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ABSTRACT

If D is a subset of R” and f : D — D is an ¢,-norm nonexpansive map, then it is known that every
bounded orbit of f approaches a periodic orbit. Moreover, the minimal period of each periodic
point of f is bounded by n! 2™, where m = 2"~ !, In this paper we shall describe two different pro-
cedures to construct periodic orbits of £;-norm nonexpansive maps. These constructions yield that
a lower bound for the largest possible minimal period of a periodic point of an ¢;-norm non-
expansive map is given by 3-27~!, n > 3. If n < 5, we shall also improve the upper bound for the
largest possible minimal period.

1. INTRODUCTION

If Disasetandf : D — D is a map, then f* will denote the k-fold composition
of f with itself. A point x € D is called a periodic point of f of minimal period p if
f?(x) = xand f/(x) # x for 1 <j < p. We shall call amapf : D — V, where D
is a subset of a Banach space (V, || - ||), nonexpansive (with respect to || - ||) if

Wf(x) =Sl < llx-y| forallx,ye€D.

As usual we define the ¢;-norm || - ||, on R" by

lxll, = iil Ix;|, where x = (x1,x2,...,Xn).
The metric induced by the £;-norm will be denoted by di. So di(x,y) = ||x — y||;-
*Supported by an N.W.O. grant under 613-02-210.
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Let D be a closed subset of R”. If f : D — D is a nonexpansive map with re-
spect to || - ||; and there exists a xo € D such that the sequence (f/(xp)) ; is
bounded, then Akcoglu and Krengel [1] showed that for every x € D, there exist
a positive integer p, = p and a point £, = £ € D such that £ is a periodic point of
f of minimal period p and

(M lim /) =¢

Furthermore, the number p is bounded by n! 2™, where m = 2". The proof of (1)
by Akcoglu and Krengel did not provide an upper bound for the integer p,
x € D, and the upper bound given here was established by Misiurewicz in [9).

It is known that property (1) actually holds for nonexpansive maps with re-
spect to a given polyhedral norm, see Weller [18), Martus [8] and Nussbaum
[10]. An important example of a polyhedral norm on R”", aside from the ;-
norm, is the sup norm

|*¥]lo = max{|x;|: 1 <i<n}, wherex=(xi,x2,...,%).

In case of the sup norm, the second author conjectured that the optimal upper
bound for the integer p, equals 2". The conjecture has been proved in dimen-
sion n = 1, 2 and 3, see Lyons and Nussbaum [7].

In general, however, sharp bounds for the largest possible minimal period of
nonexpansive maps with respect to a polyhedral norm are unknown. In this
paper we shall improve the a priori bounds for the largest possible minimal
period of general nonexpansive maps with respect to the £;-norm. Sharp
bounds for the largest possible minimal period of an ¢;-norm nonexpansive
map f : Dy — Dy, Dy C R" do seem difficult to obtain. One of the reasons is
that the map f, in general, does not have an ¢;-norm nonexpansive extension
F:R” - R” (a fact, however, which is true for nonexpansive maps with re-
spect to the sup-norm). Therefore the problem depends nontrivially on the set
Dy. For arbitrary sets Dy not much is known. In special cases, for example if
Dy = K", the positive cone in R", much more is known and a complete char-
acterization of the set of possible minimal periods has been obtained by Nuss-
baum, Scheutzow and Verduyn Lunel [11, 13, 14, 15].

The study of the behaviour of orbits of £/;-norm nonexpansive maps naturally
leads to a detailed analysis of the structure of w-limit sets of nonexpansive
maps. The main idea in the proof of (1) is to show that if f : Dy — Dy is £;-norm
nonexpansive and there exists a xo € D such that the sequence (f’ (%0)); is
bounded, then there exists an a'priori upper bound on the cardinality of w-limit
sets which only depends on the number of independent variables.

The organisation of this paper is as follows. In Section 2 we shall discuss the
procedure to obtain a priori upper bounds on the cardinality of w-limit of ¢;-
norm nonexpansive maps, based on the approach introduced by Misiurewicz
[9]. We shall give a sharper upper bound for the cardinality of w-limit sets of ¢;-
norm nonexpansive maps, if the dimension is less than six. In Section 3 we shall
describe two different procedures to construct periodic orbits of ¢;-norm non-
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expansive maps. These constructions yield that a lower bound for the largest
possible minimal period of a periodic point of an ¢;-norm nonexpansive map is
given by 3.2~ n > 3. Finally, in Section 4 we shall discuss some con-
sequences of our approach for sup norm nonexpansive maps.

2. UPPER BOUNDS ON THE CARDINALITY OF w-LIMIT SETS

Let (X,d) be a complete metric space and Dy a closed subset of X. If f : Dy —
Dy a map, then for each x € Dy the w-limit set, w(x) = w(x;f), is defined by

wx)={yeDs|y= Jim f ki (x) for some sequence of integers k; — oo},

or, equivalently, w(x) = Mk>1¢l( Ujnk f7(x)), where ¢/(S) denotes the closure of
the set S.

It is clear that w(x) is closed and invariant under f, i.e., flw(x)] C w(x). Fur-
thermore, if f is continuous and Dy is compact, then f maps w(x) onto itself.

For nonexpansive maps w-limit sets have additional properties (cf. [3]). In
particular, f restricted to w(x) is an isometry and w(y) = w(x), for each y €
w(x). From this last property it follows that, for each y, z € w(x) there exists a
sequence of integers k; — oo such that
() lim % (y) = z.

[ o]

Since f is nonexpansive the set of iterates of f is equicontinuous. Therefore, if
Dy is compact the Arzela-Ascoli Theorem implies that the sequence (f*/);.
has a uniform convergent subsequence. If we let F,; denote the pointwise limit,
one can verify that the restriction of F; ; to w(x) is an isometry of w(x) onto it-
self and F, ;(y) = z. Furthermore, since all the iterates of f commute we have
that

F,yoF,,=F,,0F,, foralluuvy,ze€w(x).

This property motivates the following definition. A subset S of (X,d) has a
transitive and commutative family of isometries, if there exists a commutative
family I" of isometries (with respect to d) of S onto itself, such that for each
¥,z € S, there exists F,; € I'with F, ,(y) = z.

The key idea to obtain a priori bounds for omega limit sets is to analyse
compact sets S that have a transitive and commutative family of isometries.
First we need some preparations. Throughout the paper we shall work in the
metric space (R", d;) and therefore suppress the metric.

2.1. Preiiminary results

i

A sequencea',a?,...,a™in R" is called an additive chain with respect to the £;-

metric, if

m~—1 L
di(a',a™) = Y di(d’,a’t).

i=1

193



A sequence a',a?,...,a™ in R" is called monotone, if for each j € {1,...,n} ei-
ther

1 2 m 1 2 m
ajgajs...gaj orajZajZ...zaj.

By definition, it follows that a sequence a!,d?,...,a™ € R" is monotone if and
only if it is an additive chain. We will call the /ength of a sequence the number of
distinct points in the sequence.

Definition 2.1. For each a,b € R" we define the set
U(a,b) = {c € R" | (a,b,c) is a monotone sequence}.

Moreover, we let U°(a, b) denote the interior of U(a, b) with respect to the Eu-
clidean norm.

The assertions in the following two lemmas are in essence contained in the
work of Misiurewicz [9].

Lemma 2.1. For each a,b € R” one has that
U°(a,b) = {c € U(a,b) | (aj — b;)(b; — ¢;) > 0 whenever a; — b; # 0}.

Proof. Suppose that c € U°(a,b) and that there exists j € {1,...,n} such that
(a; — bj)(bj — ¢;) = 0 and a; — b; # 0. For every € > 0 with € < |a; — b;| define
the vector ¢ = ¢, by

Z‘c=C+Sgn(af_’bj)'€'eja

where e/ denotes the j-th unit vector.
Since (a; — b;)(b; — ¢;) = 0 and a; — b; # 0, it follows that b; = ¢;. This im-
plies that either

a;<¢G<b or b<é<La

Therefore (a, b, ¢) is not a monotone sequence, and hence ¢ & U(a, b).

By construction ¢ is an element of the Euclidean ball B.(c) around c with ra-
dius e. So, we can conclude that for every e sufficiently small B.(c) is not con-
tained in U(a,b). This, however, contradicts the fact that ¢ € U°(a,b), and
therefore we have proved

U°(a,b) C {c € U(a,b) | (a; — b;)(b; — ;) > 0 whenever a; — b; # 0}.

To show equality we consider ¢ € U(a, b) with (a; — b;)(b; — ¢;) > 0 whenever
aj — b; # 0. Select € > O such that |b; — ¢;| > e whenever a; — b; # 0.1f we take ¢
in B,(c) arbitrary, then it is clear that for each 1 < j < n we have that (a;, b;,¢;)
is a monotone sequence in R. Therefore (a, b,¢) is a monotone sequence, and
hence ¢ € U(a, b). This proves that c € U°(a,b). [

Lemma 2.2. If S is a compact set in R” and S has a transitive and commutative
Sfamily of isometries, then U°(a,b) NS = @ for each a,b € Switha # b.
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Proof. Let S be a compact set in R” and suppose there exists a commutative
family I" of isometries of S such that for each y, z € S there exists F, ; € I' with
F, ;(y) = z. We shall argue by contradiction.

So, assume that a,b, ¢ € S such that a # b and ¢ € U°(a, b). Since a # b and
b # ¢ we can take € > 0 such that d(a,b) > ¢ and d; (b, c) > e. Define F to be
the collection of monotone sequences in S, which start with (,b,c¢) and are
such that the d,-distance between two consecutive elements is at least ¢. Since S
is a compact subset of R" there exists an a priori bound on the length of the
sequences in F. Therefore there exists a unique maximal length of the se-
quences in F, which will be denoted by r. Suppose that

x'=a, x2=b, x>=¢c, x* ..., x"

is a sequence in F of maximal length r. For integers 1 < k,/ < r we select an
isometry Fy; € I" with Fy;(x¥) = x'. We define x"*! = F; »(x") and claim that
the sequence

(3) xt=b, x3=¢, x* ..., x", x"!

is a monotone sequence in S with d;-distance between two consecutive ele-
ments at least e. (These facts are special cases of more general results in [7]. For
sake of completeness, we provide the elementary proofs.) To prove the claim,
we first verify that the distance between two consecutive elements is at least e.
By construction, it suffices to verify that dj(x", x"*!) > €. Since x” = F 1r{x1), it
follows that

dy(x", F12(x") = dy (F1,(x"), F1,(F1 2(x")))
= dy(Fi(x"), Fi,/(x?)) = di(x!, x?),

so that
(4) dl(xrax’+l) =dl(xlax2)’

and this shows d(x",x"*!) > e.
To prove the monotonicity of the sequence, it suffices to prove that the se-
quence is an additive chain. Using (4) we derive

dl(xZ’xr+l) = dl(xl,x’) — Z dl(xi,xi+1)

1=

r—1 o,

— ( Z dl(xl’xl-{-l)) +d1(x1,x2)
i=2
r—1 L, r L,

- ( 2 dl(x’,x‘“)) +d1(x',x'+l) = Z dl(x‘,x'“).
i=2 i=2

This proves that the sequence (3) is monotone.
Since ¢ € U°(a,b) it follows from Lemma 2.1 that if ¢; = b;, then a; = b;.

Furthermore, sgn(a; — b;) = sgn(b; — ¢;) for all j with a; # b;. This implies that
the extended sequence
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x'=a x*=b, x3=¢, ..., x", x

also belongs to F, which contradicts that r is maximal. Therefore the intersec-
tion of U°(a, b) with S is empty and the lemma follows. [J

Motivated by Lemma 2.2 we make the following definition.

Definition 2.2. A set S in R” is called ¢-separated if U°(a,b) NS = O for each
a,b e Switha # b.

For a,b € R" we let Q(a, b) denote the minimal closed box containing both a
and b, with sides parallel to the axes, so

Q(a,b) = {x € R" | min{a;, b;} < x; < max{a;,b;} for 1<j<n}.

Theorem 2.1. If S C R" is £;-separated, then the following assertions hold
(i) The length of any monotone sequence contained in S, is bounded by n + 1.
(ii) If S contains a monotone sequence of length n+ 1, say a',a?,...,a"+},
then S is contained in the boundary of the box Q(a',a”*1).

Proof. Suppose S is an ¢;-separated set in R” and a!,4?,...,a™ is a monotone
sequence of length m in S. Define for 1 < k </ < mthe set
Ly={je{l,...,n}|af =adl}.

1 .2

Since a',a®,,a™ is a monotone sequence, we obtain the following inclusions

(5 h2532...2 51,
We shall show, by contradiction, that
11,‘/( #I1p for 2<k<m-1.

If I = I 441 for some k € {2,...,m — 1}, then it follows that /; & C Ixx+1, and
therefore

(ajk+1 —a}‘)(a,’-‘—a}) >0 for j¢lit.

By definition, this implies that a' € U°(a**!,a¥), which contradicts the as-
sumption that S is £,-separated. This shows that the inclusions in (5) are all
strict inclusions. Since |I; ;| < n — 1, the strict inclusions imply m < n+ 1 and
this proves (i).

To show (ii), we shall first prove by induction that for a monotone sequence
a',a?,...,a"t! with length n+ 1 in an ¢;-separated set S in R” and corre-
sponding sets [y 4.1, as defined above, the following equalities hold:

(6) kst =n—1 for 1<k<n,

and
(7) U (1.2 omb \ deierr = {1,2,...., ).
k:
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Since the equalities (6) and (7) are trivial for n = 1, it suffices to prove the in-
duction step.

Assume that (6) and (7) hold for n — 1. Since S is £;-separated, we know that
the points a?,a ...,a""! are contained in the boundary 8U(a',a?) of
U(a',a?). Since the inclusions in (5) are strict it follows that |I; 5| =n — 1.

Therefore U (a', a?) satisfies
U(a',a®) = {x e R" | x;, = ajz.l},

where j; is the unique element in {1,2,...,n} \ 11 2.

Consequently, the sequence a2,a4%,...,a"*! is a monotone sequence of
length n in an n — | dimensional affine space in R". Therefore, the induction
hypothesis yields that |y x+1| = (n — 2) + 1 = n— 1 for 2 < k < n. This proves
(6). Furthermore, it follows that

. n
kU {,2,...,0} \ Ieg+1 ={1,2,...,n} \ {1}
=2
Since ji € {1,2,...,n}\ I, we also obtain (7).

For 1 < k < n, we define ji to be the unique element in {1,2,...,n} \ Ltk 41,

and

Vi={xeR"| min{aﬁ,aj’:“} < x;, <max{a},af*'}}.

Observe that if y ¢ V;, then either y € U°(a¥,a**!) or y € U°(a*+!, a*).
Therefore it follows from the assumption that S is ¢;-separated that

n

Set O =M1 V- From (7) it follows that Q is a closed box, with sides parallel
to the axes, containing both a! and a"*!. Since the sequence a',a?,...,a"*'is
monotone, we conclude that Q = Q(a',a”+!).

To complete the proof of (ii), it suffices to note that, if y € R” is contained in
the interior of Q(a',a"*!), then a"*! € U°(al,y). As S is ¢,-separated we
conclude that S is contained in the boundary of Q(a',a”+!). 0O

2.2. Large sets have long monotone sequences

From combinatorial geometry, it is known that a set in R” of large cardinality
contains a long monotone sequence (see [2,4,5]). Moreover, given the dimen-
sion n one can give precise expressions for ‘large’ and ‘long’ in the previous
statement. We will state the precise results and give references for proofs.
Hidden in a paper by Erd6s and Szekeres [4], it is proved that every sequence of
length k2 + 1 in R contains a monotone subsequence of length k + 1. From the
sequence:

kk—1,...,1,2,2k—1,....k+1,... k2 k2 —1,...,(k— Dk +1,

it is clear that the number k2 + 1 is the best possible bound. Several proofs for
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this result are known, see [5] and [9]. In unpublished work, N.G. de Bruijn
showed the following generalization of the result by Erdés and Szekeres. For a
proof of this theorem we refer to [2, Lemma 2.1).

Theorem 2.2. Every sequence of vectors in R" of length k?" + 1 contains a mono-
tone subsequence of length k + 1. Furthermore, the length k¥' + 1 is the smallest
length with this property.

In particular, we have the following corollary.

Corollary 2.1. If S is a subset of R” with cardinality at least k*"~' + 1, then S
contains a monotone sequence of length k + 1. Moreover, the number k*"~' + 1 is
the smallest cardinality with this property.

Proof. For a given set S C R”, the elements can be labelled such that the re-
sulting sequence is monotone in the first coordinate. Therefore, if we apply
Theorem 2.2 with respect to the last n — 1 coordinates the result follows. []

2.3. A priori upper bounds

There are several ways to proceed in order to obtain upper bounds for the car-
dinality of 4,-separated sets. The first approach is based on the following idea.
If S in R" is a set of large cardinality, then either there exists a large subset B of
S and a coordinate i € {1,...,n} such that x} = x/ for all x*,x’ € B, or there
exists a large subset C of S such that for each x* # x! in C we have x* # x/ for
alli € {1,...,n}. In the first case we can use a projection to reduce the dimen-
sion. In the second case the upper bound from Corollary 2.1 with k = 2 can be
applied. This approach was followed by Misiurewicz in [9] who showed that the
size of an ¢;-separated sets is bounded by

(8) = 3 P e

=1 k!
In this section, we shall proceed a different way and start with an observation.
A combination of Theorem 2.1 and Corollary 2.2 yields an upper bound for the
cardinality of compact sets in R” with a transitive and commutative family of
isometries. We state the result as a lemma.

Lemma 2.3. If S is aztlfl-separated set in R”, then the number of elements in S is
bounded by (n+1)*"".

Proof. Since S is an /;-separated set in R”, it follows from Theorem 2.1 that the
length of the longest monotone sequence in S is bounded by n + 1. Therefore
Corollary 2.1 implies that the cardinality of S is bounded by (n + 1)”, where
m=2""1 0

The second part of Theorem 2.1 gives additional information about the struc-
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ture of ¢;-separated sets in R” that contain a monotone sequence of length
n + 1. We shall consider this situation in detail for compact sets in R" that have
a transitive and commutative family of isometries.

Theorem 2.3. Let S be a compact subset of R" with a transitive and commutative
Jamily of isometries. If S contains a monotone sequence of length n + 1, then the
number of elements in S is bounded by 2",

Proof. Leta',a?,...,a"*! be a monotone sequence of length n 4 1 in S. From
Lemma 2.2 and Theorem 2.1, it follows that S is contained in the boundary of

(a an+1)

We claim that S is a subset of the set of vertices of the box Q(a',a"*1). To
prove the claim, suppose that x € S is an element of the boundary of the box
Q(a',a™+!), but not a vertex. Let F : S — S be an isometry in I" that maps a!
to x. Since F is an isometry, the sequence

x=F(a"), F(@®, ..., F(a"™"),

is monotone and of length n + 1. If we apply Theorem 2.1 to this sequence, we
obtain that S is contained in the boundary of Q(x, F(a"*!)).

On the other hand, the element x is (by assumption) not a vertex of
Q(a',a™+1), so that there exists a coordinate j € {1,2,...,n} such that either

1 . n+1 n+1 . 1
a; <xj<aj or aq; <x,<aj.

This implies that a'! or a"+! is not contained in the boundary of Q(x, F(a"*!)),
which is a contradiction and this proves the claim.

From the claim it immediately follows that the number of elements in S is at
most 2", [J

Corollary 2.2. If n > 2 and S is a compact set in R” with a transitive and com-

mutative family of isometries, then the number of elements of S is bounded by
2n-l
n?",

Proof. Suppose n > 2 and assume, to the contrary, that the cardinality of S is at
least n™ + 1, where m = 2"~ !, From Corollary 2.1, it follows that S contains a
monotone sequence of length 7 + 1. Theorem 2.3 implies that the number of
elements in S is bounded by 2" So, for n > 2, we obtain 2" > n™ + 1, where
m = 2"~ and this is a contradiction. [

Corollary 2.2 improves the upper bound (14) by Misiurewicz in dimension less
than six as can be seen from the following table.

n new old
2 4 20
13 81 976
4 65536 999680
51 152587890625 327575207936
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We conclude this section with two remarks.

Remark 2.1. Let us consider the case n = 3 more closely. Suppose that S is a
compact set in R* with a transitive and commutative family of isometries. Fur-
thermore, let » denote the length of longest monotone sequence in S. From
Theorem 2.1 it follows that r < 4. Moreover, if r = 4, then Theorem 2.3 implies
that |S| < 8. If r = 2, then it follows from Corollary 2.1 that |S| < 16. Thus, to
present a better estimate for the cardinality of S in case n = 3, we have to ana-
lyse the following problem. Does there exist a compact set S in R® with a tran-
sitive and commutative family of isometries such that r = 3 and |S| > 16?

Remark 2.2, Since compact sets S in R” with a transitive and commutative fa-
mily of isometries, are ¢;-separated, one could try to improve the upper bound
in Corollary 2.2 by looking at £,-separated sets. However, one has to realize
that there exists (by Corollary 2.1) a lower bound for the cardinality of ¢;-se-
parated sets in R” of 2™, where m = 2"~ 1,

3. TWO PROCEDURES TO CONSTRUCT LOWER BOUNDS

If f : Dy — Dy is an £;-norm nonexpansive map and Dy is compact subset of
R”, then we have proved in the previous section that there exists an a priori
upper bound on the cardinality of w(x) which only depends on the dimension of
the ambient space. Consequently, we can reformulate the problem of de-
termining the set R(n), which consists of possible minimal periods of periodic
points of £;-norm nonexpansive maps f : Dy — Dy where Dy is a subset of R",
in the following way. Find the integers p for which there exists a sequence of
distinct points x% x',...,x?~! in R” such that the map

F(x'y = x!T1mod? fori=0,...,p—1

is an £;- norm isometry. To simplify the analysis we introduce the following
definition.

Definition 3.1. A finite sequence of distinct points x°, x*,...,x?~! in a Banach
space (V, || - ||) is called a regular polygon of size p or simply a regular p-gon if

Ix*¥+! - x*|| = ||x' = x°| forall k,1=0,...,p—1.
Here the indices are counted modulo p.
Remark that a sequence x% x!,...,x?~! is a regular polygon in (¥, | - ||) if

and only if the map F(x) = x’+!1mod? j5 an isometry. In this section we shall
give two procedures to construct regular polygons in R” with the ¢;-norm.

3.1. Doubling via the simplex

Before we can start with the first construction some definitions are required.
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Let K" = {x€R" | x; >0 for 1< i< n} be the positive cone in R", and let
A, ={xeK"| Y, xj = 1} be the unit simplex in R".

Lemma 3.1. If there exists a regular p-gon in A,, then there exists a regular 2p-
gonin A, ;1.

Proof. Let the sequence s°,s!,...,s7~! be a regular p-gon in A,. Consider the
sequence 1%, 1!, ..., 2= in R"*! given by

= (s'/2,0) if i is even
= V(=s0-D/2,2) if iis odd.

We claim that £%,¢', ..., 127~} is a regular 2p-gon in R"* !, To prove the claim we
have to show that

e+ — ™, = || =%,  for each m,l1=0,1,...,2p—1.

So, take m,l € {0,1...,2p — 1} arbitrary. If / is odd, then the following equal-
ities hold

n
e+t =)y = O e+ = 7)) +2
j=1

— sl g g2y |
= [ls {20} 4 Jlst/2), +2
=4

Here [x] denotes the largest integer m < x.
On the other hand, if / is even, then we have that

n
e+ h = om||, = Zl et — e
]=
= ||s[(rn+l)/2] — gim/2 1B
= HSWZ] —50"1
= |lef =)y,

where we have used the fact that s%,s',...,s? ! is a regular p-gon in the second
last equality. This shows the claim.

To prove the lemma let e € R"*! be the vector with all coordinates equal to 1.
Define the sequence u°,u!,...,u??"! by

W=>V+e for 0<j<2p-1.

Observe that this sequence is again a regular 2p-gon in R”*!. Since the se-
quence sY,...,s7~ ! is contained in A,, it follows that u?, . .., 4%~ is contained

in K"*! and forevery 0 <j < 2p — 1
n+l . n+l . n+l

9) Zu{=2t{-+¥e,~=n+2.

i=1 i=1 i=1
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Now put o = (n + 2)~" and define the sequence w?, w!, ..., w*~1 by

w =auw for0<j<2p-1.
From equation (9) and the fact that the sequence u?,...,u%?~1 is a regular
polygon in K" it follows that w®, ..., w?~1is a regular 2p-gonin A,,,. O

Theorem 3.1. Ifthere exists a regular p-gon in Ay, then for eachn > k there exists
a regular polygon of sizep - 2"~ **1 in R".

Proof. Suppose n >k and let s%s',...,57~! be a regular p-gon in A;. We
can apply Lemma 3.1 repeatedly until we obtain a regular polygon, say
00!, .,v97L in A, with ¢g=p-2""% Now we define the sequence
wl,wl ..., W~ 1lin R" by

W= w=-dw=viw=-vl .. W 2=p9" 1 y29-1=_y9-1

We claim that this is a regular polygon of size p - 2" ~%+!in R".
Indeed take m,/ € {0, 1,...,2r — 1} arbitrary, and consider

W™+t —wm|),.
If / is odd, then the following identities hold

”wm+1 _ Wm”1 - ”v[(’"+1)/2] + v[m/2]”l
= VDA 4 bR
=2.

If / is even, then we have that

I+ oy = 072 gy
= 2 o)
= fjw' - WO”l-
This implies that w?,..., w29~ is a regular polygon of size p - 2"~*¥*! [

To use Theorem 3.1 we have to search for regular polygons on the unit simplex.
Let us start with a simple one.

Corollary 3.1. There exists a regular 2"-gon inR" forn > 1.

Proof. Remark that the sequence x° = 1 is a regular polygon in A;. Thus The-
orem 3.1 yields the result. [

For a candidate regular p-gon x° x!,..., x?~! we have to verify that
lx*+! = x¥)|, = |Ix! = x°||1 for 0<k<p and 0</<[p/2).

This can be done quickly by a computer. The major difficulty in finding regular
polygons is caused by the fact that given a set of p points we need to find a sui-
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table ordering on the elements. The following example in R® was found by
hand.

Example 3.1. The sequence x°,x!,...,x% in R?, defined by
x*=(0,1,2), x!'=(0,2,1),
x?=(1,2,0), x*=(2,1,0),
x*=(2,0,1), x°=(1,0,2)

is a regular polygon of size 6. Notice that we can rescale each element x/ by 1/3
to obtain a regular polygon on the unit simplex in R>.

If we use Theorem 3.1 with respect to the polygon in Example 3.1, we obtain the
following result.

Corollary 3.2, There exists a regular polygén of size3-2""1inR" forn > 3.

Another interesting example occurs in dimension 5. This example was found
using a computer.

Example 3.2. The sequence 3°,3',...,»'® in R®, defined by

¥ =1(0,1,2,3,4), y'=(0,3,4,2,1),

¥ =(0,2,1,4,3), »=(0,4,31,2),

¥ =1(1,3,0,4,2), »°=(1,4,2,0,3),

5 =(2,4,0,3,1), y =(2,3,1,0,4),

¥=(3,4,1,2,0), ¥’ =(3,2,0,1,4),

y'%=(4,3,2,1,0), y''=(4,1,0,2,3),

y? =(4,2,3,0,1), y"*=(4,0,1,3,2),

¥4 =(3,1,4,0,2), y*=(3,0,2,4,1),

19 =1(2,0,4,1,3), y'"=(2,1,3,4,0),

y18 =(1,0,3,2,4), »'°=(1,2,4,3,0)
is a regular polygon. Remark that we can rescale each vector y by 1/10 to ob-
tain a regular polygon of size 20 on As.

The reader may wonder what happens in dimension 4. So far we do not know

of any regular polygon of size bigger than 8 on A4 except for size 12.

If we use Theorem 3.1 with respect to the polygon in Example 3.2, we obtain
the following result.

Corollary 3.3. There exists a regular polygon of size 5 - 2"~ 2 in R" forn > 5.

Remark 3.1. We have seen in Corollary 3.2 that the regular 6-gon in Example
3.1 yields a regular polygon of size 3-2”~! in R” for n > 3. This is the largest

203



regular polygon we know so far. If we compare this result with the best known
upper bound in Corollary 2.2, it follows that there exists a wide gap to bridge
between the best known lower and upper bound.

3.2. Using the increment sequence

The regular polygons that are obtained by the procedure described in the proof
of Theorem 3.1, are all contained in the boundary of an ¢;-norm sphere. This
nice geometric property does not hold for every regular polygon, as can be seen
from the following example. Consider the regular polygon z° z!,...,2" in R?
given by

ZO = ( la la l)a Zl = (01 2a2))
22 = ('11 1v3)7 23 = (0’ 0v4)7
z*=(1,-1,3), 2°=(0,-2,2),
26_:(_1’_1’1), Z7=(07 0’0)

For this polygon, one can show that no x € R? exists such that
Ix =zl = lx=2/||, for each 1<i<j<7.

This remark is related to the fact that an ¢;-norm nonexpansive map may not
have an nonexpansive extension to the whole space. To be precise: any periodic
orbit of an ¢;-norm nonexpansive map f : R” — R”", is contained in the
boundary of a sphere (see [12, page 187]), and therefore the isometry F :
{z9%...,27} — {2°,...,27} given by

F(z)) =2/*1med8  for 1<j<T,

can not be extended in an £;-norm nonexpansive way to the whole of R>. Instead
of the geometric argument, one can also use results by Scheutzow [16,17]. From
his work it follows that if f : R" — R” is an £;-norm nonexpansive map and
x € R" is a periodic point of f of minimal period p, then p | lem(1,2,...,2n).
Since 8 does not divide lem(1,2,. .., 6), it follows that F cannot be extended.

It turns out that the polygon z% z!,...,z7 belongs to a family of regular 2"
gons in R” which are not contained on the boundary of an £;-norm sphere.
The increment sequence y°,y',...,y?~! of a polygon x%,x!,...,x?~ ! is given

by
yl=x/—x/~! for 0<j<p-1,

where the indices are considered modulo p. We present a procedure to construct
aregular polygon starting from an increment sequence. In order to simplify the
construction, we introduce the following definition.

Definition 3.2. 4 p x n matrix B, with successive rows b°,...,b7~1 is called a
regular block of size p in (R”, || - ||) if
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p-1
() > #ll=0and
j=0
K+l [
(#) IS B/modP|| = |3 b/ >0for0<k<p-1land0<i<p-1
j=k j=0
It is a simple observation that if a°,a’,...,a? ! is a regular p-gon, then the

p x n block B with rows b/ = a/ — a/~! is a regular block of size p. However,
the converse is also true. A regular polygon can be constructed from a regular
block.

Lemma 3.2. If B-is a regular block of size p in R", then the sequence a°,
al,...,a?~ defined by a' = 3 ;_, b/, is a regular p-gon in R".

Proof. To show that the points in the sequence a%,a!,...,a? ! are all distinct,
we remark that for each 0 </ < k < p — 1 the following equalities hold

ko i k . k=1-1
Ila"—a’ll=ll.20b’—Zb’II=II > Y=l Zo b’|| > 0.
j= J=

f=0 j=I+1

Now to show that the sequence a®,a!,...,a?~! is a regular polygon we take

k,1 € {0,...,p — 1} arbitrary. The following equalities hold

k+1 ko k+1
la*+! —a ) = | B — S B = | S BImer
j=0 j=0 j=k+1

1 .
= I ¥/l =lla' = a°l.
j=

Therefore we conclude that a®,a',...,a?~! is a regular polygon of size p in
R". O

The next step in the construction of the family of regular 2"-gons in R” is to
define inductively, for n > 1, an 2" x nblock B, and to show that this block B, is
regular of size 2" in R”.

Before we can state the definition of the blocks B,, we need some more no-
tation. If B is block with rows 5%, 5! ..., 57~1 then we let B denote the block
with rows

BO=0br-1 Bl=bP-2 ..., BPl=00
Remark that B is a regular block if and only if B is a regular block.

Definition 3.3. The 2" x n block B, is inductively defined by
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B B B ces B,y

1 1 1 1 1 1 1
-1 |-1 1] |-1 1 1 B,
-1 -1 |-1 -1 1 1
1 -1 1 -1 1 .
1 -1 -1 5
-1 -1 -1 "
-1 1 -1 -
1 1 -1

Before we shall prove that B, is a regular block, we shall prove a useful lemma.
Let ¢ and ¢ be permutations on {0,1,...,p — 1} and {1, 2,...,n}, respectively.
We define a transformation Ry on a p x n block B by permuting the rows of B
according to ¢. Likewise we let T, denote the transformation on B which per-
mutes the columns of B according to 1. Furthermore, for 1 <i < n we let S;
denote the transformation on B which changes the sign of each element in the
i-th column of B. If T is a transformation on the block B, then we let (7(B))/
denote the j-th row of the transformed block T'(B). We are now ready to prove
the following lemma.

Lemma 3.3. Let n > 3 and B, be the block as defined in Definition 3.3. Suppose
that the permutations ¢ = ¢n and p = p, on {0,1,...,2" — 1} are given by
¢(i) =i~2""2mod2" and u(i)=i+2""'mod2",
and that ¢ = 1, denotes the two-cycle (n — 1 #) on {1, 2,...,n}. If we define
In=8,_2080T;0R, and A,=S8,_10S,0R,,

then we have that I',(B,) = B, and A ,(B,) = B,.

Proof. To prove the lemma we siniply follow the transformations on the block.
If n > 3, we see that
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B, - Ry(Bn) = Ty(Ry(Bn))

1 1 -1 1 » 1|-1

Bn—2 Eu—Z : En—Z
1 1 -1 1 1 {-1
-1 1 -1 |-1 -1 |-1

En-—Z Bn—2 Bn—2
-1 1 ' -1 |-1 -1 |-1
-1 {-1 1 (-1 -1 1

Bn—2 Bn—Z Bn—Z
-1 |-1 1 (-1 -1 1
1 (-1 1 1 1 1
B,_,| | : B, ,| | : B, 5| | :
1 |-1 1 1 1 1

Remark that Si(By) = By and S(Bi) = By for each k > 1. Therefore, if we ap-
ply S,_20 S, on Ty(Ry(B,)) we obtain I'y(B,) = B, for n > 3. To derive the
other identity remark that

B, - R, (Bn) - Sn (Ru(Bn))
1 -1 1
Bn—l En—l En—l .
1 -1 1
-1 1 -1
En—l Bn—l Bn—l .
-1 1 -1

Since S,_1(B,-1) = By,—1 and S,_1(B,-1) = B,_,, we obtain that A,(B,) =
B,, n > 3. This completes the proof of the lemma. []

We are now ready to prove the main result of this section.
Theorem 3.2. The block B, is a regular block of size 2" in R” forn > 1.
Proof. The first property of Definition 3.2 follows from the fact that each ver-

tex of the n dimensional unit cube appears exactly once as a row of the block B,.
To prove the second property of Definition 3.2, it suffices to show that

k+1 imod 2" ) ;
(10) II,‘;k b I = Ilgob >0,
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for0<k<2"and0<I<2"" 1L

We shall first prove the equality in (10) by induction. A direct computation
shows that equality holds for the blocks B; and B,. Now assume that #» > 3 and
that equality in (32) holds for all blocks B,, with 1 < m < n. To prove the in-
duction step we have to show equality for B,.

For g = 0,1, 2, 3 define the set of integers 4, by

Ag={j+q-2"?|0<j<2"%}

According to the definition of B,, see the first figure in the proof of Lemma 3.3,
we distinguish 6 cases:

1. keAyUAdyandk+1e AyUA;, 2. k€eAUAsand k+ 1€ A, U As,
3. k€dopandk+1€ A4, 4. ke Ajand k+1€ A5,
5. keAyandk+1€ A4, 6. keAyUAdsandk+1e€ 4pUA,.

In Case I and 2 the equality in (10) follows from a direct application of the in-
duction hypothesis on the block B, _ ;.
In Case 3, we have

k+

k+l o2 ksl n I
12 Pl =3 12 bil+ X 138l
=k i=1 j=k i

i=n-1 j=k

Note that since 0 </ < 271

n ! ,
> X bi=2""1
i=n—1 j=0
and hence it suffices to show that
n k+1 . n—-2 k+! . n—-2 1 ,
(11) > X bj=2""" and Z)ll_Zkb’,-l=Zl I,Zob’il-
= J= 1= J=

i=n—1 j=k

To prove the first equality remark that

n k+1
SIS B =r—k—2m 2k —f 2 -
i=n—1 j=k

+ 2" k42" k42"

=" el =2kl 42" =1-2k—1]=2""1,
where we have used the fact that 2" ! <k +7/<3-2" 2and0< k <272,
To verify the second identity in (11) we shall use in each step the induction

hypothesis on B, _».
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. . k+ .
b= 1 ¥ b+ ¥ bl
; 21 e

=TI L b+ 5 b

This prove equality in (10) in Case 3.
To prove equality in Case 4-6, we let the permutations ¢, ¢ and u, and the
transformations I', and A, be as in Lemma 3.3. We remark that

k+l k+i1-2n-2 . k+i-2-1
12) 1 elhi=I X (LB =1 %X &l
=k j=k—2n-2 j=k—2n-1

Note thatifk € 4;and k+ 1 € A3, thenk —2""2 € dgand k+1—-2""2 € A,.
Therefore, by using (12) we can conclude from Case 3 that equality in (10) holds
also in Case 4. Likewise, equality in Case 5 follows from Case 1.

In Case 6 we use the other transformation and the following identities

k+! a2 k414271 ) k+i420-0
(13) X ™ =1 X (4B h=I X ¥l
i=k j=k+2n-1 j=k+2n-!

If we look at the last sum in (13), and assume k and / to be as in Case 6, then we
can conclude from Case 3,4 or 5 that equality in (10) holds.
To complete the proof of the theorem remark that

.
IS b/, >0 for 0<I<2" 11,
j=0

since the last coordinate in each &/ in the sumisequalto 1. [

Applying Lemma 3.2 to the regular block B; yields the regular 8-gon z°,. .., 27
given at the beginning of this subsection. As another example we give the reg-
ular polygon of size 16 that arises from the regular block B4. The regular 16-gon

x%,x!,...,x15 in R*is given by
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xX=(1,1,1,1), x'=(0,2 2 2),
x2=(-1,1,3,3), x*=(0,0, 4, 4),
x*=(1,-1,3,5), x*=(0,-2 2,6),
x$=(-1,-1, 1,7, x"=(0,0,0,8),
x¥=(1,1,-1,7, x°=(0,2,-2,6),
x0=(1, 1,-3, 5), x'"'=(0, 0,-4, 4),
x2=(1,-1,-3,3), x¥=(0,-2-2 2),
x"=(1,-1,-1, 1), x¥=(0,0, 0, 0).

To end this section we note that the question, whether for a given p there exists
a regular p-gon in R", can be answered in finite time (see Lemmens [6]). The
main idea is to show that it suffices to look for all regular p-gons in a finite
subset of Z”. So far, however, no upper bound for the finite subset of Z" is
known that would allow us to do an exhaustive search for regular p-gons in
reasonable time.

4. RELATIONS WITH THE SUP NORM

There exists a linear isometric embedding of the (R",d)) into (R™,d ), where
m = 2"~ In fact, take the set v!,...,v2""' of vertices of the unit cube in R” !
and define for each 1 < i < 2"~! the linear functional §; : R" — R by 6;(x) =
x - (1,v"). One can show that themap 4 : (R",d;) — (R™,d,,), wherem =2"~1,
defined by

h(x) = (61(x),02(x),...,0n-1(x)) for each x € R”,

is an isometric embedding. Thus the problem of finding an upper bound on the
size of a regular polygon in (R”",d)) is related the problem of determining the
maximum size of a regular polygon in R”™, where m =2"~!, under the sup
norm. An upper bound on the size of a regular polygon in R>""' under the sup
norm implies an upper bound for the largest regular polygon in R” under the
¢1-norm. In particular, if the 2"-conjecture is true, then 22"~' would be an upper
bound for the £;-norm case. Of course, a further reduction is likely because
(R",dy) is an n-dimensional subspace of (R™,d.,), where m = 2"~ 1. However,
the tempting conjecture that the correct upper bound would be 2" fails, since we
can conclude from Corollary 3.2 and 3.3 that there exist regular polygons in an
n-dimensional, n > 3, linear subspace of R?"™' under the sup norm, that have a
size bigger then 3 x 2"~ 1,

Finally, we remark that in the proof of the 2*-conjecture in dimension 3, see
Lyons and Nussbaum [7], the notion of an additive chain plays an important
role. Moreover, it is shown that the length of an sup norm additive chain in a
compact set in R” with a transitive and commutative family of sup norm iso-
metries is bounded by n + 1 ([7, Theorem 2.1]). Furthermore, if the set contains
an additive chain of length n + 1, then it is shown in unpublished work ([7, Re-
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mark 2.2]) that its cardinality is bounded by 2n. These results are similar to the
assertions in Theorem 2.1 and 2.3.
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