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Abstract

We consider a class of singularly perturbed delay-differential equations of the form
ex(1) = £ (x(0),x(1 — 1)),

where r = r(x(¢)) is a state-dependent delay. We study the asymptotic shape, as ¢ — 0, of slowly
oscillating periodic solutions. In particular, we show that the limiting shape of such solutions
can be explicitly described by the solution of a pair of so-called max-plus equations. We are
able thereby to characterize both the regular parts of the solution graph and the internal
transition layers arising from the singular perturbation structure.

© 2002 Elsevier Science (USA). All rights reserved.

Keywords: Delay-differential equation; State-dependent delay; Slowly oscillating periodic solution;
Singular perturbation; Max-plus equation

1. Introduction

In this paper, which is a sequel to the papers [33,35], we study slowly oscillating
periodic solutions (SOPSs) of the state-dependent delay differential equation

ex(t) = f(x(0),x(t = 1), r=r(x(0). (1.1)
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Here x = x(¢) is a scalar, f and r are given nonlinearities, and ¢ > 0 is a parameter.
By an SOPS we mean a solution of (1.1) satisfying

x(#) >0 in (0,04), x() <0 in (o, o2),
x(t+ o) = x(t) for every t, where (1.2)
o > r(0), o — oy > r(0),

for some quantities o; and o, where r(0) > 0 is assumed. Of course x(0) = x(«;) =
x(a2) = 0 for such a solution. We note that by rescaling time we may always make
the normalization r(0) = 1, which in fact we shall assume below.

Of particular interest is the singular perturbation case of small ¢. The existence of
such solutions for a range of parameter 0 <e<e¢, for a general class of nonlinearities
f and r was proved in [33,35]. Here f/(0,0) = 0 and ¢, is a Hopf bifurcation point
below which the origin is unstable. Theorem 1.1 below gives the existence results
relevant to the present paper. In [35] a general theory of “limiting profiles” was
developed in order to make a rigorous connection between Eq. (1.1) for small ¢ and
the (implicit) difference equation

Ozf(énaénfl)a Tn—1 :Tn_r(én), (13)

which is obtained formally in the limit eé—0 in (1.1). Our object in the present paper
is to employ the machinery of [35] in order to obtain precise and explicit results on
the asymptotic form of SOPSs as ¢ — 0. Our approach will be to use this machinery to
show how the limiting profiles can be expressed in terms of solutions of a system of
so-called max-plus equations:

lrb2m(é) = 7maX . (V(S) + lp2mfl (g(S))),

(1.4)
lp2m+l(é) = -IEIaX (V(S) + lpZm(g(S)))

Indeed, the system (1.4) is at the heart of our analysis and is the centerpiece of
Theorem A, our most general result.

Differential equations of the form (1.1), or more generally differential equations
with variable delays, arise in many models of interest. Biology is a particularly rich
source of models [1,5,6,24-27,29] as are the social sciences [7,28]. The equation
x(#) = x(z — x(r)) arises in models of crystal growth [38], and in fact the related
equation x(¢) = —ax(¢ — r(x(¢))) was studied theoretically by Cooke [10] in 1967.
Some of the earliest rigorous results on variable delay systems were given in the
1960s by Driver [14—17] and Driver and Norris [18], and in the 1970s by Alt [2,3],
Nussbaum [39], and Winston [41,42].

Nevertheless, for state-dependent delay equations many basic dynamical issues are
still undeveloped and unresolved. While the basic work in [20], and also in [13] and
elsewhere, treats constant delay problems in great generality, many of the most
fundamental results (invariant manifold theorems, Hopf and other bifurcations,
linearized stability of equilibria and periodic solutions) have not been developed for



642 J. Mallet-Paret, R.D. Nussbaum | J. Differential Equations 189 (2003) 640-692

the state-dependent case, at least not in any generality. However, some initial steps in
this direction can be found in [4,8,11,12,19,21-23,30]. A very recent and significant
contribution by Walther is found in [40].

For further work on state-dependent and variable delay problems see, for
example, the articles in [9], the many references in [22], and as well [31-35].

Simple numerical experiments demonstrate a wealth of patterns, which
spontanecously arise as limiting profiles, particularly in the singular perturbation
case (1.1), and certainly for more general problems such as those with multiple delays
[34]. (While we only consider the case (1.1) of a single delay in the present paper,
extending our theory to systems with multiple delays as in [34] presents an intriguing
challenge.) One observes that the limiting shapes of solutions of (1.1) as ¢ >0 seem
very often to be unique, and very stable with respect to changes in initial conditions,
so it is a fundamental problem to predict such limiting shapes from the differential
equation. Indeed, one can think of the value ¢ = 0 as a “organizing center’” about
which a rich variety of dynamical phenomena might be sought.

Let us now fix our assumptions on the differential equation (1.1), although we
shall make additional assumptions as necessary.

Standing assumptions. We make the following assumptions on f and r, to hold for
the remainder of this paper unless noted otherwise. We assume there exist positive
quantities C and D such that

I x I-R, r:1-[0, ), where I = [-D, C],
and where f and r are locally lipschitz. We assume that
r(0) =1, r(&) >0 for every £e(—D, C),

and that there exists a continuous function g : 7/ — 1 such that

sgnf(¢,{) =sgn(g(¢) — ) for every (£, {)el x 1,
g(0) =0, g(&) is strictly decreasing in ¢el,

1.5
g(C)=-D if r(C) >0, (15)
g(—D) = C if r(—D) > 0.
We further assume that
f is differentiable at (0,0), with D,f(0,0)<D;f(0,0)<0, (1.6)

where Df = 9f /0¢ and D,f = 9f /0 denote the partial derivatives of f. A final
assumption is that

|92 (£) <|¢] for every Eeint(1)\{0}, (1.7)
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where g2 denotes the second iterate of ¢, and “int” denotes the interior. We shall use

(1,¢) to denote general coordinates in the plane R?, although we usually denote
specific solutions of a differential equation by x(¢).
Observe from (1.5) that (&, g(&)) = 0 for every £el. Also, ¢'(0) exists with

g'(0) = —k~', where k = D,f(0,0)/D1£(0,0) > 1. (1.8)

If (C)=0 then g(C)>= — D since g:I—1, with strict inequality a possibility.
Similarly g(—D) < C if r(—D) = 0. Let us denote
R = max r(&), (1.9)

cel

so we have that R=r(0) = 1.
With the function g we may now express the difference equation (1.3) as

(Tnfla fn—l) = @(‘L’n, én)a

where the map @ : H; — H; of the horizontal strip H; = R x [ into itself is defined to
be

D(z,¢) = (t = r(S), 9(<))- (1.10)

Although @ need not map H; onto itself, it is one-to-one in view of the strict

monotonicity of g and the map &' is continuous in the range of &. Indeed, the
range of @ is the strip ®(H;) = H; = R x J where

J = [g(C),g(—D)] = [_D’ C]>
and
O (1,8 = (t +r(g7 1), g (&)

for (t,¢) e Hy. Formally, the map @' describes the forward evolution of (t,_1,&,_;)
to (4, &,), and as such we shall refer to @ as the backdating map and to ¢! as the
updating map. Note that the t-axis is invariant under @ and ®~'. The fact that
—1<¢'(0) <0, which holds by (1.8), means that the t-axis is unstable in the normal
direction for the map &'

Let us observe, as in [35], that with all the above conditions on f and r, the set I (or
more precisely the set C([—R,0],7)=C([—R,0]) of continuous functions taking
values in 1) is positively invariant for Eq. (1.1). Indeed, this is a consequence of the
inequalities

f(C,0)<0 for every {el, if r(C) >0,
f(=D,{)=>0 for every (eI, if r(—D) >0, (1.11)
f(C,C)<0 and f(—D,—D) >0, in any case,
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which imply that X(#p) <0 whenever x(#)) = C, and that X(#y) >0 whenever x(t)) =
—D, for any solution of (1.1) for which x(¢)el for every te[ty — R, ). The
inequalities in (1.11) follow directly from the conditions (1.5). Also observe that as
|¢'(0)] <1, the inequality in (1.7) holds for ¢#0 near 0. If g(—D) = C and ¢g(C) =
—D then ¢*(¢) = £ at ¢ = —D, C, that is, (1.7) becomes an equality there. In this case
if the map g is defined outside the interval I in all of R, then {—D, C} is the period-
two orbit of g which is nearest the origin. More generally, if g and r are defined in all
of R then C is characterized as the smallest positive number for which either g>(C) =
C or else min{r(C), r(g(C))} = 0, with a similar characterization for —D. Condition
(1.7) implies that if £ €1 is any periodic point of the map g, that is g"(&) = £ for some
n > 0, then ({0, -D, C}.

Under the above standing assumptions the results of [35] guarantee the existence
of an SOPS for every sufficiently small ¢ > 0, with this solution taking values in the
interval [—D, C] and enjoying a sine-like monotonicity property. We have the
following result.

Theorem 1.1 (see Mallet-Paret and Nussbaum [35, Theorems 4.6 and 4.15]). Let
O<e<e, where

B27A2 1/2 . X
. :a(rcT(—/il)’ A=Df(0,0), B= Dy (0,0),

n
where < arccos(—k~ ') <,

with k as in (1.8). Then Eq. (1.1) possesses a slowly oscillating periodic solution, namely
a solution satisfying (1.2) for some oy and oy, and in addition this solution satisfies

—D<x(1)<C (1.12)

for every t. Furthermore, every such solution emjoys the following monotonicity
property. One has that

X(0) 20 in [0, ol v By, ], X(6)<O in [Bo, B, (1.13)

for some quantities B, and f, satisfying 0<fy<o; <p;<oa.

The results of [35] in fact provide a continuum of SOPSs emanating from the Hopf
bifurcation point (x,¢) = (0,¢,) and extending at least throughout the range
0<e<e,. In general, one does not expect uniqueness of the solution for a given ¢,

although simple numerical simulations suggest that this may often be the case. In
many cases the inequalities in (1.13) are strict away from the points f, and f;, which
are the locations of the maximum and minimum of x. In any case one always has that

X(0) = x(o2) >0, (o) <O,

at the zeros of x, as one sees directly from the differential equation.
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As noted, the main object of the present paper is to describe precisely and
explicitly the asymptotic shape of the solutions given by Theorem 1.1 as ¢—0. A
central and deep result of [35], which is a first step in this direction, states that under
appropriate conditions a family of SOPSs cannot tend uniformly to zero as ¢—0.
That is, a nontrivial limiting profile is approached. In particular the following holds.

Theorem 1.2 (sce Mallet-Paret and Nussbaum [35, Theorem 5.1]). Assume the
function r satisfies

r€) -1 _
Qm - Qa

lim

-0
for some integer n=1 and some quantity Q satisfying

Q#0 if nis odd, 0>0 if nis even.

Let x* be a sequence of slowly oscillating periodic solutions of Eq. (1.1) for some
sequence of positive parameters e —0. Then

liminf [|x*]] >0,  ||2%]] = sup [+ (7)), (1.14)
k=0 teR

holds.

Upon making a change of variables x— — x in the differential equation one
replaces Q with —Q if n is odd, and thus the condition Q#0 above is natural. For
even n such a change of variables leaves Q unchanged, however. If n is even and
Q<0 then it is an open question whether the conclusion (1.14) must always hold,
although simple numerical simulations strongly suggest that it is true. Note that if
either

7(0)#0 or '(0) >0

with r smooth enough then the above theorem applies, but this is not the case if
¥'(0) = 0 and r"(0) <O0.

We remark that the results of [35] are in fact a bit more general than those given in
the theorem above. In particular, different quantities O~ and Q™ are allowed for the
left and right limits provided they are suitably related, and the exponent n need not
be an integer. An earlier result [31] also established (1.14) in the case of a constant
delay r(¢) = 1, although the mechanisms and proofs in the two cases [31] and [35] are
entirely different. Indeed, in both cases the proof of (1.14) is not at all trivial, and
both require a considerable amount of effort which goes well beyond standard local
arguments.

Another basic result is that the periods of SOPSs remain bounded as ¢ — 0. Results
in this direction are implied in some of the proofs of [33]. For definiteness we state a
result in the following theorem in a form which will be useful to us. A self-contained
and straightforward proof of this theorem will be given in Section 5.
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Theorem 1.3. Let xX* be a sequence of slowly oscillating periodic solutions of Eq. (1.1)

for some sequence of positive parameters e — 0, and assume each solution satisfies the
bounds (1.12) for every t. Then there exists P > 0 such that

p<p
for every k, where p* is the minimal period of x*.
To give the flavor of some of our results consider the special case when

r(¢) is monotone increasing in Ee[—D, C]

and is strictly increasing in ¢e€[—D,0],

1.15
¥'(0) exists and #/(0) > 0, (1.15)
h(&) is monotone increasing in £e[0, C],
all hold, where h: I — R is the function
h(&) = r(&) +r(9()). (1.16)

Let x* with positive parameters ¢ -0 be any sequence of SOPSs of Eq. (1.1)
satisfying the bounds (1.12), such solutions existing by virtue of Theorem 1.1. Then it
is a consequence of our results (Theorems A, B, and C in Section 3 below) that the
sequence of graphs

r“ = {(,x*(1)) | te R} = R? (1.17)

of our solutions approaches a limiting set Q =R?, which has the following properties.
The set Q is periodic in the horizontal direction, in particular

0= |J @n  On={(t+mp,&)| (1,60},

m=—o0o0
for some p > 0 and some @y <R>. Here the period p is the quantity
p=h(C)=r(C)+r(—D) (1.18)

and it also equals the limit p* — p of the periods p of x* (note that g(C) = —D by
(1.5), from the monotonicity of r, to give the second equality in (1.18)). The set Oy,
which describes one period of Q, is a union @y = Oper U O5c U Oop U Oy of four
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pieces given by

Opor = -1, #(=D) — 1] x {-D},
Oac = {(r,é)eRz |t=r(&) —1 and &€[-D, C]},
Opp = [1(C) — 1, r(C)+r(—D) — 1] x {C},

Ouse = {1(C) +r(=D) — 1} x [-D, ().

The sets Opor and Oy, are horizontal line segments each of length r(—D) located at
the levels £ = —D and ¢ = C in the vertical direction. The set @, is the “ascending”
portion of @ which joins Gpe to Oyop. If 7 is strictly increasing then in fact @, is a
graph ¢ = r~!(t + 1) and is the only part of @, which is neither a horizontal nor a
vertical line segment. Finally @y is the “descending” portion of @, which unlike
O, is a vertical line segment. If it is the case that r(—D) = 0 then the line segments
Ovor and Oy, are each just single points.

In the notation of Theorem A, which is given in Section 3, we have in this example
that

lpZm(i):r(i)71+mpa !//Zerl(é):r(c)+r(7D)71+mp7 (119)

for every integer m, with &e[—v, u] = [-D, C|. The sets @,y and Ogy are just the
graphs © = (&) and © = (&) for this range of &, while the graphs t = /,,,(¢) and
T=1,,.1(&) are the horizontal translates of these sets in 0,. Also, Oy =
B_; x {—v} and O, = By x {u} with Ly =r(—D). As ¥, is continuous at ¢ =0
each set 4, = {,(0)} is a single point and L, = 0. One readily checks that the
functions , satisfy the system (1.4) of max-plus equations throughout [—v, yi]. They
also satisfy Eqgs. (3.12) and (3.13) of Theorem B, which follow from (1.4) when r is
monotone increasing. The quantity u = C is uniquely determined by Theorem C,
and one has that —v = g(u). In the notation of that result it is the case that (&) =

0 identically in [0, C] (it is easy to check this is a solution of (3.17), but its uniqueness
is not immediately obvious), and so F(M) = r(g(M)). The assumptions on r ensure
that F(M) > 0 for every M e (0, C), and so the unique solution to (3.19) guaranteed
by the theorem is u = C.

Perhaps, the simplest nontrivial example of Eq. (1.1) is

ex(t) = —x(t) — kx(t —r), r=1+4 cx(1), (1.20)

where k > 1 and ¢ > 0 are given constants. Although both the functions f(&,{) =
—¢ —k{ and r(&) = 1+ ¢¢ are linear, Eq. (1.20) is most certainly nonlinear. This
equation is covered by our theory, and is a special case of the above example (1.15).
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In particular, we see easily from (1.5), (1.16), and (1.18) that
9@ =~k O =2+c(1-kNE  [=D,Cl=[c" k],
p=1+k.
The set Q has the shape of a sawtooth wave, namely the graph of
saw(t) = ¢ 't for te(—1,k), saw(t + 1 + k) = saw(r),

with vertical lines —c~! << ¢ 'k at the discontinuities T = k + n(1 + k) filled in. In
the notation of Theorem A, the set @, is a line segment & = ¢!t of slope ¢! in the
(z,&)-plane extending from (—1,—c™!) to (k,c 'k) and the sets @po; and Oop are
single points, namely the endpoints {(—1,—c™!)} and {(k,c 'k)} of O,. The set
Ous. is the vertical segment {k} x [—c~!, ¢ k].

Also, it is not hard to check, with elementary numerical simulations, that
(numerical) solutions to (1.20) converge rather quickly to the above sawtooth for
reasonably small values of ¢. Generally, beginning with any positive initial condition,
the solution is observed after only three or four cycles to settle into a very stable
sawtooth pattern.

Max-plus equations, such as the system (1.4) which occurs in the statement of
Theorem A, and the eigenproblem (3.12) of Theorem B, are a central feature of our
analysis. A number of relevant results on this topic have been developed
independently, and in particular we mention [37] which should be viewed as a
companion to the present paper. Some of the results of [37] are crucial to our
analysis here, and we shall outline these in a later section.

This paper is organized as follows. Some basic notation and terminology will be
established in Section 2. In Section 3 we state our main results, Theorems A, B, and
C. In particular Theorem A is a general result about how limiting profiles of SOPSs
of Eq. (1.1) can be described explicitly using solutions of the max-plus equations
(1.4). Theorem B specializes this result to the case that r(£) is monotone in ¢, and
Theorem C specializes this further to the so-called quasimodal case (which in
particular includes the conditions (1.15) above). In the quasimodal case it turns out
that the limiting profile 2 of the sequence of SOPSs is uniquely, and in a sense
explicitly, determined. In Section 3 we also outline the relevant results from the
companion paper [37], and we prove Theorem C there. We do mention here that the
proof of Theorem C relies on Theorems A and B, which are proved later in the
paper.

A familiarity with some of the definitions and results in our earlier papers [33] and
especially [35] is necessary to understand fully the statements of our theorems in
Section 3. However, even the reader who is not familiar with this earlier work should
acquire a general understanding of what we prove here from this section. A summary
of the necessary material from [35] will be given in Sections 4 and 5; we present all
the relevant concepts there so that the present paper is self-contained and can be read
without reference to [33,35]. In particular, the theory of limiting profiles, from [35],
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will be summarized in Section 4. In Section 5 this theory will be specialized to SOPSs
and further results from [35] will be presented.

The heart of our theory, the max-plus equations, is derived in Section 6, and this
section culminates with the proof of Theorem A. In Section 7 we obtain both upper
and lower bounds on the asymptotic period p. For a broad class of cases these
bounds are equal and yield an explicit formula for p. With such a formula for p we
are then able, in Section 8, to prove Theorem B.

2. Notation and terminology

By an interval we mean a nonempty connected subset of the real line R, a single
point in this sense being considered an interval. We denote the length of an interval J

by £(J).
If S} and S, are any two subsets of R, we write

S1<S if aj<a, for every a;eS; and a, € S5,

NESRY) if ay<a, for every a; €S and a;€S>.

In case one of the sets is a single point, say S| = {a}, we write a<.S, in place of
{a} < S», and so forth.
If SSR" and veR" we denote

S+v={a+v|aeS}, S—v={a—v|aeS}.

The minus sign — will be reserved for the algebraic difference, as above. To denote
the set-theoretic difference of two sets, we write

S]\Sz = {CZES] |a¢Sz}.

We let int(S) denote the interior of S.

If S=R, then we define the vertical and horizontal strips, Vs< R’ and Hg<=R?,
respectively, as

VS:SXR, HS:RXS.
In case S = {a} is a single point, for simplicity we shall write ¥, and H, in place of

V{a} and H{a}.
If SSR?, we say the set S is monotone increasing if

(11,¢&1), (12,&) €S, with 11<1y = & <&y,

and monotone decreasing if instead we have &;>¢&, in the above implication. If
¢ :J—Ris a function defined in an interval J, we say ¢ is monotone increasing in J
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in case the graph of ¢ is a monotone increasing subset of R?, that is,
11,12€J, with 1) <13 = @(11) < 0(12). (2.1)

We say ¢ is strictly increasing if instead we have a strict inequality ¢(71) <¢(12) in
(2.1). Monotone and strictly decreasing functions are defined in the obvious way.

More generally, we may consider set-valued functions ¢ :J — 2% where 2% is the
set of all subsets of R. Such a function is said to be monotone increasing if (2.1)
holds, and strictly increasing if again we have ¢(1) <¢@(t2) in (2.1), where we mean
here the inequality of sets defined above. The obvious definitions of decreasing
functions hold. We say that a set-valued function is single-valued in a subset S<J if
¢(7) contains exactly one element for every 7€ S.

Finally, we shall let v denote the maximum operator, namely

ayvayv - va, = max {a;}_,

for real numbers q;.

3. Statements of the main results

Our first main result gives a general description of the so-called limiting profile of a
regular sequence of SOPSs of Eq. (1.1). The terms “limiting profile” and “regular
sequence” will be defined precisely in Section 4. Roughly, a sequence x* of SOPSs
with ¢ — 0 is regular if, in certain sufficiently large compact subsets of the plane, the
graphs I'*=R? of x* as in (1.17) converge in the Hausdorff sense to a limiting set
Q<=R? as k— co. The set Q is then called the limiting profile of the sequence x*. It is
the case that every sequence x* of bounded solutions has a regular subsequence.

Note that the set graph(i,) =R? in this theorem is in fact what one would usually
call the graph of ¥ !, the coordinates 7 and ¢ having been switched. We trust that

n

this slight irregularity in terminology will not be a problem.

Theorem A. Let x* with ¢ —0 be a regular sequence of slowly oscillating periodic
solutions of Eq. (1.1), each solution satisfying the bounds (1.12) for every t. Let Q< R?

be the limiting profile of this sequence. Then either x*—0 uniformly, in which case
Q = R x {0}, or else there exist quantities p > 0 and v > 0 satisfying

g([=v,u)s[-v,u][-D, (] (3.1)

and functions Y, : [—v, p]\{0} - R such that

Q= ( O graph(%)) u( 6 B, x {/ln}>. (3.2)

n=—0o0
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For every n we have in [—v, u|\{0} that the function \,, is continuous with left- and
right-hand limits at 0, the function (—1)"\,, is monotone increasing, and

lpn(é> <‘//n+1((:)7 lpn+2(£) = l//n(é) +p, (33)

hold identically where p =2 is independent of n. We denote the set

graph(y,) = {(z,9) [t = ¥,(¢) and Ce[—v, W)\{0}}u (4, x {0})  (34)

and the compact intervals

0—),¢,(0+)], ’ n
An B { {ingo_ki i EO—E;} : ZL;Z/I Bn - [l’bn(/l”)?!//wrl(/“n)}? (35)
where
1 = u,  n even, y
"7 —v, nodd. (3.6)

The functions \, satisfy the systems of max-plus equations (1.4) with the first and
second equations in (1.4) holding, respectively, for & in [—v,0)\{0} and for & in
[—01, u]\{0} for some positive quantities dy and d,. Also,

0eA,. (37)

All the intervals A, have the same length {(A,) = L4, and all intervals B, have the
same length ((B,) = Lg. If Ly =0 then each V, can be extended continuously to
& =0, with (1.4) and (3.3) holding at ¢ = 0 and with (3.7) taking the form

Wo(0) =0. (3.8)
Finally, if p > 2 then Ly = 0, and if either g*(n)#p or g*(—v)# — v then Ly = 0.

Remark. It is clear from Theorem A that the max-plus equations in (1.4) play a
central role in determining the functions ¥, and thus the limiting profile Q2. We shall
see later in this section how the two equations in (1.4) can be combined with the aid
of the periodicity relation in (3.3) to obtain a closed system. In particular this is done
in Theorem B, where r is monotone. In the closed system the unknown quantity p,
the period of Q, plays the role of an additive eigenvalue.

Remark. In many cases we have in Theorem A that o = p and §; = v, and so both
the max-plus equations (1.4) hold throughout the domain [—v,u]\{0} of the
functions ¥,. More generally, in Proposition 6.2 we shall provide a number of
necessary conditions which the quantities 6y and §; must satisfy, from which precise
information about them may be deduced for specific systems.
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Remark. The quantities y, v, and p are central players in our theory, and one sees
that

pw= lim g, 1 = max x*(),
k— o teR

v= lim v, —vF = min x*(z).
k— 0 teR

When the conclusion (1.14) of Theorem 1.2 holds then either u > 0 or v > 0 (in fact
both inequalities must hold if one of them does, by Theorem A), while if (1.14) is
false then u = v = 0. The set Q is seen to be periodic in the horizontal direction with
period p. More precisely we have that

Q=0+ (p,0), (3.9)

where this equation is interpreted as a translation by the vector (p,0)eR?. The
quantity p is in fact the limit of the periods p¥ > 2 of the solutions x*, and in
particular p>2 must hold.

Remark. The jump in the function ¥, at £ = 0 equals ¥, (0+) — ¢,,(0—) = (=1)"Ly,
by (3.5). If L4 > 0 and so each ,, is discontinuous there, then strictly speaking one
should write “sup” rather than ““‘max” in the max-plus equations. However, we allow
ourselves this slight abuse of notation.

Remark. If u > 0 and v > 0 then ¢g*>(u) = pif and only if g?(—v) = —v, and if so then
u = C and v = D. This follows directly from (1.7).

Theorem A by itself does not generally provide sufficient information to
completely determine the set Q. For example, it does not give any direct indication
of the values of u, v, or p, and it does not make claims about the set of all solutions of
the system (1.4) of max-plus equations. Indeed, Theorem A leaves open the
possibility of a trivial limit x* —0 where @ is the horizontal axis (although Theorem
1.2 often rules this out). In many cases we shall be able to determine y, v, and p
through further arguments, but even without these arguments much information can
be gleaned.

Assuming that Q is not equal to the horizontal axis, we see that Q consists of the
sets graph(y,,) in sequential order, with horizontal line segments B, x {/1,} between
the endpoints of graph(y,) and graph(y,_. ). (Of course if Lz = 0 then these line
segments are absent and graph(y,) and graph(y,_ ) touch at their endpoints.) In
addition to these horizontal line segments, if Ly > 0 then each set graph(y,)
contains the horizontal line segment 4, x {0}.

If for some n the function y,, is constant in an interval J =[—v, u] then Q contains
the vertical line segment {t} x J<graph(y,), where t = ,,(¢) is the constant value
in J. In this case Q, which is the limit of the graphs I'* in (1.17), is not itself the graph
of a function of 7. Such a vertical line segment typically arises as an internal
transition layer due to the singular perturbation nature of Eq. (1.1). In the special
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case of (1.15) described in Section 1 we saw (1.19) that graph(y,,,,,;) consisted
entirely of such a vertical segment.

In view of the periodicity (3.3) of ¥, in n, we are only dealing with two functions
modulo additive constants, namely , for even n and , for odd n. Let us denote

Ey = l//2m(.u) - lpZm(fv)a E, = l//ijtl(fv) - ¢2m+1(:u)7 (310)

which are nonnegative quantities measuring the horizontal extent of the sets
graph(y,), where we note the monotonicity of v,,. Then the period p of Q is easily
seen to be

p=Ey+ E| +2Lp, (3.11)

corresponding to one ascending function y,,, and one descending function y,,,.,
together with two horizontal line segments By, x {u} and By, x {—v} at the top
and bottom of Q. Formula (3.11) links the quantities g, v, and p, at least implicitly,
and is a step toward determining these quantities explicitly.

An important case occurs when the delay function r is monotone, as described in
Section 1, and here much more detailed information can be obtained. In particular
both the max-plus equations (1.4) hold throughout [—v, u4]\{0} and one may easily
combine them, along with the periodicity relation in (3.3), to obtain a single max-
plus equation involving a function and a quantity p. It is enough here to consider
only the case of monotone increasing r, as the case of monotone decreasing r reduces
to this under the change of variables x — — x in the original equation (1.1).

Theorem B. Assume that the function r is monotone increasing throughout the interval
[—D, C]. Assume also that either ;1 > 0 or v > 0 (which, if ¥'(0) > 0, is necessarily the
case, by Theorem 1.2). Then both u > 0 and v > 0, and both equations in (1.4) hold
throughout [—v, u)\{0}. We also have that

p + l1021‘)1+1(é) = mnax (h(S) + W2m+1(92(5))) (312)

S<ssp

in [—v, u\{0}, or in [—v, u] if L4 = 0, where the function h is given by (1.16), and that
Yo (&) = r(S) + ¥a_1(9(8)) (3.13)

in [—v, u|. Furthermore

Yoy (&) is constant for Ee[—v,0), (3.14)
and if p > 2 then \,,, . (&) is constant in [—v, 0| for some 6 > 0. The period p of Q is
given by

p= max h(&) = max h(&) (3.15)

0<éi<p —v<E<p

and if ¥’ (0) exists with ¥'(0) > 0 then p > 2, and p > 0 and v > 0. Finally, we have that

9(u) = —v (3.16)
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if it is the case that r is strictly increasing in [—D,0] in addition to being monotone
increasing in [—D, C].

Some of the conclusions of Theorem B are seen to follow directly from Theorem
A and Theorem 1.2. In particular, one obtains Eq.(3.13) directly from the
first equation in (1.4) as r is monotone increasing and both y,,_, and g are
monotone decreasing. Upon substituting Eq. (3.13) into the second equation in (1.4)
and using periodicity (3.3) we obtain Eq. (3.12). What is notable and is not
obvious about Egs. (3.12) and (3.13) in Theorem B is that they hold throughout
[—v, u]\{0}, and as well at £ = 0if L4, = 0. That is, o = p and d; = v in the notation
of Theorem A.

Eq. (3.12) is a so-called max-plus eigenproblem, in which the quantity p is regarded
as an additive eigenvalue. The difficulty presented by Eq. (3.12) is due to its nonlocal
character. More precisely, the right-hand side of this equation depends on the values
of Y5, in the interval [g?(&), g*>(w)], and this interval may contain ¢ in its interior.
Later in this section we describe results from the companion paper [37] which we use
here to analyze this problem.

If #/(0) > 0 then one has //(0) > 0 since |¢'(0)| <1, and with (3.15) this gives p > 2.
Also u > 0 and v > 0 by Theorem 1.2 in this case. If p > 2 then L4 = 0 and each ,
is continuous throughout [—v, u, by Theorem A.

If r is monotone increasing in [—D, C] and is strictly increasing in [—D, 0], and
¥(0) > 0, then an examination of the statement of Theorem B shows that Q is
completely determined once p and ¥, (&) for &€[0, u] are known. Indeed, v is
given by (3.16), we have y,,,. (&) = ¥, (0) throughout [—v, 0], and y,,, is given by
(3.13). The functions v,,,,, for different m are related by (3.3), as are the functions
Wom- The horizontal segments B, x {1,} in @ are given by (3.5) and (3.6), and
A, = {y,(0)} is a single point as p > 2 implies L4 = 0, by Theorem A.

The next result shows that under an additional condition, namely that (h,g?)
is a so-called quasimodal pair, both u and ,,,; are uniquely determined and
thus the limiting profile 2 is uniquely determined. Moreover, explicit characteriza-
tions of y and y,,,,, and thus of Q, are given. We remark that the hypotheses of
Theorem C include conditions (1.15) from the example given in Section 1. As
described later, if /& is monotone increasing in [0, C] with #'(0) > 0 then the pair
(h,g?) is quasimodal.

Theorem C. Assume that the function r is monotone increasing throughout the interval
[—D, C] and strictly increasing in [—D,0]. Also assume that v'(0) exists and r'(0) > 0.
Finally, assume that the pair (h,g*) is quasimodal and let  _ : [0, C] > [~ c0, 0 ) denote

the unique continuous solution to the max-plus equation

Po 0, (&) = max (h(s) +¥. (), £€[o0.Cl,
SIS (3.17)
P, = max h(&),

0<é<C
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normalized so that W _(0) = 0. Define a function F : [0, C]—[—o0, c0) by
F(M) =y, (¢*(M)) + r(g(M)). (3.18)

Then the unique solution of the problem

0 Me(0,C
FM)e9(M),  where 9(M) = 4 L) €(0.€), (3.19)
[0,00), M=C,
is the quantity M = p in Theorems A and B, and it is the case that
F(u) = Lp. (3.20)
Additionally, one has that
v, (), £el0,g%(u)),
_ 0) = 3.21
w2m+l(£) w2m+1( ) 5111?2('” (h(s) _p + lp*(g2(s))), 56[92(,“)7#]7 ( )
where
l//2m+l (O) = (Wl + l)p - 17 (322)

with p in (3.21) the same quantity as in (3.15).

It is necessary to make precise certain notions in the statement of Theorem C and
also to justify some of the incidental claims in the statement. This, along with the
proof of Theorem C, relies on an understanding of the max-plus eigenproblem
(3.12). Quite generally max-plus eigenproblems are analogous to linear Fredholm
equations of the form

in which multiplication is replaced with addition, and addition (and integration)
replaced with maximization. A detailed study of a general class of max-plus
eigenproblems is found in [36]. In the companion paper [37] we obtained a
representation of the general solution of a class of max-plus eigenproblems including
(3.12). As we make essential use of the results of [37], we provide here a brief
exposition of them.

In [37] problems of the form

P+p(8) = max (H(s)+y(y(s),  <e[0, M], (3.23)

E<s<M

modeled on Eq. (3.12), were considered. Here P, M, H, and y correspond to p, u, h,
and ¢, respectively. It was assumed in [37] that

H:[0,C]-R, y:10, C]—>10, C]
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are given continuous functions where

p(&) is strictly increasing in £e[0, C], and
P(&) <& for every £e(0,C),

and where the quantity M €(0, C] is treated as a parameter. Note that necessarily
y(0) =0, but that either p(C)=C or yp(C)<C may hold. Solutions 1 :
[0, M]—[— o0, c0) are permitted to take the value —oo; however, the value +o0 is
not allowed (in this spirit the constant function y(£) = — oo is to be regarded as the
trivial solution). Also, ¥ is required to be continuous, where [— oo, c0) is endowed
with the standard topology in which the sets [— o0, &) form a neighborhood basis for
—oo. The additive eigenvalue PeR is required to be finite. It was shown [37,
Proposition 2.1] that the only point at which a nontrivial solution could fail to be
finite, namely (&) = — oo, was at ¢ = M = C = y(C). This necessary condition is
also sufficient for (&) = —oo if H(C)<maxogs<c H(s).

The main result of [37], the Basis Theorem, is that under additional mild
conditions, for every M there exists a finite collection {¢'}? | of canonically defined
solutions to (3.23), such that the general solution of (3.23) has the form

Y(&) = (" + 9" () V(e + *(E) v (! + 97(2)), (3.24)

where ¢’ e[— o0, 00) are any quantities. Also, the additive eigenvalue P is the same
quantity

P= max H(¢) (3.25)

0<csM

for every nontrivial solution, although it depends on M. It is easily seen that if ¢ are
solutions to (3.23) then so is the right-hand side of (3.24) for any ¢’. Indeed, formula
(3.24) is the analog of a linear combination of solutions, wherein multiplication and
addition are replaced by addition and maximization, respectively. In general the
quantity ¢ and the basis solutions ¢’ depend on M just as does P.

The precise conditions for the Basis Theorem to hold for a given M are encoded in
the set

Z(M) ={lel0,M]| H({) = P(M), and H(S)<P(M)
whenever y({) <y(&)<{ and &€]0, M|},

where P(M) is the quantity (3.25). If Z(M) is a finite set, and if also 0¢ Z (M), then
the above conclusion of the Basis Theorem holds and the quantity ¢ = ¢(M) equals
the cardinality of Z(M).

Note that Z(M)#¢ for every Me(0,C] as Z(M) contains the rightmost
maximum of H in [0, M]. Also note that if H'(0) > 0 then 0¢ Z(M) for every M, as
H(0)<P(M). This corresponds to /'(0) > 0 in (3.12), which holds if #(0) > 0. It was
noted in [37] that among C? smooth functions H for which H’(0) > 0 it is generically
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the case that Z(M) is a finite set for every y, and in fact that 1 <q(M) <2 for every M
with g(M) = 2 holding only for finitely many M.

A particularly interesting case occurs when g(M) = 1, that is Z(M) is a singleton,
for every M. In this direction we present the following definition which was
introduced in [37].

Definition. The pair (H,y) is said to be quasimodal if for every M e (0, C] the set
Z(M) contains exactly one element, and also 0¢ Z(M).

As noted in [37], if the function H is monotone increasing in [0, My] for some
Mye (0, Cl, and H(&) < H(M,) for every £e (M, C], and also H(&) > H(0) for every
&e (0, My], then (H,7) is quasimodal for any y. This includes the case in which H is
monotone increasing throughout [0, C], where here M, = C, and also the so-called
unimodal case in which H is monotone increasing to the left of a maximum at
M€ (0, C) and then monotone decreasing to the right of M, where in both cases we
need H(¢) > H(0) for & near 0. However, there exist quasimodal pairs (H,y) for
which H is neither monotone nor unimodal. Let us remark also that if (H,7y) is
quasimodal then the unique element {(M)eZ(M) need not depend continuously
on M.

In the quasimodal case Eq. (3.23) has, for every M, a unique nontrivial solution
up to an additive constant, by the Basis Theorem. Let us denote this solution by
(¢, M), which we may assume normalized so that ¢ (0, M) = 0. Then it was shown
in [37, Theorem 4.1] that these solutions are related by

(& C), cel0,y(M)],
PO =\ max (H(s) = POM) + 0((5), O)<0(E C), el M), 320

as M varies. Also, in the unimodal case it follows from an observation in [37] that

o(¢, M) = f: A,(y"(&)) for every Eel0, M],

=0

b

where

o, &el0, My,
4,8 = {H(f) — H(M,), &e[M,,C].

Here M€ (0, C] is the location of the rightmost maximum of H.
Following the above discussion it is now quite easy to see how Theorem C follows
from Theorems A and B and from the results of [37].

Proof of Theorem C. The existence and uniqueness of iy, = ¢(-, C) in the statement

of Theorem C follows from the Basis Theorem of [37] described above, using the
assumption that (%, g?) is quasimodal. The above discussion also gives Eq. (3.21),
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which is just Eq. (3.26) rewritten in this case. Formula (3.22) for y,,,.,(0) follows
directly from the periodicity condition in (3.3), from Eq. (3.8) in Theorem A, and
from (3.13) in Theorem B. Note that as #/(0) > 0 we have that p > 2 by Theorem B,
hence L4 = 0 by Theorem A, which is needed for (3.8).

Consider now the quantities £y and E; given by (3.10). Let us eliminate both ,,,
and —v from these formulas by making the substitutions (3.13) and (3.16) and using
again periodicity (3.3). With a short calculation we obtain

Ey = r(1) + Yamy1(9(1) = 1(9(1)) = Va1 (6% (1),

El = l702}';1+1 (g(:u')) - l702m+l (,Lt)

= Vo1 () +p = h(w) — a1 (67 (1),

where in the case of E; we have made an additional substitution ., (u) =
—p + h(W) + Yapi1 (97 (1)), which is just Eq. (3.12) at & = u. We obtain further, using
the fact that y,,,.;(g(#)) = ¥1,,,1(0) by Theorem B, and using the formula (1.16) for
h, that

Eg+ Et =25, (0) — 21,1 (97 (1) + r(1) — r(g(w)) + p — h(p)
=21241(0) = 231 (97 (1) — 27(g(w)) + p

= —2F(u) +p, (3.27)

where F(u) is as in (3.18) with (3.21) used here. Upon substituting (3.27) into
Eq. (3.11) we obtain Eq. (3.20). If u< C then g?(u) <p and so Lz = 0 by Theorem A,
while if 4 = C then Lg>0. In either case Lpe%(u) and so (3.19) holds.

Finally, we observe that the function F is strictly decreasing, in particular because
r is strictly increasing in [—D,0] and y_ is monotone decreasing. As F(0) =1 it
follows that the problem (3.19) has a unique solution, which is M = u. [

Before closing this section let us return to the general context of Theorem A. Just
as was done in Theorem B one may combine the two equations in (1.4) to form a
max-plus eigenproblem with an unknown parameter p. Upon substituting the first
equation of (1.4) into the second we obtain

Vo (&) = max (r<s>+ max <r<r>+w2m_1<g<r>>>>

E<s<p —v<1<g(s)

max (r)+ | max 07 (0) ()

E<s<p s)<t<g(—V)

~ max (r(s)+ max (r(g'<r>>+wzm_l<r>>>

E<s<p P (s)<t<p

= o ((max r9) 4l @) b0 (0)):

g <t<p E<s<g7(n)



J. Mallet-Paret, R.D. Nussbaum | J. Differential Equations 189 (2003) 640-692 659

Here we adopt the convention that g~! () = uif —v<t<g(p), and that g~'(z) = —v
if g(—v) <t<u, with a similar convention for g~2(z). In particular this is used in the
third line of the above formula, where we also use the monotonicity of ¥,,,_;. Now
using (3.3) the above formula becomes

p+ lpZm-H (é) = max (hl (57 T) + lpZm-H (T))’ (328)
g* (&) <Tt<g(-V)
where
hi(é1) = (E max( : r(s)) +r(g7 ' (7). (3.29)
E<s<g (T

Note that (3.28) reduces to the max-plus eigenproblem (3.12) of Theorem B when r is
monotone increasing. One obtains analogously the equation

p+ l//2m(é) = max7 (ho(é, T) + l//2m(‘l:))7 (330)
9w <T<g*(8)

where

(e = (| max_ ) + a7 (9) (331)

g2 (1) <s<¢

for the even-indexed functions. The range of ¢ for which (3.28) is valid depends on
the quantities dp and J; in Theorem A. Generally, (3.28) holds if both —v<g(&) <y
and —J; <&<u hold, that is, provided

max{g~' (o), -0} <E<u, (3.32)

with ¢#0 unless L4 = 0. In any case, as g~ (dg) and —3; are both negative Eq. (3.28)
is valid at least for ¢e (0, u]. Similar remarks apply to Eq. (3.30).

4. The limiting profile 2

In this section we recall the basic elements of the theory of “limiting profiles”
developed in [35]. This theory was developed specifically to analyze problems of the
form (1.1), in particular to make rigorous the connection between the differential
equation (1.1) and the relation (1.3). It will be the main tool we use to analyze
solutions of (1.1) and prove the results of Section 3.

We consider a sequence x¥:R—R of solutions of Eq.(1.1), with positive
parameter values ¢ = ¢ — 0, each of these solutions satisfying the bounds (1.12) in
R with C and D independent of k. Here and for the remainder of this section we do
not specifically assume the standing assumptions on f and r given in Section 1, as our
purpose here is to describe the general machinery of [35] needed to solve our
problem. In this section we assume only that f:/ xI—-R and r:I—>R are
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continuous, with 7 = [—D, C], and that the solutions x* satisfy (1.1) and (1.12) in R
(so no assumption of periodicity or slow oscillation of these solutions is made).

We assume the sequence x¥ is a so-called regular sequence [35]. That is, the graphs
I'* in (1.17) converge to a limiting set Q< R? in the following sense: There exists a
nested sequence of compact sets

K'cK?’c.--cR?* with

0 .
int(K’) = R?
j=1

such that for each j the limit

lim I'*nK =G

k— o0

exists in the Hausdorff topology of compact sets, and for which

Q= G.

o0

J

There is no loss in making this assumption, since as shown in [35], every uniformly
bounded sequence of solutions x¥ possesses a regular subsequence. For a regular
sequence x* the limiting set Q can be characterized as

Q ={(z,&)eR? | there exist ¥ »1 with x¥ () —¢, for some subsequence k' — oo}
={(1, &) eR? | there exist ¥ -1 with x* () - ¢}, (4.1)

where the equality of the two sets above follows from the regularity of the sequence.
The set Q is called the limiting profile of the sequence x*. Typically Q is not itself a
graph as it can contain vertical line segments, although it inherits certain
connectedness properties from the graphs I'* as described below.

The limiting profile Q for a sequence of SOPSs is the central object of study, and
for a nontrivial class of equations we shall show that it is uniquely and explicitly
determined by the nonlinearities /* and r. In particular, the uniqueness of Q will
imply, a posteriori, that any sequence x* of SOPSs satisfying (1.1) and (1.12) with
¢ -0 is already regular, and so converges to Q.

We recall from [35] the main properties of Q and the features of the theory
developed therein. Let us denote in general

Q(S)=QnVs,

the intersection of Q with the vertical strip over the set S=R. In case S = (t1,12) or
S = [11,712] is an interval we write simply Q(t;,12) or Q[t;, 12], and we write Q(t) if
S ={t} is a singleton. Then if J is an interval the set Q(J) is nonempty and
connected. The connectedness in particular is a consequence of the fact that x* is a
regular sequence. Of course Q is a closed set and is contained in the horizontal strip
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Hj, by (1.12), so Q(J) is closed (compact) if J is closed (compact). If J = {t} is a
point, then Q(J) is simply a vertical compact interval (or point) in the plane. We
denote the set

3(t) = {¢eR | (z,¢) e 2}

for every 7, and so Q(t) = {r} x X(r). We also define x(r) and X(r) to be the
endpoints of the compact interval ¥(7), that is,

¥(7) = [x(7), %(7)].

The functions x and X are lower and upper semi-continuous, respectively; this is an
immediate consequence of the closedness of Q.

Now we describe the precise relation between the set 2 and the difference equation
(1.3) which was proved in [35] and which is at the heart of our theory. We begin with
a fundamental decomposition

Q=0"0UQ UQ*

of the limiting profile into three disjoint subsets. The sets Q7 and Q~ correspond to
the transition layers (classically known as the inner solution in singular perturbation
theory), while Q* corresponds to the regular part of the solution, that is, the outer
solution. The precise definitions of these sets are

li{n inf (+&5%%(%)) > 0 for every sequence # -1
— 00

a* {9

with xk(tk)aé}, (4.2)

Q= Q\(Q"uQ).

Clearly, these three sets are disjoint. Note particularly that a full sequence, not just a
subsequence, is required in the definitions of Q*. The sets Q" and Q™ are locally like
vertical lines in the following sense. If (1, &) e Q* for some choice + or — of +, then
there exists a neighborhood U< R? of (1, &) such that

QNU=0*nU=V,nU. (4.3)

That is, in a neighborhood of (t, &) the set QF is simply the vertical line through ,
and with no other points of the larger set Q present. Thus Q" and Q™ each are
relatively open subsets of the closed set Q, and hence Q* is closed. Also, from these
facts it follows that both inequalities x(t) <&<X(t) hold if (r, &) e QT U Q™. Thus for
every Te R we have that

(t, x(v)), (1,%(r))e@* (4.4)

for the endpoints of Q(7).
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It is also the case that the vertical lines which comprise Q1 are ‘““‘upward’ lines in
the following sense. If (7,&)e Q7 then there are exactly two connected components
QF and QF of Q\{(1,¢)}, and they are given by

QF = Q(— o0, 1)U ({1} x [x(2), &),

4.5
Qf = Q(r, ) U ({r} x (£, x(1)]). ()

On the other hand, if (7,&)eQ, then
Qb = Q(-o0,7)u({r} x (£,%(1), (4.6)

QR = Q(1, 0) U ({1} x [x(x), %))

are the corresponding connected components, that is, the vertical lines of Q= go
“downward”.

One intuitively thinks of the set Q* as corresponding to those points at which one
is justified in setting ¢ = 0 in the differential equation (1.1), thereby obtaining the
relation

0=f(x(0),x(t—r)), r=r(x(1),

between the current part (¢, x(¢)) and the history part (¢ — r, x(¢ — r)) of the solution.
At points of QF the idea is that one instead obtains an inequality

+1(x(2), x(t —r)) > 0.

The precise results, proved in [35], are as follows. For every (t, &) e Q¥ there exists

(T,¢) e Q such that
f&9=0,  tT=1-r(). (4.7)
For every (1,&)eQ*, for some choice + or — of +, there exists (7, &) e such that
+f(68) >0,  T=1-r(0). (4.8)

Note that if, as in Section 1, we have that sgn f(x,y) = sgn(g(x) — y) for (x,y) el x
I, for some function g : I - I and if @ : H; — H| is the backdating map given in (1.10),
then the statements above can be reformulated as follows. We have first that

P(QF)<cQ, (4.9)

which expresses Eq. (4.7). The relation (4.8), in which the inequality is equivalent to

+(g(&) — &) > 0, is expressed by the fact that

if (1,6)eQ® and (£,&) = &(z, ), then there exists (4.10)
(7,8)eQ with =7 and +(F—&) > 0. '
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Roughly, (4.10) says that under the map @ every point in the image ®(Q") of Q7 lies
above some point of Q, and every point of &(Q7) lies below some point of Q. In
making the heuristic connection of this to the differential equation (1.1), one should
identify (7,&) with (1,x(r)) and (£ &) with (r—r, x(t —r)) where r=r(x(1)).
Properties (4.9) and (4.10) will be used extensively in the rest of this paper, and
we shall often refer to them as the mapping properties of &.

5. The limiting profile for slowly oscillating periodic solutions

Following the standing assumptions of Section 1, we have by Theorem 1.1 that for
every ¢ in some range 0<e<e, Eq. (1.1) possesses an SOPS satisfying the bounds
(1.12) in R. In order to apply the theory of limiting profiles described in the previous
section we take a sequence ¢<—0 of positive parameters and a corresponding
sequence x* of SOPSs satisfying (1.12) which form a regular sequence. We assume
for the remainder of this section that such a sequence has been fixed and we let
Q< R? denote the associated limiting profile.

The focus in this section is on obtaining properties of Q which follow directly from
the properties of slow oscillation and associated monotonicity properties of the
solutions. Each solution x* has a sine-like shape in the sense that it satisfies (1.2) and
(1.13) for some quantities 0< ff <oX <p¥ <ok. From the periodicity of x* we may
define o and /3’; for every integer n by requiring that

kL k k kK __ pk k
O()1—0—2_0511—"_p7 ﬁn+2 _ﬁn+p ’ where

= 0512" is the minimal period of x*.
Thus

k_pk _ K k
oy <Py <0y oy = 0. (5.1)

k

. . .. . . . k k . . . . .
Each solution x* is positive in the interval (o3,,45,,,) and is negative in

k i . . . . k k .
(05,0415 %3, 42), and is monotone increasing in [f5,, |, f5,] and monotone decreasing

ok ok o ) . Kk, k K nre of :
in [$5,,, B3,n+1]- The maximum and minimum x* and —v* of x* are given, respectively,
by
k _ _kqpk k _ k(pk
w=x (BZm)a -V =X (32n7+1)a
for every m.

Observe that 0 = FxK(B5) = £ (XK (B5), XK (n* (BX))), which implies by (1.5) that

n n
k
{gw ), meven,

g(—vk), n odd, 5-2)
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and hence that
(=1 (By)) > 0. (5.3)
Here 7* : R— R is the history function associated to x*, defined as
k _ k
(1) = 1 = r(x"(1)). (5.4)
We next observe that
oy — R<f, — R<(B;) <o, (5.5)

with R as in (1.9), where the final inequality in (5.5) follows from fact (5.3) that
X< (*(B)) and x*(B*) have opposite signs. Let us also note from (5.2) that both

n

g(u¥) and g(—vk) belong to the range [V, i*] of x*, and so
(5.6)

from the monotonicity of g.
At this point it is convenient to prove Theorem 1.3, which establishes an upper
bound on the periods of our solutions.

Proof of Theorem 1.3. We shall obtain explicit upper bounds
o — ok = o <Py, b — ok <Py, (5.7)

which together give the bound pK <Py + P; on the period. Here Py and P; will be
independent of k. We shall only obtain the first bound in (5.7) as the derivation of
the second is similar.

Let K > 0 be such that

fEO<S—KE+D,  d(O=KE, (5-8)

hold for every &, {€[0, C]. Such K exists by virtue of conditions (1.5), (1.6), and (1.8)
on f and g. We shall obtain the bound

k
&
o —oz’ggzluF (5.9)

with R as in (1.9). Assume that of — & > 2R otherwise we are done. We consider 7 in
the interval [of + R, of], which by (5.5) lies to the right of ,8]6, and so x*(#)<0 for
such 7. Thus in the smaller interval [of + R, of — R] we have that

K0z (o = R =X (B) = 9(—") =67 (W) = Ku (5.10)
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again by (5.5), and by (5.8), (5.2), and (5.6). We also have there that x*(y*(¢)) >0,
and hence

3K (1) = F (3 (1), (1)) < — K (n) < — K2 (5.11)

by (5.8) and (5.10). In light of the estimate (5.11) in [oc’g + R, of — R] we have the
upper bound

ok + R) — x*(of — R) <gkxk(rx'6 +R) &

k k X
of — R) — (g + R) < < <
(4 )= (g + R) (eb) T K2k K2k K?

for the length of this interval, which gives (5.9) as desired. [J
It will be convenient to assume (and we do without loss) the existence of the limits

I k k
0y, = Ol B = B P =D,
for every integer n, as k — co (in fact the limit of the sequence p* must exist as x* is a
regular sequence). Of course these limits are finite by Theorem 1.3, and it follows
that

an<ﬁ11<an+la OC}'Hrl_o‘n>la (5 12)
Op+2 = Oy +pa ﬁn+2::8n +p7
for every n, and that
op =0, o =p=2. (5.13)

It is certainly possible for some of the inequalities in (5.12) to be equalities, and in
fact this is often the case. We also observe the existence of the limits

T Vo, (5.14)

following from the regularity of the sequence x*, and we recall Theorem 1.2

which gives conditions under which x> 0 and v > 0 is assured. Let us note that
—D< —v<0<u<C, that Q< H|_, , and that

p#QNH_ ,SQ*,  ¢#QnH, Q¥ (5.15)

where the inclusions in (5.15) follow from (4.4). Upon taking the limits in (5.6) we
obtain the claim (3.1) of Theorem A. Let us note here that (3.1) implies that

u=0 < v=0. (5.16)

Indeed, if u > 0 then —v<g(u) <0, hence v > 0, and similarly for the converse. Thus
either the limiting profile Q contains both points above and below the horizontal
axis, or else x* —0 uniformly as k— oo and Q = R x {0} is trivial.
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The limiting profile Q inherits properties corresponding to the periodicity and
piecewise monotonicity of the solutions x*. Certainly @ has period p in the
horizontal direction, that is, (3.9) holds. Now define sets 4,, B,=R by

A, ={reR | there exist X | ﬁl_l,ﬁfj] with 7 —>7 and x* () -0

for some subsequence k' — o0}, (5.17)

B, = {teR|there exist X e[eX ok ] with & -1 and XX (X)) -2,

for some subsequence k' — o0},

where 4, is as in (3.6). It is immediate from the characterization (4.1) of Q that A4,
and B, are nonempty compact sets and that

(1,0)eQ <= 1€ U Ay,
n=—oo
0
(t,))eR < e |J Bom, (5.18)
m=—o0
©
(t,—v)eQ < e U Bounti-
m=—oo
In addition
Oln eAngmn—hﬁn]v Ay X {O}QQa Ao = A, +p, (5 19)
BnEBng[amarHl]v Bn X {}vn}EQ*, Bn+2 = Bn Jer .

hold for every n, from the ordering (5.1) and from (5.15).

Remark. We could have chosen a slightly simpler definition of the sets 4, and B, by
taking full sequences, (¢,x*(#5))—(z,0) or (r,1,), rather than by taking
subsequences. The sets A, and B, thereby obtained would be subsets of A4, and
B,. However, in light of the equality (4.1) it is easy to see that such sets
can only differ at most at their endpoints, specifically, An\ﬁng{ﬁn,l,ﬁn} and
B,\B, < {oty, otny1}. We choose the definitions (5.17) as it is clear from them that these
sets are closed.

It is in fact the case that the sets 4, and B, are intervals, as the following result
shows. In addition, each portion of the set  which projects to the interior of one of
these intervals on the t-axis is simply a line segment. The proof of these facts is not
completely trivial: It not only uses the monotonicity properties of the solutions, but
also the fact that x* is a regular sequence.
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Lemma 5.1. The compact sets A, and B, defined in (5.17) are intervals, and moreover
Q(int(4,)) = int(4,) x {0}, Q(int(By)) = int(By) x {i,}. (5.20)
Denoting
An =l 0,), Ba=1[B,.B,]; (5.21)
define intervals
Py=1B1:B ), On=[Br 1, By] = BitUPyUB,. (5.22)
Then if u > 0 and v > 0 hold we have that
B,_1<A4,<B,, A S P, S0y, (5.23)
for every n.

Observe immediately that A4, <4, and B, ;<B, hold, from the leftmost
inclusions in (5.19). Thus P, and Q, in the above result are well defined with

B, 1 <P,<B,. (5.24)

Indeed, the intervals B,_; and P, abut, having exactly one point in common, as do
P, and B,. Note here the inequalities a, <w, <o, and f, <f,<f, which follow
from (5.19) and (5.21). Finally note that the requirements p >0 and v > 0 are
necessary for (5.23) to hold. If 4 = v = 0 then 4, = [,_;, f,] and B, = [ay, ot,11] for

every n, and so (5.23) is impossible.

Proof of Lemma 5.1. First take any 7,7, € 4, with 1, <1, and let ¥ e [f*_|, f'] with
& > and x¥ (X) -0, and similarly " €[X" |, p5'] with A" -1, and x¥'(££") -0, be
subsequences as in the definition (5.17) for t = 7, 1,. Fix any to€(71,72) and let
k" — oo be a third subsequence, with #£" — 1y and x¥"(£5") — & for some ¢. We shall
prove that & = 0. Note this implies that 7o € 4,, hence 4, is an interval, and as well
establishes the first equation of (5.20).

We may regard

(15, ¥ (15)) = (10,€) (5.25)

as a subsequence of points on the graphs I'*" converging to (10, &) € Q. From the fact
that x* is a regular sequence, and in particular from the equality of the two sets in
(4.1), the subsequence (5.25) can be extended to a full sequence

(15, X (1)) = (10, 9). (5.26)

The full sequence (5.26) may now be compared with the first two subsequences on
either side. For definiteness assume that n is even, and so x* is monotone increasing
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in the interval [fX |, p*]. As ¢ <2 and 25" <" for large k' and k", respectively, we
have that

xk/(té/) >xk,(l‘ll(/) _)0’ (té//) < k”(z";(”) 0

It follows that x*(#§) —0, hence & = 0 as claimed.

The proof that B, also is an interval and that the second equation of (5.20) holds
follows similar lines, but with enough differences that we present it. As before, we
begin with sequences (&, xK(#))—(11,2,) and (&, XX (")) - (t2,4), and
(tkw,ka(tkm)) — (79, &), where 1) <79 <7>. We have #¥ e[oX, ok’ ] and similarly with
k” and lo , and we must prove that ¢ = 4,,. Again assume # is even, and so 4, =
Now extend the two subsequences for t; and 7, (as opposed to the one for ro as
before) to full sequences (#X, x*(#5))— (z;, 1) for i=1,2. Observe that for these

extended sequences the points t" belong to the intervals (of Oty ’; o, ), at least for large k,

as x*(#£) > 0 and because the adjacent intervals (of_,,of) and (o, |, 0k, ,) where x*
is negative each has length greater than 1. Therefore, since x* in [o ’,;, ﬁ o, ] consists of

a monotone increasing part followed by a monotone decreasing part, we have that
k//l k/// /I k//l kl// kl//
g ) Zmin{x" (47), X (157} >

at the point 75" between ¢ and #§". This implies that x*" (#£") — p, that is, & = u as
desired.

The proof of (5.23) follows a similar construction, so for simplicity we only sketch
the proof that 4, <B,. Assume to the contrary that there exist t; € B, and 1, € 4,
with 7 <1y, let

(X)) = (e, 2n), (& () > (12,0), (5.27)

much as before, and extend the subsequence converging to (71, 4,) to a full sequence.
Then % e (o, ok, ) for the extended sequence, and as well 24" e [5" |, f'], which by

n—1»

(5.1) forces tk” l’z‘/ (o K ki]. But this is incompatible with the limits (5.27) in the

ﬂ ' Fn

light of the monotonicity of x* in [«X, f5] and the fact that 1,70, which holds

n)n

because u > 0 and v > 0. With this we have a contradiction. [J
While the above result describes portions of 2 which are horizontal line segments,

the more difficult matter is to describe the rest of Q. Let us decompose Q into
monotone pieces by setting

Q, ={(t,&)eR | there exist X e[t |, ] with X -1 and X ()¢

for some subsequence k' — o0}, (5.28)
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for each n. Then Q, is compact, Q is the union of the Q,,

(Bn—l?lnfl)v (Bm)“n)egn (529)

holds, and using (5.22) we see that

Q(ll’lt(P,,)) = Q(:anla :Bn) s Qn S ‘Q[ﬁnfl ’ ﬁn] < Q(Qn) (530)
The set 2, also has the expected monotonicity property.

Lemma 5.2. The set Q,<R?* is monotone increasing if n is even, and is monotone
decreasing if n is odd.

Proof. The proof of this result is in the same spirit as that of Lemma 5.1, and so will

be omitted. We do however note that the regularity of the sequence x* is again
used. O

It will be very useful to express the ascending and descending parts of Q as graphs
of functions © = y,,(¢) parameterized by the vertical coordinate &. Indeed, as one sees
from Theorem A such functions will play a key role in determining the limiting
profile Q. To this end we define for every n a set-valued function

‘//11 : [—V, /.l] _)2Pu7
where 27 is the set of all subsets of P,, by letting
Ya(6) = {te Py | (1,8)€Q,} for every e [—v,ul. (531)

Clearly ¥, (&) is a compact set for every &. Also define the set

graph(y,) = {(v,&) e R* | £e[-v, 1] and tey, (O}, (5.32)

or equivalently
graph(y,,) = @, Vp,, (5.33)

which also is a compact. Notice that while @, extends horizontally from f,_; to f,,,
in the definition of ¥, (&) we only take te P,, that is, Q, is truncated at the left and
right so that t lies between ! | and f8, . (This truncation is done simply for technical
reasons.) One can check that the only parts of Q, so removed are horizontal line
segments at the levels 4, and 4,, and indeed this is shown in Proposition 5.3 below.
Also, observe that 4, x {0} =@, from the definitions of these sets. It is clear that

Q(int(P,)) = graph(y,) = Q(P,), (5.34)
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and from Lemma 5.2 that

) increasing set for n even,
graph(y,) is a monotone i (5.35)
decreasing set for n odd.

Also, the ordering and periodicity claims (3.3) of Theorem A about the functions ,
hold, although we have not yet established the single-valuedness of these set-valued
functions.

The following result makes precise the relation between the graphs of the functions
V,, the horizontal line segments over the intervals B, and the set Q. In particular, the
basic description (3.2) of Q is established, albeit with the set graph(y,) given by
(5.32) rather than by (3.4). (One needs still to reconcile these two formulas.)

Proposition 5.3. We have that
Q. < graph(¥,) U (By—1 X {2p—1}) v (B, x {1,}) (5.36)
for every n, and thus Q is given by (3.2). We also have that
Q" ngraph(y,,1) = ¢, Q ngraph(iy,) = ¢, (5.37)

for every m and that the inclusions

Qf s U graph(y,,), @ < U graph(Yo 1), (5.38)

m=—0o0 m=—0o0

hold.

Before proving Proposition 5.3 we comment on some of the more subtle points
which need to be considered. The reader may have noted the somewhat technically
detailed and pedantic nature of the proof of Lemma 5.1. Although the sinusoidal
shape of the solutions x* is very suggestive of the shape of the limiting profile Q,
proper care must be taken. In particular, it is worth keeping in mind several
somewhat pathological possibilities for the limiting profile Q. While these
pathologies can generally be ruled out, they must be considered as possibilities,
and implicitly taken into account in our proofs.

In one scenario the sequence x* converges to 0 uniformly on compact subsets of
R\pZ, that is, everywhere except near the integer multiples np of the limiting period.
The minimum and maximum of x*, say near ¢ = 0, occur at B'i] <0 and ﬁg > 0, with
both ﬁ]i ,—0 and ﬁlg —0 as k— co. Thus the graph of x* has a narrow downward
trough immediately to the left of =0, followed by a narrow upward peak
immediately to the right of # = 0. In the limit the trough and peak become a vertical
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line segment (a “‘spike” from —v to u), and we have

o0

Q=Rx{0hu |J {mp}x[-v.u),

n=—0o0

A2m = B2m—1 = BZm = {mp}7 A2m+l = [mP, (Wl + 1)p]a

{(m+1)p}, Cel[-v,0),
Yom(&) = {mp}, Yo (&) = A1, =0, (5.39)
{mp}, ¢e (0, pl.

Note, incidentally, that in this case we have @ = Q* and Q% = ¢. The spikes {mp} x
[—v, u] go neither upward nor downward in the sense of (4.5) and (4.6), and so belong
to Q*, and not to Q.

In a slightly different scenario the order of the peak and trough is reversed: One
has S <ok < B, with & —o; and f — oy, so the peak is followed immediately by the
trough near ¢t =o;. The limiting profile obtained is the same as in (5.39) but
horizontally translated by an amount «;, although now

Ay = [(m - I)P + oy, mp+ 0(1]7 A2m+l = By, = BZm+1 = {Wlp + 0‘1};
{(m_ l)p+al}7 fe[—v70),
lrme(é) = Azm, é = 03 l//2m+l(é) = {mp + O(]},
{mp + a1}, £e(0, ul,

in contrast to (5.39).

One can also conceive of a profile Q in which the minimum and maximum spikes
occur at different locations on the t-axis.

Although Q is obtained as the limit of the graphs of piecewise monotone functions,
we see that Q itself need not be the graph of a function. In addition to the possibility
of spikes as above, Q might (locally) take the form of a graph ¢ = ¢(7) of a
monotone function with jump discontinuities. The possibility that such ¢ has
countably infinitely many jumps in a finite interval, and these jumps occur for a
dense set of 7, cannot yet be excluded. For example, ¢ could resemble the inverse to
the classical Cantor function.

We caution the reader to keep in mind the sort of pathologies described above
throughout our analysis.

We need the following lemma before giving the proof of Proposition 5.3.

Lemma 5.4. We have that

(B 1y An1) € Qn, (B, s 7n) € Q. (5.40)



672 J. Mallet-Paret, R.D. Nussbaum | J. Differential Equations 189 (2003) 640-692

In addition, we have the implications
T<Br = &=y, > B == Ay, (5.41)
Sor (1,£)eQ,.

Proof. We prove the second formula in (5.40), the proof of the first being similar. If
B, = B, then we are done by (5.29), so assume that §, <f,. We have that

(B Ba) x {An} sint(B,) x {4,} = Q(int(B,)) = Q
by (5.20), hence
(ﬂ;7 ﬁn) X {}“'1} g'Q(ﬁn—l ’ ﬁn) an

by (5.30). Thus [f,,, B,] x {4} SQ, as Q, is closed, so (5.40) holds as desired.

We again prove only the second implication in (5.41). If z is even then (f,,, u) € Q,
by (5.40) and the set 2, is monotone increasing by Lemma 5.2. This forces & = u for
any point (7,¢)€Q, with t > f8,, as desired. The proof for odd » is similar. O

Proof of Proposition 5.3. Take any (1,¢)eQ,. If te P, then (t,&)egraph(y,) by
(5.33). If t¢ P, then either t<B | or t > B, and thus either (t,&)€ B,y x {/,_1} or
(t,&)e By x {4y} by (5.41) of Lemma 5.4. This establishes the inclusion (5.36). It also
establishes (3.2), as Q is the union of the Q,,.

To prove the first equation in (5.37) take any (t,¢)egraph(y,, ;). Then
(t,)eQymi1 by (5.33), so one has that (X, x¥(#')) > (1, &) for a subsequence as
in the definition (5.28) of Qa,,11. As & €[p5 . f& ] one has that ¥ (') <0. By (4.1)
this subsequence may be extended to a full sequence (¢, x*(¢))— (t, &); however,
one sees the condition in the definition (4.2) of QT is violated. Thus (t,&)¢Q", as
desired. The proof of the second equation in (5.37) is similar.

To prove (5.38) take any (7,&)eQ". Then ¢&e(—v,u) by (5.15) and so
(t, &) egraph(y,) for some n, by (3.2), where necessarily n is even by (5.37). This
proves the first conclusion in (5.38) and the second is proved similarly. [l

The next result describes the relation between the intervals 4, and B,, and the
function y,,.

Lemma 5.5. Assume that i > 0 and v > 0. Then we have that
¥,(0) = Ay, (5.42)
and also that

lp2m(_v) = {ﬁzrm—l}? lp2m(:u) = {ﬁgnz}?

5.43
ot (=) = B} Ve () = (B, 54)
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or equivalently that

Vuldnt) ={B,ib Walln) = {B, 1, (5.44)

for every n and m.

Proof. From the definitions (5.17) and (5.28) of A, and Q, we have that 4, =
{reR| (z,0)eQ,}. As A,= P, by (5.23) and the fact that x4 > 0 and v > 0, the claim
(5.42) follows from the definition (5.31) of v, (&).

Now consider (5.43). We prove only that y,,, () = {f,,} as the proofs of the
other three equations there are similar. We have (f,,,, ) € 22, by Lemma 5.4, hence
Bam EWan(p), so consider any point tey,,, (1) with t#p;,,. As 1€ Py, we must have
that t < f3,,,. Thus 1< By, and by (5.18) we have te By for some k with k <m. Thus
1< By <P3, > But now consider the point o, €Ay = ¥, (0). From (5.23) and
(5.12)

+
I-<ﬁ2mfz <Oc2m—l <a2m -1 <0p- (545)

The strict inequality (5.45) contradicts the fact that y,,,(0) <, (1), which follows
from the monotonicity property (5.35). Thus we have (5.43).
Egs. (5.44) are merely restatements of (5.43). This completes the proof. [

Lemma 5.6. The set y,(&) is a nonempty compact interval (or point) for every
56[_\;7#]'

Proof. As noted earlier () is a compact set, so we must show it is nonempty and
connected. This result is already established for ¢ = p, —v in Lemma 5.5 when p > 0
and v > 0 (if u = v = 0 one can check directly that ¥, (0) = {«,}), so it is enough to
consider ¢e (—v, u). Fix such & Then &e(—vk, i¥) for large k, and so x*(5) = ¢ for
some ¥ e [ﬁﬁfl, ﬁ],f] Upon taking the limit of a subsequence X -t we have (1, &) € Q,.
By (5.36) of Proposition 5.3 and because £# u, —v, we have that (t, &) e graph(y,,),
that is tey, (&), and so ¥, (&) # .

To prove connectedness of ¥, (&) let 71, 12 €, (&) with 7 <73, for some e (—v, u),
and take any to€(t1,12). Also take any &;eX(t9)#¢. Then tyeint(P,), and so
10¢ Py for every k+#n, and 19¢ By for every keZ by (5.24). Also, (19,¢)eQ, by
(5.30), and so (79, ) egraph(y,) by (5.36) of Proposition 5.3. By considering the
three points (t;,¢), for i = 1,2, and (19,¢), it follows from the monotonicity of
graph(y,) that & = ¢, that is, 1oy, (¢). Thus (&) is connected. [

Lemma 5.7. Suppose (19, &) € Q™ for some choice of sign +. Then &ye(—v, ), and
there exists a unique integer n such that to e, (&y). Moreover, W, (&) = y,(&) = {0}
is constant and single-valued for all & in some neighborhood of &y and (—1)" = +1.

Proof. For definiteness suppose (19, &) e Q". Then & e (—v, u) by (5.15). By (4.3) we
have (19, &) e Q" for every & near &, and these are the only points of Q near (79, &)).
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Thus (5.38) of Proposition 5.3 implies that toey,,, (&) for each such &, for some
m = m(&). As 19 is an isolated point of ¥/,,,(£) we have that y,,,(£) = {70} for this m,
since ¥,,,,(¢) is a connected set by Lemma 5.6. From the second equation in (3.3) we
see also that this m(¢) is uniquely determined for each &.

We claim the function m(§) is constant in a neighborhood of ¢ = &;. Certainly
m(&) is bounded, so if it is not locally constant there exists a sequence &, — &, and
integers myg, m;, with mo#m;, such that m(&;,) = m;, while m(&;) = my. But then
(0, &) egraph(y,,, ), hence in the limit (1o, &y)egraph(y,,, ) as graph(y,,, ) is
closed. Thus toey,,, (&), and so m(&) = m;. This contradicts m(&y) = my and
proves that m(&) is constant in £.

The uniqueness of the integer n for which 7o ey, (&,) among even integers has been
noted. If n is odd then 7o ¢, (&y) by (5.37) of Proposition 5.3. This shows uniqueness
of n = 2m among all integers. [

6. The max-plus equations and the proof of Theorem A

Our object in this section is to show that the functions ,, which describe the
ascending and descending portions of the limiting profile @, satisfy the system of
max-plus equations (1.4) of Theorem A. In particular we shall show that these
functions are single-valued and continuous except for a possible jump discontinuity
at £ = 0. We shall also give a more precise characterization of the quantities §y and
01 in that theorem which describe the range over which the max-plus equations are
valid.

The standing assumptions on f and r in Section 1 continue to hold in this section,
and we shall make liberal use of the results of the previous section. Also, we shall
take

u>0and v>0 (6.1)

as an additional standing assumption throughout this section so as to avoid
trivialities. While our techniques are elementary, there is enough detail that we again
caution the reader to keep in mind the potential pathologies that were described
earlier.

The following are two principal results of this section. In particular, Proposition
6.2 establishes the max-plus equations (1.4) of Theorem A and characterizes the
ranges of £ where they hold.

Proposition 6.1. The set-valued function \,, is single-valued and continuous (considered
as a real-valued function) in [—v, u]\{0}. The left- and right-hand limits ,(0—) and
V,(0+) of this function at ¢ =0 are the endpoints of the interval A,, that is, the
formula for A, in (3.5) holds.
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Proposition 6.2. There exists 69 > 0 such that the first max-plus equation in (1.4) holds
for every Ee[—v, 00]\{0}, for every m. This equation also holds at £ = 0, except that the
left-hand side \,,,(0) is replaced with the right-hand endpoint \),,,(0+) = oi, of the
interval r,,,(0) = Aoy, in case this interval has positive length. In any case the quantity
0 can be chosen so that either 6y = u, or else that 0<dy<u and

r(00) + Ya-1(9(90)) < max_ (r(s) + 1 (9(5)))

—v<s<9y
= me(éo) = 1"(50) + l//2171(9(50))3 (62)
with also
Yom(00) <Y, () and  1(d0) <r(S) for every Ee(do,p). (6.3)

The second max-plus equation in (1.4) holds for €[5y, u]\{0} for some 6, > 0, where
here either 61 = v, or else 0< 6, <v and

r(=01) + ¥, (9(=01)) < max (r(s) +¥2,(9(5)))

-0 <s<p
:lp2m+l(_51) = }’(—51) + l//2m+l<g(_51))

with also

lp2m+l(_51)<lp2m+l(é) and V(—51)<}"(5) fOV every fE [—V, _51)7

and with a similar interpretation as above at & = 0.

Remark. Once Proposition 6.1 is established we may allow an abuse of notation in
which we write Y, (¢) = 7 rather than (&) = {t} when y,(&) is a singleton set. That
is, we regard ¥, (&) as a real number.

Remark. We observe from (3.2) as established in Proposition 5.3 that if
&e(—v,w)\{0}, then (z,&)eQ if and only if Y, (&) = 7 for some n.

To illustrate how Proposition 6.2 can be used, and in particular to see the
significance of conditions (6.2) and (6.3) involving Jdy and the corresponding
conditions involving ¢, we present the following two results. Note that Corollary 6.3
guarantees that both equations in (1.4) hold throughout the full interval [—v, u] if r is
both monotone increasing in [—v,0] and monotone decreasing in [0,u], as for
example with r(&) = 1 — ¢&* where ¢ > 0. The same conclusion holds by Corollary
6.4 if r is monotone throughout [—v, u].

Corollary 6.3. If r is monotone decreasing in [0, u] then 6y = u, while if r is monotone
increasing in [—v,0] then ; = v.

Proof. If dyp<u then r cannot be monotone decreasing in [0, 4] from the second
inequality in (6.3). The claim about ¢, is proved similarly. [
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Corollary 6.4. If r is monotone increasing throughout [—v, ] then both oy = p and
01 = v. In addition Eq. (3.13) holds for every &e[—v,u].
If r is monotone decreasing throughout [—v, u| the corresponding result holds.

Proof. The first equation in (1.4), which holds throughout [—v, d¢], takes the form
(3.13) in that interval as both r and the composition of ¥,,,_; with g are monotone
increasing functions. Thus the strict inequality in (6.2) is impossible, which by
Proposition 6.2 implies that o = p. One has that §; = v by Corollary 6.3.

The result when r is monotone decreasing is proved similarly. [J

We now proceed with the proofs of our results. We begin with an analysis of so-
called plateaus, which are horizontal line segments in €.

Definition. A plateau in Q is a subset J x {{} =Q, where J is an interval of positive
length and £eR. We call ¢ the level of the plateau.

Remark. If J x {¢} is a plateau in Q then J x {} = Q¥ as QT UQ™ consists locally
of vertical line segments. Also, the horizontal translates (J + np) x {£} of a plateau,
modulo the period p of @, are plateaus. If it is the case that {e(—v, u) then

Jc U Ya()s U P,

by (3.2). In this case there exists a subinterval J, =J of positive length such that
J, <int(Py,) for some m, and thus J, =,,(£) from (5.34).

Lemma 6.5. Suppose that Q contains a plateau J x {£}. Then (J —r(&)) x {g(&)} is
also a plateau. Moreover, £ is a periodic point of g, that is, & is a fixed point of some
iterate of g, and hence £€{0,—D, C}.

Proof. Since J x {} =Q* we have from the mapping properties that
(] x {&}) = (J —r(Q) x {9(&)} =L,

and this proves the first claim.

Now suppose J x {£} is a plateau but & is not a periodic point of g. Then from
(1.7) we obtain a sequence J, x {&,} of plateaus with distinct levels &,, where J, =
Jo—1 —r(&,_1) and &, = g(&,_1) for n=1, with Jy = J and &, = £. Since all intervals
J, have the same length, two of them have an overlap, modulo the period p, of
positive length. Thus there exist £,, <&,, and an interval J, of positive length such
that J, x {&, } are plateaus for i = 1,2. We may also assume that ¢, €(—v,u) for
both levels. The interval J, need not be the maximal one for which either set J, x
{¢&,} is a plateau, and indeed, from the above remark we may choose J, so that
J,cint(P,,) hence J, <=y, (&,) for i=1,2, for some m. But then neither
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Vu(En) <Y, (&) nor ¥, (&,)<y,,(&,) holds, contradicting the fact that the
function ,,, is monotone. [

We next prove one of the results stated above.

Proof of Proposition 6.1. By Lemma 5.6 the set ¢, (¢) is nonempty and connected, so
if Y, (&) were not single-valued for some ¢ then v,(&) x {&} =Q would be a plateau.
Necessarily £€{0,—D, C} by Lemma 6.5, hence £€ {0, —v, u}. But y,(—v) and v, (1)
are single-valued by Lemma 5.5, and so ¢ = 0.

It follows directly from the fact that graph(y,,) is a closed set that ,,, considered
as a real-valued function, is continuous in [—v, u]\{0}. Finally, the closedness and
monotonicity of the set graph(y,,), along with (5.42) of Lemma 5.5, imply the left-
and right-hand limits at £ = 0 are the appropriate endpoints of 4,,. [

The following result is an important component in the derivation of the max-plus
equations (1.4). Let us note that if , is single-valued at & = 0 then at that point the
inequalities (6.4) can easily be obtained by taking the limit ¢ —0, and the strict
inequalities (6.6) trivially hold. On the other hand, if ,(0) = 4, is an interval of
positive length then the left-hand inequality in (6.4) will be shown in fact to be an
equality. This fact, and others, are established later in Lemma 6.9 and Proposition
6.10. Note finally that the claim involving (6.5) is made even for &, = 0, where the
inequalities are interpreted as between sets.

Before proving Proposition 6.2 we need to establish several preliminary results.

Lemma 6.6. We have that
Vo 1(9(8) <, (&) = r(&) <, (9(&))  for every Ee[—v, u]\{0}, (6.4)

for every n. If for some & = Eye(—v, 1) both inequalities in (6.4) are strict, so
Vu1(9(S0)) <, (So) — (o) <, (9(&o)), (6.5)

then (Y,(&y), E0)eQF with (=1)" = +1 and (&) =, (&) for every & near &.
Finally, we have the strict inequalities

Yo (S) = (&) <Y, (9(S))  for every Ee(—v,0),

Va1 () — HE) <V (9(2)) for every £€(0,p) (6.6)

for every m.
Proof. For every k consider for each n the set
ay ={(1, ) eR? | (=1)" (& = x*()) >0,

where ff_ | <t<ph,, and — v <&<yt},
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and also the two sets
%’; = {(1,&)eR*| (¢ — x*(1))=0 and — vV <&E<ph},

bounded by portions of the graph of the function x* and by the horizontal lines
&=k and & = K Observe that
o0
g?i = U @2m+17 g}li = U me’
m=—0o0 m=—aoo
and that the connected components of 9?’1 and %% are precisely the sets @ﬁ for odd

and even n, respectively, in view of the monotonicity properties of x*.
Fix n and consider the solution x* for 7 in the set

= {te(Bui. By) | —v* <x' () <u},
which is an open interval containing . For such ¢ we have that
¥ < (K (1) <ut (6.7)

by (5.6). Assuming for definiteness that n is even and letting n* denote the history
function as in (5.4), we have further that 0 <e*%*(7) = £ (x*(¢), x*(5*(¢))) and so from
(1.5) we have that

g(x* () — X (n* (1)) = 0. (6.8)

(Note here that inequality (6.8) is strict if X*(¢) #0.) We conclude from (6.7) and (6.8)
that (1% (), g(x*(¢))) e " , and so the point (#*(z), g(x* (t))) lies in one of the connected
components %5, ., of #* for every te SK. Taking t = ok gives (n*(ok), g(x* (X)) =

(i (ok),0) e R5_ since pr_, <ok | <n*(ok) = o — 1 <ok < B~ Therefore
(" (1), g(x* (1)) e 2~ _| for everyte S* (6.9)

for every n and k.

Now fix £e (—v, u)\{0}, keeping n as before, in particular with n even. Assume also
that & is simultaneously a regular value of all the functions x*, that is, x*(¢)#0 for
every ¢ and k such that x*(7) = £. By Sard’s theorem almost every ¢ satisfies this
property. Then fe( k uk) for all large k so there exists 7% e( f;_,,ﬁfj) such that
xk (%) = & Then ¢ eSk so the inclusion (6.9) at ¢ = 7% implies that

g(&) = ¥ (")) > 0, w2 <n“(T)<B, (6.10)

with the strict inequality in (6.10) holding because x*(7%)#0. There also exist
0", ok 2e (B, L) such that

(o) = XK (6?) = g(&), pE <Pl <t <<t
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and so
() > XK (nF (7F)) (6.11)

for i = 1,2 from the first inequality in (6.10). It now follows from the strict inequality
(6.11), using the fact that x* is monotone decreasing, respectively monotone
increasing, in ([3’;72, ﬁﬁfl), respectively (S~ ﬁﬁ), that

n—1

<t (7F) = —r(&) <db (6.12)

Now pass to a subsequence k' — co and take limits t¥ —»* and ¢ —o*7. Then
(t%, x¥ (7)) > (1%, €) e Q,, from the definition (5.28) of Q,, and so ¥, (¢) = t* from a
remark above. In a similar fashion o' >y, | (g(¢)) and 2 -y, (g(¢)). Taking
these limits in (6.12) yields the desired inequalities (6.4), at least for almost every & in
(=v,w)\{0}. Continuity in ¢ of the functions in (6.4) now yields the inequalities
throughout [—v, u]\{0}.

Suppose the strict inequalities (6.5) hold at some &€ (—v,u). Then taking any
t9€, (&) we have (19, &) eQ and

@ (10, o) = (0 — 1(Co), 9(So)) € (W, (o) — (o)) x {g(&o)}-

Thus @ (9, &y) ¢ 2 by (3.2) and because g(&y) # u, —v. Therefore (19, &) ¢ Q* from the
mapping properties, and so (19, &) e Q¥ . Lemma 5.7 now implies that (—1)" = +1

and that [//n(é) - lpn(éO) for é near £0~

To prove the first inequality in (6.6) we see for &€ (—v,0) that E<0<g(¢) and so
Vo (&) <y, (9(&)). As (&) >0 here the desired inequality holds. The second
inequality in (6.6) is proved similarly. O

The following result along with the description (3.2) of Q is needed to determine
how much space lies between the sets graph(y,) and graph(y, ).

Lemma 6.7. All intervals B, have the same length, say /(B,) = B — B, = Lp. Let
b, =0 be defined by

bu= By = Boy =By = B
that is, B,_1 = B, — b,,. Then

byzr(Zn), P =bntbun (6.13)
hold for every n. If in addition Lg > 0 then

by = r(n) (6.14)
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for every n and also
u=C and v=D, g(C)=-D and g(-D)=C, (6.15)

both hold.

Proof. From the periodicity property B,;» = B,+p in (5.19) all even-indexed
intervals have the same length /(B,,) = Lo, as do all odd-indexed intervals
{(Byyu+1) = L. Assume first that max{L,, L;} > 0, and without loss that Ly > 0
and Ly>L;. Then each By, x {u} is a plateau, which by Lemma 6.5 implies that
u=C,and g(C) =—Dand g(—D) = C. As g(u) = — v by (5.6) we thus have v = D,
giving (6.15). The ordering B,_; < B, of the intervals together with Ly > 0 forces a
strict separation By, < By,,y1 of the odd-indexed intervals, as B, lies between. By
Lemma 6.5 the set (B, —r(u)) x {g(u)} = (Bam — (1)) x {—v} is also a plateau
and so

By, — r(,u) < Bi (616)

for some odd k <2m, by (5.18). Note from (6.16) that Ly <L, hence Ly = L. Upon
setting £ = p with n = 2m in the left-hand inequality of (6.4), we have using Lemma
5.5 that

ﬂzrn1—3<ﬁ;m—] - l//217171(7‘)) = l//2m71(g(:u))<¢2m(:u) - }"(,U,) - ﬁgm - r(,u)

Thus Byy—3<Bay — r(u), which forces k =2m — 1 in (6.16). In fact (6.16) is an
equality as Ly = L;, and this establishes (6.14) for n = 2m. One now obtains these
formulas for odd n by a symmetric argument.

Now suppose that Ly = L; =0, so B, = {B,} with 8, = B . Setting ¢ = u with
n =2m+ 1 in the left-hand inequality of (6.4) gives

ﬂ2m—1 = lpZm(_V) SWZM(Q(:“)) <lpZerl(:u) - V(:u) = ﬂ2m - r(,u) (617)

where in general —v<g(u) and the monotonicity of \,,, is used. The inequality
by =r(p) = r(Zam) as in (6.13) follows immediately from (6.17) and one similarly
obtains the result for odd subscripts.

All that remains is to establish the formula for p in (6.13) under either case Ly = 0
or Lp > 0. But this follows directly from the periodicity property (5.19) and the
definition of b,,. [

The next result establishes the first max-plus equation in (1.4) at the endpoint
& = —v, and the second equation at £ = u. These will serve as starting points in the
derivation of these equations for general ¢.
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Lemma 6.8. We have that

Vi1 (9(Zn1)) = Wy (An1) = 1(2n-1) (6.18)

for every n.

Proof. If Lg > 0 then by (5.44) of Lemma 5.5 and from Lemma 6.7

l//n 1( (;“l’l 1)) pn 1(/1n—2) = :72 = ﬁ;lil _bn—l
:ﬂ;;tl - r(iﬂfl) = lpnu'nfl) - r(}vnfl)a

proving (6.18). If Ly = 0 then we have

‘//n—l (é) - }"(é) <lpn—l (g(é)) <lpn(é) - r(f)

for £e[—v, u]\{0} by (6.4) of Lemma 6.6. Letting ¢ = /,_; and using the fact that
Vp1(n1) =B, 1 =By = ¥, (An_1), which holds by (5.44) of Lemma 5.5 and

because Lg = 0, gives (6.18). [

At this point it is not difficult to establish the inequality

V(€)= max (r(s) +¥,-1(9(s))) (6.19)

—v<s<é

for ¢e[—v,0), and the analogous inequality corresponding to the second equation in
(1.4), using Lemma 6.6 and the monotonicity of . As /,,, is monotone increasing
we have that

Vo (&) 22 (8) Z1(5) + Y1 (9(5)) (6.20)

for any —v<s<¢ <0, from which (6.19) follows directly. To prove equality in (6.19)
over the range of ¢ given in Proposition 6.2 we need an additional argument which is
based on the second claim of Lemma 6.6.

Before proving Proposition 6.2, however, we must first deal with some technical
issues that arise from the possible jump discontinuity in y,, at £ = 0, or equivalently,
from the possibility that the interval 4, has positive length, in which case 4, x {0} is
a plateau. In this direction we have the following result, which in spirit is not unlike
Lemma 6.7. It is followed by Proposition 6.10, which extends the inequalities (6.4) to
&=0.

Lemma 6.9. All intervals A, have the same length, say /(A,) = o,;f — o, = Ly, and
moreover Ly <1. Let a,>0 be defined by

+ _ 7_ —
n—1 = & %p—1>

R
an_an o n n
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that is, A,—1 = A, — a,. Then
a, =1, P =a,+ an1, (6.21)
hold for every n. If in addition L4 > 0 then
a, =1 (6.22)
for every n, and so p = 2.

Proof. From the periodicity property A,;» = A4, +p in (5.19) all even-indexed
intervals have the same length /(A2,) = Lo, as do all odd-indexed intervals
{(Ayms1) = Li. Also, we have the inequalities

(6.23)

which follow by taking the limits £—0 from the left and right in (6.4) using
Proposition 6.1. The second inequality in the first display of (6.23) gives /(A4,) =
o — o, <1 for every n, and so max{Ly, L} <1.If it is the case that Ly = L, then all
intervals 4,, have the same length L4 <1, and moreover one has a,>1 directly from
(6.23) while the second formula in (6.21) follows from (5.19). In particular, if Ly =
L; = 0 then we are done.

Thus we assume for the remainder of the proof that max{Ly, L;} > 0. We must
show that Ly = L, and also that (6.22) holds. First assume that min{Z,, L;}<1. We
claim in this case that there is a strict separation

Ay <A, (6.24)

between adjacent intervals. To prove this suppose first that Ly < 1. Then using (6.23)
with n = 2m and 2m + 1 gives

+ + _ o + - -

L1 <1 +1- Ly = %om—1 +1- (O(Zm - aZIWI) <a2m7
+ ot o -

Qo <0, +1-Lo= o + 1<a2m+17

and so Ay, <Ay < Ayney which implies (6.24). If instead L; <1 then one argues
similarly.

Still assuming that min{Lo, L;} <1, we have that max{Lo, L;} >0 and so
without loss Ly > 0 and Ly>L;. Then A, x {0} is a plateau hence so is @ (A, X
{0}) = (42m — 1) x {0}, thus

Apyy — 1S Ay (625)

for some k <2m in the light of the strict separation (6.24). As a5, , <05, <05, — |
by (6.23) and (6.24), we have that A, > <Ay, —1 so necessarily k =2m — 1
in (6.25). Thus Ly<L;, hence Ly = L;, and so (6.25) is an equality and we have
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ar, = 1. Thus proves all intervals A4, have the same length, and now a symmetric
argument shows that @, = 1 also for odd n.

There remains to prove (6.22) when Ly = L; = 1. In this case we still have
A,_1<A,, although the gap condition (6.24) can fail and the intervals abut. As
before each A4, x {0} is a plateau and hence so is (4, — 1) x {0}, but now

n—1

A,—1c< U Ay.

k=—o0

But from this inclusion one sees directly that A4, — 1 = A4, must hold, giving
(6.22). O

Proposition 6.10. If L, = 0 then the inequalities in (6.4) both hold at & = 0, while if
Ly >0 then

wn—l(o) = ‘//11(0) - 1<Wn(0> (626)
holds.

Proof. If L4 = 0 then , and y,,_, are single valued and continuous at £ = 0, so the
result holds by taking limits £ —0 from the left and right and (6.4).

If Ly >0 then y,(0) =4, and ¥, ;(0) = 4,-;. We have 4,1 =4,—1 by
Lemma 6.9, so the equality in (6.26) holds. The right-hand inequality 4, — 1< A4,
holds because /(4,)<1. O

We now prove the second main result of this section.

Proof of Proposition 6.2. Without loss we consider even n = 2m and establish the
first equation in (1.4) in [—v,dy], for some Jy > 0 as in the statement of the
proposition. We assume for simplicity of exposition that L4 =0, and so the
functions ,_; and , are single-valued and continuous throughout [—v, ],
including at ¢ =0. In case Ly > 0 these functions have jumps at ¢ =0 and our
proof must be appropriately modified.

From the fact that y,,, is monotone increasing and from the first inequality in
(6.4), where we also recall Proposition 6.10, we have that (6.20) holds whenever
—v<s<E<p. Thus (6.19) holds for every &e[—v, . Let dp€[—v, u] denote the last
point to the right of —v such that (6.19) is an equality throughout [—v, dy], that is,

0o =sup{oe[—v, u] | the inequality (6.19) is an equality
for every £e[—v,d]}. (6.27)

Noting that (6.19) is an equality at ¢ = —v by Lemma 6.8, we see that J, is well-
defined. If 0y = u then we are done, so assume for the remainder of this proof that



684 J. Mallet-Paret, R.D. Nussbaum | J. Differential Equations 189 (2003) 640-692
0o < u. Then (6.19) is an equality:

Yau(do) = max (r(s) + ¥, -1(4(5))) (6.28)

—v<s<dy

at & = dy, and so the first equality in (6.2) holds. Although we do not yet know that
dp > 0, we observe that this fact will follow immediately once the second equality in
(6.2) is established, in the light of (6.6) which also holds at £ = 0.

Let us now establish the strict inequality

7(00) + Yam-1(9(80)) <r(d0) + Y2, (9(00)) (6.29)

of the leftmost and rightmost terms of (6.2). Indeed, if (6.29) fails then we have the
equality ¥,,,,_1(9(00)) = ¥5,,(9(0)), and therefore

Wom_1(9(&)) = ¥a,(9(£)) for every Ee(do, 1],

from the monotonicity (5.35) of ,,,_; and ¥,,, and from the inequality in (3.3). But
in this case the inequalities

(&) + Yam-1(9(8)) < max  (r(s) +¥,-1(9(5)))

—v<s<E
< Yn(8) <r(8) + ¥ (9(8)),
which follow from (6.4) and (6.19), are equalities throughout [dg,u] and this
contradicts the definition of §y. Thus (6.29) holds.
We therefore wish to prove the rightmost equality in (6.2). Assuming it is false, so

that ,,,(00) <r(do) + ¥»,,(9(d0)), one has by continuity that for any 7, €(do, u]
sufficiently near dy,

Y2 (S) <r(S) + ¥, (9(&)) for every E€ldo, yi]- (6.30)

From the definition (6.27) of Jy one may choose such y; so that inequality (6.19) is
strict at £ = y,, and so

r(€) + o1 (9(8)) < max  (r(s) + -1 (9(5))) <Wo(v1)

—v<s<E
for every &e[—v,y;]. (6.31)
Now let
72 = inf{ye[00,71] | Y2 (&) = Yo, (y1) for every &y, ]} (6.32)

Necessarily ¥/5,,(72) = Wa,,(71), and so (6.30) and (6.31) imply that both inequalities
in (6.4), with n = 2m, are strict at & = y,, that is, (6.5) holds there. Thus by Lemma
6.6 we have y,,, (&) = ¥, (y,) for every & near y,, which contradicts the definition
(6.32) of y, if y, > dg. Thus y, = 9. But this is impossible, as with (6.31) it
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implies that

max (F(S) + lp2m71(g(s))) <lﬁ2m(yl) = ‘//2171(50)7

—v<s< 9y

contradicting (6.28). This establishes (6.2).

To prove the first inequality in (6.3) we assume that dp<u and note that the
maximum taken in (6.2) does not occur at the endpoint s = Jy, in view of the strict
inequality. Thus the maximum in the right-hand side of the inequality in (6.19) is
constant for £ in a neighborhood of dy. On the other hand, from the definition (6.27)
of 99 and from the monotonicity of ¥,,, we conclude that the inequality in (6.19) is
strict for every e (0, y3), for some y; > 0o, and so ¥,,(E) > ¥,,(do) for every such
£. We conclude from this, again using the monotonicity of ,,,, that the first
inequality in (6.3) holds throughout (dy, .

To prove the second inequality in (6.3) we note for every &€ (d, u| that

7(50) + lpZm(g(éo)) = lpZm(éO) <lp2m(£) Sl’(é) + lpZm(g(é)) <r(é) + lp2m<g(50))7

where in addition to the first inequality in (6.3) we have used (6.2) and (6.4), and as
well the monotonicity of ,,,. O

We are now in a position to prove our first main theorem.

Proof of Theorem A. All the results claimed in this theorem have already been
established in this and earlier sections, and only need be put in context.

Assuming it is not the case that x -0 uniformly, we have the limits x and v in
(5.14), at least one of which is nonzero. The inclusion in (3.1) follows by taking the
corresponding limit in (5.6), and as noted (5.16) both x> 0 and v > 0.

Proposition 5.3 establishes formula (3.2) with sets graph(y,) of the form (5.32),
and with the sets B,,. The continuity and single-valuedness of the set-valued functions
W, in [—v, u\{0} follows from Lemma 5.6 and Proposition 6.1, with the latter result
providing the limits of ¥,(£) as £—0 and the formula for the intervals 4, in (3.5).
These facts together with (5.42) of Lemma 5.5 show the formulas (3.4) and (5.32) for
the set graph(y,,) are equivalent. The monotonicity of ,, is noted in (5.35), and the
ordering and periodicity properties (3.3) of these functions are also noted. Formula
(3.5) for the sets B,, which are intervals, is given in Lemma 5.5, with Lemma 5.1.
Formula (3.7), which by (5.42) is equivalent to (3.8) when A4, has length zero, holds
as 0 = ope Ay where (5.13) is used. The claims about the lengths L, and Lp of the
intervals A4, and B, follow from Lemmas 6.9 and 6.7, respectively, and the continuity
of ,, at £ =0 when L, = 0 follows from (3.5).

Finally, Proposition 6.2 establishes the max-plus equations (1.4), and their
extension to £ = 0 when L, = 0 follows by continuity. [
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7. Bounds on and exact values of p

Here we use the max-plus equations to derive upper and lower bounds for the
additive eigenvalue p. Remarkably, for a large class of nonlinearities these upper and
lower bounds coincide and can be given in a simple and explicit form. We also see
how p can be interpreted as the spectral radius of a nonlinear operator in the spirit of
[36]. This analysis leads to a dynamical systems problem which involves the iteration
of a set-valued map.

Recall the function 4 given by Eq. (1.16). Also define a function / by

(&) =r(&) +r(g7' (&)

and note that 4(0) = A(0) = 2.
We continue to assume (6.1) holds in addition to our standing assumptions.

Proposition 7.1. We have that

p= max h(&). (7.1)

—v<é<u
If r possesses a nonzero derivative r'(0)#0 at the origin then p > 2 and hence Ly = 0.

Proof. From the first inequality in (6.4), we have that

lpn(é) - lpnfl(g(é)) 27(6)7 (72)

and by replacing n with n — 1 and ¢ with g(¢) in (7.2) we have

V1(9(8) =, 2(g7(6) =r(9()) (7.3)

for every £e[—v,u]\{0}. Combining (7.2) and (7.3) and using the periodicity
condition in (3.3) gives

V(&) = ¥alg*(€)) = 1(8) +1(g(&)) — p = (&) — p. (7.4)

If n is even then the left-hand side of (7.4) is nonpositive for every e [—v,0) from the
monotonicity of ¥, while the same holds for every e (0, u] if n is odd. In any case
we conclude that (&) — p<0 for every &e[—v, u]\{0}, hence for every € [—v, u], and
so (7.1) holds.

If #/(0) exists and is nonzero then /#'(0) = (1 — k~')#(0) also exists and is nonzero
by (1.8). Thus h(&) > h(0) =2 for some & near 0 and this gives p > 2 from (7.1).
Thus Ly =0 by Lemma 6.9. [

In the following result recall our conventions, given near the end of Section 3, on
-1 -2
g~ and g—-.
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Proposition 7.2. We have that

< =

and also that

P< o‘ilraé‘u <<g‘1(%i§<0 r(s)> + r(t)> = 1;12);0<<y<31<at>;u r(t)> + r(s)> (7.6)
both hold.

Proof. Noting that Eq. (3.28), which was obtained from the max-plus equations
(1.4), holds at least for &e(0,u], we replace ¥y, (t) with ¥, (g*(¢)) in that
formula to obtain

P+W2m+1(f) - lp2m+l(gz(é))< max hl(évf)v

g2 (&) <T<g(—V)

where the monotonicity of y,,,,, justifies this replacement. Upon letting £—0 we
obtain

p< max A (0,7) = max /h(0,9(¢))

0<t<g(—v) —v<1<0

= (o, 70) +00) = s ( (L, 0) +76).

to give (7.5), where we have used the definition (3.29) of the function 4; and where
the final equality above comes about by switching the order in which the maxima are
taken. The proof of (7.6) is similar. [

Proposition 7.3. If r is monotone increasing in [—v,0] then the formula (3.15) for p
holds. The analogous result holds if r is monotone decreasing in [0, u].

Proof. From (7.5) and the monotonicity assumption on r in [—v, 0] we have that

p< max (r(g(s)) + r(s)) = max h(s).

0<s<pu 0<s<p

This inequality together with (7.1) yields the result. The proof for r decreasing in
[0, u] is similar. [

Proposition 7.4. If r is monotone decreasing in [—v,0] then

p= max h(¢)= max h(&). (7.7)

The analogous result holds if r is monotone increasing in [0, p.
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Proof. From (7.6) and the monotonicity assumption on r in [—v, 0] we have that

p< max (r(g~'(1)) +r(t)) = max A(s). (7.8)

O<i<nu 0<r<pu
From Eq. (3.30) we have for every {e[—v,0) that

P+ lpZm(‘f) = max (h()(gv T) + lp2m(r)) = max (h()(éa g([)) + lrme(g(t)))

g(w)<t<g(8) g(&)<t<p

> max  (ho(&g(t) + o, (9(1)))

g(&)<r<g7'(9)

= (g( max hO(éafJ(l))) +lp2m(é)7

&<t<g™'(¢)

where the monotonicity of y,,, has been used. Therefore from the formula (3.31)
for hy

p>  max (( max r(s))+r(l))= max_ (r(g” (1)) + (1),

g(&)<r<g7'(9) g () <s<E g(&)<t<g7'(9)

where again the monotonicity of r has been used. Noting that the union of the
intervals [g(&), g7 ! (&)] for Ee[—v,0) equals (0, u], we maximize the above expression
over such & to give

-1 ~
p= max (r(g= (1)) + (1) = max A(t),
which with (7.8) yields the first equality in (7.7).

To prove the second equality in (7.7) take any t€[—v,0) and let s = g~'(¢), so
se(0,u]. Then =g 2(r) and so r(t)<r(g (1)) = r(g~'(s)), hence A(r)<A(s). This
implies the desired inequality.

The proofs for r increasing in [0, y] are similar. [J

Let us now interpret the additive eigenvalue p as the spectral radius of a nonlinear
operator. We refer to [36], in which some of these ideas are more fully and
systematically developed. Denoting

we have the inequality

w2m+l(£)> —p+h1(§,f) + lpZnH—l(T) (79)

for every teJ(&) from Eq. (3.28), at least for ¢ in the range (3.32) where this
equation is valid. Let us restrict ¢e€[0, u], noting that every such & lies in the
range (3.32) and satisfies J(&)<[0,u]. Then we may substitute (7.9) into itself
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repeatedly to obtain
Yomi1 (&)= —np + Z hi(&im1, &) + Womp (Sn) (7.10)
i1

for any so-called admissible sequence (&y, &1, &y, ..., E,), namely a sequence satisfying
&yel0,u] and &;eJ (&) for every 1<i<n. (Heuristically one might think of such
sequences dynamically as orbits obtained by iterating the set-valued map J.) As
noted in [36], for every & €[0, u] and n>1 there exists an admissible sequence for
which (7.10) is an equality, and so

np + Yoy (&) =  max <Zh (Cim1y &) + Yo (€ )) (7.11)

SieJ (&
1<i<n

Upon dividing (7.11) by n and taking the limit n— co we obtain

— i I ( 7.12
p=lim | max ( Z (i1, ) : (7.12)
1<i<n

valid for any &, €10, 1. Note also that for any fixed n>1 the maximum on the right-
hand side of (7.12) differs from p by an amount of order O(n~'). As in [36],
Eq. (7.12) can be viewed as an additive and nonlinear analog of the well-known

formula r(T) = lim,_, » ||T||1/” for the spectral radius of a linear operator 7.

8. The proof of Theorem B
This section is devoted to the proof of our second main theorem.

Proof of Theorem B. The fact that at least one of the quantities u and v is positive
means that the sequence x* does not tend uniformly to zero, and so Theorem A
implies that both ¢ > 0 and v > 0. Corollary 6.4 with Proposition 6.2 implies that
both the max-plus equations (1.4) of Theorem A hold throughout [—v, u]\{0}, and
also at £ =01if L4 = 0. Corollary 6.4 also gives Eq. (3.13), which when substituted
into the second equation of (1.4) and periodicity (3.3) used yields Eq. (3.12). Note
that (3.13) holds at £ =0 even when L4 > 0, by (6.26) of Proposition 6.10.
Proposition 7.3 establishes the formula (3.15) for p. If #/(0) > 0 then p > 2, and also
u>0and v >0, as in a discussion following the statement of Theorem B.

To complete the proof of Theorem B there remains to prove the constancy
property (3.14), and also Eq. (3.16) under the strict monotonicity condition.

Let us first prove (3.14). Taking any £e(—v,0) we claim that

l//2m+l(gz(é))<lp2m+l(é)< max lp2m+l (gz(s)) = llenJrl(gz(é))? (81)

E<s<p
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so that all terms in (8.1) are actually equal. To establish (8.1) we note that &< g?(¢)
together with the monotonicity of v,,, ., gives the first inequality there. The final
equality also holds by monotonicity. The second inequality in (8.1) is a consequence
of (3.12) and the fact that A(s) <p for every s in that formula, which follows from
(3.15). We therefore conclude from (8.1) that ,,,. () = ¥y, (¢*"(&)) for every n,
and taking the limit n— oo gives ¥,,,. (&) = ¥,,,,,(0—). This shows constancy in
(=v,0) and hence in [—v,0) by continuity, to give (3.14).

If p > 2 then L4 = 0 by Theorem A, and so ¥, (&) is continuous at & = 0. We
observe further that 4(0) =2 and so the maximum on the right-hand side of
Eq. (3.12) does not occur at s = £ when & = 0. This implies that the right-hand side
of (3.12) is constant as ¢ varies in a neighborhood of ¢ =0, and thus throughout
[V, ] for some 6 > 0, as claimed.

Now let us prove (3.16), assuming that r is strictly increasing in [-D,0]. If Lg > 0
then (3.16) holds by (6.15) of Lemma 6.7. Therefore we assume that Lz = 0, and we
know that g(u) = — v by (3.1). We have that

(1) + Yam-1(9(1) = Y (1) = Br = B3y = Yot (1) = (1) + ¥, (9(1))

by (3.13), by (5.43) of Lemma 5.5, and by Lemma 6.8. Thus ,,,_;(g(n)) =
Vo (g(1)). Tt follows from this, from the ordering (3.3), and from the fact that y,,,_,
is monotone decreasing and ,,, is monotone increasing, that

lp2mfl(£) = lp2m(5) =rx for every ée [_Vag(:u)} (82)

for some constant x. Now taking the left inequality in (6.4) of Lemma 6.6 for
n = 2m, and also the right inequality in (6.4) but for n = 2m — 1, gives

lp2mfl(g(é)) <lp2m(£) - V(f) =K-= I"(é) = lp2mfl(é) - 7(5) gl//2»171(9(‘/:))

in the range (8.2), and hence

(&) + ¥an-1(9(8) = . (8.3)

But the composition of ,,_; and g is monotone increasing, and r is strictly
increasing in [—v, g(p)]=[—D,0], and so (8.3) forces g(u) = —v to hold. [
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