) for every t ∈ R, taking α = β‖x‖−1. We assume without loss that t is

such that x(t) > 0, and thus t ∈ Q. Then

(Lx)(t) ≥ β = α‖x‖ ≥ αx(t),

as desired.

For the next result recall the definition (2.7) of the set E(S).

Lemma 3.2. Let η : R → R be continuous and satisfy η(t) ≤ t for every t ∈ R. Suppose that J

is a compact interval of positive length and that p ∈ int(E(J)). Suppose also that η(p) < p. Then

there exists q ∈ int(J) such that η(q) < q and p ∈ (η(q), q).

Proof. Denote J = [a, b] where a < b. Note that p ∈ int(E(J)) ⊆ (−∞, b), and so p < b. First

suppose that p ≥ a. Then upon letting q = p + ε for sufficiently small ε > 0, we see that q ∈ (a, b),

and that η(q) < q and p ∈ (η(q), q), since η(p) < p. Thus q is as desired.

Now suppose that p < a. Let s ∈ [a, b] be such that η(s) = inf
t∈[a,b]

η(t), and so η(s) is the left-hand

endpoint of the interval E(J). Therefore η(s) < p < a ≤ s, in particular because p ∈ int(E(J)).

Choose q ∈ (a, b) and sufficiently near s; again we see that η(q) < q and p ∈ (η(q), q), as desired.

Proof of Theorem A. By Corollary 2.2, if (2.1) is false then r(L) = 0. Therefore suppose

that (2.1) holds; we must prove that r(L) > 0. Recall the definitions (2.8) of Jk(b) and J∗(b)

in Lemma 2.3; by part (g) of that lemma there exists b ∈ R such that J∗(b) = (−∞, b]. Note

that η(b) < b, for if η(b) = b then we would have J∗(b) = {b}. Then b − 2π ∈ J∗(b), hence

b − 2π ∈ int(Jn(b)) for some n ≥ 1. Denote t0 = b and tn = b − 2π. We claim there exist tk ∈ R,

for 1 ≤ k ≤ n − 1, such that

η(tk) < tk and tk ∈ int(Jk(t0)) for 1 ≤ k ≤ n,

tk+1 ∈ (η(tk), tk) for 0 ≤ k ≤ n − 1.

(3.3)

To prove (3.3) we begin by proving the first line but only for k = n. We have that η(tn) =

η(t0) − 2π < t0 − 2π = tn, and certainly tn = t0 − 2π ∈ int(Jn(t0)) from above.

We next prove both lines of (3.3) for k in the range 1 ≤ k ≤ n − 1, by induction, but in

descending order beginning with k = n−1. In making the inductive step only the first line of (3.3)
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will be required, for k + 1, in order to obtain both lines of (3.3) for k. Thus assume

η(tk+1) < tk+1 and tk+1 ∈ int(Jk+1(t0))

for some k with 1 ≤ k ≤ n−1. As Jk+1(t0) = E(Jk(t0)), we have by Lemma 3.2 that there exists tk

satisfying the inequality and inclusions in both lines of (3.3); in particular J = Jk(t0), with p = tk+1

and q = tk, in the statement of the lemma. Note that the required condition len(Jk(t0)) > 0 in

Lemma 3.2 holds as [η(t0), t0] = J1(t0) ⊆ Jk(t0) and η(t0) < t0. This establishes (3.3) for all

indicated values of k except the second line for k = 0, that is, t1 ∈ (η(t0), t0). However, this fact

is already established by the first line of (3.3) for k = 1, namely t1 ∈ int(J1(t0)) = (η(t0), t0).

Thus (3.3) is proved.

With the points tk so constructed, we conclude immediately from Lemma 3.1 that r(L) > 0, as

desired.

4 Intricate Structure of A and N ; the Proof of Theorem B

Throughout this section we will assume as standing hypotheses that η is continuous and satis-

fies (1.2) and (2.1); in particular, r(L) > 0 holds. Note that condition (2.1) is implicitly assumed

in the statement of Theorem B, in that the existence of the eigenvalue κ 6= 0 implies that r(L) > 0,

which is equivalent to (2.1).

We give several lemmas, followed by the proof of Theorem B.

Lemma 4.1. Let [a, b] be a maximal Volterra interval. Then given ε > 0 and c ∈ R, there exists

n ≥ 1 such that

inf
t∈[a−ε,a]

ηn(t) < c

holds.

Proof. Suppose the result is false. Then for some ε > 0 the quantity r ≤ a − ε defined by

r = inf
k≥1

(
inf

t∈[a−ε,a]
ηk(t)

)

is finite, that is, r 6= −∞. As η(a) = a, it follows that if s ∈ (r, a] then there exists t ∈ [a − ε, a]

and k ≥ 1 such that ηk(t) = s. But then r ≤ ηk+1(t) = η(s) ≤ s ≤ a and so η(s) ∈ [r, a]. Thus

η((r, a]) ⊆ [r, a] which implies that η([r, a]) ⊆ [r, a], and so [r, a] is a Volterra interval. Therefore
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by part (e) of Lemma 2.3 we have that [r, a] ⊆ [p, q] where [p, q] is a maximal Volterra interval.

However a ∈ [p, q]∩ [a, b] 6= ∅ and p ≤ r < a, which contradicts part (d) of Lemma 2.3.

As was shown in [8], if x satisfies an appropriate delay-differential equation then the sets A and

N defined in (1.5) enjoy certain mapping properties. In the case of equation (1.7), which arises

from (1.1) with κ 6= 0, one has the following; see [8, Corollary 3.5]. Assuming that η : R → R is

analytic, and that x : R → C satisfies (1.7) on R, recall the set Mη in (2.14), namely the set of

points at which η has a local maximum or minimum. For simplicity denote M = Mη. Then

η(A\M) ⊆ A, η(N ) ⊆ N . (4.1)

Generally, if ζ : R → R is analytic, we shall say that ζ has an extremum at t ∈ R if ζ has either a

local maximum or a local minimum at t; in particular, M is the set of extrema of η.

Lemma 4.2. Assume that η is analytic, and suppose for some n ≥ 1 that the nth iterate ηn does

not have an extremum at t. Then η does not have an extremum at any of the points ηk(t), for

0 ≤ k ≤ n − 1; that is,

ηk(t) 6∈ M for 0 ≤ k ≤ n − 1 (4.2)

holds.

Proof. First note that ηn is strictly monotone and thus one-to-one in a neighborhood of t. Suppose

however that η has an extremum at ηk(t) for some k with 0 ≤ k ≤ n−1, and let m be the minimum

such k. Then η is strictly monotone in a neighborhood of ηj(t) for 0 ≤ j ≤ m − 1; thus ηm is

strictly monotone in a neighborhood of t and so maps some neighborhood of t one-to-one onto a

neighborhood of ηm(t). On the other hand, η is not one-to-one on any neighborhood of ηm(t),

and so neither is ηn−m. It follows that the composition ηn = ηn−m ◦ ηm is not one-to-one on any

neighborhood of t, a contradiction.

Lemma 4.3. Assume that η is analytic. Also assume that Lx = κx, that is, equation (1.1) holds,

for some x ∈ X \ {0} and κ 6= 0. Suppose that c ∈ int(ηn(I)) for some interval I ⊆ R and some

n ≥ 1. Then if c ∈ A there exists t ∈ I ∩A such that ηn(t) = c; and if c ∈ N there exists t ∈ I ∩N

such that ηn(t) = c.

Proof. There exists t ∈ I such that ηn(t) = c. If c ∈ A then also t ∈ A for any such t by (the

contrapositive of) the second inclusion in (4.1).
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Now suppose that c ∈ N ; in this case t must be chosen more carefully. There exist p, q ∈ I such

that ηn(p) < c < ηn(q); let us assume that p < q, the argument when p > q being similar. Now let

t = sup{s ∈ [p, q] | ηn(r) ≤ c for every r ∈ [p, s]}.

Then t ∈ (p, q) ⊆ I and ηn(t) = c. Further, ηn − c changes sign at t and so ηn does not have an

extremum at t; thus by Lemma 4.2 we have that (4.2) holds. We conclude from (the contrapositive

of) the first inclusion in (4.1) that ηk(t) ∈ N for 0 ≤ k ≤ n − 1; in particular, t ∈ N , as desired.

Lemma 4.4. Let η, [a, b], x, and κ be as in the statement of Theorem B, with N the set (1.5)

associated to the solution x. Then given ε > 0 there exists n ≥ 1 such that the following holds. Given

any c ∈ [a−2π(m+1)−ε, a−2πm]∩N for some integer m, there exists t ∈ [a−2πm−ε, a−2πm]∩N

such that ηn(t) = c.

Proof. In proving the lemma now we may assume without loss that m = 0, due to the periodicity

condition in (1.2); thus we have c ∈ [a− 2π − ε, a] ∩N .

As [a, b] is a maximal Volterra interval, by Lemma 4.1 there exists n ≥ 1 such that

inf
t∈[a−ε,a]

ηn(t) < a − 2π − ε. (4.3)

If c = a then we may take t = a, as η(a) = a ∈ N by part (a) of Lemma 2.3. (Note that in this case

we are assuming that c ∈ N and thus a ∈ N .) Suppose therefore that c 6= a and let I = [a − ε, a].

Then by (4.3) we have that c ∈ [a − 2π − ε, a) ⊆ int(ηn(I)), and so from Lemma 4.3 there exists

t ∈ I ∩N such that ηn(t) = c, as desired.

Proof of Theorem B. We prove the three parts of this theorem in sequence.

(a) The fact that κ 6= 0 implies that r(L) > 0, and so (2.1) holds and thus Lemma 2.3 applies.

By part (f) of that result we have that x(t) = 0 for every t ∈ [a, b], and so (a, b) ⊆ A. Further by

part (f), the solution x does not vanish identically on [a − ε, a] or on [b, b + ε], for any ε > 0; it

follows that x is not analytic at a or b, that is, a, b ∈ N . This completes the proof of part (a) of

the theorem.

(b) We first show that the set [a − ε, a] ∩ N is uncountable for every ε > 0; without loss we may

assume that ε < 2π. With ε fixed, let n ≥ 1 be as in Lemma 4.4. Also denote

Im = [a − 2πm − ε, a − 2πm]
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for any integer m, and note that these intervals are pairwise disjoint. Now let ρj ∈ {0, 1} for j ≥ 1

be any sequence of zeros and ones, and define integers mj for j ≥ 0 by

m0 = 0, mj =

j∑

i=1

ρi. (4.4)

We shall construct a point t∗ ∈ [a− ε, a] ∩N , such that

ηnj(t∗) ∈ Imj
for j ≥ 0. (4.5)

One easily sees that different sequences of zeros and ones yield different points; indeed, if {ρj}∞j=1

and {ρ̃j}∞j=1 are such sequences, say with ρj0 6= ρ̃j0 for some j0 ≥ 1, and if t∗ and t̃∗ are the

corresponding points in [a− ε, a]∩N , then by (4.4) either mj0−1 6= m̃j0−1 or mj0 6= m̃j0 must hold

(with the obvious notation for m̃j). Thus either ηn(j0−1)(t∗) 6= ηn(j0−1)(t̃∗) or else ηnj0(t∗) 6= ηnj0(t̃∗)

by (4.5); in any case, t∗ 6= t̃∗. As there are uncountably many sequences {ρj}∞j=1, it follows that

the set [a − ε, a] ∩N is uncountable.

We shall construct t∗ by a sequence of approximations, each using only a finite number of the

ρj. For every k ≥ 0 we construct points tk,j such that

tk,j ∈ Imj
∩N for 0 ≤ j ≤ k,

tk,k = a − 2πmk, tk,j = ηn(tk,j−1) for 1 ≤ j ≤ k.

Indeed, this is done easily using Lemma 4.4, inducting on j in descending order beginning with

j = k. First, from above a ∈ N , and thus tk,k = a − 2πmk ∈ Imk
∩ N , to begin the induction.

Assuming that tk,j ∈ Imj
∩N holds for some j with 1 ≤ j ≤ k, and noting that either mj = mj−1+1

or mj = mj−1, we have that

tk,j ∈ Imj
∩ N ⊆ (Imj−1+1 ∪ Imj−1) ∩N

⊆ [a − 2π(mj−1 + 1) − ε, a − 2πmj−1] ∩ N .

It follows by Lemma 4.4 that there exists tk,j−1 ∈ Imj−1 ∩N with ηn(tk,j−1) = tk,j , as desired; and

this completes the induction. Now with tk,0 ∈ [a−ε, a]∩N constructed, there exists a subsequence

k′ → ∞ such that tk′,0 converges, and we set t∗ = lim
k′→∞

tk′,0. Then t∗ ∈ N as N is closed. Also,

ηnj(t∗) = lim
k′→∞

ηnj(tk′,0) = lim
k′→∞

tk′,j ∈ Imj

for every j ≥ 0, since ηnj(tk′,0) = tk′,j ∈ Imj
for k′ ≥ j. With this, the proof that [a − ε, a] ∩ N is

uncountable is complete.
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We next show that [a−ε, a] contains infinitely many connected components of A, for every ε > 0.

From above [a−ε, a)∩N 6= ∅ for every ε > 0, so it is enough to show that [a−ε, a)∩A 6= ∅ for every

ε > 0. By Lemma 4.1 let n ≥ 1 be such that inf
t∈[a−ε,a]

ηn(t) < a−2π; thus there exists t0 ∈ [a− ε, a)

such that ηn(t0) ∈ (a−2π, b−2π). (Note that t0 6= a as η(a) = a.) But [a−2π, b−2π] is a maximal

Volterra interval, and so (a − 2π, b− 2π) ⊆ A, and thus ηn(t0) ∈ A. It follows that t0 ∈ A by (the

contrapositive of) the second inclusion in (4.1), and we conclude that [a − ε, a) ∩ A 6= ∅ holds, as

desired.

(c) To complete the proof of the theorem we consider the interval [b, b + ε] for small ε > 0. We

recall that η(b) = a and we note that η̇(t) < 0 for every t > b sufficiently near b, as the interval

[a, b] is an RM-Volterra interval. Therefore there exist positive quantities ε1 and ε2 such that

η : [b, b+ε1] → [a−ε2, a] is a surjective homeomorphism. Furthermore, we may choose ε1 so that η

is monotone in a neighborhood of [b, b+ ε1], and therefore [b, b+ ε1]∩M = ∅. It follows from (4.1)

that η([b, b + ε1] ∩ A) = [a − ε2, a] ∩ A and η([b, b + ε1] ∩ N ) = [a − ε2, a] ∩ N , and thus for any

positive ε ≤ ε1 part (c) of Theorem B follows from part (b) above.

5 Cantor Set Structure of N ; the Proofs of Theorems C and D

We require several lemmas before first proving Theorem C.

Lemma 5.1. If n ≥ 1 we have that

| sinnθ| ≤ n| sin θ| for all θ ∈ R, (5.1)

and thus

sinnθ ≤ n sin θ for 0 ≤ θ ≤
π

3(n− 1)
(5.2)

holds for n ≥ 2.

Proof. We prove (5.1) for n ≥ 1 by inducting on n. The result is trivial for n = 1, so assume

that (5.1) holds for some n ≥ 1. Then

| sin((n + 1)θ)| = | sinnθ cos θ + cosnθ sin θ| ≤ | sinnθ| + | sin θ| ≤ (n + 1)| sinθ|,

as desired. This establishes (5.1), and (5.2) follows immediately.
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Lemma 5.2. Assume that U ⊆ C is a neighborhood of a point v ∈ R, and that ξ : U → C is real

analytic (that is, analytic, with ξ(t) ∈ R for every t ∈ U ∩ R). Further assume that

ξ(t) = t − K(t − v)n + O(|t− v|n+1) (5.3)

in a neighborhood of the point v, for some K > 0 and integer n ≥ 2. Then if ε > 0 is sufficiently

small, the region D ⊆ C defined as

D = {v + reiθ ∈ C | 0 < r < ε and |θ| < α}, α =
π

3(n − 1)
, (5.4)

satisfies ξ(D \ {v}) ⊆ D.

Proof. Henceforth, by taking ε sufficiently small, we assume the bound

|ξ(t)− t + K(t − v)n| ≤ M |t − v|n+1

on the remainder term in (5.3) for every t ∈ D, for some M . We also assume that ε is small enough

that the inequalities

K2εn−1 + 2Mε < K, Kεn−1 + Mεn < cosα,

Knεn−1 ≤ cos α, 2Mε ≤ K sin(π/3),

(5.5)

all hold. Then taking t = v + reiθ ∈ D \ {v}, and so 0 < r ≤ ε and |θ| ≤ α, we have that

|ξ(t) − v| ≤ |reiθ − Krneinθ|+ Mrn+1 = r

(
|1 − Krn−1ei(n−1)θ| + Mrn

)

= r

((
1− 2Krn−1 cos((n − 1)θ) + K2r2n−2

)1/2

+ Mrn

)

≤ r

((
1− Krn−1 cos((n − 1)θ) +

K2r2n−2

2

)
+ Mrn

)

≤ r

((
1−

Krn−1

2
+

K2r2n−2

2

)
+ Mrn

)
< r ≤ ε,

(5.6)

provided that K2r2n−2 + 2Mrn < Krn−1, equivalently, K2rn−1 + 2Mr < K, which holds due to

the first inequality in (5.5). (Note that the second inequality in (5.6) follows from the fact that

(1 + σ)1/2 ≤ 1 + 1
2σ for any σ ≥ −1.)
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We next note that

Re(ξ(t)− v) ≥ r cos θ − Krn cos nθ − Mrn+1 ≥ r cosα − Krn − Mrn+1 > 0, (5.7)

where the final inequality in (5.7) follows from the second inequality in (5.5). In particular, ξ(t) 6= v

and so

0 < |ξ(t)− v| < ε (5.8)

from (5.6). Now write ξ(t) − v = |ξ(t) − v|eiϕ, where we may assume |ϕ| < π
2 by (5.7). For the

remainder of the proof we assume without loss that 0 ≤ θ ≤ α; the case in which −α ≤ θ ≤ 0 is

similar and is omitted. Then

| Im(ξ(t)− v)| ≤ |r sin θ − Krn sinnθ| + Mrn+1 = r sin θ − Krn sinnθ + Mrn+1 (5.9)

provided Krn−1 sinnθ ≤ sin θ; but this holds by Lemma 5.1 and from the third inequality in (5.5)

since

Krn−1 sinnθ ≤ Kεn−1 sinnθ ≤ Knεn−1 sin θ ≤ cosα sin θ ≤ sin θ.

Therefore, from (5.7) and (5.9),

| tanϕ| =
| sinϕ|

cos ϕ
=

| Im(ξ(t) − v)|

Re(ξ(t) − v)
≤

sin θ − Krn−1 sin nθ + Mrn

cos θ − Krn−1 cos nθ − Mrn
. (5.10)

We claim that the final term in (5.10) is strictly less than tanα, that is,

sin θ − Krn−1 sinnθ + Mrn

cos θ − Krn−1 cosnθ − Mrn
<

sinα

cos α
. (5.11)

Upon cross-multiplying, we see that proving (5.11) is equivalent to proving that

g(θ) = sinα

(
cos θ − Krn−1 cosnθ − Mrn

)
− cos α

(
sin θ − Krn−1 sin nθ + Mrn

)
> 0, (5.12)

where the above formula serves as the definition of g(θ), for a given fixed r. We have that

g′(θ) = sin α

(
− sin θ + Knrn−1 sin nθ

)
− cosα

(
cos θ − Knrn−1 cos nθ

)

= − cos(α − θ) + Knrn−1 cos(α − nθ) ≤ − cosα + Knεn−1 ≤ 0

(5.13)

for every θ satisfying 0 ≤ θ ≤ α, again from the third inequality in (5.5). Also,

g(α) = rn−1

(
K sin((n− 1)α)− Mr(sinα + cosα)

)
> rn−1

(
K sin(π/3)− 2Mε

)
≥ 0 (5.14)
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by the fourth inequality in (5.5). Thus from (5.13) and (5.14) it follows that (5.12) holds. Therefore,

from (5.10) and (5.11) we have that |ϕ| < α, and with (5.8) we have that ξ(t) ∈ D, as desired.

Let us remark that with somewhat more effort, one can prove the following sharper version of

Lemma 5.2. We omit the proof as it is not needed here.

Lemma 5.2′. Let the assumptions and notation be as in Lemma 5.2 and let β = π/(2(n − 1)).

Then there exists a continuous even function ρ : [−β, β] → R which is decreasing on [0, β], positive

on (−β, β), and with ρ(±β) = 0, such that if

E = {v + reiθ ∈ C | 0 < r < ρ(θ) and |θ| < β},

then ξ(E \ {v}) ⊆ E. If z = v + reiθ ∈ E \ {v} and we denote ξ(z) = v + r̃eieθ, where |θ|, |θ̃| < β,

then 0 < r̃ < r; and also 0 < θ̃ < θ if θ > 0, and θ < θ̃ < 0 if θ < 0, and θ̃ = 0 if θ = 0.

Lemma 5.3. Assume for some compact interval [v, w] that ξ : [v, w] → [v, w] is analytic. Further

assume that

v < ξ(t) < t for every t ∈ (v, w). (5.15)

Let κ, γ ∈ C with κ 6= 0, and consider the equation

κy(t) = −

∫ t

ξ(t)
y(s) ds + γ. (5.16)

Then equation (5.16) has a unique solution y ∈ C([v, w], C). Further, this solution is analytic in

the interior (v, w).

Proof. The proof that there is at most one solution in C([v, w], C) is essentially the same argument

as given in the proof of Proposition 2.1. We do not repeat it.

Let us first construct a continuous solution of (5.16) on the interval [v, v + ε], for sufficiently

small ε, and which is analytic in (v, v + ε]. To this end we require a set D ⊆ C in the complex

plane such that

(a) D ⊆ C is open, bounded, and convex, with diam(D) < |κ|;

(b) v ∈ D and (v, v + ε) ⊆ D; and

(c) ξ is analytic in a neighborhood of D, and ξ(D \ {v}) ⊆ D.
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(Here diam(S) denotes the diameter of a set S.) Note that 0 ≤ ξ̇(v) ≤ 1 by (5.15). If ξ̇(v) < 1

then we take D = {t ∈ C | |t− v| < ε} for sufficiently small ε, and observe that conditions (a), (b),

and (c) above hold as ξ is a contraction in D. If on the other hand ξ̇(v) = 1, then by (5.15) the

Taylor series of ξ about v must have the form (5.3) for some K > 0 and n ≥ 2. In this case we

take D to be the set (5.4), as given by Lemma 5.2, for sufficiently small ε. Again, one sees that

conditions (a), (b), and (c) hold.

With D so chosen, define a Banach space

Z = {y : D → C | y is continuous in D, and analytic in D},

taking the supremum norm ‖y‖ = sup
t∈D

|y(t)|. Then by the properties of D, and in particular (c)

above, we may define a bounded linear operator Λ : Z → Z by

(Λy)(t) =
1

κ

∫ t

ξ(t)
y(s) ds

for t ∈ D. Then equation (5.16) can be written as

y = −Λy +
γ

κ
. (5.17)

One sees from property (a) that ‖Λ‖ ≤ |κ|−1 diam(D) < 1 for the operator norm, and it follows that

equation (5.17), and thus (5.16), has a unique solution in Z. This solution y is certainly analytic

in D, by the definition of Z. In fact y is analytic in D \ {v}, and thus analytic in a neighborhood

of this set. Indeed, taking t0 ∈ D \ {v}, one observes that y is analytic in a neighborhood of t0 as

follows. From equation (5.16) one has that

ẏ(t) =
1

κ

(
− y(t) + y(ξ(t))ξ̇(t)

)
(5.18)

for t near t0; and ξ is assumed analytic there, with ξ(t0) ∈ D. Thus t → y(ξ(t))ξ̇(t) is analytic in a

neighborhood of t0, and so y is also analytic in such a neighborhood by (5.18). In particular, this

establishes analyticity of the solution y ∈ Z in a neighborhood of the half-open interval (v, v + ε].

To complete the proof, we must extend the solution y from the interval [v, v + ε] to all of [v, w],

and show that this extension is analytic in (v, w). Let

r = sup{t ∈ [v + ε, w] | the solution y ∈ Z

of (5.17) has an analytic extension to (v, t)}.
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Then there exists an analytic extension z of y to (v, r), and further z : [v, r) → C satisfies (5.16)

and thus (5.18) on [v, r). Then from (5.16) and using (5.15)

|z(t)| ≤
1

|κ|

∫ t

v

|z(s)| ds + |γ|

for t ∈ [v, r) and so

|z(t)| ≤ |γ|e(t−v)/|κ| ≤ |γ|e(r−v)/|κ|

by Gronwall’s inequality. Thus by (5.18)

|ż(t)| ≤

∣∣∣∣
γ

κ

∣∣∣∣
(

1 + sup
s∈[v,r]

|ξ̇(s)|

)
e(r−v)/|κ|,

and from this bound it follows that lim
t→r

z(t) exists and is finite. Thus the extension z of y is

continuous in [v, r] and analytic in (v, r). It remains to show that r = w.

Suppose that r < w. Then v < ξ(r) < r by (5.15), so z(ξ(t)) is analytic for t in a neighborhood

of r. It follows by solving the differential equation (5.18) that z can be extended analytically to a

neighborhood of r, and thus to [r, r + δ) for some δ > 0. But this contradicts the definition of r,

and so r = w, as desired.

We now prove Theorem C.

Proof of Theorem C. To begin, assume that conditions (a) through (d) in the statement of the

theorem hold. We first show that condition (2.1) holds for η. Take any a ∈ R satisfying η(a) = a.

Then by conditions (b) and (d) there exists v ∈ (−a − 2π,−a] such that ξ(v) = v, equivalently,

η(−v) = −v − 2πµ. Thus −v ∈ [a, a + 2π) and so η(−v) < a, verifying (2.1). The proof that (2.1)

also holds for ξ is similar, but instead we use (a) and (c). We omit the details.

We note that with (2.1) holding for both η and ξ, the conclusions of Lemma 2.3 hold for these

functions.

Also, the conclusions of Theorem B hold for any maximal Volterra interval [a, b] for η, as the

hypotheses of Theorem B are fulfilled.

Now let [v, w] be a maximal Volterra interval for ξ, and x ∈ X \ {0} and κ 6= 0 as in the

statement of the theorem. We wish to show that (b) and (c) of Theorem B hold with a and b

replaced, respectively, with −w and −v, and also that −w,−v ∈ N . We begin by establishing (c)

of Theorem B but with −v in place of b. We shall first show that the set [−v,−v + ε] ∩ N is

uncountable for any ε > 0; note that this implies that −v is a cluster point of N and thus −v ∈ N
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as N is closed. Then we shall show that [−v,−v + ε] ∩ A 6= ∅ and thus (−v,−v + ε] ∩ A 6= ∅ for

any ε > 0; it follows directly from this and the fact that (−v,−v + ε] ∩N 6= ∅ for every ε > 0 that

A has infinitely many connected components in (−v,−v + ε]. Thus fix ε > 0 and let [a, b] be a

maximal Volterra interval for η such that −a < v. Then by Lemma 4.1 applied to ξ, there exists

n ≥ 1 such that

inf
t∈[v−ε,v]

ξn(t) < −a, equivalently, sup
t∈[−v,−v+ε]

ηn(t) > a − 2πµn, (5.19)

where we use the easily verified fact that ηn(t) = −ξn(−t) − 2πµn. Note also that ξn(t) ≤ v for

every t ≤ v, and as ξn(v) = v we have that

inf
t∈[−v,−v+ε]

ηn(t) = −v − 2πµn < a − 2πµn. (5.20)

Thus by (5.19) and (5.20),

[a − δ − 2πµn, a − 2πµn] ⊆ int(ηn(I)), where I = [−v,−v + ε],

for some δ > 0. By Lemma 4.3, for every c ∈ [a − δ − 2πµn, a− 2πµn] ∩N there exists t ∈ I ∩ N

such that ηn(t) = c. There are uncountably many such c, by part (b) of Theorem B applied to the

maximal Volterra interval [a − 2πµn, b − 2πµn]; thus there are uncountably many such t, and so

I ∩N is an uncountable set. Further, the set [a− δ − 2πµn, a− 2πµn) ∩A is nonempty and again

by Lemma 4.3 so is I ∩A; and this is as desired.

To prove part (b) of Theorem B holds, but with −w in place of a, we argue as in the proof of

part (c) of Theorem B. In particular, as [v, w] is a maximal Volterra interval for ξ, we have that ξ is

a homeomorphism from [w, w+ε1] onto [v−ε2, v] for some positive ε1 and ε2, and that moreover ξ is

monotone in a neighborhood of [w, w+ε1]. It follows that η is a homeomorphism from [−w−ε1,−w]

onto [−v − 2πµ,−v − 2πµ + ε2] and that [−w − ε1,−w] ∩M = ∅. Thus η([−w − ε1,−w] ∩ A) =

[−v−2πµ,−v−2πµ+ ε2]∩A and η([−w− ε1,−w]∩N ) = [−v−2πµ,−v−2πµ+ ε2]∩N by (4.1).

Therefore (b) of Theorem B, but with −w in place of a, follows from (c) of Theorem B, but with −v

in place of b, as proved in the paragraph above.

Now assume that condition (e) in the statement of the theorem holds, in addition to condi-

tions (a) through (d). Still with [v, w] a maximal Volterra interval for ξ, and x ∈ X \{0} and κ 6= 0

as above, let y(t) = x(−t). One sees from equation (1.1) that

κy(t) = −

∫ t

ξ(t)
y(s) ds + γ, γ = µ

∫ 2π

0
y(s) ds,
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holds; indeed, one has that

κy(t) = κx(−t) =

∫ −t

η(−t)
x(s) ds =

∫ −t

η(−t)
y(−s) ds

= −

∫ t

−η(−t)

y(s) ds = −

∫ t

ξ(t)+2πµ

y(s) ds

= −

∫ t

ξ(t)
y(s) ds −

∫ ξ(t)

ξ(t)+2πµ
y(s) ds = −

∫ t

ξ(t)
y(s) ds + µ

∫ 2π

0
y(s) ds,

using the fact that y is 2π-periodic. It follows now from Lemma 5.3 that y is analytic in (v, w), that

is, x is analytic in (−w,−v) and so (−w,−v) ⊆ A. Note in particular the strict inequalities (5.15)

hold by virtue of condition (e).

If [v, w] is a maximal Volterra interval for ξ as in Theorem C, then the nature of the solution

x near the endpoints −w and −v is far from clear. In particular, even though these points belong

to the set N , it is not ruled out that x(t) for t ∈ [−w,−v] might still have an analytic extension

in a full neighborhood of −w or of −v. (Such an extension of course would be different from the

solution x ∈ X at hand.) Even if no such extension exists, it would be of interest to understand

the analytic continuation and corresponding Riemann surface of x beyond the interval (−w,−v).

We require several more lemmas before proving Theorem D.

Lemma 5.4. Assume the conditions (a) through (d) in the statement of Theorem C. Also let

the sets B and S be as in (2.10) in the statement of Theorem D. Suppose that I is an interval of

positive length satisfying I ∩ B = ∅ and that either

I ⊆ A or I ⊆ N . (5.21)

Then I ∩ B = ∅, equivalently, I ⊆ S.

Proof. Suppose there exists some t ∈ I ∩ B. Then t ∈ ∂I ∩ ∂B, and in particular t = ak, bk,

−wk, or −vk, for some k ∈ Z, by (2.13). For definiteness assume that t = ak, the other cases being

handled similarly. Necessarily t is the right-hand endpoint of I (as I and B are disjoint) and so

[ak − ε, ak) ⊆ I for some ε > 0. But both [ak − ε, ak) ∩ A 6= ∅ and [ak − ε, ak) ∩ N 6= ∅ hold by

Theorem C, and thus both I ∩A 6= ∅ and I ∩N 6= ∅ hold. This contradicts (5.21), completing the

proof.
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Lemma 5.5. Assume the conditions (a) through (e) in the statement of Theorem C. Also let the

sets B and S be as in (2.10) in the statement of Theorem D. Suppose that I is an interval of

positive length with I ⊆ A. Then

int(ηk(I)) ⊆ A for every k ≥ 0 (5.22)

and either
ηk(I) ⊆ B for all large k, or

ηk(I) ⊆ S for every k ≥ 0

(5.23)

holds. If instead of I ⊆ A we have that I ⊆ N , then

ηk(I) ⊆ S ∩N for every k ≥ 0 (5.24)

must hold.

Proof. Before proceeding let us recall that η(B) ⊆ B; see in particular the remarks following the

statement of Theorem C. Also note that B ⊆ A and ∂B ⊆ N , following from Theorem C.

First consider the case that I ⊆ A. To show that (5.22) holds, assume to the contrary that

there exists c ∈ int(ηn(I)) ∩ N for some n ≥ 0. Then by Lemma 4.3 there exists t ∈ I ∩ N with

ηn(t) = c, contradicting I ⊆ A.

To prove (5.23), first observe that if int(ηn(I)) ∩ B 6= ∅ for some n ≥ 0, then int(ηn(I)) ⊆ B

must hold; for if not, then int(ηn(I)) would have nonempty intersection with ∂B ⊆ N , contradict-

ing (5.22). Further, if this is the case then ηn(I) ⊆ B and we have that ηk(I) = ηk−n(ηn(I)) ⊆

ηk−n(B) ⊆ B for every k ≥ n, to give the first conclusion in (5.23).

If on the other hand int(ηk(I)) ∩ B = ∅ for every k ≥ 0, then ηk(I) = int(ηk(I)) ⊆ S holds by

Lemma 5.4, to give the second conclusion in (5.23).

Now consider the case that I ⊆ N . Then ηk(I) ⊆ N and hence ηk(I) ⊆ N , for every k ≥ 0, by

the second inclusion in (4.1) and as N is closed. Also ηk(I) ∩ B = ∅ as B ⊆ A, and so ηk(I) ⊆ S

by Lemma 5.4. This gives (5.24).

For the next result recall the definition of an expansive map on a set, given in Section 2.

Lemma 5.6. Suppose that η : R → R is C1 and is expansive on a set S ⊆ R. Suppose also that

I ⊆ S is a finite interval of positive length and that ηk(I) ⊆ S for every k ≥ 1. Then the strict

inequality

len(ηm(I)) > len(I) (5.25)
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holds for some m ≥ 1. Further, the map ηk is strictly monotone (either increasing or decreasing)

on I for every k ≥ 1.

Proof. Fix any t ∈ I . Then for any k ≥ 1 we have that η̇k(t) =
∏k−1

j=0 η̇(ηj(t)), with η̇k(t) 6= 0 for

all large k by (2.9). Thus η̇(ηj(t)) 6= 0 for every j ≥ 0, hence η̇k(t) 6= 0 for every k ≥ 1. It follows

now that ηk is strictly monotone on I for every k ≥ 1. Letting p < q denote the endpoints of I , we

thus have that

len(I) = q − p <

∫ q

p
lim inf
k→∞

|η̇k(t)| dt ≤ lim inf
k→∞

∫ q

p
|η̇k(t)| dt = lim inf

k→∞
len(ηk(I)),

using (2.9) in the first inequality, Fatou’s Lemma in the second inequality, and the monotonicity of

ηk in the final equality. The desired conclusion (5.25) now follows, in fact for all large m.

Proof of Theorem D. We prove the four parts of this theorem in sequence.

(a) We begin with the observation that if P ⊆ R is any set which is periodic, with int(P ) 6= ∅ and

P 6= R, then for all sufficiently small ε > 0 the set of lengths

Γε = {σ ∈ [ε,∞) | σ = len(I) for some I ⊆ P

where I is a connected component of P}
(5.26)

is a finite nonempty set. This holds because such connected components are finite intervals (or

points) which are pairwise disjoint, with at least one of them of positive length.

Now we wish to prove that int(N ) = ∅, so suppose to the contrary that int(N ) 6= ∅. We also

know from Theorem C that A 6= ∅, and so N 6= R, and thus we may take P = N in the above

remark. In particular, there exists a connected component I ⊆ N of N which maximizes the length

of all such connected components; such exists because the set Γε above is finite. Then ηk(I) ⊆ S∩N

for every k ≥ 0 by Lemma 5.5; and further, by Lemma 5.6 the inequality (5.25) holds for some

m ≥ 1. But then ηm(I) is a connected subset of N of length greater than the maximum possible.

With this contradiction we conclude that int(N ) = ∅, and thus also that A is dense.

(b) Let us now prove (2.12). First note that the second inclusion in (2.12) follows immediately

from the second inclusion in (4.1) and the fact that B ⊆ A; thus we only need establish the first

inclusion in (2.12). To this end take any t0 ∈ A \ G, denote tk = ηk(t0) for k ≥ 1, and assume that

tk 6∈ B for every k ≥ 0. We seek a contradiction. We shall first show that tk ∈ A \ G for every

k ≥ 0, and then letting Ik denote the connected component of A containing tk, we shall show there
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exists m ≥ 1 such that

len(Im) > len(I0).

If this is shown, it follows inductively that there exist 0 = m0 < m1 < m2 < · · · such that

len(Imj
) < len(Imj+1) for every j ≥ 0. (Here m above equals m1.) This, however, contradicts the

fact that for any small ε > 0 the set Γε in (5.26) with P = A is finite. (Note that int(A) 6= ∅, and

that A 6= R as N 6= ∅, again by Theorem C.)

To begin, observe that if t 6∈ G, then η(t) 6∈ G; indeed, this follows immediately from the

definition of G. Thus with t0 ∈ A \ G given we have that tk 6∈ G for every k ≥ 0.

Now let I ⊆ A denote the connected component of A containing t0. Then by Lemma 5.5

one of the two possibilities in (5.23) holds. We eliminate the first possibility by assuming that

ηk(I) ⊆ B for all large k. Then tk ∈ ηk(I) ⊆ B for such k, and as tk 6∈ B is assumed we have that

ηk(t0) = tk ∈ ∂B = ∂Bη ∪ ∂Bξ. Further, we have t ∈ I for all t sufficiently near t0 as I is open, and

so ηk(t) ∈ B for such t. This implies that t0 ∈ G, a contradiction

Thus the second possibility in (5.23) holds, and so ηk(I) ⊆ S for every k ≥ 0. By Lemma 5.6 and

the expansiveness of η on S, the map ηk is strictly monotone on I and so tk ∈ ηk(I) = int(ηk(I)) ⊆

A, where (5.22) of Lemma 5.5 is used. Thus tk ∈ A \ G, as claimed. Also by Lemma 5.6, there

exists m ≥ 1 such that (5.25) holds, and thus

len(Im) ≥ len(ηm(I)) > len(I) = len(I0),

as desired. With this (2.12) is established.

(c) We next prove that Gη ⊆ A. Fix t0 ∈ Gη and let n ≥ 1 be as in the definition (2.11) of Gη.

Further, let k, uniquely determined, be such that ηn(t0) ∈ [ak, bk], and so [ak, bk] is the maximal

Volterra interval of η to which ηn(t) belongs for all t near t0. Of course ηn(t0) ∈ {ak, bk} and also

x(t) = 0 identically in [ak, bk]. Denote Q = [ak, bk]. Also denote tj = ηj(t0) for 1 ≤ j ≤ n, and

define yj(t), for t in a neighborhood of tj , inductively (beginning with j = n and descending to

j = 0) by the differential equations

yn(t) = 0 identically,

ẏj(t) =
1

κ

(
yj(t) − yj+1(η(t))η̇(t)

)
, yj(tj) = x(tj), 0 ≤ j ≤ n − 1.

(5.27)

(Compare this with the differential equation (1.7) which x(t) satisfies.) Observe that yj(t) is analytic

in t, for each j.
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We claim the following holds for 0 ≤ j ≤ n: If ηj maps [tn−j , tn−j + ε] into Q for some ε > 0

then x(t) = yn−j(t) identically for t ∈ [tn−j , tn−j + ε′] for some ε′ > 0; and the corresponding claim

also holds for [tn−j − ε, tn−j ] in place of [tn−j , tn−j + ε]. Note that this claim, for j = n, implies

the desired result that t0 ∈ A. Indeed, ηn maps both [t0, t0 + ε] and [t0 − ε, t0] into Q and thus

x(t) = y0(t) identically in [t0 − ε′, t0 + ε′], with y0(t) analytic in t.

We prove the above claim by inducting on j. The result is trivial for j = 0. Namely, if η0 (the

identity map) maps [tn, tn + ε] into Q then simply [tn, tn + ε] ⊆ Q and x(t) = yn(t) = 0 identically

in [tn, tn + ε]; and similarly for [tn − ε, tn]. Suppose now that the claim holds for some j with

0 ≤ j ≤ n− 1; we wish to establish it for j + 1. Thus assume that ηj+1 maps I into Q where either

I = [tn−j−1, tn−j−1 + ε] or I = [tn−j−1 − ε, tn−j−1], for some ε > 0. Also, by possibly reducing ε we

have that η(I) = J where J is an interval either of the form J = [tn−j , tn−j+δ] or J = [tn−j−δ, tn−j ];

and thus ηj maps J into Q. By the induction hypothesis it follows that x(t) = yn−j(t) identically

in an interval J ′ of the form either J ′ = [tn−j , tn−j + δ′] or J ′ = [tn−j − δ′, tn−j ], and without

loss J ′ ⊆ J. Therefore x(η(t)) = yn−j(η(t)) identically in an interval I ′ ⊆ I of the form either

I ′ = [tn−j−1, tn−j−1+ε′] or I ′ = [tn−j−1−ε′, tn−j−1]; and it follows immediately from the differential

equations (1.7) and (5.27) that x(t) = yn−j−1(t) identically in I ′, which is as desired. With this

Gη ⊆ A is proved.

(d) Here we prove that I ⊆ Gξ. We make an initial observation, to be used later, that η(∂B) ⊆ ∂B,

and that if t0 ∈ ∂B then η is strictly monotone in a neighborhood of t0.

Define a set
H = {t0 ∈ R | there exists n ≥ 0 and ε > 0

such that ηn(t) ∈ B for every t with |t − t0| ≤ ε}.
(5.28)

It is clear that H is open. Also,

A \ G ⊆ H, G ⊆ H, hence A ⊆ H;

indeed, the first inclusion above follows from (2.12) proved in part (b) above and by the openness of

B, and the second inclusion above follows immediately from the definition of G. Also define ν(t0) ≥

0, for t0 ∈ H, to be the minimum integer n ≥ 0 such that the condition in the definition (5.28)

holds for some ε > 0. One sees immediately that for any t0 ∈ H, the inequality ν(t) ≤ ν(t0) holds

for all t in some neighborhood of t0; that is, the function ν is upper semicontinuous on H. Now

let I ⊆ H be any connected component of H. Our goal is to prove that there is some iterate of η

which maps all of I into B. In particular, let

m = min
t∈I

ν(t), O = {t ∈ I | ν(t) = m};
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we shall show that O = I . By the upper semicontinuity of ν one sees that O is a nonempty open

subset of I , and so the conclusion O = I holds if we show that O is a relatively closed subset of I .

Assume to the contrary that O is not relatively closed in I . Then there exists a sequence tk ∈ O

for k ≥ 1 such that the limit t∗ = lim
k→∞

tk exists and satisfies t∗ ∈ I , but that t∗ 6∈ O. Certainly

ηm(t∗) ∈ B holds as ηm(tk) ∈ B for each k. As t∗ 6∈ O, we have that ν(t∗) > m and so there does

not exist ε > 0 such that ηm(t) ∈ B for all t satisfying |t − t∗| ≤ ε. This in particular implies

that ηm(t∗) 6∈ B, as B is open, and thus ηm(t∗) ∈ ∂B. Denote c = ηm(t∗). From the Taylor series

of ηm about t∗, one sees that there exists ε > 0 such that for all t ∈ (t∗, t∗ + ε] either ηm(t) > c

or ηm(t) < c, and that ηm is strictly monotone in (t∗, t∗ + ε]. A similar conclusion applies to the

interval [t∗ − ε, t∗). Observing that there exists points, namely tk, arbitrarily near t∗ which are in

B, and also that there exits points arbitrarily near t∗ which are not in B (because t∗ 6∈ O), it follows

that ηm must be strictly monotone in a neighborhood of t∗; in other words ηm(t) > c on one side

of t∗ and ηm(t) < c on the other side (for t 6= t∗ near t∗). But from our initial observation above,

we see that all iterates ηj(t∗) for j ≥ m lie in ∂B and also that ηj is strictly monotone in some

neighborhood (possibly depending on j) of t∗. It follows that for each j ≥ m, there does not exist

ε > 0 such that ηk(t) ∈ B holds for all t satisfying |t − t∗| ≤ ε; and thus t∗ 6∈ H. This contradicts

our assumption that t∗ ∈ I ⊆ H.

At this point we have shown that if I is any connected subset of H (in particular if I is a

connected subset of A), then there exists m ≥ 0 such that ηm(I) ⊆ B. Now suppose that t0 ∈ I.

Then there exists ε > 0 such that [t0 − ε, t0) ∪ (t0, t0 + ε] ⊆ A but where t0 ∈ N . We conclude

from above that there exist some m ≥ 0 such that ηm([t0 − ε, t0)) ∪ ηm((t0, t0 + ε]) ⊆ B, and thus

ηm([t0 − ε, t0 + ε]) ⊆ B. However ηm(t0) ∈ N by the second inclusion in (4.1) and so ηm(t0) 6∈ B.

One concludes that ηm(t0) ∈ ∂B, and this immediately implies that t0 ∈ G. Further, t0 ∈ Gη is

impossible, as that would imply t0 ∈ A from part (c) above. Thus t0 ∈ Gξ holds, as desired. With

this the proof is complete.

6 An Explicit Example; the Proof of Theorem E

Throughout this section η denotes the function in the statement of Theorem E, and ξ denotes the

function in the statement of Theorem C, namely,

η(t) = t − πµ(1− cos t), ξ(t) = t − πµ(1 + cos t),

which one sees after a short calculation to obtain ξ. Here µ ≥ 1 is a fixed integer.
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The following lemma verifies some of the conditions of Theorem C for η.

Lemma 6.1. Conditions (a) through (e) in the statement of Theorem C hold. In addition, there

exists a unique quantity b satisfying

b ∈ (0, π/2) and η(b) = 0. (6.1)

Furthermore, for this quantity b we have that

η(t) > 0 for every t ∈ (0, b), η(t) < 0 for every t ∈ (b, π/2]. (6.2)

Also, all the maximal Volterra intervals [ak, bk] for η and the maximal Volterra intervals [vk, wk]

for ξ may be enumerated as in (2.15), and thus the set S is as given in (2.16).

Proof. The verification of conditions (a) and (b) is trivial; we omit this. Also, η(a) = a for a = 0

and ξ(v) = v for v = π, which establishes (c) and (d). We verify condition (e) below.

The existence of a quantity b satisfying (6.1) follows from the fact that η(0) = 0 and η̇(0) > 0,

while η(π
2 ) < 0. The uniqueness of such b follows from the fact that η̈(t) < 0 for all t ∈ (0, π

2 ), and

this also implies that (6.2) holds; and further, it implies that (2.2) and (2.3) hold with a = 0 and

thus [0, b] is an RM-Volterra interval for η. From the periodicity condition in (1.2) we have that

[2πk, b+2πk] is also an RM-Volterra interval for η, for every k ∈ Z. There are no other RM-Volterra

intervals for η, due to parts (a) and (b) of Lemma 2.3 and the fact that the points 2πk are the only

fixed points of η. Thus the intervals [ak, bk] in (2.15) account for all the RM-Volterra intervals for

η, and as there are no others, they are maximal Volterra intervals.

The proof that the intervals [vk, wk] in (2.15) is an enumeration of all the maximal Volterra

intervals for ξ follows from the identity ξ(t) = η(t−π)+π, which implies that the maximal Volterra

intervals for ξ are just those for η but translated by π; we omit the details.

One now sees that the set S given by (2.16) is as in the statement of Theorem C.

Finally, condition (e) in the statement of Theorem C follows easily from the strict inequality

ξ̈(t) < 0 which holds for every t ∈ [vk, wk] and every k ∈ Z.

In verifying the expansiveness of η on the set S, the following lemmas will be used. For notational

simplicity let us denote

S+
k = (−π + 2πk, 2πk), S−

k = (b + 2πk,−b + π + 2πk),
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for k ∈ Z. These intervals are the various connected components of the set S. In the following

lemma each set S−
k will be divided into three disjoint parts, denoted SL

k , SC
k , and SR

k .

Before proceeding let us note the elementary inequalities

cos t > 1 −
t2

2
, sin t > t −

t3

6
, cos t < 1 −

t2

2
+

t4

24
,

which are valid for every t > 0. These inequalities are easily obtained by successive integration,

beginning with the inequality sin t < t. We shall use them repeatedly in what follows.

Lemma 6.2. We have that

η̇(t) > 1 for every t ∈ S+
k .

Also, we have that 1
µ ∈ (b, π

2 ), and if we denote

SL
k = (b + 2πk, 1/µ + 2πk), SR

k = (−1/µ + π + 2πk,−b + π + 2πk),

SC
k = [1/µ + 2πk,−1/µ + π + 2πk],

(6.3)

then

η̇(t) < −
23

27
for every t ∈ SL

k ∪ SR
k ,

η̇(t) < −1 for every t ∈ SC
k ,

(6.4)

both hold.

Proof. Due to the periodicity condition in (1.2), without loss we may take k = 0. Note that

η̇(t) = 1− πµ sin t; thus for t ∈ S+
0 = (−π, 0) we have that η̇(t) > 1.

In obtaining the inequalities (6.4) for t ∈ S−
0 = (b, π − b), it is enough to consider only t in the

left half of this interval, namely t ∈ (b, π
2 ]; this is due to the symmetry relation η̇(t) = η̇(π − t). To

begin we note that

η(1/µ) =
1

µ
− πµ(1 − cos(1/µ))

<
1

µ
− πµ

(
1

2µ2
−

1

24µ4

)
≤

1

µ
− πµ

(
1

2µ2
−

1

24µ2

)
=

(
1 −

11π

24

)
1

µ
< 0,

and so it follows from Lemma 6.1 that 1
µ ∈ (b, π

2 ) and that the three intervals (6.3) are well-defined.

(Note that they are disjoint and their union is S−
k .)
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We next observe that

η(2/(πµ)) =
2

πµ
− πµ(1 − cos(2/(πµ))) >

2

πµ
−

πµ

2

(
2

πµ

)2

= 0,

and therefore 2
πµ ∈ (0, b), again by Lemma 6.1. Thus for every t ∈ SL

0 = (b, 1
µ ) we have that

η̇(t) = 1 − πµ sin t < 1 − πµ sin(2/(πµ))

< 1 − πµ

(
2

πµ
−

1

6

(
2

πµ

)3)
= −1 +

4

3π2µ2
≤ −1 +

4

3π2
< −

23

27
,

to give the first inequality in (6.4).

Now take any t ∈ SC
0 ∩ (b, π

2 ] = [ 1
µ , π

2 ]. We have that

η̇(t) = 1− πµ sin t ≤ 1 − πµ sin(1/µ)

< 1− πµ

(
1

µ
−

1

6µ3

)
= 1 − π +

π

6µ2
≤ 1 −

5π

6
< −1,

to give the second inequality in (6.4). This completes the proof.

Lemma 6.3. We have that

η(t) ∈ (−π/2 + 2πk, 2πk) for every t ∈ SL
k

holds.

Proof. Again without loss k = 0. As η̇(t) < 0 throughout SL
0 = (b, 1

µ) by (6.4) in Lemma 6.2, we

have for any such t that

η(t) > η(1/µ) =
1

µ
− πµ(1 − cos(1/µ)) >

1

µ
−

πµ

2

(
1

µ2

)
> −

π

2µ
≥ −

π

2
,

as desired. Also, η(t) < 0 for such t by (6.2) in Lemma 6.1, again as desired.

Lemma 6.4. There exists a unique quantity q satisfying

−q ∈ (−π/2, 0) and η(−q) = −
π

2
. (6.5)

Furthermore,

η̇(t) >
41

18
for every t ∈ [−π/2,−q] (6.6)
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holds.

Proof. The existence of q satisfying (6.5) follows from the fact that η(−π
2 ) < −π

2 < η(0) = 0; and

the uniqueness of such q holds because η̇(t) > 0 throughout (−π
2 , 0) as is easily seen. Now define a

quantity p given by

p =
−1 + (1 + π2µ)1/2

πµ
, and so

(
πµ

2

)
p2 + p −

π

2
= 0, (6.7)

as one sees by a simple calculation. Certainly p > 0, and p < π
2 follows from the second equation

in (6.7), and thus −p ∈ (−π
2 , 0). Further, we have that

η(−p) = −p − πµ(1− cos p) > −p −

(
πµ

2

)
p2 = −

π

2
= η(−q),

again using the second equation in (6.7); and again as η̇(t) > 0 in (−π
2 , 0) it follows that −p > −q.

Thus if t ∈ [−π
2 ,−q] as in the statement of the lemma, we have that t < −p and so

η̇(t) = 1 − πµ sin t = 1 + πµ sin |t| > 1 + πµ sinp > 1 + πµ

(
p −

p3

6

)
.

Thus in order to obtain the conclusion (6.6) of the lemma, it suffices to prove that

1 + πµ

(
p −

p3

6

)
≥

41

18
.

To this end, we first note that

1−
p2

6
= 1 −

1

6µ
+

(
1

3πµ

)
p

where the second equation in (6.7) is used to substitute for p2. Multiplying by p and making

another such substitution gives

p −
p3

6
=

(
1 −

1

6µ

)
p +

1

3πµ

(
1

µ
−

(
2

πµ

)
p

)
=

1

3πµ2
+

(
1 −

1

6µ
−

2

3π2µ2

)
p.

Now substituting the first equation in (6.7) for p above, and rearranging terms, gives

1 + πµ

(
p −

p3

6

)
=

1

2µ
+

2

3π2µ2
+

(
1 −

1

6µ
−

2

3π2µ2

)
(1 + π2µ)1/2

>

(
1 −

1

6µ
−

2

3π2µ2

)
(1 + π2µ)1/2

≥

(
1 −

1

6
−

2

3π2

)
(1 + π2)1/2 >

(
5

6
−

2

27

)
× 3 =

41

18
.
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With this, the proof is complete.

Proof of Theorem E. We shall use Lemma 2.4 to verify the expansiveness of η on S. Let α = 23
27

and β = 41
18 , and observe that αβ = 943

486 > 1.

First note that if t ∈ S then |η̇(t)| ≥ α, by Lemma 6.2. Suppose now that t ∈ S is such

that ηk(t) ∈ S for every k ≥ 1, and also suppose that |η̇(t)| ≤ 1. Again by Lemma 6.2, we have

that t ∈ SL
j ∪ SR

j for some j ∈ Z; without loss assume that j = 0. Consider first the case that

t ∈ SL
0 = (b, 1

µ). Then η(t) ∈ (−π
2 , 0) ⊆ S+

0 by Lemma 6.3. With −q as in the statement of

Lemma 6.4, let n = min{k ≥ 1 | ηk(t) 6∈ (−q, 0)}. One sees that n is well-defined, for if not, then

ηk(t) ∈ (−q, 0) for all k ≥ 1; but then ηk(t) would be a nonincreasing sequence in (−q, 0) which

would converge to a fixed point of η in [−q, 0). However, no such fixed point exists. Now if n ≥ 2

then ηn(t) ≤ ηn−1(t) ∈ (−q, 0) and ηn(t) 6∈ (−q, 0), and thus ηn(t) ≤ −q. Also, ηn−1(t) > −q

hence ηn(t) > η(−q) = −π
2 as η is strictly increasing in S+

0 . Thus ηn(t) ∈ (−π
2 ,−q]; and from the

definition above of n this conclusion also holds if n = 1. Thus in any case η̇(ηn(t)) > β by (6.6) of

Lemma 6.4. And also, η̇(ηk(t)) > 1 for 1 ≤ k ≤ n − 1 by Lemma 6.2, as ηk(t) ∈ (−q, 0) ⊆ S+
0 for

such k. This is as required by Lemma 2.4.

Now consider the case that t ∈ SR
0 = (π− 1

µ , π− b). First note that for arbitrary t ∈ R we have

that t ∈ S if and only if ζ(t) ∈ S, where we denote ζ(t) = π− t. Also, ζ ◦η ◦ ζ−1(t) = π−η(π− t) =

η(t) + 2πµ, and so ζ ◦ ηk ◦ ζ−1(t) = ηk(t) + 2πµk for every k ≥ 1. Thus

ηk(π − t) = π − ηk(t) − 2πµk, hence η̇k(π − t) = η̇k(t), (6.8)

identically in t for all such k. Now fix any t ∈ SR
0 such that ηk(t) ∈ S for all k ≥ 0. Let t̃ = π − t

and note that t̃ ∈ SL
0 , and also, from the first equation in (6.8), that ηk(t̃) ∈ S for all k ≥ 0. If

follows now immediately from the second equation in (6.8), and using the results in the paragraph

above, that if |η̇(t)| ≤ 1 then the conditions (2.17) of Lemma 2.4 hold for t, for some n ≥ 1, as

desired. We omit the details. This now establishes the expansiveness of η on S.

To complete the proof of the theorem we show that G = ∅. To begin, denote p = arcsin( 1
πµ)

and observe that η̇(t) = 0 if and only if either t = p + 2πk or t = π − p + 2πk, for some k ∈ Z.

Further, η̈(t) 6= 0 at each such point, and so these points precisely constitute the set M. Note also

that t ∈ B for each such t; in particular, p ∈ (0, b) as it is the maximum of η in this interval, and

π−p ∈ (π−b, π). And also note that η(B) ⊆ B (that is, not merely ⊆ B). Now suppose there exists

some t0 ∈ G. Then there exists n ≥ 1 such that ηn(t0) ∈ ∂B with ηn(t) ∈ B for all t sufficiently

near t0. Necessarily t0 is either a local maximum or a local minimum of ηn, and it follows that
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t∗ = ηk(t0) is either a local maximum of a local minimum for η, for some k with 0 ≤ k ≤ n−1; that

is, t∗ ∈ M. Thus t∗ and all its iterates belong to B, in particular ηn(t0) = ηn−k(t∗) ∈ B. However,

this contradicts ηn(t0) ∈ ∂B and completes the proof.
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