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1. INTRODUCTION

Ir D 1s A subset of a Banach space (E, ||*|)) and f: D — E is a map, f is called nonexpansive
(with respect to ||+ ||) if

Ife) - fll < llx —yll  forallx,yeD.

If D is a compact subset of R” and the norm is the /;-norm |- ||, (so ||zl|, = £%_,|z;| forz € R™)
and f: D — D is nonexpansive with respect to || - ||,, Akcoglu and Krengel [1] have proved that
for each x € D there exists a minimal positive integer p, = p such that

lim S =n,  where f(n) = . (1.1)

Recall that a norm | ‘|| on a finite dimensional Banach space E is called polyhedral if
{x € E: ||x| = 1} is a polyhedron. Equivalently, a norm is polyhedral if there exist continuous
linear functionals ¢; € E*, 1 < j < m, such that

[xll = max |g;)l for 1 <j < m. (1.2)
I=sj=<m

It is easy to see that the /, norm and the sup norm || - ||, (Ix/le = max{|x;|: 1 <i < n}) on R" are
polyhedral.

If E is a finite dimensional Banach space with a polyhedral norm || ||, D is a compact subset
of F and f: D — D is a nonexpansive map, Weller [2] has shown that for each x € D, there
again exists an integer p, such that (1.1) holds.

The original arguments did not give upper bounds for the integer p,, x € D. However,
subsequent work has proved (see [3-11]) that there exists an integer N, depending only on the
integer m in equation (1.2), such that p, < N for all x € D. In general, the problem of finding
optimal upper bounds for the integers p, appears to be a very difficult combinatorial-
geometrical question: see [3-9, 12] for a more complete discussion.

The original motivation for the study of /,-nonexpansive maps in [1] was to understand
nonlinear analogues of diffusion on finite state spaces. However, as discussed in [8], these
results, for the case of the sup norm and other polyhedral norms, also have applications to
certain cone mappings and, hence, to a variety of examples and applications in [12-14]. These
ideas also apply to certain autonomous differential equations x'(¢) = f(x(¢)) (see [8]) and

1 Partially supported by NSFDMS 8903018 and NSFDMS 9105930.
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(in work in progress by the author) to certain differential equations x'(t) = f(¢, x(t)), where
f(¢, x) is periodic of period T in the ¢ variable.
If K" denotes the positive orthant in R”,

K'={xeR: x;=z0for 1l <ix<ni (1.3)
K" induces a partial ordering by

x<y if and only if y — x e K". (1.4)
We shall also write

x<y if and only if x < y and x # y. (1.5)

A map f: DCR" — R"is called “‘monotonic>’ or ‘“‘order-preserving” if x < y (x, y € D) implies
that f(x) < f(»). A norm | -|| on R” is called ‘“‘monotonic” (on K") if 0 < x < y implies that
x| = llyll. The norm will be called “‘strictly monotonic” on K" if 0 < x < y implies that
llxll < {lyll. Note that the /, norm is strictly monotonic; the sup norm is monotonic but not
strictly monotonic
{ff: K" — K" is an order pr"ser'v“ 18 1ié

and if f(0) = 0, Akcoglu and Krengel [1] have pr oved hat
n of f satisfies

pansive with respect to the /, norm
he period p of any periodic point

p < n! (1.6)

(Recall that # is called a periodic point of f if fP(s) = #; the minimal positive integer p such that
SP(n) = n is the period of n.) Scheutzow [10] has proved that if f: K" — K" is /,-nonexpansive
and f(0) = 0, then the period p of any periodic point 7 of f satisfies

p=<lem(l,2,...,n) = L(n). (1.7)
(In (1.7), lem(l, 2, ..., n) denotes the least common multiple of {j: 1 < j < n}, and we shall
write L(n) for lem(l, 2, ..., n). Generally, if S is a set of positive integers, lem(S) is the least

common multiple of the integers in S.)
It is known (see [15]) that

L(n) < exp(1.03883n) for all n,

and L(n) is asymptotically dominated by exp(n) (for » large), so the estimate in (1.7) is much
better than that in (1.6). Nevertheless, L(r) is not a sharp upper bound. In [9, p. 362] (and also
in equation (3.1) in Section 3 of this paper) a function @(n) is defined. It is proved in [9] that
p = @(n) for all n and @(n) < L(n) for n > 2. The function ¢(n) has been computed for n < 24
in [9]; and it has been proved that ¢(n) is an optimal bound for # < 24 in the sense that for each
n = 24, there exists an /,-nonexpansive, order-preserving map f: K” — K" such that f(0) = 0
and f has a periodic point of period ¢(n). In Section 3 of this paper, we shall extend these results
to the range n < 32 and discuss the function ¢ more fully.
Exact asymptotic formulas for ¢(n) are not known, but estimates in [9] yield

pn) < nL<[ g}) <n exp<l.03883[g]> and @(ny < 2" for all n,

where [x] denotes the greatest integer m < x.
With these preliminaries, we can describe the main theorem of this paper.
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THEOREM 1.1. Suppose that |-| is a strictly monotonic norm on K” C R". Assume that
f: K" — K" is nonexpansive with respect to |||, f is order-preserving, and f(0) = 0. Then for
every x € K", there exists a minimal integer p = p, < @(n) (where ¢(n) is the function defined
in [9, p. 362] and in Section 3 of this paper) such that

lim f*(x) =n  and  fP(n) = 7. (1.8)

k—o

Actually the tools used to prove theorem 1.1 provide strong information about the set of pos-
sible periods p of periodic points of maps f, for f as in theorem 1.1. We shall not pursue this
observation systematically here, although we shall give a discussion of the case n = 16 at the
end of Section 3.

The major difficulty in proving theorem 1.1 will be to prove that there is any finite integer
p such that (1.8) holds. Of course, if the norm is polyhedral, this follows from our previous
results, but the norm may even be Euclidean. Even if the norm is polyhedral and monotonic
(for example, the sup norm), note that we do not obtain the estimate p, < ¢(n) unless the norm
is strictly monotonic.

In order to proceed further, we need to recall some notation and some results from [9, 10].
The vector space R" is a vector lattice, i.e. if x, y € R”, we define z = x A y, the minimum of
x and y by

Z; = min(x;, y;), l<i=<n.

Similarly, we can define x Vv y, the maximum of x and y. If S is a finite collection of vectors
x'in R, 1 <= j < k, we define

k
Z=minfx:xe S}= A x/ by z; = min{x;:x € S}.
=1

If A C R", we define V, ‘‘the lower semilattice generated by A’ to be the smallest closed set V
such that A C V and such that x A y e V for all x, y € V. If A is finite, V is finite. If V is a
finite lower semilattice and if T C V is a subset which has an upper bound in V (so there exists
u €V, u=xforall xeT), then we define

max(T) = minfwe V:wz= xforall xeT}.
14

An element x € V is called irreducible (with respect to V) if

x> maxiz e V:x > z}.
vV

¥ has a minimal element which is defined to be irreducible.

Definition 1.1. Suppose that f: D C R" = R” is a map. We shall say that ‘‘f has the lower
semilattice extension property’’ if whenever x € D is a periodic point of period p, A = A, =
{~fj(x):0 =Jj<p} and V is the lower semilattice generated by A4, f|A has an extension
f:V - ¥V such that f(y A 2) = f(») A f(z) forall y,z e V.

Scheutzow [10] has shown that these concepts are directly relevant to our problem.
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LemMMa 1.1, (See [10].) Let f: K" — K" be an /;-nonexpansive map such that f(0) = 0. If xis a
periodic point of f of period p, 4 = { f/(x): 0 = j < p} and V is the lower semilattice generated
by A, f(V) C V and

Jy A =f(»USR) forall y,zeV.

Thus, if f is as in the lemma, f satisfies the lower semilattice extension property.
In this notation, Scheutzow has proved the following theorem.

Cao

1. mn mn 1.:AL
Tueorem 1.2. (See [10].) Suppose that R" = R

1.) Suppose that f/: D C | is a map which satisfi

semilattice extension property and that # is a periodic point of period p. Then it follows that
p divides L(n) = lem({j: 1 < j < n}). If A = {f/(n):0 </ < p}, V is the lower semilattice
generated by 4 and y € V is irreducible, then y is a periodic point of f of period q, = n If
Y ={yeV:y < nandyisirreducible} and g, denotes the period of y e Land S = {g,:y e i,

then p divides lem(S).
Theorem 1.2 motivates the following definition.

Definition 1.2. Define a(n) to be the maximal positive integer p such that there exists a map
Sf:D C R" = R" which satisfies the lower semilattice extension property and has a periodic
point of period p.

If p(n) is the function previously discussed it is proved in [9] that «(n) < ¢(#n) for all #n and
that a(n) = ¢(n) for 1 < n < 24. Our previous remarks show p, < a(n) < ¢(n) for p, as in
theorem 1.1. Furthermore, it is shown in [9] that there are constraints (see Section 3) on the set
S in theorem 1.2.

2. LATTICES AND PERIODIC POINTS

In this section we shall exploit various ideas connected with homomorphisms of lattices in
order to prove theorem 1.1. In the end we shall have to restrict attention to the cone K" C R",
but many of our lemmas are true in much greater generality and may be of independent interest.
Thus, we shall initially work in greater generality.

Recall that a cone C in a Banach space E is a closed, convex subset of E such that tC C C
forall = 0 and C N (—C) = {0}. A cone induces a partial ordering by x < yiffy — x € C. We
shall write x < y if x < y and x # y; and if C has nonempty interior, we shall write x < y if
y —xeC.If x, y € E and there exists z € E such that z < x and z < y and z = { for every {
such that { < x and { < y, we shall write

Z=XAJy.

If x A y exists for every x, y € C, E is called a vector lattice (in the ordering induced by C). It
is easy to see that there is a smallest element w = x v y such that w = x and w = y and

X+y=xAY)+ (x VY.

If E is a vector lattice in the ordering from a cone C and A C E, we define V, the lattice
generated by A, to be the smallest closed set such that 4 C ¥V and such that for all x, y € V,
xAyeV and x v y € V. Similarly, one defines the lower semilattice generated by A as in
Section 1.
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As for the cone K", a norm ||| on E is called monotonic (in the ordering from C) if
0 < x < y implies ||x|| < || ¥|l; the norm is strictly monotonic if 0 < x < y implies ||x] < |/ y|.
A map f: D C E — E is called order-preserving if x < y, (x, y € D) implies f(x) = f(»).

If D is a topological space and f: D — D a map and z € D, we shall denote the forward orbit
of z under f, {f4(z):j = 0}, by y.(z; f) or (if f is obvious) y,(z).

ProprosITION 2.1. Let C be a cone in a Banach space E and assume that E is a vector lattice in
the ordering from C and that the map (x, ) = x A y is continuous. Assume that the norm || ||
on E is strictly monotonic. Let T: C — C be an order-preserving, nonexpansive map with
T(0) = 0. Assume that, for each z € C, y,(z; T) has compact closure. Suppose that x,y € C
and that there exists a sequence of positive integers p; — o with

lim T7(x) = x and limT%(y) = y. 2.1)

I—c

Then it follows that for all j = 1

1Tl = el and | T'W)I = ¥l (2.2)
and
T(x Ay =(Tx) A (Ty) and Tx Vv y)=(Tx) Vv (Ty). 2.3)

Proof. The order-preserving property of 77 implies that
T Ay <T(0), T(xAy<T{(y) and T/(xAy)<(Tx)A(TY) Q.4
for all j = 1. We claim first that

lim [ 77 A y) = (TPix) A (TPp)] = 0. 2.5

If not, then by taking a further subsequence m; — « we can assume that for all i = 1
IT™0 A y) = (T™x) A(T™W)| = a > 0. (2.6)

Because 7(0) = 0 and T is nonexpansive, we see that for any x € C, || T/(2)|| is a decreasing
sequence of nonnegative reals. Using this observation and (2.1) we obtain (2.2). Because we
assume that cl(y,(z)) is compact for all z, by taking a further subsequence, which we also label
m;, we can assume that

lim 77i(x A y) = 7. 2.7

By taking the limit as i — o in (2.6) we obtain
ln —xAyl =2a>0. (2.8)
We already know from (2.4) and (2.7) that
n<xAy and xX—(xAyy<x-n. 2.9
The strict monotonicity of the norm now implies that

lx — & AP < llx = nll. (2.10)
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However, (2.10) gives a contradiction: by using the nonexpansiveness of 7 we obtain
e = nll = lim (7™ A ) = T™El < flx = x Ay,
which contradicts (2.10). It follows that (2.5) is valid.
By using (2.5) we see that
Im |77 Ay) —x Ayl =0 and  lm|T7C AP =[x Ayl

Since || 7Y(x A )| is a decreasing sequence, we conclude that
TG A )| = llx A pll for all j = 1. Q.1D
Applying (2.11) to x’ = Tx and y’ = Ty, we also obtain
| 79T A TV = 1 Tx A Tl for all j = 1. 2.12)
It remains to prove that the inequality
TxAy)<Tx ATy (2.13)

does not hold. If (2.13) holds we obtain from (2.12) and (2.11) and strict monotonicity of the
norm that

177 A = 1T T A P = llx Ayl < I Tx ATy = IT?7H(Tx ATl (2.14)
However, (2.4) and (2.13) give
1T A Tyl = IT7Y(Tx A T < [ TPix A TPy s (2.15)
and taking limits in the above equation yields
1Tx A Tyl < llx A I,
which contradicts (2.14). Since we already know that
TxAYy)=Tx ATy, (2.16)

we must have equality in inequality (2.13).
The proof that

Txv )l =TxVv Ty

is completely analogous and left to the reader. B

Remark 2.1. Proposition 2.1 is false, even for linear maps, if the norm is not strictly
monotonic. To see this, view elements of R? as column vectors and define T: R* — R? by

01 0 X

T =10 0] x
1

11
4 1 X3

-

We have T(K?) C K3, T is order-preserving and 7 is nonexpansive with respect to the sup norm
or [ ,-norm. (Recall that an » X n matrix A = (a;) induces a nonexpansive map of R” into R"
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with respect to the sup norm if and only if
n
Y la;l =1 forl <i=<n.)
Jj=1

On the other hand, if we define z, w € K* by

1 0
z=10 and w=1|[|11],

1 1

2 2

it is easy to check that
T@) =w and T(w) =z.

Thus, w and z are periodic points of 7" and T*(w) = wand T?(z) = z for i = 1. However, a
calculation gives

T(wAZ) = ZTw ATz and Twvzg=|1]|#Twv Tz

N
Bl

Remark 2.2. As was noted in the proof of proposition 2.1, the facts that 7(0) = 0 and T is
nonexpansive imply that y,(z; T) is bounded for all z € C. Thus, if E is finite dimensional,
cl(y.(z)) is automatically compact. In general, suppose that all hypotheses of proposition 2.1
hold except the assumption that cl(y,(z; T)) is compact for all z € C. Instead suppose either
that the norm is uniformly convex on C (so that if u, and v, are any sequences of points in C
such that |lu,| = r, |v,ll = rand ||(u, + v,)72|| = r, it follows that |u, — v,| = 0) or that the
norm is additive on C (so |lu + vl = |lull + ||vll for all u, v € C). Then if x and y are as in
proposition 2.1 (so that (2.1) is satisfied), it follows that (2.2) and (2.3) are satisfied. Equation
(2.2) follows immediately, as in the proof of proposition 2.3, so it remains to prove (2.3).

An examination of the proof of proposition 2.1 shows that the same argument is valid in our
situation if we can prove that
lim [[(T7x) A (TPiy) — TP(x A y)|| = 0. 2.17)
10
To see that (2.17) holds, first assume that the norm is uniformly convex. The order-preserving
property of T gives

T?ix A TPy + TPi(x A y)
2

0 < TPix — TPix N TPy < TPix — { ] <= TPx — TPilx A y). (2.18)

Because T is nonexpansive we find that

1T7:(x) = TP (x A 9] < llx = x AW = p. (2.19)
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We assume that 7% x — x and T”'y — y, so the continuity of the lattice operation implies that

lim | 77x = (T"x AT?p)| = |lx = & A il = p. (2.20)

Combining equations (2.18)-(2.20) and using the monotonicity of the norm gives

TPix A TPiy + TPi(x A V)
a y2 (x ”H. @.21)

i 770 = 706 1 9l = p = fim | 7760 — |

{—=

Equations (2.19) and (2.21) and the uniform convexity of the norm on C give (2.17).
If the norm is additive, then we obtain from (2.18) that

IT7x — (TPx A TP + [|TPx A TPy = TPx A )| = [ TPx = TP(x A )|
< x = (x A Pl (2.22)
By using (2.20) and (2.22), we immediately obtain (2.17).

Remark 2.3. 1f we apply proposition 2.1 to C = K" and if we know that (1.8) is satisfied
for some p = 1 (as will be the case if the norm is polyhedral), then the results mentioned in
Section 1 immediately give theorem 1.1 and the estimate p < @(n). Thus, the remainder of this
section is devoted to proving that (1.8) is satisfied for some p = 1, even if the norm is not
polyhedral.

Before proceeding further let us recall some basic facts about omega limit sets of non-
expansive maps. If (M, d) is a complete metric space and 7: M — M is a nonexpansive map (so
d(Tx, Ty) < d(x, y) for all x, y € M), define the omega limit set of a point x € M under T by

wxT) =N cl< U Tj(x)>,
nz1 Jjzn
where cl(4) denotes the closure of a set 4. If w(x; T) is nonempty, it is known that 7 |w(x; T)
is an isometry of w(x; T') onto itself. Furthermore, it is known that w(y; T) = w(x; T) for all
¥y € w(x; T) and that given any two elements y, z € w(x; T), there exists a sequence g; = o such
that T9%(y) — z. Finally, there exists a sequence p; = o such that T”(y) — y for all
v € w(x; T). All of these results are proved in [16]; the proofs in [16] are given for the norm in
a Banach space but apply equally well to a complete metric space.

PROPOSITION 2.2. Let C be a cone in a Banach space (X, ||-||) and suppose that ||- || is a strictly
monotonic norm. Assume that X is a vector lattice in the partial ordering from C and that
(x, ¥) = x A yiscontinuous. Let T: C — C be an order-preserving map such that 7(0) = 0 and
T is nonexpansive with respect to ||+||. Assume that for each y € C, y.(y; T) has compact
closure. Then for every x € C, w(x; T) is compact and nonempty. For any fixed x, € C, there
exists a sequence of integers p; — o such that 77(z) — z for all z € w(x,; T). If S is defined by
S =f{ze C: limT"(z) = z,
i oo
S is a closed set such that 7(S) C S and 7| S is an isometry of S onto S. If y, z € S, it follows
that y A zand y V z are elements of S and T and (7" | §)~! preserve the lattice operations on S.
If V is the lattice generated by w(x,; T), then T(V) C V and T |V is an isometry of V onto V.
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Proof. For x e C, we have

w;T) = () Aux), A,

nz1

cl< U Tf(x)> ,

Jj=zn

so w(x; T) is the intersection of a decreasing sequence of compact, nonempty sets, and, hence,
compact and nonempty. (This is well known.) It follows by the remarks preceding proposition
2.2 that T | w(x,; T) is an isometry of w(x,; T) onto w(xy; T) and that there exists a sequence
p; — o such that T?i(z) — z for all 7 € w(xy; T). Proposition 2.1 implies that if y, z € S, then
yAzeS and yVv ze S, and T preserves the lattice operations on S. It is obvious that
T(S) C S; and if y,z € S and
1Ty - Tzl < lly - zll,
we obtain a contradiction

ly -zl = }L@IIT”f-‘(Ty) - TP-(To)| = |Ty — Tzl < lly - zl.

Thus, we see that T'| S is an isometry.
To see that S is closed, assume that z, € S for n = 1 and z, — z. Given € > 0, select N so
that ||zy — z| < &/3 and select i, so that

£ . .
IT7(n) - 2ull < (5) for i > iy.

It follows (using the nonexpansiveness of T') that for i = i, we have
ITPdzn) — 2l < TPz — TPizn| + 1 TPizy — 2nll + 2w — 2l < &,

so TPiz - z.
To see that T is onto S, observe that if z € S,
z = lim T7i(z).

{— o0

It follows that T7i(z) is a Cauchy sequence, and because T is an isometry 77~ '(z) is a Cauchy
sequence. It is easy to see that 77 !(z) € S for each i = 1, and since S is closed,

lim 77 '(z) = y € S, and Ty = z.

I — oo
Notice that this proves that

T7'z) =1limT%'(z) forzes,
so (T| S)7! is order-preserving and preserves the lattice operations.
It follows from what we have already proved that ¥V C S and T(V) is a closed set. Writing
w = w(xy; T), we know that T(w) = w, so T(V) D w. Proposition 2.1 implies that 7(V) is
closed under the lattice operations, so the minimality of V gives

TV)o V. (2.23)
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If T =(T|S)"' we also know (by using the formula I'(z) = lim7”'(z) and previous
arguments) that I is an isometry, I'(w) = w and T preserves the lattice operations on S, so

ryvyov. (2.24)
The inclusions (2.23) and (2.24) imply that
TWV)=T(")=v. N

Before proceeding further we need a technical lemma which insures that the set V' constructed
in proposition 2.2 is compact. In the following lemma recall that a cone C is ‘“‘normal’’ if there
exists a constant M such that ||x|| < M| y|| for all x, y such that 0 < x < y. It is well known that
every cone in a finite dimensional Banach space is normal.

LemMa 2.1. Let X be a Banach space and assume that C C X is a normal cone and é, the
interior of C, is nonempty. Assume that X is a vector lattice with respect to the partial ordering
induced by C. If A is a compact subset of X, let V be the lattice generated by A4 (see the defini-
tion preceding proposition 2.1). Then V is compact.

Proof. If F is a finite subset of X, we first claim that there is a finite set G such that G D F
and G is closed under the lattice operations. To see this, first define

H= €x= AN C:TCF}.
$eT
It is clear that H is a finite set, F C H and if x, y € H, then x A y € H. Next define G by
G = {x= V C:TCH}.
$eT

Again it is clear that H C G, G is a finite set and if x, y € G, then x V y € G. However, we also
claim that if x, y € G, then x A y € G. Recall (see [17, p. 365]) that the lattice distributive laws
hold in X

XAWMVZI=XVIANWDVI and XVIIAZ=ADIV(YA2I.
If x, ¥y € G, so there are sets 7} C H and T, C H with
x=V ¢ and y= V §,

el $reTy

the lattice distributive laws give

XANy= V & NG

C1eT, 85T,

Because {; A {, € H for all {, e T} and {, € T,, we see that x A y can be written

xANy= VU

$eT

where T is a subset of H, so x A y € G.
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If B,(x) denotes a closed ball of radius r and center x, and if 4, € K. , then there exists r > 0
such that

u, + B,(0) C K.

r'u,,

1

This immediately implies that, if u
—u=<z=<wu forall z with |jz|| = 1.
As usual, if x < y we write
[x,y] = {z:x <z =<y}
By using the normality of K it is not hard to see that there exists a constant M such that
[—u, u] C By (0).

Since A is compact, given ¢ > 0, there exist x; € 4, 1 < j =< n, such that
n
A C U BSMfl(xj)'
=1
It follows that (for &, = eM 1)
n
AcC Ulx — e u,x; + g ul.

j=1

If F denotes the finite set {x;: 1 <j < n}, we know that there is a finite set G D F such that G
is closed under the lattice operations. We claim that

vec Uy —auy+eul=V,. (2.25)
yeG

We know that V, is closed, and V, D A, so to prove (2.25), it suffices to prove that V| is closed
under the lattice operations. However, if w,, w, € V, there exist y, z € G such that
y—egusw sy+eu and Z— U< W, <Z+ EU
It follows easily that
wiAw,elyAz—¢gu,ynNz+ &u] and wVw,elyVvz—euyVvz+eul
Since y A z € G and y V z € G, this proves that w; A w, € ¥V, and w; V w, € V.

Since we know that
vcvic U B,

yeG

and G is finite, we conclude that V is totally bounded, hence compact. W

Remark 2.4. Lemma 2.1 can be generalized slightly, but perhaps it is more interesting to note
that lemma 2.1 fails badly if C has empty interior and one works in L°[0, 1] for 1 < p < .
Specifically, we can construct a compact set A C Lf such that A4 is bounded in L* and such that
V, the lattice generated by A, is not compact. To construct such an A4, for each » = 1 and for
0=<j=2"-1let A;,=[27",(+ D27"]. Let f;, denote the characteristic function of
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the interval A; , and define

o 2"—1

:§O}U<U U{f,,,])CL”[O,l], 1 <p=<co.
n=1j

To prove that A is compact in Z°[0, 1], we have to prove that if g,, & = 1, is any sequence of

points in 4, g, has a convergent subsequence. If g, has a subsequence &, Such that g, = 8k, for

all {,j = 1, we are done. Otherwise, given any integer N, there exists kN such that

o 27—
ge U U (.}
n=N j=
for all k = k, . This implies that
» 1
lgelzr < o~ for k = ky,
so g, — 0in I?
If Tisany subset of {j: 0 < j < 2" — 1}and gis given by
g=V fin
jeT

g is the characteristic function of U; .+ A; ,. In particular, if we define 4,(x) by
1, ifj2"’sx5(j+1)2_"andjiseven,05j52”— 1,
h(x) =
0, otherwise,

we see that A, eV forn=1.If 1 <= m < n, it is not hard to see that

”hn - hm”{p = % forp < o and ”hn - hm“oo =1
This proves that V is not totally bounded and, hence, not compact.
We shall also need a lemma which gives conditions under which it makes sense to talk about
sup(4), where A is a subset of a Banach space X with a partial ordering induced by a cone
C C X. Of course, if B is given by

B={z|z=aforallae Al (2.26)

by sup(A4) we mean an element { € B such that { < z for all x € B, if such an element { exists.

LeEmMA 2.2. Let X be a Banach space with a normal cone C and assume that X is a vector lattice
with respect to the partial ordering induced by C. Let A be a nonempty subset of X. Assume
either: (a) X is reflective and B (defined as in (2.26)) is nonempty; or (b) A is compact and C,
the interior of C, is nonempty. Then sup(A) is defined.

Proof. First assume hypothesis (a). Fix x, € B and define By = {x € B: x < xp}. If a € A, we
have that

a<x=<x for all x € By,

so the normality of C implies that B, is bounded. It is also easy to see that B, is closed
and convex, so reflexivity implies that B, is compact in the weak topology. If x € B and
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B, = {y € B: y < x}, the same argument shows that B, is compact in the weak topology. It
follows that in order to prove

N B. = O,

x € Bgy

it suffices to prove that if F = {x;: 1 < i < k} is any finite collection of points in B,

N B. = Q. @.27)

xeF
However, we have

k
N\ x;e N B,

i=1 xeF
so (2.27) is valid. If x € B, we have that x A x, € B, and

By D Bypy,-
Using this we see that

N B.= ( B.#J.

xeB x € By

It is not hard to see that (N, .y B, contains only one element and
(M B, = sup(A4).

xeB
The second part of the lemma follows easily from lemma 2.1. If V is the lattice generated
by A, lemma 2.1 implies that V is compact. If u € C and m is a positive integer, the same
argument used in lemma 2.1 shows that there are points a;,, € A, 1 < i < N(m), such that
N(m)
AcC U laym — m'u, a, + mu).
i=1
If we define y,, € V by
N(m)
Ym = V i s

i=1

it is clear that

1
asy,+ <E ) foralla e A. (2.28)

Since V is compact, we can assume, by taking a subsequence, that y,, = y € V; and we have by
taking the limit in (2.28) that

as<y forallae A.

If z = afor all a € A4, it is clear that z = y,, for all m, so z = y and y = sup(A).
Obviously, the same argument also gives the existence of inf(A) in this case. W

Remark 2.5. Suppose that C is a normal cone with nonempty interior in a Banach space X and
assume that X is a vector lattice. Suppose that A, , k = 1, is a decreasing sequence of compact
nonempty sets and write

A=) A

k=z1
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As is well known, given any open neighborhood U of A, there exists an integer k(U) such
that 4, C U for all k¥ = k(U). For any fixed 6 > 0 and « € C let

U={weX:w—x+5ue(°Jand —w+x+§ue(°?forsomexeA}.

Lemma 2.2. implies that sup(A4,) = s, exists and sup(A) = s exists and obviously s, = s for all
k. However, if k = k(U), we have w < s + Ju for all w € A, and s, < s + du. The normality
of C now implies that lim s, = s.

k—> o

Suppose now that assumptions and notation are as in lemma 2.1. We need to generalize the
idea (defined in Section 1) of an irreducible element of V. If V is as in lemma 2.1, ¢ > 0 and
Xx € V, we shall say that ‘““x is e-irreducible’’ (with respect to V) if

{=supfzeViz<ux |x—zllz¢ <x,

so { < x and { # x. Lemma 2.2 implies that { is well defined and ¢ € V' (assuming that
izeVl]z <x, |x — zl = &} is nonempty). If there does not exist z € V such that z < x and
lx — zil = &, we shall still say that x is e-irreducible.

LEMMA 2.3. Let notation and assumptions be as in proposition 2.2 and suppose in addition that
C is normal with nonempty interior. If x € V' is ¢-irreducible for some £ > 0, then T(x) is also
g-irreducible.

Proof. We know from proposition 2.2 that 7 is an order-preserving isometry of ¥ onto V.
IfI" = (T| V), it was shown in the proof of proposition 2.2 that I is also an order-preserving
isometry of V onto V.

If A is any compact subset of V, lemma 2.2 implies sup(A4) exists. More generally, if A4 is any
subset of V, one can easily see that sup(4) = sup(A); and because V is compact (see lemma
2.1), sup(A) exists for any A C V.

We next claim that if A4 is any subset of V,

T(sup(A)) = sup(T(A)).
To see this, let 7, = sup(A4) and z, = sup(7(A4)). Because T is order-preserving, we have
T(z,) = T(a) foralla e A,
so 7(z,) = z,. Because I'(T(A)) = A and I is order-preserving the same argument shows that
I'zy) = z,.
If equality does not hold in the above inequality, we obtain
=TT @) >T(2) = z,,

a contradiction. Thus, we must have 7(z,) = z,.
For £ e V and ¢ > 0, define a set A,(£) by

A =tyeViy=<<Zand |y - &l =&l (2.29)
Because 7 and I' are order-preserving isometries we have

T(A,00) C A(Tx)  and  T(A,(Tx) C A, (). (2.30)
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Because I' and T are one-one and (I'7T)(A4,(x)) = A,(x), we conclude that both of the
inclusions in (2.30) must be equalities. It follows that

T(sup(A4.(x))) = sup(4,(Tx)),

which shows that x is e-irreducible if and only if Tx is e-irreducible. W

If C is a normal cone with nonempty interior in a Banach space X and X is a vector lattice
in the partial ordering induced by C, then it is not hard to see that (x,y) = (x A y) is
continuous. Thus, the hypotheses of lemma 2.3 are slightly redundant.

We also need an “‘epsilonized’’ version of the idea of the height of a point x in a lattice V (see
[10]). If X is a vector lattice and a normed linear space and V' C X is closed under the lattice
operations and x € V, we define the ‘‘e-height of x’’ (with respect to V), A.(x), by

h.(x) = suplk|3e;eV,0=<i<k,suchthate, =xande; <e;,, forO<i<k
and {le;,; — ¢l = efor 0 < i< kj. (2.31)

If there is no element w € V such that w < x and |w — x|| = ¢, we define A,(x) = 0. If the
norm on X is monotonic and e; is as in (2.31) we have

le, — eill = lle, —e,,l = ¢ for0<j<p=<k. 2.32)

If, in addition, we assume that V is compact, there exists for each & > 0 an integer N = N(¢)
such that V is contained in the union of N open balls of radius £/2 and centers in V. By using
(2.32) and the pigeon-hole principle, it is easy to see that

h(x) < N(g) < .

Our next lemma is a straightforward generalization of the corresponding result for irre-
ducible elements in finite semilattices.

LeEMmMA 2.4, Let C be a normal cone with nonempty interior in a Banach space X and suppose
that the norm of X is monotonic. Assume that X is a vector lattice with respect to the partial
ordering induced by C. Let V be a compact subset of X such that V' is closed under the lattice
operations. If € > 0 and x € V, then x = sup{z € V: z < x and 7 is &-irreducible with respect
to V.

Proof. For w € V, let h,(w) denote the g-height of w with respect to V. We shall prove the
lemma by induction on A.(x). If h(x) = 0, x is g-irreducible by definition and the lemma is
true. For an integer & > 0, assume that the lemma is true for all x € V such that h,(x) < k. If
X is not e-irreducible,

x=supjzeV|z=<xand ||z — x| = &} = sup(S). (2.33)

If z € S, it is easy to see that h,(z) < k: if h,(z) = k, we would obtain #,(x) = k£ + 1. By induc-
tion we have (for z € S)

z = sup{w e V| w < z, wis e-irreducible}. (2.34)
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We obtain from (2.33) and (2.34) that
x=supfweV]|w=<x, |w—- x|l = € and wis e-irreducible],

which completes the proof. B

Remark 2.6. In general it is necessary in lemma 2.4 that ¢ > 0. If ¢ = 0, O-irreducibility is the
same as irreducibility. However, lemma 2.4 may fail for & = 0: to see this take X = R and
V = [0, 1] and note that 0 is the only irreducible element of V.,

We prove our next lemma in somewhat greater generality than we shall actually need. No real
simplification is gained by considering a less general case. In the statement of the following
lemma, we shall call a partial ordering on a metric space (w, d) ‘‘closed’’ if whenever x; < y,
for all kK = 1 and x;, — x and y, — y, it follows that x < y.

LeEmMA 2.5. Let (M, d) be a complete metric space and 7: M — M a nonexpansive map with
respect to d. Assume that £ € M and x, € M are such that w(&; T') is compact and nonempty
and Tx, = x,. Then for all x, y € w(&; T)

d(X, xO) = d(ys XO)'
If, in addition, there is a closed partial ordering defined on w(¢&; T) such that
dx,y) =dx,7) and dy,2) =dx,2) (2.35)

whenever x, y,z € w(&; T) and x < y < z and if T preserves the partial ordering on w(&; T),
then there do not exist elements x, y € w(&; T) such that x < y and x = y.

Proof. If x € w(&; T), we know that there exists a sequence p; —> oo such that 77(x) — x.
It follows that
d(x, xo) = lim d(T"x, xo) = lim d(T"x, T"x,). (2.36)

On the other hand, T is nonexpansive, so d(T"x, T™x,) is a decreasing sequence of reals. Using
this fact and (2.36) we see that

d(T"x, xp) = d(x, xp) for all m = 1. 2.37)
For any y € w(&; T), there exists a sequence g; — c such that 7% (x) — y, so

d(y, xp) = lim d(T%(x), xo) = d(x, Xp).

To prove the second part of the lemma, assume, to the contrary, that there exist
x,y € w(&; T) with x < y. We know that there exists a sequence g; — o such that T9%(x) — y.
Since 7} w is an isometry of w onto w, T% | w is also an isometry of w onto w. We assume
that w is compact, so the Ascoli-Arzela theorem implies that there exists a map S: w — w and
a subsequence of g; (which we label the same) so that 7% | w approaches S uniformly on w.
We have

d(S¢, Smy = lim d(T%E,T%n) = d(&,n)  forall{,n € w,
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so S is an isometry. To see that S is onto, choose z € w and x; € w such that
T%x) = z.
Since T9% approaches S uniformly on w we have that

lim S(x;) = lim z; = z,

i—>oo
so z;1s a Cauchy sequence. It follows, because S is an isometry, that x; is a Cauchy sequence and

limx; =¢ew with S(¢) = z.

i—oo

Notice that S is also order-preserving, because 7% is order-preserving and the partial ordering
is closed.
We now have, using the order-preserving property of S, that

x<Sx=y and Sx<S™ for0=<j<m. (2.38)
By using (2.35) and (2.38) and the fact that S is an isometry,
0 < d(x, Sx) = d(8’x, $/*'x) < d(S'x, $™x) for0<j < m. (2.39)

On the other hand, (2.39) implies that the sequence $/(x) can have no convergent subsequence,
which contradicts the assumption that w is compact. W

Remark 2.7. An examination of the proof of lemma 2.5 shows that it suffices to replace (2.35)
by the assumption that there exists a constant M such that

d(x,y) < Md(x, 2) and d(y,z) < Md(x, 2)

whenever x, y, z € w(&; T) and x < y < z. One can also see that the final assertion of lemma 2.5
holds without the assumption that 7 has a fixed point x,.

We shall also need a technical lemma. We shall only use lemma 2.6 in finite dimension
Banach spaces, but we shall prove it in greater generality.

LeEMMA 2.6. Let C be a normal cone with nonempty interior in a Banach space X and assume
that X is a vector lattice with respect to the partial ordering from C. Let ¥V C X be a compact
set and let 7: ¥V — V' be a nonexpansive, order-preserving map of V to V. Given é > 0, there
exists £(8) > 0 such that if x, y € w(&; T) for some £ € V and |x — y|| = §, then

[x —xApl=ed and |y — (x Al = e©).

Proof. We leave to the reader the exercise of proving (under the assumptions on C) that
if x, > x and y, — y are any two convergent sequences in X, then x, A y, = x A y and
Xe VYe 2 XV

We assume lemma 2.6 is false and try to obtain a contradiction. If the lemma is false, there
exists two sequences x, € w(&;; T) and y; € w(&,; T) (& € V) such that |lx, — y,|| = 6 and

lxe = e A YOIl = 0.
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Because w(éy;T) = w(xy;T), we can assume that &, = x,. Because V is compact, we can
assume that x, — x and y;, — y. We claim that x, y € w(x; T). If we can prove this we will be
done: lemma 2.5 and remark 2.7 imply that x and y are not comparable in the partial ordering.
However, we have that

lim lxe — G Ayl = llx — x Al =0,

which implies that x < y.
Thus, it suffices to prove that x, ¥ € w(x; T). The properties of omega limit sets imply that
for each k = 1 there exist sequences of integers p; and g;, such that p; — o as i — o and

lim TP%(x,) = x; and lim T9%(x,) = yy.

i—~oo -
Given an integer j = 1, choose x;, and y; such that
Ixe = <2772 and |y -yl <2772

Choose an integer i such that py =j, gu=Jj and [[TP*(x) — xJ <277' and
| 79%(x,) — yill < 277!, For this choice of i and k, define p;, = py and g; = q;. By the
triangle inequality we obtain

[T7i0) = xll < llx = x|l = lxe = TPl + 1TP(x) — TPi(x)|
<2972 427t 4 272 = 0
It follows that 7%(x) > x and x € w(x; T). An analogous argument shows that T7%(x) — y and

yewxT). B

It may be worthwhile to indicate a simpler variant of lemma 2.6 which would also be
adequate for our applications.

LemMa 2.6'. Let X be a Banach space which is also a vector lattice and assume that the norm
on X is strictly monotonic. Assume that the map (x, y) = (x A y) is continuous. Let ¥ be a
compact subset of X. Given § > 0, there exists £() > 0 such that if x, y € V, |x| = ||y|| and
lx = yll = &, then

lx —GAplze@d and |y — (xAYl = o).

Proof. Suppose the lemma is false. Then there are sequences x; € V, ¥, € V, such that
lxell = llyell, [xx = yell = & and khf:o lxe — (e Aol = 0.

Because V is compact, we can take a subsequence and assume that x, — x and y, — y and

v

el = Uy, Ix=slz6 and = ARl = lim b — G Aydl = 0.

It follows that x < y and ||x|| = ||¥|, which contradicts the strict monotonicity of the norm. MW

For the remainder of this section we shall confine ourselves to finite dimensions and to
C = K"
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LemMA 2.7. Let 7: K" C R" - K" be an order-preserving map which is nonexpansive with
respect to a strictly monotonic norm ||-||. Assume that 7(0) = 0. For a given £ € K", let V be
the lattice generated by w(&; T). (Thus, our previous results imply that V is compact, T is an
isometry of ¥ onto V, and T and T = (T | V) ™! preserve the lattice operations.)

For a given d > 0, let ¢(8) = £ > 0 be as in lemma 2.6. If x € V is g(d)-irreducible, then there
exists p such that 1 < p < n and

172G — xl| < 6.
Proof. There exists a sequence p; — o such that T?(y) — y for all y € w(£;T); and it

follows easily that TPi(z) —» z for all z e V. Thus, if z eV, z € w(z; T).
If ¢ > 0 and y € V is ¢-irreducible, define I,(y) = {i|z; < y;}, where

z=supiweV:w=<yand |w - y| = ¢ (2.40)

Now suppose that x € V' is g-irreducible, ¢ = £(d). We know (lemma 2.3) that T(x) is &-
irreducible for all j = 0. If ||x — TY(x)|| = 6 for some j > 0, we claim that

L(x) N I(T%) = &.
To prove this, we suppose not, so for some /, 1 < i < n, we have
i€ IL(x) N L(T).
Lemma 2.6 (or lemma 2.6’) implies that
[x - xATY)| 2e@d) =¢  and [T9% — (x A TYx)|| = &.
If we define z and { by
z=supiweV|w=<xand ||w— x| =& and (=supiweV|w=T/xand |w— x| = ¢},
we have that
AT, <zi<x and (x ATx), < < (T, (2.41)

where a subscript i denotes the ith component of a vector.
Equation (2.41) gives a contradiction.
Forlsi<nletP={m0<m<mnandiel(T"x). If m,m, € P,and m;, < m,, our
remarks above show that

(Tm2x — T™x|| = [[T™ ™x — x|| < 4.

However, because there are n + 1 iterates T™(x), 0 = m < n and n sets P;, 1 <i < n, the
pigeon-hole principle implies that there exists /, 1 < i < n, which contains at least two elements.
This completes the proof. W

We now restate and prove our main theorem.
THEOREM 2.1. Let K" = {x e R": x; =2 0for 1 =/ =< n}jandlet T: K" — K" be a map which is

nonexpansive with respect to a strictly monotonic norm on R”. Assume that 7(0) = 0 and T is
order-preserving. If £ € K", there exists a minimal positive integer p; = p < «(n) < ¢(n) (where
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a(n) is defined in definition 1.2 and ¢(#) is defined in [9, p. 362] and in Section 3 below) such
that

lim T%() = n  and T?(n) = 7.

k- o0

Proof. Let V be the lattice generated by w(&; T).
If 6 >0 and ¢ = &) is as in lemma 2.6 and N = lcm(l, 2, ..., 1), we claim that for any
e-irreducible element x € V' one has

7)) — x| = N&.
To see this, note that lemma 2.7 implies that
(T7x — x| < & for some m, 1 < m < n.
We can write N = mp,, p, an integer. Because
|TmU* Yy — T™x| <8  for0<j<p,
the triangle inequality implies
1T — x| < p,& < N&.
If x now denotes any fixed element of ¥ and p, is as above, define a compact set A; (6 > 0) by
As={yeV:y<xand |T"y — y| = N&J.

By our remarks above, 4, contains all &(d)-irreducible elements y € ¥ with y < x. Thus, lemma
2.4 implies that

x = sup(A4;).

Select a sequence &;1 0, so As, is a decreasing sequence of compact, nonempty sets. If we
define A, by

AO = m A‘Sj’
Jj=1
it follows from remark 2.5 that

sup(4,y) = lim sup(4;) = x.
oo

On the other hand, one can easily see that
Ao =1tyeViy=xand TY(y) = y}.
Because both TV and TV are order-preserving, where I' = (T | V)™', one can see that
T™(sup(Ay)) = sup(T(Ay)).
Thus, we have that
TNx) = TN(sup(Ay)) = sup(TN(Ay)).
The definition of A, shows that TN(4,) = A4, so
sup(T™N(Ag)) = sup(4,) = x.
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Thus, we have proved that for N = L(n)and all x e V
TNX) = x.

If we take x € w(&; T'), we see that w(&; T) is the orbit of the periodic point x and the period
p, of x divides N. If V} is the semilattice generated by w(&; T), T(V,) C V, and T preserves the
lattice operation on ¥V,, so by definition 1.2 we have p, < a(n). B

Remark 2.8. In the /;-norm case, Scheutzow [10] has observed that one need not assume that
T is order-preserving. However, Scheutzow strongly uses the Akcoglu-Krengel result [1] that
w(&; T) is a finite set for every £ € K" if T: K" —» K", T(0) = 0 and T is /;-nonexpansive. It is
interesting that a slight variant of our proof of theorem 2.1 gives a different proof that w(¢; T)
is finite when T: K" — K", T(0) = O and T is /,-nonexpansive. For a given & € K", define a set
M by

M ={z:3xe w(;T)suchthat 0 < 7 < x}.

A generalization of arguments in [9, 10] shows that T is integral-preserving (so ¥7_ (72); =
Y7_,z;for z € M) and order-preserving on M. There exists a sequence of integers p; — o such
that T%i(x) — x for all x € w(&; T), and we define M, by
M, = {z € M: lim T?(z) = z}.

One can prove that if x,, x, € M, then x; A x, € Myand T(x; A x,) = T(x;) A T(x,). Similarly
if x;,x, e My and x; V x, € M, then x, V x, € My and T(x; V x,) = T(x,) V T(x,). Also one
can show that T | M, is an order-preserving isometry of M, onto Myand I" = (T | M)~ is also
an order-preserving isometry of M, onto M,. By defining e-irreducibility, the &-height of
x € M,, etc., with respect to M, instead of ¥, one can mimic the proof of theorem 2.1 to prove
that w(&; T) is finite and |w(&; T)| < a(n).

Remark 2.9. Theorem 2.1 does not apply to an interesting case, namely the sup norm on R".
Is the conclusion of theorem 2.1 still true for the sup norm? If not, what sort of estimates can
one obtain on |w(¢; T)| when T: K" — K" is order-preserving, nonexpansive with respect to the
sup norm and 7'(0) = 0?

Remark 2.10. If the norm is the Euclidean norm in R", n = 3, and all assumptions of theorem
2.1 are satisfied except that T is order-preserving, it is easy to construct examples for which
w(&; T) is infinite for almost all £ € K”. See [18, p. 224].

3. COMPUTING a(n) AND ¢(n)

In this section we want to prove more information about the functions «(n) and ¢(n) and
extend a table of values of «a(n) and ¢(n) which was given in [9].
Recall that a lower semilattice W C R" is a set such that forall x,ye W, x Ay e W.

Definition 3.1. Qy(n) is the set of integers p = 1 such that there exists a lower semilattice W R”
andamap T: W — W suchthat T(x A y) = Tx A Ty forallix, y € W and T has a periodic point
& e W of period p.
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It is clear (see definition 1.2) that

a(n) = sup{p: p € Qy(n)}.

Definition 3.2. Q,(n) is the set of integers p = 1 such that there exists a map 7: K" = K" such
that T(0) = 0, T is /,-nonexpansive and 7 has a periodic point £ € K" of period p.

The results of Section 1 show that Q,(n) C Qy(n).
If T: D C R* > R", T is called ‘‘integral-preserving’’ if

n n
Y (T, = Y x for all x e D.
i=1 i=1
If D = R"or K" and T is integral-preserving, it is known [19] that 7 is /,-nonexpansive if and
only if T is order-preserving. We shall denote by u the vector in R" all of whose components
equal one.

Definition 3.3. A map T: K" — K" will be said to satisfy H3.1 if T is integral-preserving and
order-preserving and 7T'(cu) = cu for all ¢ = 0.
By our remarks, if T satisfies H3.1, 7 is /,-nonexpansive.

Definition 3.4. P(n) is the set of integer p = 1 such that there exists a map 7: K" — K" which
satisfies H3.1 and has a periodic point £ € K" of period p.
It is easy to see that

P(n) C Q(n) C Qy(n) and PnyC Pn+1)
and
gnmcCQn+1 forj=0,1.

Also, if T is in the class of maps allowed for definitions 3.1, 3.2 or 3.4, respectively, and r is
a positive integer, then T is also allowed for definitions 3.1, 3.2 or 3.4, respectively. Thus, if
P € Qy(n), O,(n) or P(n), respectively, and p = mr, then m € Qy(n), Q,(n) or P(n), respectively.
If £ denotes Qy(n), Q,(n) or P(n), we can put a partial ordering on £ by p, < p, if p, is a
factor of p,. In this ordering, ¥ has maximal elements, and X comprises precisely all divisors
of its maximal elements.

It is clear that the order p of any permutation on # letters is an element of P(n), so n € P(n).
More generally, it is proved in Section 3 of [9] that if » = mr and p,, p,, ..., p, € P(m), then

rlem({p;: 1 = j =< r}) € P(n).

Furthermore, if n,+n,=n and p;eP(n;) for j=1,2, it is shown that
p = lem(p;, p;) € P(n).

It is proved in [9] that if p € Qy(n), thereisaset SC{/: 1 = j < n}such that p divides lem(S).
However, not every subset S of {j: 1 < j < n} is possible. It is proved in [9] that there are
constraints on S. To indicate some of these constraints, recall that if 7 is a set of positive
integers, gcd(T) denotes the greatest common divisor of the elements of 7. Recall also the
following conditions from [9] concerning nonempty subsets S of {j: 1 < j < n}.
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Condition A. S does not contain a subset Q such that (1) ged(i, j) = 1 foralli,j € Q withi # j
and (2) ¥,cqi > n.

Condition B. S does not contain disjoint subsets Q and R which satisfy the following
properties:

(1) ged(i,j) =1foralli,j e Q with i # j;

(2) ged(i, k) = 1 forallie Q and k € R;

(3) Rhasr + lelements, r = 1,i > rforalli € R, and gcd(i, j) divides r for all i, j € R with
i#J;

@ i+j>n—(Lireok) foralli,jeR withi=j.

The possibility that Q is the empty set in condition B is allowed. In that case conditions (1)
and (2) in condition B are vacuous and ¥, .o k = 0. It is also not hard to see that if S satisfies
condition B (with r = 1), then S satisfies condition A, but we prefer to state condition A
separately.

Condition C. S does not contain disjoint subsets Q and R with the following properties:

(1) ged(i,j) = 1 for all i, j € Q such that i = j;

(2) ged(i, k) = 1forallie Qand k € R;

(3) Rhas m + 1 elements where m = p*> — p + 1 and p = 2is an integer and ged(i, j) divides
r=p*forallijeR withi#j;

(4) there exists y € R such that ged(y, j) divides p forall j e R, j # y, and y > p and j > p?
for j = y;

) i+j>n— (Lxcok) foralli,je R with i #j.

Condition D. S does not contain a set R with the following properties:

M R={pll<sjs=m+r—1}, where m=2, r=2, and p,;#p; for 1<=i<j=
m+r—1;

(2) ged(p;, p;) dividesrforl =i<j=m+r—landp,>rforl<sis=sm+r—-1;

B rjpj>nandp;+p,>nforallj#ksuchthat l<sj<m+r—-landm<k=
m+r-—1.

Definition 3.5. If S C {j: 1 < j < n} we say that S is “‘admissible for n”” if S = {1} orif 1 ¢ S
and S satisfies conditions A-D.

It is proved in [9] that if p € Qy(n), then there exists a set S C {j: 1 <j < n} which is
admissible for n and is such that p is a divisor of lcm(S). Motivated by this fact, an ad hoc func-
tion @(n) is defined by

@(n) = supflem(S): S is admissible for »j. 3.1
If we define functions S(n) and y(n) by
B(n) = suplp|p € Q(m)}  and  y(n) = sup{p|p € P(n)}, (3.2)
we have that
y(n) < B(n) < a(n) < ¢(n). (3.3)

If a set S is admissible for #n, it is admissible for n + 1, so ¢@(n) is a monotonic increasing
function, and clearly y(n), a(n) and f(n) are monotonic increasing functions.
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In [9] it is proved that y(n) = @(n) for 1 = n < 24 and the values of y(n) are tabulated for
n < 24. Here we want to extend this table for n < 32 and prove y(n) = ¢(n) for n < 32. By
using the previously mentioned properties of P(n), it is relatively easy to find lower bounds for

y(n).

Lemma 3.1. For 25 < n < 32 we have the following lower bounds for y(n)
y(25) = 2640 = 16 X 3 x 5 x 11,
P(26) = 3120 = 16 x 3 X 5 x 13,
P27) = 5040 = 16 X 9 X 5 x 7,
y(n) = 9240 = 8 X 3 x5 x7x11 for 28 < n = 30,

y(31) = 18480 = 16 x 3 x 5 x 7 x 11
and
P(32) = 36960 = 32 x 3 x 5 x 7 x 11,

Proof. 1t has been proved in [9, theorem 3.4], that 2640 € P(24), so we certainly have
2640 € P(25) and y(25) = 2640.

There are permutation maps of K* to K> which have periodic points of period 3 and 2,
respectively. Thus, 2, 3 € P(3) and our previous remarks imply 2 lem(2, 3) = 12 € P(6). There
is a permutation map of K°® to itself which has a periodic point of period 5, so 5 € P(6). It
follows that 120 = 21lcm(5, 12) € P(12), so 120 € P(13). There is a permutation map of K'?
with a periodic point of period 13, so 13 € P(13). It follows that 3120 = 2 lecm(120, 13) € P(26).

There are permutation maps of K> of order 5 and 4, respectively, so 2 lcm(4, 5) = 40 € P(10).
There is also a permutation map of K'° of order 9, so 9 € P(10). It follows that 2 lem(9, 40) =
720 € P(20). There is a permutation map of order 7 of K7, so 7 € P(7). It follows that

5040 = lem(7, 720) € P(27).

It is proved in remark 3.2 of [9] that 9240 € P(28), so p(n) = 9240 for 28 < n < 30.

We have already remarked that 2640 € P(24), and by considering a permutation map we have
that 7 € P(7). Because 7 + 24 = 31, we conclude that lem(7, 2640) = 18480 € P(31).

There are permutation maps of K* of orders 4 and 3, respectively, so 2 lem(4, 3) = 24 € P(8).
There is also a permutation map of order 7 of K*, so 7 € P(8) and 336 = 2 lcm(7, 24) € P(16).
There is a permutation map of K'® of order 55 = 5 x 11, so 55 € P(16). It follows that
2 lem(336, 55) = 36960 € P(32). W

We claim that y(n) actually equals the lower bounds for it given in lemma 3.1 for 25 <
n < 32 and that y(n) = ¢(n) for 25 < n < 32. The method of proof is to show ¢(n) < y(n) for
25 = n < 32. The problem is that the computation of @(n) for values of n like n = 30 or 31 is
highly nontrivial and involves a very laborious and lengthy case-by-case analysis in which con-
ditions A and B are primarily used but conditions C and D also play important roles. Reasons
of length and aesthetics preclude a full proof, but notes are available from the author for those
who wish to see details. Here we shall be satisfied to give the outlines of the proof for
28 = n = 32.
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First, consider the case 28 <= n < 30. Because p(28) = 9240, it suffices to assume that
T C{j:1 =<j= 30} is admissible for n = 30 and that lem(7") = 9240 and try to prove that
necessarily lem(7") < 9240. First, one proves for such a 7T that 29, 27, 25, 23, 19 and 17 are not
factors of lem(7). It is only necessary to use conditions A and B to obtain this result. Next one
proves (this is more difficult) that 13 is not a factor of lem(7’); here conditions A-D are all
needed.

Finally, one first proves that 16 is not a factor of lem(7") and then that 9 is not a factor of
lem(T'); again, conditions A-D are all needed. Using these results one finds that

lem(T) =8x3Ix5x7x 11 =9240 and  ¢(30) < 9240.

If T is admissible for n(n = 31 or 32) and lem(7") = 18480 (for n = 31) or lem(7T") = 36960
(for n = 32), one proves fairly easily that 31, 29, 27, 25, 23, 19 and 17 are not factors of
lem(7"). With much more effort one proves that 13 is not a factor of lem(7'); conditions A-D
are all needed. If n =31 or n = 32, one proves that 9 is not a factor of lem(7T), so
Iem(7) =16 X 3 x 5 X7 x 11 = 18480 and ¢(31) < 18480 for n =31 and Ilem(T) <
32X 3x5%x7x11=36960 for n = 32.

Similar arguments apply for 25 < n < 27 and one obtains the following theorem.

THEOREM 3.1. For 25 = n < 32, y(n) = B(n) = a(n) = ¢(n). Also, one has that p(25) =
2640 = 16 x 3 X 5 x 11, p(26) =3120=16 x3 x 5% 13, y27) =16 x 9 X 5 x 7 = 5040,
pn) = 8 X3 X5XxTx11=9240 for 28 =n <30, y(31) =16 X3 x5x 7 x 11 = 18480,
and p(32) = 32 X3 X 5 X7 x 11 = 36960.

With the aid of theorem 3.1 we can extend the table of values of y(n) in [9].

For 1 = n < 32, a(n) = B(n) = y(n) = ¢(n) (see Table 1).

We should emphasize that there are constraints on the set S in theorem 1.2 other than
conditions A-D, and it is by no means clear that a(n), S(n) or y(n) behaves asymptotically like
@(n) for large n. Nevertheless, for values of n < 32, one can obtain remarkably precise results
concerning P(n), Q(n) and Qy(n). As an illustration, we mention the following easy result:
define numbers oy = 16 X 3 X 7, 0, = 16 X3 X 5,03 =3 X 13,04 =2 X 13, 5 = 2 x 3 x 11,
g =5%X11, 0 =4X 11,03 =4X9IXS5, 0 =2Xx9%x7and a;g =4 x5 X 7. The elements

Table 1. Values of ¢(n) for 1 < n < 32

n o(n) n o(n)
1 1 17 420
2 2 18 420
3 3 19 840
4 4 20 1680
5 6 21 1680
6 12 22 1680
7 12 23 1680
8 24 24 2640
9 24 25 2640

10 60 26 3120

11 60 27 5040

12 120 28 9240

13 120 29 9240

14 168 30 9240

15 180 31 18480

16 336 32 36960
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of P(16) U {a,} and the elements of Qy(16) U {ao} are precisely the numbers which are the divi-
sors of «; for some j, 1 < j < 10. It follows that, aside from the troublesome «g, we know all
elements of P(16) and

P(16) U fag} = Q,(16) U fag} = Qu(16) U for).

The difficulty with aq arises from the fact that

ay = lem(6, 7, 9).

The set T = {6,7,9} is admissible for n = 16, but we do not k now whether a4 € P(16) or
o9 € Qy(16). However, since 4 = 9 x 7 € P(16), the problem ot too serious.
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