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Abstract

We consider a class of singularly perturbed delay-differential equations of the form

e ’xðtÞ ¼ f ðxðtÞ; xðt � rÞÞ;

where r ¼ rðxðtÞÞ is a state-dependent delay. We study the asymptotic shape, as e-0; of slowly
oscillating periodic solutions. In particular, we show that the limiting shape of such solutions

can be explicitly described by the solution of a pair of so-called max-plus equations. We are

able thereby to characterize both the regular parts of the solution graph and the internal

transition layers arising from the singular perturbation structure.
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1. Introduction

In this paper, which is a sequel to the papers [33,35], we study slowly oscillating

periodic solutions (SOPSs) of the state-dependent delay differential equation

e ’xðtÞ ¼ f ðxðtÞ; xðt � rÞÞ; r ¼ rðxðtÞÞ: ð1:1Þ
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Here x ¼ xðtÞ is a scalar, f and r are given nonlinearities, and e > 0 is a parameter.
By an SOPS we mean a solution of (1.1) satisfying

xðtÞ > 0 in ð0; a1Þ; xðtÞo0 in ða1; a2Þ;
xðt þ a2Þ ¼ xðtÞ for every t; where

a1 > rð0Þ; a2 � a1 > rð0Þ;

8><
>: ð1:2Þ

for some quantities a1 and a2; where rð0Þ > 0 is assumed. Of course xð0Þ ¼ xða1Þ ¼
xða2Þ ¼ 0 for such a solution. We note that by rescaling time we may always make
the normalization rð0Þ ¼ 1; which in fact we shall assume below.
Of particular interest is the singular perturbation case of small e: The existence of

such solutions for a range of parameter 0oeoe
*
for a general class of nonlinearities

f and r was proved in [33,35]. Here f ð0; 0Þ ¼ 0 and e
*
is a Hopf bifurcation point

below which the origin is unstable. Theorem 1.1 below gives the existence results
relevant to the present paper. In [35] a general theory of ‘‘limiting profiles’’ was
developed in order to make a rigorous connection between Eq. (1.1) for small e and
the (implicit) difference equation

0 ¼ f ðxn; xn�1Þ; tn�1 ¼ tn � rðxnÞ; ð1:3Þ

which is obtained formally in the limit e-0 in (1.1). Our object in the present paper
is to employ the machinery of [35] in order to obtain precise and explicit results on
the asymptotic form of SOPSs as e-0: Our approach will be to use this machinery to
show how the limiting profiles can be expressed in terms of solutions of a system of
so-called max-plus equations:

c2mðxÞ ¼ max
�npspx

ðrðsÞ þ c2m�1ðgðsÞÞÞ;

c2mþ1ðxÞ ¼ max
xpspm

ðrðsÞ þ c2mðgðsÞÞÞ:
ð1:4Þ

Indeed, the system (1.4) is at the heart of our analysis and is the centerpiece of
Theorem A, our most general result.
Differential equations of the form (1.1), or more generally differential equations

with variable delays, arise in many models of interest. Biology is a particularly rich
source of models [1,5,6,24–27,29] as are the social sciences [7,28]. The equation
’xðtÞ ¼ xðt � xðtÞÞ arises in models of crystal growth [38], and in fact the related
equation ’xðtÞ ¼ �axðt � rðxðtÞÞÞ was studied theoretically by Cooke [10] in 1967.
Some of the earliest rigorous results on variable delay systems were given in the
1960s by Driver [14–17] and Driver and Norris [18], and in the 1970s by Alt [2,3],
Nussbaum [39], and Winston [41,42].
Nevertheless, for state-dependent delay equations many basic dynamical issues are

still undeveloped and unresolved. While the basic work in [20], and also in [13] and
elsewhere, treats constant delay problems in great generality, many of the most
fundamental results (invariant manifold theorems, Hopf and other bifurcations,
linearized stability of equilibria and periodic solutions) have not been developed for
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the state-dependent case, at least not in any generality. However, some initial steps in
this direction can be found in [4,8,11,12,19,21–23,30]. A very recent and significant
contribution by Walther is found in [40].
For further work on state-dependent and variable delay problems see, for

example, the articles in [9], the many references in [22], and as well [31–35].
Simple numerical experiments demonstrate a wealth of patterns, which

spontaneously arise as limiting profiles, particularly in the singular perturbation
case (1.1), and certainly for more general problems such as those with multiple delays
[34]. (While we only consider the case (1.1) of a single delay in the present paper,
extending our theory to systems with multiple delays as in [34] presents an intriguing
challenge.) One observes that the limiting shapes of solutions of (1.1) as e-0 seem
very often to be unique, and very stable with respect to changes in initial conditions,
so it is a fundamental problem to predict such limiting shapes from the differential
equation. Indeed, one can think of the value e ¼ 0 as a ‘‘organizing center’’ about
which a rich variety of dynamical phenomena might be sought.
Let us now fix our assumptions on the differential equation (1.1), although we

shall make additional assumptions as necessary.

Standing assumptions.We make the following assumptions on f and r; to hold for
the remainder of this paper unless noted otherwise. We assume there exist positive
quantities C and D such that

f : I � I-R; r : I-½0;NÞ; where I ¼ ½�D;C�;

and where f and r are locally lipschitz. We assume that

rð0Þ ¼ 1; rðxÞ > 0 for every xAð�D;CÞ;

and that there exists a continuous function g : I-I such that

sgn f ðx; zÞ ¼ sgnðgðxÞ � zÞ for every ðx; zÞAI � I ;

gð0Þ ¼ 0; gðxÞ is strictly decreasing in xAI ;

gðCÞ ¼ �D if rðCÞ > 0;

gð�DÞ ¼ C if rð�DÞ > 0:

8>>><
>>>:

ð1:5Þ

We further assume that

f is differentiable at ð0; 0Þ; with D2f ð0; 0ÞoD1f ð0; 0Þo0; ð1:6Þ

where D1f ¼ @f =@x and D2f ¼ @f =@z denote the partial derivatives of f : A final
assumption is that

jg2ðxÞjojxj for every xAintðIÞ\f0g; ð1:7Þ
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where g2 denotes the second iterate of g; and ‘‘int’’ denotes the interior. We shall use

ðt; xÞ to denote general coordinates in the plane R2; although we usually denote
specific solutions of a differential equation by xðtÞ:
Observe from (1.5) that f ðx; gðxÞÞ ¼ 0 for every xAI : Also, g0ð0Þ exists with

g0ð0Þ ¼ �k�1; where k ¼ D2f ð0; 0Þ=D1f ð0; 0Þ > 1: ð1:8Þ

If rðCÞ ¼ 0 then gðCÞX� D since g : I-I ; with strict inequality a possibility.
Similarly gð�DÞpC if rð�DÞ ¼ 0: Let us denote

R ¼ max
xAI

rðxÞ; ð1:9Þ

so we have that RXrð0Þ ¼ 1:
With the function g we may now express the difference equation (1.3) as

ðtn�1; xn�1Þ ¼ Fðtn; xnÞ;

where the map F :HI-HI of the horizontal strip HI ¼ R� I into itself is defined to
be

Fðt; xÞ ¼ ðt� rðxÞ; gðxÞÞ: ð1:10Þ

Although F need not map HI onto itself, it is one-to-one in view of the strict

monotonicity of g and the map F�1 is continuous in the range of F: Indeed, the
range of F is the strip FðHI Þ ¼ HJ ¼ R� J where

J ¼ ½gðCÞ; gð�DÞ�D½�D;C�;

and

F�1ðt; xÞ ¼ ðtþ rðg�1ðxÞÞ; g�1ðxÞÞ

for ðt; xÞAHJ : Formally, the map F�1 describes the forward evolution of ðtn�1; xn�1Þ
to ðtn; xnÞ; and as such we shall refer to F as the backdating map and to F�1 as the

updating map. Note that the t-axis is invariant under F and F�1: The fact that
�1og0ð0Þo0; which holds by (1.8), means that the t-axis is unstable in the normal

direction for the map F�1:
Let us observe, as in [35], that with all the above conditions on f and r; the set I (or

more precisely the set Cð½�R; 0�; IÞDCð½�R; 0�Þ of continuous functions taking
values in I) is positively invariant for Eq. (1.1). Indeed, this is a consequence of the
inequalities

f ðC; zÞp0 for every zAI ; if rðCÞ > 0;

f ð�D; zÞX0 for every zAI ; if rð�DÞ > 0;

f ðC;CÞo0 and f ð�D;�DÞ > 0; in any case;

8><
>: ð1:11Þ
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which imply that ’xðt0Þp0 whenever xðt0Þ ¼ C; and that ’xðt0ÞX0 whenever xðt0Þ ¼
�D; for any solution of (1.1) for which xðtÞAI for every tA½t0 � R; t0�: The
inequalities in (1.11) follow directly from the conditions (1.5). Also observe that as
jg0ð0Þjo1; the inequality in (1.7) holds for xa0 near 0: If gð�DÞ ¼ C and gðCÞ ¼
�D then g2ðxÞ ¼ x at x ¼ �D;C; that is, (1.7) becomes an equality there. In this case
if the map g is defined outside the interval I in all of R; then f�D;Cg is the period-
two orbit of g which is nearest the origin. More generally, if g and r are defined in all

of R then C is characterized as the smallest positive number for which either g2ðCÞ ¼
C or else minfrðCÞ; rðgðCÞÞg ¼ 0; with a similar characterization for �D: Condition
(1.7) implies that if xAI is any periodic point of the map g; that is gnðxÞ ¼ x for some
n > 0; then xAf0;�D;Cg:
Under the above standing assumptions the results of [35] guarantee the existence

of an SOPS for every sufficiently small e > 0; with this solution taking values in the
interval ½�D;C� and enjoying a sine-like monotonicity property. We have the
following result.

Theorem 1.1 (see Mallet-Paret and Nussbaum [35, Theorems 4.6 and 4.15]). Let

0oeoe
*

where

e
*
¼ ðB2 � A2Þ1=2

arccosð�k�1Þ; A ¼ D1f ð0; 0Þ; B ¼ D2f ð0; 0Þ;

where
p
2
oarccosð�k�1Þop;

with k as in (1.8). Then Eq. (1.1) possesses a slowly oscillating periodic solution, namely

a solution satisfying (1.2) for some a1 and a2; and in addition this solution satisfies

�DpxðtÞpC ð1:12Þ

for every t. Furthermore, every such solution enjoys the following monotonicity

property. One has that

’xðtÞX0 in ½0; b0�,½b1; a2�; ’xðtÞp0 in ½b0; b1�; ð1:13Þ

for some quantities b0 and b1 satisfying 0ob0oa1ob1oa2:

The results of [35] in fact provide a continuum of SOPSs emanating from the Hopf
bifurcation point ðx; eÞ ¼ ð0; e

*
Þ and extending at least throughout the range

0oeoe
*
: In general, one does not expect uniqueness of the solution for a given e;

although simple numerical simulations suggest that this may often be the case. In
many cases the inequalities in (1.13) are strict away from the points b0 and b1; which
are the locations of the maximum and minimum of x: In any case one always has that

’xð0Þ ¼ ’xða2Þ > 0; ’xða1Þo0;

at the zeros of x; as one sees directly from the differential equation.
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As noted, the main object of the present paper is to describe precisely and
explicitly the asymptotic shape of the solutions given by Theorem 1.1 as e-0: A
central and deep result of [35], which is a first step in this direction, states that under
appropriate conditions a family of SOPSs cannot tend uniformly to zero as e-0:
That is, a nontrivial limiting profile is approached. In particular the following holds.

Theorem 1.2 (see Mallet-Paret and Nussbaum [35, Theorem 5.1]). Assume the

function r satisfies

lim
x-0

rðxÞ � 1

xn ¼ Q;

for some integer nX1 and some quantity Q satisfying

Qa0 if n is odd; Q > 0 if n is even:

Let xk be a sequence of slowly oscillating periodic solutions of Eq. (1.1) for some

sequence of positive parameters ek-0: Then

lim inf
k-0

jjxkjj > 0; jjxkjj ¼ sup
tAR

jxkðtÞj; ð1:14Þ

holds.

Upon making a change of variables x-� x in the differential equation one
replaces Q with �Q if n is odd, and thus the condition Qa0 above is natural. For
even n such a change of variables leaves Q unchanged, however. If n is even and
Qo0 then it is an open question whether the conclusion (1.14) must always hold,
although simple numerical simulations strongly suggest that it is true. Note that if
either

r0ð0Þa0 or r00ð0Þ > 0

with r smooth enough then the above theorem applies, but this is not the case if
r0ð0Þ ¼ 0 and r00ð0Þo0:
We remark that the results of [35] are in fact a bit more general than those given in

the theorem above. In particular, different quantities Q� and Qþ are allowed for the
left and right limits provided they are suitably related, and the exponent n need not
be an integer. An earlier result [31] also established (1.14) in the case of a constant
delay rðxÞ 
 1; although the mechanisms and proofs in the two cases [31] and [35] are
entirely different. Indeed, in both cases the proof of (1.14) is not at all trivial, and
both require a considerable amount of effort which goes well beyond standard local
arguments.
Another basic result is that the periods of SOPSs remain bounded as e-0: Results

in this direction are implied in some of the proofs of [33]. For definiteness we state a
result in the following theorem in a form which will be useful to us. A self-contained
and straightforward proof of this theorem will be given in Section 5.
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Theorem 1.3. Let xk be a sequence of slowly oscillating periodic solutions of Eq. (1.1)

for some sequence of positive parameters ek-0; and assume each solution satisfies the

bounds (1.12) for every t. Then there exists P > 0 such that

pkpP

for every k, where pk is the minimal period of xk:

To give the flavor of some of our results consider the special case when

rðxÞ is monotone increasing in xA½�D;C�
and is strictly increasing in xA½�D; 0�;

r0ð0Þ exists and r0ð0Þ > 0;

hðxÞ is monotone increasing in xA½0;C�;

8>>><
>>>:

ð1:15Þ

all hold, where h : I-R is the function

hðxÞ ¼ rðxÞ þ rðgðxÞÞ: ð1:16Þ

Let xk with positive parameters ek-0 be any sequence of SOPSs of Eq. (1.1)
satisfying the bounds (1.12), such solutions existing by virtue of Theorem 1.1. Then it
is a consequence of our results (Theorems A, B, and C in Section 3 below) that the
sequence of graphs

Gk ¼ fðt;xkðtÞÞ j tARgDR2 ð1:17Þ

of our solutions approaches a limiting set ODR2; which has the following properties.
The set O is periodic in the horizontal direction, in particular

O ¼
[N

m¼�N

Ym; Ym ¼ fðtþ mp; xÞ j ðt; xÞAY0g;

for some p > 0 and some Y0DR2: Here the period p is the quantity

p ¼ hðCÞ ¼ rðCÞ þ rð�DÞ ð1:18Þ

and it also equals the limit pk-p of the periods pk of xk (note that gðCÞ ¼ �D by
(1.5), from the monotonicity of r; to give the second equality in (1.18)). The set Y0;
which describes one period of O; is a union Y0 ¼ Ybot,Yasc,Ytop,Ydsc of four
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pieces given by

Ybot ¼ ½�1; rð�DÞ � 1� � f�Dg;

Yasc ¼ fðt; xÞAR2 j t ¼ rðxÞ � 1 and xA½�D;C�g;

Ytop ¼ ½rðCÞ � 1; rðCÞ þ rð�DÞ � 1� � fCg;

Ydsc ¼ frðCÞ þ rð�DÞ � 1g � ½�D;C�:

The sets Ybot and Ytop are horizontal line segments each of length rð�DÞ located at

the levels x ¼ �D and x ¼ C in the vertical direction. The set Yasc is the ‘‘ascending’’
portion of Y0 which joins Ybot to Ytop: If r is strictly increasing then in fact Yasc is a

graph x ¼ r�1ðtþ 1Þ and is the only part of Y0 which is neither a horizontal nor a
vertical line segment. Finally Ydsc is the ‘‘descending’’ portion of Y0; which unlike
Yasc is a vertical line segment. If it is the case that rð�DÞ ¼ 0 then the line segments
Ybot and Ytop are each just single points.

In the notation of Theorem A, which is given in Section 3, we have in this example
that

c2mðxÞ ¼ rðxÞ � 1þ mp; c2mþ1ðxÞ ¼ rðCÞ þ rð�DÞ � 1þ mp; ð1:19Þ

for every integer m; with xA½�n; m� ¼ ½�D;C�: The sets Yasc and Ydsc are just the
graphs t ¼ c0ðxÞ and t ¼ c1ðxÞ for this range of x; while the graphs t ¼ c2mðxÞ and
t ¼ c2mþ1ðxÞ are the horizontal translates of these sets in Ym: Also, Ybot ¼
B�1 � f�ng and Ytop ¼ B0 � fmg with LB ¼ rð�DÞ: As cn is continuous at x ¼ 0

each set An ¼ fcnð0Þg is a single point and LA ¼ 0: One readily checks that the
functions cn satisfy the system (1.4) of max-plus equations throughout ½�n; m�: They
also satisfy Eqs. (3.12) and (3.13) of Theorem B, which follow from (1.4) when r is
monotone increasing. The quantity m ¼ C is uniquely determined by Theorem C,
and one has that �n ¼ gðmÞ: In the notation of that result it is the case that c

*
ðxÞ 


0 identically in ½0;C� (it is easy to check this is a solution of (3.17), but its uniqueness
is not immediately obvious), and so FðMÞ ¼ rðgðMÞÞ: The assumptions on r ensure
that FðMÞ > 0 for every MAð0;CÞ; and so the unique solution to (3.19) guaranteed
by the theorem is m ¼ C:
Perhaps, the simplest nontrivial example of Eq. (1.1) is

e ’xðtÞ ¼ �xðtÞ � kxðt � rÞ; r ¼ 1þ cxðtÞ; ð1:20Þ

where k > 1 and c > 0 are given constants. Although both the functions f ðx; zÞ ¼
�x� kz and rðxÞ ¼ 1þ cx are linear, Eq. (1.20) is most certainly nonlinear. This
equation is covered by our theory, and is a special case of the above example (1.15).
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In particular, we see easily from (1.5), (1.16), and (1.18) that

gðxÞ ¼ �k�1x; hðxÞ ¼ 2þ cð1� k�1Þx; ½�D;C� ¼ ½�c�1; c�1k�;

p ¼ 1þ k:

The set O has the shape of a sawtooth wave, namely the graph of

sawðtÞ ¼ c�1t for tAð�1; kÞ; sawðtþ 1þ kÞ 
 sawðtÞ;

with vertical lines �c�1pxpc�1k at the discontinuities t ¼ k þ nð1þ kÞ filled in. In

the notation of Theorem A, the set Yasc is a line segment x ¼ c�1t of slope c�1 in the

ðt; xÞ-plane extending from ð�1;�c�1Þ to ðk; c�1kÞ and the sets Ybot and Ytop are

single points, namely the endpoints fð�1;�c�1Þg and fðk; c�1kÞg of Yasc: The set

Ydsc is the vertical segment fkg � ½�c�1; c�1k�:
Also, it is not hard to check, with elementary numerical simulations, that

(numerical) solutions to (1.20) converge rather quickly to the above sawtooth for
reasonably small values of e: Generally, beginning with any positive initial condition,
the solution is observed after only three or four cycles to settle into a very stable
sawtooth pattern.
Max-plus equations, such as the system (1.4) which occurs in the statement of

Theorem A, and the eigenproblem (3.12) of Theorem B, are a central feature of our
analysis. A number of relevant results on this topic have been developed
independently, and in particular we mention [37] which should be viewed as a
companion to the present paper. Some of the results of [37] are crucial to our
analysis here, and we shall outline these in a later section.
This paper is organized as follows. Some basic notation and terminology will be

established in Section 2. In Section 3 we state our main results, Theorems A, B, and
C. In particular Theorem A is a general result about how limiting profiles of SOPSs
of Eq. (1.1) can be described explicitly using solutions of the max-plus equations
(1.4). Theorem B specializes this result to the case that rðxÞ is monotone in x; and
Theorem C specializes this further to the so-called quasimodal case (which in
particular includes the conditions (1.15) above). In the quasimodal case it turns out
that the limiting profile O of the sequence of SOPSs is uniquely, and in a sense
explicitly, determined. In Section 3 we also outline the relevant results from the
companion paper [37], and we prove Theorem C there. We do mention here that the
proof of Theorem C relies on Theorems A and B, which are proved later in the
paper.
A familiarity with some of the definitions and results in our earlier papers [33] and

especially [35] is necessary to understand fully the statements of our theorems in
Section 3. However, even the reader who is not familiar with this earlier work should
acquire a general understanding of what we prove here from this section. A summary
of the necessary material from [35] will be given in Sections 4 and 5; we present all
the relevant concepts there so that the present paper is self-contained and can be read
without reference to [33,35]. In particular, the theory of limiting profiles, from [35],
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will be summarized in Section 4. In Section 5 this theory will be specialized to SOPSs
and further results from [35] will be presented.
The heart of our theory, the max-plus equations, is derived in Section 6, and this

section culminates with the proof of Theorem A. In Section 7 we obtain both upper
and lower bounds on the asymptotic period p: For a broad class of cases these
bounds are equal and yield an explicit formula for p: With such a formula for p we
are then able, in Section 8, to prove Theorem B.

2. Notation and terminology

By an interval we mean a nonempty connected subset of the real line R; a single
point in this sense being considered an interval. We denote the length of an interval J

by cðJÞ:
If S1 and S2 are any two subsets of R; we write

S1oS2 if a1oa2 for every a1AS1 and a2AS2;

S1pS2 if a1pa2 for every a1AS1 and a2AS2:

In case one of the sets is a single point, say S1 ¼ fag; we write aoS2 in place of
fagoS2; and so forth.

If SDRN and vARN we denote

S þ v ¼ fa þ v j aASg; S � v ¼ fa � v j aASg:

The minus sign � will be reserved for the algebraic difference, as above. To denote
the set-theoretic difference of two sets, we write

S1\S2 ¼ faAS1 j aeS2g:

We let intðSÞ denote the interior of S:

If SDR; then we define the vertical and horizontal strips, VSDR2 and HSDR2;
respectively, as

VS ¼ S � R; HS ¼ R� S:

In case S ¼ fag is a single point, for simplicity we shall write Va and Ha in place of
Vfag and Hfag:

If SDR2; we say the set S is monotone increasing if

ðt1; x1Þ; ðt2; x2ÞAS; with t1ot2 ) x1px2;

and monotone decreasing if instead we have x1Xx2 in the above implication. If
j : J-R is a function defined in an interval J; we say j is monotone increasing in J
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in case the graph of j is a monotone increasing subset of R2; that is,

t1; t2AJ; with t1ot2 ) jðt1Þpjðt2Þ: ð2:1Þ

We say j is strictly increasing if instead we have a strict inequality jðt1Þojðt2Þ in
(2.1). Monotone and strictly decreasing functions are defined in the obvious way.

More generally, we may consider set-valued functions j : J-2R; where 2R is the
set of all subsets of R: Such a function is said to be monotone increasing if (2.1)
holds, and strictly increasing if again we have jðt1Þojðt2Þ in (2.1), where we mean
here the inequality of sets defined above. The obvious definitions of decreasing
functions hold. We say that a set-valued function is single-valued in a subset SDJ if
jðtÞ contains exactly one element for every tAS:
Finally, we shall let 3 denote the maximum operator, namely

a13a23?3aq ¼ max faigq
i¼1

for real numbers ai:

3. Statements of the main results

Our first main result gives a general description of the so-called limiting profile of a
regular sequence of SOPSs of Eq. (1.1). The terms ‘‘limiting profile’’ and ‘‘regular

sequence’’ will be defined precisely in Section 4. Roughly, a sequence xk of SOPSs

with ek-0 is regular if, in certain sufficiently large compact subsets of the plane, the

graphs GkDR2 of xk as in (1.17) converge in the Hausdorff sense to a limiting set

ODR2 as k-N: The set O is then called the limiting profile of the sequence xk: It is

the case that every sequence xk of bounded solutions has a regular subsequence.

Note that the set graphðcnÞDR2 in this theorem is in fact what one would usually

call the graph of c�1
n ; the coordinates t and x having been switched. We trust that

this slight irregularity in terminology will not be a problem.

Theorem A. Let xk with ek-0 be a regular sequence of slowly oscillating periodic

solutions of Eq. (1.1), each solution satisfying the bounds (1.12) for every t. Let ODR2

be the limiting profile of this sequence. Then either xk-0 uniformly, in which case

O ¼ R� f0g; or else there exist quantities m > 0 and n > 0 satisfying

gð½�n; m�ÞD½�n; m�D½�D;C� ð3:1Þ

and functions cn : ½�n; m�\f0g-R such that

O ¼
[N

n¼�N

graphðcnÞ
 !

,
[N

n¼�N

Bn � flng
 !

: ð3:2Þ
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For every n we have in ½�n; m�\f0g that the function cn is continuous with left- and

right-hand limits at 0; the function ð�1Þncn is monotone increasing, and

cnðxÞpcnþ1ðxÞ; cnþ2ðxÞ ¼ cnðxÞ þ p; ð3:3Þ

hold identically where pX2 is independent of n. We denote the set

graphðcnÞ ¼ fðt; xÞ j t ¼ cnðxÞ and xA½�n; m�\f0gg,ðAn � f0gÞ ð3:4Þ

and the compact intervals

An ¼
½cnð0�Þ;cnð0þÞ�; n even;

½cnð0þÞ;cnð0�Þ�; n odd;

(
Bn ¼ ½cnðlnÞ;cnþ1ðlnÞ�; ð3:5Þ

where

ln ¼
m; n even;

�n; n odd:

(
ð3:6Þ

The functions cn satisfy the systems of max-plus equations (1.4) with the first and

second equations in (1.4) holding, respectively, for x in ½�n; d0�\f0g and for x in

½�d1; m�\f0g for some positive quantities d0 and d1: Also,

0AA0: ð3:7Þ

All the intervals An have the same length cðAnÞ ¼ LA; and all intervals Bn have the

same length cðBnÞ ¼ LB: If LA ¼ 0 then each cn can be extended continuously to

x ¼ 0; with (1.4) and (3.3) holding at x ¼ 0 and with (3.7) taking the form

c0ð0Þ ¼ 0: ð3:8Þ

Finally, if p > 2 then LA ¼ 0; and if either g2ðmÞam or g2ð�nÞa� n then LB ¼ 0:

Remark. It is clear from Theorem A that the max-plus equations in (1.4) play a
central role in determining the functions cn and thus the limiting profile O: We shall
see later in this section how the two equations in (1.4) can be combined with the aid
of the periodicity relation in (3.3) to obtain a closed system. In particular this is done
in Theorem B, where r is monotone. In the closed system the unknown quantity p;
the period of O; plays the role of an additive eigenvalue.

Remark. In many cases we have in Theorem A that d0 ¼ m and d1 ¼ n; and so both
the max-plus equations (1.4) hold throughout the domain ½�n; m�\f0g of the
functions cn: More generally, in Proposition 6.2 we shall provide a number of
necessary conditions which the quantities d0 and d1 must satisfy, from which precise
information about them may be deduced for specific systems.

J. Mallet-Paret, R.D. Nussbaum / J. Differential Equations 189 (2003) 640–692 651



Remark. The quantities m; n; and p are central players in our theory, and one sees
that

m ¼ lim
k-N

mk; mk ¼ max
tAR

xkðtÞ;

n ¼ lim
k-N

nk; �nk ¼ min
tAR

xkðtÞ:

When the conclusion (1.14) of Theorem 1.2 holds then either m > 0 or n > 0 (in fact
both inequalities must hold if one of them does, by Theorem A), while if (1.14) is
false then m ¼ n ¼ 0: The set O is seen to be periodic in the horizontal direction with
period p: More precisely we have that

O ¼ Oþ ðp; 0Þ; ð3:9Þ

where this equation is interpreted as a translation by the vector ðp; 0ÞAR2: The

quantity p is in fact the limit of the periods pk > 2 of the solutions xk; and in
particular pX2 must hold.

Remark. The jump in the function cn at x ¼ 0 equals cnð0þÞ � cnð0�Þ ¼ ð�1Þn
LA;

by (3.5). If LA > 0 and so each cn is discontinuous there, then strictly speaking one
should write ‘‘sup’’ rather than ‘‘max’’ in the max-plus equations. However, we allow
ourselves this slight abuse of notation.

Remark. If m > 0 and n > 0 then g2ðmÞ ¼ m if and only if g2ð�nÞ ¼ �n; and if so then
m ¼ C and n ¼ D: This follows directly from (1.7).

Theorem A by itself does not generally provide sufficient information to
completely determine the set O: For example, it does not give any direct indication
of the values of m; n; or p; and it does not make claims about the set of all solutions of
the system (1.4) of max-plus equations. Indeed, Theorem A leaves open the

possibility of a trivial limit xk-0 where O is the horizontal axis (although Theorem
1.2 often rules this out). In many cases we shall be able to determine m; n; and p

through further arguments, but even without these arguments much information can
be gleaned.
Assuming that O is not equal to the horizontal axis, we see that O consists of the

sets graphðcnÞ in sequential order, with horizontal line segments Bn � flng between
the endpoints of graphðcnÞ and graphðcnþ1Þ: (Of course if LB ¼ 0 then these line

segments are absent and graphðcnÞ and graphðcnþ1Þ touch at their endpoints.) In

addition to these horizontal line segments, if LA > 0 then each set graphðcnÞ
contains the horizontal line segment An � f0g:
If for some n the function cn is constant in an interval JD½�n; m� then O contains

the vertical line segment ftg � JDgraphðcnÞ; where t ¼ cnðxÞ is the constant value
in J: In this case O; which is the limit of the graphs Gk in (1.17), is not itself the graph
of a function of t: Such a vertical line segment typically arises as an internal
transition layer due to the singular perturbation nature of Eq. (1.1). In the special
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case of (1.15) described in Section 1 we saw (1.19) that graphðc2mþ1Þ consisted

entirely of such a vertical segment.
In view of the periodicity (3.3) of cn in n; we are only dealing with two functions

modulo additive constants, namely cn for even n and cn for odd n: Let us denote

E0 ¼ c2mðmÞ � c2mð�nÞ; E1 ¼ c2mþ1ð�nÞ � c2mþ1ðmÞ; ð3:10Þ

which are nonnegative quantities measuring the horizontal extent of the sets
graphðcnÞ; where we note the monotonicity of cn: Then the period p of O is easily
seen to be

p ¼ E0 þ E1 þ 2LB; ð3:11Þ

corresponding to one ascending function c2m and one descending function c2mþ1;
together with two horizontal line segments B2m � fmg and B2mþ1 � f�ng at the top
and bottom of O: Formula (3.11) links the quantities m; n; and p; at least implicitly,
and is a step toward determining these quantities explicitly.
An important case occurs when the delay function r is monotone, as described in

Section 1, and here much more detailed information can be obtained. In particular
both the max-plus equations (1.4) hold throughout ½�n; m�\f0g and one may easily
combine them, along with the periodicity relation in (3.3), to obtain a single max-
plus equation involving a function and a quantity p: It is enough here to consider
only the case of monotone increasing r; as the case of monotone decreasing r reduces
to this under the change of variables x-� x in the original equation (1.1).

Theorem B. Assume that the function r is monotone increasing throughout the interval

½�D;C�: Assume also that either m > 0 or n > 0 (which, if r0ð0Þ > 0; is necessarily the

case, by Theorem 1.2). Then both m > 0 and n > 0; and both equations in (1.4) hold

throughout ½�n; m�\f0g: We also have that

p þ c2mþ1ðxÞ ¼ max
xpspm

ðhðsÞ þ c2mþ1ðg2ðsÞÞÞ ð3:12Þ

in ½�n; m�\f0g; or in ½�n; m� if LA ¼ 0; where the function h is given by (1.16), and that

c2mðxÞ ¼ rðxÞ þ c2m�1ðgðxÞÞ ð3:13Þ
in ½�n; m�: Furthermore

c2mþ1ðxÞ is constant for xA½�n; 0Þ; ð3:14Þ
and if p > 2 then c2mþ1ðxÞ is constant in ½�n; d� for some d > 0: The period p of O is

given by

p ¼ max
0pxpm

hðxÞ ¼ max
�npxpm

hðxÞ ð3:15Þ

and if r0ð0Þ exists with r0ð0Þ > 0 then p > 2; and m > 0 and n > 0: Finally, we have that

gðmÞ ¼ �n ð3:16Þ
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if it is the case that r is strictly increasing in ½�D; 0� in addition to being monotone

increasing in ½�D;C�:

Some of the conclusions of Theorem B are seen to follow directly from Theorem
A and Theorem 1.2. In particular, one obtains Eq. (3.13) directly from the
first equation in (1.4) as r is monotone increasing and both c2m�1 and g are
monotone decreasing. Upon substituting Eq. (3.13) into the second equation in (1.4)
and using periodicity (3.3) we obtain Eq. (3.12). What is notable and is not
obvious about Eqs. (3.12) and (3.13) in Theorem B is that they hold throughout
½�n; m�\f0g; and as well at x ¼ 0 if LA ¼ 0: That is, d0 ¼ m and d1 ¼ n in the notation
of Theorem A.
Eq. (3.12) is a so-called max-plus eigenproblem, in which the quantity p is regarded

as an additive eigenvalue. The difficulty presented by Eq. (3.12) is due to its nonlocal
character. More precisely, the right-hand side of this equation depends on the values

of c2mþ1 in the interval ½g2ðxÞ; g2ðmÞ�; and this interval may contain x in its interior.

Later in this section we describe results from the companion paper [37] which we use
here to analyze this problem.
If r0ð0Þ > 0 then one has h0ð0Þ > 0 since jg0ð0Þjo1; and with (3.15) this gives p > 2:

Also m > 0 and n > 0 by Theorem 1.2 in this case. If p > 2 then LA ¼ 0 and each cn

is continuous throughout ½�n; m�; by Theorem A.
If r is monotone increasing in ½�D;C� and is strictly increasing in ½�D; 0�; and

r0ð0Þ > 0; then an examination of the statement of Theorem B shows that O is
completely determined once m and c2mþ1ðxÞ for xA½0; m� are known. Indeed, n is

given by (3.16), we have c2mþ1ðxÞ ¼ c2mþ1ð0Þ throughout ½�n; 0�; and c2m is given by

(3.13). The functions c2mþ1 for different m are related by (3.3), as are the functions

c2m: The horizontal segments Bn � flng in O are given by (3.5) and (3.6), and
An ¼ fcnð0Þg is a single point as p > 2 implies LA ¼ 0; by Theorem A.

The next result shows that under an additional condition, namely that ðh; g2Þ
is a so-called quasimodal pair, both m and c2mþ1 are uniquely determined and

thus the limiting profile O is uniquely determined. Moreover, explicit characteriza-
tions of m and c2mþ1; and thus of O; are given. We remark that the hypotheses of

Theorem C include conditions (1.15) from the example given in Section 1. As
described later, if h is monotone increasing in ½0;C� with h0ð0Þ > 0 then the pair

ðh; g2Þ is quasimodal.

Theorem C. Assume that the function r is monotone increasing throughout the interval

½�D;C� and strictly increasing in ½�D; 0�: Also assume that r0ð0Þ exists and r0ð0Þ > 0:

Finally, assume that the pair ðh; g2Þ is quasimodal and let c
*
: ½0;C�-½�N;NÞ denote

the unique continuous solution to the max-plus equation

P
*
þ c

*
ðxÞ ¼ max

xpspC
ðhðsÞ þ c

*
ðg2ðsÞÞÞ; xA½0;C�;

P
*
¼ max

0pxpC
hðxÞ;

ð3:17Þ
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normalized so that c
*
ð0Þ ¼ 0: Define a function F : ½0;C�-½�N;NÞ by

FðMÞ ¼ c
*
ðg2ðMÞÞ þ rðgðMÞÞ: ð3:18Þ

Then the unique solution of the problem

FðMÞAGðMÞ; where GðMÞ ¼
f0g; MAð0;CÞ;
½0;NÞ; M ¼ C;

(
ð3:19Þ

is the quantity M ¼ m in Theorems A and B, and it is the case that

FðmÞ ¼ LB: ð3:20Þ
Additionally, one has that

c2mþ1ðxÞ � c2mþ1ð0Þ ¼
c
*
ðxÞ; xA½0; g2ðmÞ�;

max
xpspm

ðhðsÞ � p þ c
*
ðg2ðsÞÞÞ; xA½g2ðmÞ;m�;

8<
: ð3:21Þ

where

c2mþ1ð0Þ ¼ ðm þ 1Þp � 1; ð3:22Þ
with p in (3.21) the same quantity as in (3.15).

It is necessary to make precise certain notions in the statement of Theorem C and
also to justify some of the incidental claims in the statement. This, along with the
proof of Theorem C, relies on an understanding of the max-plus eigenproblem
(3.12). Quite generally max-plus eigenproblems are analogous to linear Fredholm
equations of the form

lxðxÞ ¼
Z bðxÞ

aðxÞ
hðx; sÞxðsÞ ds;

in which multiplication is replaced with addition, and addition (and integration)
replaced with maximization. A detailed study of a general class of max-plus
eigenproblems is found in [36]. In the companion paper [37] we obtained a
representation of the general solution of a class of max-plus eigenproblems including
(3.12). As we make essential use of the results of [37], we provide here a brief
exposition of them.
In [37] problems of the form

P þ cðxÞ ¼ max
xpspM

ðHðsÞ þ cðgðsÞÞÞ; xA½0;M�; ð3:23Þ

modeled on Eq. (3.12), were considered. Here P; M; H; and g correspond to p; m; h;

and g2; respectively. It was assumed in [37] that

H : ½0;C�-R; g : ½0;C�-½0;C�
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are given continuous functions where

gðxÞ is strictly increasing in xA½0;C�; and

gðxÞox for every xAð0;CÞ;

and where the quantity MAð0;C� is treated as a parameter. Note that necessarily
gð0Þ ¼ 0; but that either gðCÞ ¼ C or gðCÞoC may hold. Solutions c :
½0;M�-½�N;NÞ are permitted to take the value �N; however, the value þN is
not allowed (in this spirit the constant function cðxÞ 
 �N is to be regarded as the
trivial solution). Also, c is required to be continuous, where ½�N;NÞ is endowed
with the standard topology in which the sets ½�N; xÞ form a neighborhood basis for
�N: The additive eigenvalue PAR is required to be finite. It was shown [37,
Proposition 2.1] that the only point at which a nontrivial solution could fail to be
finite, namely cðxÞ ¼ �N; was at x ¼ M ¼ C ¼ gðCÞ: This necessary condition is
also sufficient for cðxÞ ¼ �N if HðCÞomax0pspC HðsÞ:
The main result of [37], the Basis Theorem, is that under additional mild

conditions, for every M there exists a finite collection fjigq
i¼1 of canonically defined

solutions to (3.23), such that the general solution of (3.23) has the form

cðxÞ ¼ ðc1 þ j1ðxÞÞ3ðc2 þ j2ðxÞÞ3?ðcq þ jqðxÞÞ; ð3:24Þ

where ciA½�N;NÞ are any quantities. Also, the additive eigenvalue P is the same
quantity

P ¼ max
0pxpM

HðxÞ ð3:25Þ

for every nontrivial solution, although it depends on M: It is easily seen that if ji are

solutions to (3.23) then so is the right-hand side of (3.24) for any ci: Indeed, formula
(3.24) is the analog of a linear combination of solutions, wherein multiplication and
addition are replaced by addition and maximization, respectively. In general the

quantity q and the basis solutions ji depend on M just as does P:
The precise conditions for the Basis Theorem to hold for a given M are encoded in

the set

ZðMÞ ¼ fzA½0;M� j HðzÞ ¼ PðMÞ; and HðxÞoPðMÞ

whenever gðzÞogðxÞpz and xA½0;M�g;

where PðMÞ is the quantity (3.25). If ZðMÞ is a finite set, and if also 0eZðMÞ; then
the above conclusion of the Basis Theorem holds and the quantity q ¼ qðMÞ equals
the cardinality of ZðMÞ:
Note that ZðMÞaf for every MAð0;C� as ZðMÞ contains the rightmost

maximum of H in ½0;M�: Also note that if H 0ð0Þ > 0 then 0eZðMÞ for every M; as
Hð0ÞoPðMÞ: This corresponds to h0ð0Þ > 0 in (3.12), which holds if r0ð0Þ > 0: It was

noted in [37] that among C2 smooth functions H for which H 0ð0Þ > 0 it is generically
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the case that ZðMÞ is a finite set for every g; and in fact that 1pqðMÞp2 for every M

with qðMÞ ¼ 2 holding only for finitely many M:
A particularly interesting case occurs when qðMÞ ¼ 1; that is ZðMÞ is a singleton,

for every M: In this direction we present the following definition which was
introduced in [37].

Definition. The pair ðH; gÞ is said to be quasimodal if for every MAð0;C� the set
ZðMÞ contains exactly one element, and also 0eZðMÞ:

As noted in [37], if the function H is monotone increasing in ½0;M0� for some
M0Að0;C�; and HðxÞoHðM0Þ for every xAðM0;C�; and also HðxÞ > Hð0Þ for every
xAð0;M0�; then ðH; gÞ is quasimodal for any g: This includes the case in which H is
monotone increasing throughout ½0;C�; where here M0 ¼ C; and also the so-called
unimodal case in which H is monotone increasing to the left of a maximum at
M0Að0;CÞ and then monotone decreasing to the right of M0; where in both cases we
need HðxÞ > Hð0Þ for x near 0: However, there exist quasimodal pairs ðH; gÞ for
which H is neither monotone nor unimodal. Let us remark also that if ðH; gÞ is
quasimodal then the unique element zðMÞAZðMÞ need not depend continuously
on M:
In the quasimodal case Eq. (3.23) has, for every M; a unique nontrivial solution

up to an additive constant, by the Basis Theorem. Let us denote this solution by
jðx;MÞ; which we may assume normalized so that jð0;MÞ ¼ 0: Then it was shown
in [37, Theorem 4.1] that these solutions are related by

jðx;MÞ ¼
jðx;CÞ; xA½0; gðMÞ�;
max

xpspM
ðHðsÞ � PðMÞ þ jðgðsÞ;CÞÞpjðx;CÞ; xA½gðMÞ;M�;

(
ð3:26Þ

as M varies. Also, in the unimodal case it follows from an observation in [37] that

jðx;MÞ ¼
XN
n¼0

A
*
ðgnðxÞÞ for every xA½0;M�;

where

A
*
ðxÞ ¼

0; xA½0;M0�;
HðxÞ � HðM0Þ; xA½M0;C�:

(

Here M0Að0;C� is the location of the rightmost maximum of H:
Following the above discussion it is now quite easy to see how Theorem C follows

from Theorems A and B and from the results of [37].

Proof of Theorem C. The existence and uniqueness of c
*
¼ jð� ;CÞ in the statement

of Theorem C follows from the Basis Theorem of [37] described above, using the

assumption that ðh; g2Þ is quasimodal. The above discussion also gives Eq. (3.21),
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which is just Eq. (3.26) rewritten in this case. Formula (3.22) for c2mþ1ð0Þ follows
directly from the periodicity condition in (3.3), from Eq. (3.8) in Theorem A, and
from (3.13) in Theorem B. Note that as r0ð0Þ > 0 we have that p > 2 by Theorem B,
hence LA ¼ 0 by Theorem A, which is needed for (3.8).
Consider now the quantities E0 and E1 given by (3.10). Let us eliminate both c2m

and �n from these formulas by making the substitutions (3.13) and (3.16) and using
again periodicity (3.3). With a short calculation we obtain

E0 ¼ rðmÞ þ c2mþ1ðgðmÞÞ � rðgðmÞÞ � c2mþ1ðg2ðmÞÞ;

E1 ¼c2mþ1ðgðmÞÞ � c2mþ1ðmÞ

¼c2mþ1ðgðmÞÞ þ p � hðmÞ � c2mþ1ðg2ðmÞÞ;
where in the case of E1 we have made an additional substitution c2mþ1ðmÞ ¼
�p þ hðmÞ þ c2mþ1ðg2ðmÞÞ; which is just Eq. (3.12) at x ¼ m:We obtain further, using

the fact that c2mþ1ðgðmÞÞ ¼ c2mþ1ð0Þ by Theorem B, and using the formula (1.16) for

h; that

E0 þ E1 ¼ 2c2mþ1ð0Þ � 2c2mþ1ðg2ðmÞÞ þ rðmÞ � rðgðmÞÞ þ p � hðmÞ

¼ 2c2mþ1ð0Þ � 2c2mþ1ðg2ðmÞÞ � 2rðgðmÞÞ þ p

¼ � 2FðmÞ þ p; ð3:27Þ
where FðmÞ is as in (3.18) with (3.21) used here. Upon substituting (3.27) into

Eq. (3.11) we obtain Eq. (3.20). If moC then g2ðmÞom and so LB ¼ 0 by Theorem A,
while if m ¼ C then LBX0: In either case LBAGðmÞ and so (3.19) holds.
Finally, we observe that the function F is strictly decreasing, in particular because

r is strictly increasing in ½�D; 0� and c
*
is monotone decreasing. As Fð0Þ ¼ 1 it

follows that the problem (3.19) has a unique solution, which is M ¼ m: &

Before closing this section let us return to the general context of Theorem A. Just
as was done in Theorem B one may combine the two equations in (1.4) to form a
max-plus eigenproblem with an unknown parameter p: Upon substituting the first
equation of (1.4) into the second we obtain

c2mþ1ðxÞ ¼ max
xpspm

rðsÞ þ max
�nptpgðsÞ

ðrðtÞ þ c2m�1ðgðtÞÞÞ
� �

¼ max
xpspm

rðsÞ þ max
g2ðsÞptpgð�nÞ

ðrðg�1ðtÞÞ þ c2m�1ðtÞÞ
� �

¼ max
xpspm

rðsÞ þ max
g2ðsÞptpm

ðrðg�1ðtÞÞ þ c2m�1ðtÞÞ
� �

¼ max
g2ðxÞptpm

max
xpspg�2ðtÞ

rðsÞ
� �

þ rðg�1ðtÞÞ þ c2m�1ðtÞ
� �

:
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Here we adopt the convention that g�1ðtÞ ¼ m if �nptogðmÞ; and that g�1ðtÞ ¼ �n
if gð�nÞotpm; with a similar convention for g�2ðtÞ: In particular this is used in the
third line of the above formula, where we also use the monotonicity of c2m�1: Now
using (3.3) the above formula becomes

p þ c2mþ1ðxÞ ¼ max
g2ðxÞptpgð�nÞ

ðh1ðx; tÞ þ c2mþ1ðtÞÞ; ð3:28Þ

where

h1ðx; tÞ ¼ max
xpspg�2ðtÞ

rðsÞ
� �

þ rðg�1ðtÞÞ: ð3:29Þ

Note that (3.28) reduces to the max-plus eigenproblem (3.12) of Theorem B when r is
monotone increasing. One obtains analogously the equation

p þ c2mðxÞ ¼ max
gðmÞptpg2ðxÞ

ðh0ðx; tÞ þ c2mðtÞÞ; ð3:30Þ

where

h0ðx; tÞ ¼ max
g�2ðtÞpspx

rðsÞ
� �

þ rðg�1ðtÞÞ ð3:31Þ

for the even-indexed functions. The range of x for which (3.28) is valid depends on
the quantities d0 and d1 in Theorem A. Generally, (3.28) holds if both �npgðxÞpd0
and �d1pxpm hold, that is, provided

maxfg�1ðd0Þ;�d1gpxpm; ð3:32Þ

with xa0 unless LA ¼ 0: In any case, as g�1ðd0Þ and �d1 are both negative Eq. (3.28)
is valid at least for xAð0; m�: Similar remarks apply to Eq. (3.30).

4. The limiting profile X

In this section we recall the basic elements of the theory of ‘‘limiting profiles’’
developed in [35]. This theory was developed specifically to analyze problems of the
form (1.1), in particular to make rigorous the connection between the differential
equation (1.1) and the relation (1.3). It will be the main tool we use to analyze
solutions of (1.1) and prove the results of Section 3.

We consider a sequence xk :R-R of solutions of Eq. (1.1), with positive

parameter values e ¼ ek-0; each of these solutions satisfying the bounds (1.12) in
R with C and D independent of k: Here and for the remainder of this section we do
not specifically assume the standing assumptions on f and r given in Section 1, as our
purpose here is to describe the general machinery of [35] needed to solve our
problem. In this section we assume only that f : I � I-R and r : I-R are
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continuous, with I ¼ ½�D;C�; and that the solutions xk satisfy (1.1) and (1.12) in R

(so no assumption of periodicity or slow oscillation of these solutions is made).

We assume the sequence xk is a so-called regular sequence [35]. That is, the graphs

Gk in (1.17) converge to a limiting set ODR2 in the following sense: There exists a
nested sequence of compact sets

K1DK2D?DR2 with
[N
j¼1

intðKjÞ ¼ R2

such that for each j the limit

lim
k-N

Gk-Kj ¼ Gj

exists in the Hausdorff topology of compact sets, and for which

O ¼
[N
j¼1

Gj:

There is no loss in making this assumption, since as shown in [35], every uniformly

bounded sequence of solutions xk possesses a regular subsequence. For a regular

sequence xk the limiting set O can be characterized as

O ¼fðt; xÞAR2 j there exist tk0
-t with xk0 ðtk0 Þ-x; for some subsequence k0-Ng

¼fðt; xÞAR2 j there exist tk-t with xkðtkÞ-xg; ð4:1Þ

where the equality of the two sets above follows from the regularity of the sequence.

The set O is called the limiting profile of the sequence xk: Typically O is not itself a
graph as it can contain vertical line segments, although it inherits certain

connectedness properties from the graphs Gk as described below.
The limiting profile O for a sequence of SOPSs is the central object of study, and

for a nontrivial class of equations we shall show that it is uniquely and explicitly
determined by the nonlinearities f and r: In particular, the uniqueness of O will

imply, a posteriori, that any sequence xk of SOPSs satisfying (1.1) and (1.12) with

ek-0 is already regular, and so converges to O:
We recall from [35] the main properties of O and the features of the theory

developed therein. Let us denote in general

OðSÞ ¼ O-VS;

the intersection of O with the vertical strip over the set SDR: In case S ¼ ðt1; t2Þ or
S ¼ ½t1; t2� is an interval we write simply Oðt1; t2Þ or O½t1; t2�; and we write OðtÞ if
S ¼ ftg is a singleton. Then if J is an interval the set OðJÞ is nonempty and

connected. The connectedness in particular is a consequence of the fact that xk is a
regular sequence. Of course O is a closed set and is contained in the horizontal strip
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HI ; by (1.12), so OðJÞ is closed (compact) if J is closed (compact). If J ¼ ftg is a
point, then OðJÞ is simply a vertical compact interval (or point) in the plane. We
denote the set

%
xðtÞ ¼ fxAR j ðt; xÞAOg

for every t; and so OðtÞ ¼ ftg �
%
xðtÞ: We also define

%
xðtÞ and xðtÞ to be the

endpoints of the compact interval
%
xðtÞ; that is,

%
xðtÞ ¼ ½

%
xðtÞ; %xðtÞ�:

The functions
%
x and %x are lower and upper semi-continuous, respectively; this is an

immediate consequence of the closedness of O:
Now we describe the precise relation between the set O and the difference equation

(1.3) which was proved in [35] and which is at the heart of our theory. We begin with
a fundamental decomposition

O ¼ Oþ,O�,On

of the limiting profile into three disjoint subsets. The sets Oþ and O� correspond to
the transition layers (classically known as the inner solution in singular perturbation

theory), while On corresponds to the regular part of the solution, that is, the outer
solution. The precise definitions of these sets are

O7 ¼ ðt; xÞ lim inf
k-N

ð7ek ’xkðtkÞÞ > 0 for every sequence tk-t






�

with xkðtkÞ-x
�
;

On ¼ O\ðOþ,O�Þ:

(4.2)

Clearly, these three sets are disjoint. Note particularly that a full sequence, not just a

subsequence, is required in the definitions of O7: The sets Oþ and O� are locally like

vertical lines in the following sense. If ðt; xÞAO7 for some choice þ or � of 7; then

there exists a neighborhood UDR2 of ðt; xÞ such that

O-U ¼ O7-U ¼ Vt-U : ð4:3Þ

That is, in a neighborhood of ðt; xÞ the set O7 is simply the vertical line through t;
and with no other points of the larger set O present. Thus Oþ and O� each are

relatively open subsets of the closed set O; and hence On is closed. Also, from these

facts it follows that both inequalities
%
xðtÞoxo %xðtÞ hold if ðt; xÞAOþ,O�: Thus for

every tAR we have that

ðt;
%
xðtÞÞ; ðt; %xðtÞÞAOn ð4:4Þ

for the endpoints of OðtÞ:
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It is also the case that the vertical lines which comprise Oþ are ‘‘upward’’ lines in

the following sense. If ðt; xÞAOþ; then there are exactly two connected components

OL and OR of O\fðt; xÞg; and they are given by

OL ¼ Oð�N; tÞ,ðftg � ½
%
xðtÞ; xÞÞ;

OR ¼ Oðt;NÞ,ðftg � ðx; %xðtÞ�Þ:
ð4:5Þ

On the other hand, if ðt; xÞAO�; then

OL ¼ Oð�N; tÞ,ðftg � ðx; %xðtÞ�Þ;
OR ¼ Oðt;NÞ,ðftg � ½

%
xðtÞ; xÞÞ

ð4:6Þ

are the corresponding connected components, that is, the vertical lines of O� go
‘‘downward’’.

One intuitively thinks of the set On as corresponding to those points at which one
is justified in setting e ¼ 0 in the differential equation (1.1), thereby obtaining the
relation

0 ¼ f ðxðtÞ; xðt � rÞÞ; r ¼ rðxðtÞÞ;

between the current part ðt; xðtÞÞ and the history part ðt � r; xðt � rÞÞ of the solution.
At points of O7 the idea is that one instead obtains an inequality

7f ðxðtÞ; xðt � rÞÞ > 0:

The precise results, proved in [35], are as follows. For every ðt; xÞAOn; there exists

ð*t; *xÞAO such that

f ðx; *xÞ ¼ 0; *t ¼ t� rðxÞ: ð4:7Þ

For every ðt; xÞAO7; for some choice þ or � of 7; there exists ð*t; *xÞAO such that

7f ðx; *xÞ > 0; *t ¼ t� rðxÞ: ð4:8Þ

Note that if, as in Section 1, we have that sgn f ðx; yÞ ¼ sgnðgðxÞ � yÞ for ðx; yÞAI �
I ; for some function g : I-I and if F : HI-HI is the backdating map given in (1.10),
then the statements above can be reformulated as follows. We have first that

FðOnÞDO; ð4:9Þ

which expresses Eq. (4.7). The relation (4.8), in which the inequality is equivalent to

7ðgðxÞ � *xÞ > 0; is expressed by the fact that

if ðt; xÞAO7 and ð%t; %xÞ ¼ Fðt; xÞ; then there exists

ð*t; *xÞAO with %t ¼ *t and 7ð%x� *xÞ > 0:
ð4:10Þ

J. Mallet-Paret, R.D. Nussbaum / J. Differential Equations 189 (2003) 640–692662



Roughly, (4.10) says that under the map F every point in the image FðOþÞ of Oþ lies
above some point of O; and every point of FðO�Þ lies below some point of O: In
making the heuristic connection of this to the differential equation (1.1), one should

identify ðt; xÞ with ðt; xðtÞÞ and ð*t; *xÞ with ðt � r; xðt � rÞÞ where r ¼ rðxðtÞÞ:
Properties (4.9) and (4.10) will be used extensively in the rest of this paper, and
we shall often refer to them as the mapping properties of F:

5. The limiting profile for slowly oscillating periodic solutions

Following the standing assumptions of Section 1, we have by Theorem 1.1 that for
every e in some range 0oeoe

*
Eq. (1.1) possesses an SOPS satisfying the bounds

(1.12) in R: In order to apply the theory of limiting profiles described in the previous

section we take a sequence ek-0 of positive parameters and a corresponding

sequence xk of SOPSs satisfying (1.12) which form a regular sequence. We assume
for the remainder of this section that such a sequence has been fixed and we let

ODR2 denote the associated limiting profile.
The focus in this section is on obtaining properties of O which follow directly from

the properties of slow oscillation and associated monotonicity properties of the

solutions. Each solution xk has a sine-like shape in the sense that it satisfies (1.2) and

(1.13) for some quantities 0obk
0oak

1obk
1oak

2 : From the periodicity of xk we may

define ak
n and bk

n for every integer n by requiring that

ak
nþ2 ¼ ak

n þ pk; bk
nþ2 ¼ bk

n þ pk; where

pk ¼ ak
2 is the minimal period of xk:

Thus

ak
nobk

noak
nþ1; ak

0 ¼ 0: ð5:1Þ

Each solution xk is positive in the interval ðak
2m; a

k
2mþ1Þ and is negative in

ðak
2mþ1; a

k
2mþ2Þ; and is monotone increasing in ½bk

2m�1; b
k
2m� and monotone decreasing

in ½bk
2m; b

k
2mþ1�: The maximum and minimum mk and �nk of xk are given, respectively,

by

mk ¼ xkðbk
2mÞ; �nk ¼ xkðbk

2mþ1Þ;

for every m:

Observe that 0 ¼ ek ’xkðbk
nÞ ¼ f ðxkðbk

nÞ; xkðZkðbk
nÞÞÞ; which implies by (1.5) that

xkðZkðbk
nÞÞ ¼ gðxkðbk

nÞÞ ¼
gðmkÞ; n even;

gð�nkÞ; n odd;

(
ð5:2Þ
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and hence that

ð�1Þnþ1
xkðZkðbk

nÞÞÞ > 0: ð5:3Þ

Here Zk :R-R is the history function associated to xk; defined as

ZkðtÞ ¼ t � rðxkðtÞÞ: ð5:4Þ

We next observe that

ak
n � Robk

n � RpZkðbk
nÞoak

n ð5:5Þ

with R as in (1.9), where the final inequality in (5.5) follows from fact (5.3) that

xkðZkðbk
nÞÞ and xkðbk

nÞ have opposite signs. Let us also note from (5.2) that both

gðmkÞ and gð�nkÞ belong to the range ½�nk; mk� of xk; and so

gð½�nk; mk�ÞD½�nk; mk�;
hence g2ðmkÞpgð�nkÞ and gðmkÞpg2ð�nkÞ;

ð5:6Þ

from the monotonicity of g:
At this point it is convenient to prove Theorem 1.3, which establishes an upper

bound on the periods of our solutions.

Proof of Theorem 1.3. We shall obtain explicit upper bounds

ak
1 � ak

0 ¼ ak
1pP0; ak

2 � ak
1pP1; ð5:7Þ

which together give the bound pkpP0 þ P1 on the period. Here P0 and P1 will be
independent of k: We shall only obtain the first bound in (5.7) as the derivation of
the second is similar.
Let K > 0 be such that

f ðx; zÞp� Kðxþ zÞ; g2ðxÞXKx; ð5:8Þ

hold for every x; zA½0;C�: Such K exists by virtue of conditions (1.5), (1.6), and (1.8)
on f and g: We shall obtain the bound

ak
1 � ak

0p2R þ ek

K2
ð5:9Þ

with R as in (1.9). Assume that ak
1 � ak

0 > 2R otherwise we are done. We consider t in

the interval ½ak
0 þ R; ak

1 �; which by (5.5) lies to the right of bk
0 ; and so ’xkðtÞp0 for

such t: Thus in the smaller interval ½ak
0 þ R; ak

1 � R� we have that

xkðtÞXxkðak
1 � RÞXxkðZkðbk

1ÞÞ ¼ gð�nkÞXg2ðmkÞXKmk ð5:10Þ
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again by (5.5), and by (5.8), (5.2), and (5.6). We also have there that xkðZkðtÞÞX0;
and hence

ek ’xkðtÞ ¼ f ðxkðtÞ; xkðZkðtÞÞÞp� KxkðtÞp� K2mk ð5:11Þ

by (5.8) and (5.10). In light of the estimate (5.11) in ½ak
0 þ R; ak

1 � R� we have the

upper bound

ðak
1 � RÞ � ðak

0 þ RÞpxkðak
0 þ RÞ � xkðak

1 � RÞ
ðekÞ�1K2mk

p
ekxkðak

0 þ RÞ
K2mk

p
ek

K2

for the length of this interval, which gives (5.9) as desired. &

It will be convenient to assume (and we do without loss) the existence of the limits

ak
n-an; bk

n-bn; pk-p;

for every integer n; as k-N (in fact the limit of the sequence pk must exist as xk is a
regular sequence). Of course these limits are finite by Theorem 1.3, and it follows
that

anpbnpanþ1; anþ1 � anX1;

anþ2 ¼ an þ p; bnþ2 ¼ bn þ p;
ð5:12Þ

for every n; and that

a0 ¼ 0; a2 ¼ pX2: ð5:13Þ

It is certainly possible for some of the inequalities in (5.12) to be equalities, and in
fact this is often the case. We also observe the existence of the limits

mk-m; nk-n; ð5:14Þ

following from the regularity of the sequence xk; and we recall Theorem 1.2
which gives conditions under which m > 0 and n > 0 is assured. Let us note that
�Dp� np0pmpC; that ODH½�n;m�; and that

faO-H�nDOn; faO-HmDOn; ð5:15Þ

where the inclusions in (5.15) follow from (4.4). Upon taking the limits in (5.6) we
obtain the claim (3.1) of Theorem A. Let us note here that (3.1) implies that

m ¼ 0 3 n ¼ 0: ð5:16Þ

Indeed, if m > 0 then �npgðmÞo0; hence n > 0; and similarly for the converse. Thus
either the limiting profile O contains both points above and below the horizontal

axis, or else xk-0 uniformly as k-N and O ¼ R� f0g is trivial.
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The limiting profile O inherits properties corresponding to the periodicity and

piecewise monotonicity of the solutions xk: Certainly O has period p in the
horizontal direction, that is, (3.9) holds. Now define sets An;BnDR by

An ¼ftAR j there exist tk0
A½bk0

n�1; b
k0

n � with tk0
-t and xk0 ðtk0 Þ-0

for some subsequence k0-Ng; ð5:17Þ

Bn ¼ftAR j there exist tk0
A½ak0

n ; a
k0

nþ1� with tk0
-t and xk0 ðtk0 Þ-ln

for some subsequence k0-Ng;

where ln is as in (3.6). It is immediate from the characterization (4.1) of O that An

and Bn are nonempty compact sets and that

ðt; 0ÞAO 3 tA
SN

n¼�N

An;

ðt; mÞAO 3 tA
SN

m¼�N

B2m;

ðt;�nÞAO 3 tA
SN

m¼�N

B2mþ1:

8>>>>>>><
>>>>>>>:

ð5:18Þ

In addition

anAAnD½bn�1; bn�; An � f0gDO; Anþ2 ¼ An þ p;

bnABnD½an; anþ1�; Bn � flngDOn; Bnþ2 ¼ Bn þ p;
ð5:19Þ

hold for every n; from the ordering (5.1) and from (5.15).

Remark. We could have chosen a slightly simpler definition of the sets An and Bn by

taking full sequences, ðtk; xkðtkÞÞ-ðt; 0Þ or ðt; lnÞ; rather than by taking

subsequences. The sets Ãn and B̃n thereby obtained would be subsets of An and
Bn: However, in light of the equality (4.1) it is easy to see that such sets

can only differ at most at their endpoints, specifically, An\ÃnDfbn�1; bng and

Bn\B̃nDfan; anþ1g:We choose the definitions (5.17) as it is clear from them that these
sets are closed.

It is in fact the case that the sets An and Bn are intervals, as the following result
shows. In addition, each portion of the set O which projects to the interior of one of
these intervals on the t-axis is simply a line segment. The proof of these facts is not
completely trivial: It not only uses the monotonicity properties of the solutions, but

also the fact that xk is a regular sequence.
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Lemma 5.1. The compact sets An and Bn defined in (5.17) are intervals, and moreover

OðintðAnÞÞ ¼ intðAnÞ � f0g; OðintðBnÞÞ ¼ intðBnÞ � flng: ð5:20Þ

Denoting

An ¼ ½a�n ; aþn �; Bn ¼ ½b�n ; b
þ
n �; ð5:21Þ

define intervals

Pn ¼ ½bþn�1; b
�
n �; Qn ¼ ½b�n�1; b

þ
n � ¼ Bn�1,Pn,Bn: ð5:22Þ

Then if m > 0 and n > 0 hold we have that

Bn�1pAnpBn; AnDPnDQn; ð5:23Þ

for every n.

Observe immediately that An�1pAn and Bn�1pBn hold, from the leftmost
inclusions in (5.19). Thus Pn and Qn in the above result are well defined with

Bn�1pPnpBn: ð5:24Þ

Indeed, the intervals Bn�1 and Pn abut, having exactly one point in common, as do

Pn and Bn: Note here the inequalities a�n panpaþn and b�n pbnpbþn which follow

from (5.19) and (5.21). Finally note that the requirements m > 0 and n > 0 are
necessary for (5.23) to hold. If m ¼ n ¼ 0 then An ¼ ½bn�1; bn� and Bn ¼ ½an; anþ1� for
every n; and so (5.23) is impossible.

Proof of Lemma 5.1. First take any t1; t2AAn with t1ot2; and let tk0

1 A½bk0

n�1; b
k0

n � with
tk0

1 -t1 and xk0 ðtk0

1 Þ-0; and similarly tk00

2 A½bk00

n�1; b
k00

n � with tk00

2 -t2 and xk00 ðtk00

2 Þ-0; be
subsequences as in the definition (5.17) for t ¼ t1; t2: Fix any t0Aðt1; t2Þ and let

k000-N be a third subsequence, with tk000

0 -t0 and xk000 ðtk000

0 Þ-x for some x: We shall

prove that x ¼ 0: Note this implies that t0AAn hence An is an interval, and as well
establishes the first equation of (5.20).
We may regard

ðtk000

0 ; xk000 ðtk000

0 ÞÞ-ðt0; xÞ ð5:25Þ

as a subsequence of points on the graphs Gk000
converging to ðt0; xÞAO: From the fact

that xk is a regular sequence, and in particular from the equality of the two sets in
(4.1), the subsequence (5.25) can be extended to a full sequence

ðtk
0 ; xkðtk

0ÞÞ-ðt0; xÞ: ð5:26Þ

The full sequence (5.26) may now be compared with the first two subsequences on

either side. For definiteness assume that n is even, and so xk is monotone increasing

J. Mallet-Paret, R.D. Nussbaum / J. Differential Equations 189 (2003) 640–692 667



in the interval ½bk
n�1; b

k
n �: As tk0

1 otk0

0 and tk00

0 otk00

2 for large k0 and k00; respectively, we
have that

xk0 ðtk0

0 ÞXxk0 ðtk0

1 Þ-0; xk00 ðtk00

0 Þpxk00 ðtk00

2 Þ-0:

It follows that xkðtk
0Þ-0; hence x ¼ 0 as claimed.

The proof that Bn also is an interval and that the second equation of (5.20) holds
follows similar lines, but with enough differences that we present it. As before, we

begin with sequences ðtk0

1 ; xk0 ðtk0

1 ÞÞ-ðt1; lnÞ and ðtk00

2 ; xk00 ðtk00

2 ÞÞ-ðt2; lnÞ; and

ðtk000

0 ; xk000 ðtk000

0 ÞÞ-ðt0; xÞ; where t1ot0ot2: We have tk0

1 A½ak0

n ; a
k0

nþ1� and similarly with

tk00

2 and tk000

0 ; and we must prove that x ¼ ln: Again assume n is even, and so ln ¼ m:
Now extend the two subsequences for t1 and t2 (as opposed to the one for t0 as

before) to full sequences ðtk
i ; xkðtk

i ÞÞ-ðti; mÞ for i ¼ 1; 2: Observe that for these

extended sequences the points tk
i belong to the intervals ðak

n ; a
k
nþ1Þ; at least for large k;

as xkðtk
i Þ > 0 and because the adjacent intervals ðak

n�1; a
k
nÞ and ðak

nþ1; a
k
nþ2Þ where xk

is negative each has length greater than 1: Therefore, since xk in ½ak
n ; a

k
nþ1� consists of

a monotone increasing part followed by a monotone decreasing part, we have that

xk000 ðtk000

0 ÞXminfxk000 ðtk000

1 Þ; xk000 ðtk000

2 Þg-m

at the point tk000

0 between tk000

1 and tk000

2 : This implies that xk000 ðtk000

0 Þ-m; that is, x ¼ m as

desired.
The proof of (5.23) follows a similar construction, so for simplicity we only sketch

the proof that AnpBn: Assume to the contrary that there exist t1ABn and t2AAn

with t1ot2; let

ðtk0

1 ; xk0 ðtk0

1 ÞÞ-ðt1; lnÞ; ðtk00

2 ; xk00 ðtk00

2 ÞÞ-ðt2; 0Þ; ð5:27Þ

much as before, and extend the subsequence converging to ðt1; lnÞ to a full sequence.
Then tk

1Aðak
n ; a

k
nþ1Þ for the extended sequence, and as well tk00

2 A½bk00

n�1; b
k00

n �; which by

(5.1) forces tk00

1 ; tk00

2 Aðak00

n ; bk00

n �: But this is incompatible with the limits (5.27) in the

light of the monotonicity of xk in ½ak
n ; b

k
n � and the fact that lna0; which holds

because m > 0 and n > 0: With this we have a contradiction. &

While the above result describes portions of O which are horizontal line segments,
the more difficult matter is to describe the rest of O: Let us decompose O into
monotone pieces by setting

On ¼fðt; xÞAR j there exist tk0
A½bk0

n�1; b
k0

n � with tk0
-t and xk0 ðtk0 Þ-x

for some subsequence k0-Ng; ð5:28Þ

J. Mallet-Paret, R.D. Nussbaum / J. Differential Equations 189 (2003) 640–692668



for each n: Then On is compact, O is the union of the On;

ðbn�1; ln�1Þ; ðbn; lnÞAOn ð5:29Þ

holds, and using (5.22) we see that

OðintðPnÞÞDOðbn�1; bnÞDOnDO½bn�1; bn�DOðQnÞ: ð5:30Þ

The set On also has the expected monotonicity property.

Lemma 5.2. The set OnDR2 is monotone increasing if n is even, and is monotone

decreasing if n is odd.

Proof. The proof of this result is in the same spirit as that of Lemma 5.1, and so will

be omitted. We do however note that the regularity of the sequence xk is again
used. &

It will be very useful to express the ascending and descending parts of O as graphs
of functions t ¼ cnðxÞ parameterized by the vertical coordinate x: Indeed, as one sees
from Theorem A such functions will play a key role in determining the limiting
profile O: To this end we define for every n a set-valued function

cn : ½�n; m�-2Pn ;

where 2Pn is the set of all subsets of Pn; by letting

cnðxÞ ¼ ftAPn j ðt; xÞAOng for every xA½�n; m�: ð5:31Þ

Clearly cnðxÞ is a compact set for every x: Also define the set

graphðcnÞ ¼ fðt; xÞAR2 j xA½�n; m� and tAcnðxÞg; ð5:32Þ

or equivalently

graphðcnÞ ¼ On-VPn
; ð5:33Þ

which also is a compact. Notice that while On extends horizontally from bn�1 to bn;
in the definition of cnðxÞ we only take tAPn; that is, On is truncated at the left and

right so that t lies between bþn�1 and b�n : (This truncation is done simply for technical
reasons.) One can check that the only parts of On so removed are horizontal line
segments at the levels ln�1 and ln; and indeed this is shown in Proposition 5.3 below.
Also, observe that An � f0gDOn from the definitions of these sets. It is clear that

OðintðPnÞÞDgraphðcnÞDOðPnÞ; ð5:34Þ

J. Mallet-Paret, R.D. Nussbaum / J. Differential Equations 189 (2003) 640–692 669



and from Lemma 5.2 that

graphðcnÞ is a monotone
increasing set for n even;

decreasing set for n odd:

(
ð5:35Þ

Also, the ordering and periodicity claims (3.3) of Theorem A about the functions cn

hold, although we have not yet established the single-valuedness of these set-valued
functions.
The following result makes precise the relation between the graphs of the functions

cn; the horizontal line segments over the intervals Bn; and the set O: In particular, the
basic description (3.2) of O is established, albeit with the set graphðcnÞ given by
(5.32) rather than by (3.4). (One needs still to reconcile these two formulas.)

Proposition 5.3. We have that

OnDgraphðcnÞ,ðBn�1 � fln�1gÞ,ðBn � flngÞ ð5:36Þ

for every n, and thus O is given by (3.2). We also have that

Oþ-graphðc2mþ1Þ ¼ f; O�-graphðc2mÞ ¼ f; ð5:37Þ

for every m and that the inclusions

OþD
[N

m¼�N

graphðc2mÞ; O�D
[N

m¼�N

graphðc2mþ1Þ; ð5:38Þ

hold.

Before proving Proposition 5.3 we comment on some of the more subtle points
which need to be considered. The reader may have noted the somewhat technically
detailed and pedantic nature of the proof of Lemma 5.1. Although the sinusoidal

shape of the solutions xk is very suggestive of the shape of the limiting profile O;
proper care must be taken. In particular, it is worth keeping in mind several
somewhat pathological possibilities for the limiting profile O: While these
pathologies can generally be ruled out, they must be considered as possibilities,
and implicitly taken into account in our proofs.

In one scenario the sequence xk converges to 0 uniformly on compact subsets of
R\pZ; that is, everywhere except near the integer multiples np of the limiting period.

The minimum and maximum of xk; say near t ¼ 0; occur at bk
�1o0 and bk

0 > 0; with

both bk
�1-0 and bk

0-0 as k-N: Thus the graph of xk has a narrow downward

trough immediately to the left of t ¼ 0; followed by a narrow upward peak
immediately to the right of t ¼ 0: In the limit the trough and peak become a vertical
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line segment (a ‘‘spike’’ from �n to m), and we have

O ¼ ðR� f0gÞ,
[N

n¼�N

ðfnpg � ½�n; m�Þ;

A2m ¼ B2m�1 ¼ B2m ¼ fmpg; A2mþ1 ¼ ½mp; ðm þ 1Þp�;

c2mðxÞ ¼ fmpg; c2mþ1ðxÞ ¼
fðm þ 1Þpg; xA½�n; 0Þ;

A2mþ1; x ¼ 0;

fmpg; xAð0; m�:

8><
>: ð5:39Þ

Note, incidentally, that in this case we have O ¼ On and O7 ¼ f: The spikes fmpg �
½�n; m� go neither upward nor downward in the sense of (4.5) and (4.6), and so belong
to On; and not to O7:
In a slightly different scenario the order of the peak and trough is reversed: One

has bk
0oak

1obk
1 ; with bk

0-a1 and bk
1-a1; so the peak is followed immediately by the

trough near t ¼ a1: The limiting profile obtained is the same as in (5.39) but
horizontally translated by an amount a1; although now

A2m ¼ ½ðm � 1Þp þ a1; mp þ a1�; A2mþ1 ¼ B2m ¼ B2mþ1 ¼ fmp þ a1g;

c2mðxÞ ¼
fðm � 1Þp þ a1g; xA½�n; 0Þ;

A2m; x ¼ 0;

fmp þ a1g; xAð0; m�;

8><
>: c2mþ1ðxÞ ¼ fmp þ a1g;

in contrast to (5.39).
One can also conceive of a profile O in which the minimum and maximum spikes

occur at different locations on the t-axis.
Although O is obtained as the limit of the graphs of piecewise monotone functions,

we see that O itself need not be the graph of a function. In addition to the possibility
of spikes as above, O might (locally) take the form of a graph x ¼ jðtÞ of a
monotone function with jump discontinuities. The possibility that such j has
countably infinitely many jumps in a finite interval, and these jumps occur for a
dense set of t; cannot yet be excluded. For example, j could resemble the inverse to
the classical Cantor function.
We caution the reader to keep in mind the sort of pathologies described above

throughout our analysis.
We need the following lemma before giving the proof of Proposition 5.3.

Lemma 5.4. We have that

ðbþn�1; ln�1ÞAOn; ðb�n ; lnÞAOn: ð5:40Þ
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In addition, we have the implications

tobþn�1 ) x ¼ ln�1; t > b�n ) x ¼ ln; ð5:41Þ

for ðt; xÞAOn:

Proof. We prove the second formula in (5.40), the proof of the first being similar. If
b�n ¼ bn then we are done by (5.29), so assume that b�n obn: We have that

ðb�n ; bnÞ � flngDintðBnÞ � flng ¼ OðintðBnÞÞDO

by (5.20), hence

ðb�n ; bnÞ � flngDOðbn�1;bnÞDOn

by (5.30). Thus ½b�n ; bn� � flngDOn as On is closed, so (5.40) holds as desired.

We again prove only the second implication in (5.41). If n is even then ðb�n ; mÞAOn

by (5.40) and the set On is monotone increasing by Lemma 5.2. This forces x ¼ m for
any point ðt; xÞAOn with t > b�n ; as desired. The proof for odd n is similar. &

Proof of Proposition 5.3. Take any ðt; xÞAOn: If tAPn then ðt; xÞAgraphðcnÞ by

(5.33). If tePn then either tobþn�1 or t > b�n and thus either ðt; xÞABn�1 � fln�1g or
ðt; xÞABn � flng by (5.41) of Lemma 5.4. This establishes the inclusion (5.36). It also
establishes (3.2), as O is the union of the On:
To prove the first equation in (5.37) take any ðt; xÞAgraphðc2mþ1Þ: Then

ðt; xÞAO2mþ1 by (5.33), so one has that ðtk0
; xk0 ðtk0 ÞÞ-ðt; xÞ for a subsequence as

in the definition (5.28) of O2mþ1: As tk0
A½bk0

2m; b
k0

2mþ1� one has that ’xk0 ðtk0 Þp0: By (4.1)

this subsequence may be extended to a full sequence ðtk; xkðtkÞÞ-ðt; xÞ; however,
one sees the condition in the definition (4.2) of Oþ is violated. Thus ðt; xÞeOþ; as
desired. The proof of the second equation in (5.37) is similar.

To prove (5.38) take any ðt; xÞAOþ: Then xAð�n; mÞ by (5.15) and so
ðt; xÞAgraphðcnÞ for some n; by (3.2), where necessarily n is even by (5.37). This
proves the first conclusion in (5.38) and the second is proved similarly. &

The next result describes the relation between the intervals An and Bn; and the
function cn:

Lemma 5.5. Assume that m > 0 and n > 0: Then we have that

cnð0Þ ¼ An; ð5:42Þ

and also that

c2mð�nÞ ¼ fbþ2m�1g; c2mðmÞ ¼ fb�2mg;
c2mþ1ð�nÞ ¼ fb�2mþ1g; c2mþ1ðmÞ ¼ fbþ2mg;

ð5:43Þ

J. Mallet-Paret, R.D. Nussbaum / J. Differential Equations 189 (2003) 640–692672



or equivalently that

cnðln�1Þ ¼ fbþn�1g; cnðlnÞ ¼ fb�n g; ð5:44Þ

for every n and m.

Proof. From the definitions (5.17) and (5.28) of An and On we have that An ¼
ftAR j ðt; 0ÞAOng: As AnDPn by (5.23) and the fact that m > 0 and n > 0; the claim
(5.42) follows from the definition (5.31) of cnðxÞ:
Now consider (5.43). We prove only that c2mðmÞ ¼ fb�2mg as the proofs of the

other three equations there are similar. We have ðb�2m; mÞAO2m by Lemma 5.4, hence

b�2mAc2mðmÞ; so consider any point tAc2mðmÞ with tab�2m: As tAP2m we must have

that tob�2m: Thus toB2m; and by (5.18) we have tAB2k for some k with kom: Thus

tpbþ2kpbþ2m�2: But now consider the point a2mAA2m ¼ c2mð0Þ: From (5.23) and

(5.12)

tpbþ2m�2pa2m�1pa2m � 1oa2m: ð5:45Þ

The strict inequality (5.45) contradicts the fact that c2mð0Þpc2mðmÞ; which follows
from the monotonicity property (5.35). Thus we have (5.43).
Eqs. (5.44) are merely restatements of (5.43). This completes the proof. &

Lemma 5.6. The set cnðxÞ is a nonempty compact interval (or point) for every

xA½�n; m�:

Proof. As noted earlier cnðxÞ is a compact set, so we must show it is nonempty and
connected. This result is already established for x ¼ m;�n in Lemma 5.5 when m > 0
and n > 0 (if m ¼ n ¼ 0 one can check directly that cnð0Þ ¼ fang), so it is enough to

consider xAð�n; mÞ: Fix such x: Then xAð�nk; mkÞ for large k; and so xkðtkÞ ¼ x for
some tkA½bk

n�1; b
k
n �: Upon taking the limit of a subsequence tk0

-t we have ðt; xÞAOn:
By (5.36) of Proposition 5.3 and because xam;�n; we have that ðt; xÞAgraphðcnÞ;
that is tAcnðxÞ; and so cnðxÞaf:
To prove connectedness of cnðxÞ let t1; t2AcnðxÞ with t1ot2; for some xAð�n;mÞ;

and take any t0Aðt1; t2Þ: Also take any x0A
%
xðt0Þaf: Then t0AintðPnÞ; and so

t0ePk for every kan; and t0eBk for every kAZ by (5.24). Also, ðt0; xÞAOn by
(5.30), and so ðt0; xÞAgraphðcnÞ by (5.36) of Proposition 5.3. By considering the
three points ðti; xÞ; for i ¼ 1; 2; and ðt0; x0Þ; it follows from the monotonicity of
graphðcnÞ that x0 ¼ x; that is, t0AcnðxÞ: Thus cnðxÞ is connected. &

Lemma 5.7. Suppose ðt0; x0ÞAO7 for some choice of sign 7: Then x0Að�n; mÞ; and

there exists a unique integer n such that t0Acnðx0Þ: Moreover, cnðxÞ ¼ cnðx0Þ ¼ ft0g
is constant and single-valued for all x in some neighborhood of x0 and ð�1Þn ¼ 71:

Proof. For definiteness suppose ðt0; x0ÞAOþ: Then x0Að�n; mÞ by (5.15). By (4.3) we
have ðt0; xÞAOþ for every x near x0; and these are the only points of O near ðt0; x0Þ:
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Thus (5.38) of Proposition 5.3 implies that t0Ac2mðxÞ for each such x; for some
m ¼ mðxÞ: As t0 is an isolated point of c2mðxÞ we have that c2mðxÞ ¼ ft0g for this m;
since c2mðxÞ is a connected set by Lemma 5.6. From the second equation in (3.3) we
see also that this mðxÞ is uniquely determined for each x:
We claim the function mðxÞ is constant in a neighborhood of x ¼ x0: Certainly

mðxÞ is bounded, so if it is not locally constant there exists a sequence xk-x0 and
integers m0;m1; with m0am1; such that mðxkÞ ¼ m1; while mðx0Þ ¼ m0: But then
ðt0; xkÞAgraphðc2m1

Þ; hence in the limit ðt0; x0ÞAgraphðc2m1
Þ as graphðc2m1

Þ is

closed. Thus t0Ac2m1
ðx0Þ; and so mðx0Þ ¼ m1: This contradicts mðx0Þ ¼ m0 and

proves that mðxÞ is constant in x:
The uniqueness of the integer n for which t0Acnðx0Þ among even integers has been

noted. If n is odd then t0ecnðx0Þ by (5.37) of Proposition 5.3. This shows uniqueness
of n ¼ 2m among all integers. &

6. The max-plus equations and the proof of Theorem A

Our object in this section is to show that the functions cn; which describe the
ascending and descending portions of the limiting profile O; satisfy the system of
max-plus equations (1.4) of Theorem A. In particular we shall show that these
functions are single-valued and continuous except for a possible jump discontinuity
at x ¼ 0: We shall also give a more precise characterization of the quantities d0 and
d1 in that theorem which describe the range over which the max-plus equations are
valid.
The standing assumptions on f and r in Section 1 continue to hold in this section,

and we shall make liberal use of the results of the previous section. Also, we shall
take

m > 0 and n > 0 ð6:1Þ

as an additional standing assumption throughout this section so as to avoid
trivialities. While our techniques are elementary, there is enough detail that we again
caution the reader to keep in mind the potential pathologies that were described
earlier.
The following are two principal results of this section. In particular, Proposition

6.2 establishes the max-plus equations (1.4) of Theorem A and characterizes the
ranges of x where they hold.

Proposition 6.1. The set-valued function cn is single-valued and continuous (considered

as a real-valued function) in ½�n; m�\f0g: The left- and right-hand limits cnð0�Þ and

cnð0þÞ of this function at x ¼ 0 are the endpoints of the interval An; that is, the

formula for An in (3.5) holds.
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Proposition 6.2. There exists d0 > 0 such that the first max-plus equation in (1.4) holds

for every xA½�n; d0�\f0g; for every m: This equation also holds at x ¼ 0; except that the

left-hand side c2mð0Þ is replaced with the right-hand endpoint c2mð0þÞ ¼ aþ2m of the

interval c2mð0Þ ¼ A2m in case this interval has positive length. In any case the quantity

d0 can be chosen so that either d0 ¼ m; or else that 0od0om and

rðd0Þ þ c2m�1ðgðd0ÞÞo max
�npspd0

ðrðsÞ þ c2m�1ðgðsÞÞÞ

¼c2mðd0Þ ¼ rðd0Þ þ c2mðgðd0ÞÞ; ð6:2Þ

with also

c2mðd0Þoc2mðxÞ and rðd0ÞorðxÞ for every xAðd0; m�: ð6:3Þ

The second max-plus equation in (1.4) holds for xA½�d1; m�\f0g for some d1 > 0; where

here either d1 ¼ n; or else 0od1on and

rð�d1Þ þ c2mðgð�d1ÞÞo max
�d1pspm

ðrðsÞ þ c2mðgðsÞÞÞ

¼c2mþ1ð�d1Þ ¼ rð�d1Þ þ c2mþ1ðgð�d1ÞÞ

with also

c2mþ1ð�d1Þoc2mþ1ðxÞ and rð�d1ÞorðxÞ for every xA½�n;�d1Þ;

and with a similar interpretation as above at x ¼ 0:

Remark. Once Proposition 6.1 is established we may allow an abuse of notation in
which we write cnðxÞ ¼ t rather than cnðxÞ ¼ ftg when cnðxÞ is a singleton set. That
is, we regard cnðxÞ as a real number.

Remark. We observe from (3.2) as established in Proposition 5.3 that if
xAð�n; mÞ\f0g; then ðt; xÞAO if and only if cnðxÞ ¼ t for some n:

To illustrate how Proposition 6.2 can be used, and in particular to see the
significance of conditions (6.2) and (6.3) involving d0 and the corresponding
conditions involving d1; we present the following two results. Note that Corollary 6.3
guarantees that both equations in (1.4) hold throughout the full interval ½�n; m� if r is
both monotone increasing in ½�n; 0� and monotone decreasing in ½0; m�; as for

example with rðxÞ ¼ 1� cx2 where c > 0: The same conclusion holds by Corollary
6.4 if r is monotone throughout ½�n; m�:

Corollary 6.3. If r is monotone decreasing in ½0; m� then d0 ¼ m; while if r is monotone

increasing in ½�n; 0� then d1 ¼ n:

Proof. If d0om then r cannot be monotone decreasing in ½0; m� from the second
inequality in (6.3). The claim about d1 is proved similarly. &
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Corollary 6.4. If r is monotone increasing throughout ½�n; m� then both d0 ¼ m and

d1 ¼ n: In addition Eq. (3.13) holds for every xA½�n; m�:
If r is monotone decreasing throughout ½�n; m� the corresponding result holds.

Proof. The first equation in (1.4), which holds throughout ½�n; d0�; takes the form
(3.13) in that interval as both r and the composition of c2m�1 with g are monotone
increasing functions. Thus the strict inequality in (6.2) is impossible, which by
Proposition 6.2 implies that d0 ¼ m: One has that d1 ¼ n by Corollary 6.3.
The result when r is monotone decreasing is proved similarly. &

We now proceed with the proofs of our results. We begin with an analysis of so-
called plateaus, which are horizontal line segments in O:

Definition. A plateau in O is a subset J � fxgDO; where J is an interval of positive
length and xAR: We call x the level of the plateau.

Remark. If J � fxg is a plateau in O then J � fxgDOn; as Oþ,O� consists locally
of vertical line segments. Also, the horizontal translates ðJ þ npÞ � fxg of a plateau,
modulo the period p of O; are plateaus. If it is the case that xAð�n; mÞ then

JD
[N

n¼�N

cnðxÞD
[N
�N

Pn

by (3.2). In this case there exists a subinterval J
*
DJ of positive length such that

J
*
DintðPmÞ for some m; and thus J

*
DcmðxÞ from (5.34).

Lemma 6.5. Suppose that O contains a plateau J � fxg: Then ðJ � rðxÞÞ � fgðxÞg is

also a plateau. Moreover, x is a periodic point of g, that is, x is a fixed point of some

iterate of g, and hence xAf0;�D;Cg:

Proof. Since J � fxgDOn we have from the mapping properties that

FðJ � fxgÞ ¼ ðJ � rðxÞÞ � fgðxÞgDO;

and this proves the first claim.
Now suppose J � fxg is a plateau but x is not a periodic point of g: Then from

(1.7) we obtain a sequence Jn � fxng of plateaus with distinct levels xn; where Jn ¼
Jn�1 � rðxn�1Þ and xn ¼ gðxn�1Þ for nX1; with J0 ¼ J and x0 ¼ x: Since all intervals
Jn have the same length, two of them have an overlap, modulo the period p; of
positive length. Thus there exist xn1oxn2 and an interval J

*
of positive length such

that J
*
� fxni

g are plateaus for i ¼ 1; 2: We may also assume that xni
Að�n; mÞ for

both levels. The interval J
*
need not be the maximal one for which either set J

*
�

fxni
g is a plateau, and indeed, from the above remark we may choose J

*
so that

J
*
DintðPmÞ hence J

*
Dcmðxni

Þ for i ¼ 1; 2; for some m: But then neither
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cmðxn1Þpcmðxn2Þ nor cmðxn2Þpcmðxn1Þ holds, contradicting the fact that the

function cm is monotone. &

We next prove one of the results stated above.

Proof of Proposition 6.1. By Lemma 5.6 the set cnðxÞ is nonempty and connected, so
if cnðxÞ were not single-valued for some x then cnðxÞ � fxgDO would be a plateau.
Necessarily xAf0;�D;Cg by Lemma 6.5, hence xAf0;�n; mg: But cnð�nÞ and cnðmÞ
are single-valued by Lemma 5.5, and so x ¼ 0:
It follows directly from the fact that graphðcnÞ is a closed set that cn; considered

as a real-valued function, is continuous in ½�n; m�\f0g: Finally, the closedness and
monotonicity of the set graphðcnÞ; along with (5.42) of Lemma 5.5, imply the left-
and right-hand limits at x ¼ 0 are the appropriate endpoints of An: &

The following result is an important component in the derivation of the max-plus
equations (1.4). Let us note that if cn is single-valued at x ¼ 0 then at that point the
inequalities (6.4) can easily be obtained by taking the limit x-0; and the strict
inequalities (6.6) trivially hold. On the other hand, if cnð0Þ ¼ An is an interval of
positive length then the left-hand inequality in (6.4) will be shown in fact to be an
equality. This fact, and others, are established later in Lemma 6.9 and Proposition
6.10. Note finally that the claim involving (6.5) is made even for x0 ¼ 0; where the
inequalities are interpreted as between sets.
Before proving Proposition 6.2 we need to establish several preliminary results.

Lemma 6.6. We have that

cn�1ðgðxÞÞpcnðxÞ � rðxÞpcnðgðxÞÞ for every xA½�n; m�\f0g; ð6:4Þ

for every n. If for some x ¼ x0Að�n; mÞ both inequalities in (6.4) are strict, so

cn�1ðgðx0ÞÞocnðx0Þ � rðx0Þocnðgðx0ÞÞ; ð6:5Þ

then ðcnðx0Þ; x0ÞAO7 with ð�1Þn ¼ 71 and cnðxÞ ¼ cnðx0Þ for every x near x0:
Finally, we have the strict inequalities

c2mðxÞ � rðxÞoc2mðgðxÞÞ for every xAð�n; 0Þ;
c2mþ1ðxÞ � rðxÞoc2mþ1ðgðxÞÞ for every xAð0; mÞ

ð6:6Þ

for every m.

Proof. For every k consider for each n the set

Rk
n ¼fðt; xÞAR2 j ð�1Þnþ1ðx� xkðtÞÞX0;

where bk
n�1ptpbk

nþ1 and � nkoxomkg;
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and also the two sets

Rk
7 ¼ fðt; xÞAR2 j7ðx� xkðtÞÞX0 and � nkoxomkg;

bounded by portions of the graph of the function xk and by the horizontal lines

x ¼ mk and x ¼ �nk: Observe that

Rk
þ ¼

[N
m¼�N

Rk
2mþ1; Rk

� ¼
[N

m¼�N

Rk
2m;

and that the connected components of Rk
þ and Rk

� are precisely the sets Rk
n for odd

and even n; respectively, in view of the monotonicity properties of xk:

Fix n and consider the solution xk for t in the set

Sk
n ¼ ftAðbk

n�1; b
k
nÞ j � nkoxkðtÞomkg;

which is an open interval containing ak
n : For such t we have that

�nkogðxkðtÞÞomk ð6:7Þ

by (5.6). Assuming for definiteness that n is even and letting Zk denote the history

function as in (5.4), we have further that 0pek ’xkðtÞ ¼ f ðxkðtÞ; xkðZkðtÞÞÞ and so from
(1.5) we have that

gðxkðtÞÞ � xkðZkðtÞÞX0: ð6:8Þ

(Note here that inequality (6.8) is strict if ’xkðtÞa0:) We conclude from (6.7) and (6.8)

that ðZkðtÞ; gðxkðtÞÞÞARk
þ; and so the point ðZkðtÞ; gðxkðtÞÞÞ lies in one of the connected

components Rk
2mþ1 of R

k
þ for every tASk

n : Taking t ¼ ak
n gives ðZkðak

nÞ; gðxkðak
nÞÞÞ ¼

ðZkðak
nÞ; 0ÞARk

n�1 since b
k
n�2oak

n�1oZkðak
nÞ ¼ ak

n � 1oak
nobk

n : Therefore

ðZkðtÞ; gðxkðtÞÞÞARk
n�1 for everytASk

n ð6:9Þ

for every n and k:
Now fix xAð�n; mÞ\f0g; keeping n as before, in particular with n even. Assume also

that x is simultaneously a regular value of all the functions xk; that is, ’xkðtÞa0 for

every t and k such that xkðtÞ ¼ x: By Sard’s theorem almost every x satisfies this

property. Then xAð�nk; mkÞ for all large k so there exists tkAðbk
n�1; b

k
nÞ such that

xkðtkÞ ¼ x: Then tkASk
n ; so the inclusion (6.9) at t ¼ tk implies that

gðxÞ � xkðZkðtkÞÞ > 0; bk
n�2pZkðtkÞpbk

n ; ð6:10Þ

with the strict inequality in (6.10) holding because ’xkðtkÞa0: There also exist

sk;1; sk;2Aðbk
n�2; b

k
nÞ such that

xkðsk;1Þ ¼ xkðsk;2Þ ¼ gðxÞ; bk
n�2osk;1obk

n�1osk;2obk
n ;
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and so

xkðsk;iÞ > xkðZkðtkÞÞ ð6:11Þ

for i ¼ 1; 2 from the first inequality in (6.10). It now follows from the strict inequality

(6.11), using the fact that xk is monotone decreasing, respectively monotone

increasing, in ðbk
n�2; b

k
n�1Þ; respectively ðbk

n�1;b
k
nÞ; that

sk;1oZkðtkÞ ¼ tk � rðxÞosk;2: ð6:12Þ

Now pass to a subsequence k0-N and take limits tk0
-tn and sk0;i-s* ;i: Then

ðtk0
; xk0 ðtk0 ÞÞ-ðtn; xÞAOn from the definition (5.28) of On; and so cnðxÞ ¼ tn from a

remark above. In a similar fashion sk0;1-cn�1ðgðxÞÞ and sk0;2-cnðgðxÞÞ: Taking
these limits in (6.12) yields the desired inequalities (6.4), at least for almost every x in
ð�n; mÞ\f0g: Continuity in x of the functions in (6.4) now yields the inequalities
throughout ½�n; m�\f0g:
Suppose the strict inequalities (6.5) hold at some x0Að�n; mÞ: Then taking any

t0Acnðx0Þ we have ðt0; x0ÞAO and

Fðt0; x0Þ ¼ ðt0 � rðx0Þ; gðx0ÞÞAðcnðx0Þ � rðx0ÞÞ � fgðx0Þg:

Thus Fðt0; x0ÞeO by (3.2) and because gðx0Þam;�n: Therefore ðt0; x0ÞeOn from the

mapping properties, and so ðt0; x0ÞAO7: Lemma 5.7 now implies that ð�1Þn ¼ 71
and that cnðxÞ ¼ cnðx0Þ for x near x0:
To prove the first inequality in (6.6) we see for xAð�n; 0Þ that xo0ogðxÞ and so

c2mðxÞpc2mðgðxÞÞ: As rðxÞ > 0 here the desired inequality holds. The second
inequality in (6.6) is proved similarly. &

The following result along with the description (3.2) of O is needed to determine
how much space lies between the sets graphðcnÞ and graphðcnþ1Þ:

Lemma 6.7. All intervals Bn have the same length, say cðBnÞ ¼ bþn � b�n ¼ LB: Let

bnX0 be defined by

bn ¼ bþn � bþn�1 ¼ b�n � b�n�1;

that is, Bn�1 ¼ Bn � bn: Then

bnXrðlnÞ; p ¼ bn þ bnþ1 ð6:13Þ

hold for every n. If in addition LB > 0 then

bn ¼ rðlnÞ ð6:14Þ
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for every n and also

m ¼ C and n ¼ D; gðCÞ ¼ �D and gð�DÞ ¼ C; ð6:15Þ

both hold.

Proof. From the periodicity property Bnþ2 ¼ Bn þ p in (5.19) all even-indexed
intervals have the same length cðB2mÞ ¼ L0; as do all odd-indexed intervals
cðB2mþ1Þ ¼ L1: Assume first that maxfL0; L1g > 0; and without loss that L0 > 0
and L0XL1: Then each B2m � fmg is a plateau, which by Lemma 6.5 implies that
m ¼ C; and gðCÞ ¼ �D and gð�DÞ ¼ C: As gðmÞX� n by (5.6) we thus have n ¼ D;
giving (6.15). The ordering Bn�1pBn of the intervals together with L0 > 0 forces a
strict separation B2m�1oB2mþ1 of the odd-indexed intervals, as B2m lies between. By
Lemma 6.5 the set ðB2m � rðmÞÞ � fgðmÞg ¼ ðB2m � rðmÞÞ � f�ng is also a plateau
and so

B2m � rðmÞDBk ð6:16Þ

for some odd ko2m; by (5.18). Note from (6.16) that L0pL1; hence L0 ¼ L1: Upon
setting x ¼ m with n ¼ 2m in the left-hand inequality of (6.4), we have using Lemma
5.5 that

bþ2m�3ob�2m�1 ¼ c2m�1ð�nÞ ¼ c2m�1ðgðmÞÞpc2mðmÞ � rðmÞ ¼ b�2m � rðmÞ:

Thus B2m�3oB2m � rðmÞ; which forces k ¼ 2m � 1 in (6.16). In fact (6.16) is an
equality as L0 ¼ L1; and this establishes (6.14) for n ¼ 2m: One now obtains these
formulas for odd n by a symmetric argument.

Now suppose that L0 ¼ L1 ¼ 0; so Bn ¼ fbng with bn ¼ b7n : Setting x ¼ m with

n ¼ 2m þ 1 in the left-hand inequality of (6.4) gives

b2m�1 ¼ c2mð�nÞpc2mðgðmÞÞpc2mþ1ðmÞ � rðmÞ ¼ b2m � rðmÞ ð6:17Þ

where in general �npgðmÞ and the monotonicity of c2m is used. The inequality
b2mXrðmÞ ¼ rðl2mÞ as in (6.13) follows immediately from (6.17) and one similarly
obtains the result for odd subscripts.
All that remains is to establish the formula for p in (6.13) under either case LB ¼ 0

or LB > 0: But this follows directly from the periodicity property (5.19) and the
definition of bn: &

The next result establishes the first max-plus equation in (1.4) at the endpoint
x ¼ �n; and the second equation at x ¼ m: These will serve as starting points in the
derivation of these equations for general x:
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Lemma 6.8. We have that

cn�1ðgðln�1ÞÞ ¼ cnðln�1Þ � rðln�1Þ ð6:18Þ

for every n.

Proof. If LB > 0 then by (5.44) of Lemma 5.5 and from Lemma 6.7

cn�1ðgðln�1ÞÞ ¼cn�1ðln�2Þ ¼ bþn�2 ¼ bþn�1 � bn�1

¼ bþn�1 � rðln�1Þ ¼ cnðln�1Þ � rðln�1Þ;

proving (6.18). If LB ¼ 0 then we have

cn�1ðxÞ � rðxÞpcn�1ðgðxÞÞpcnðxÞ � rðxÞ

for xA½�n; m�\f0g by (6.4) of Lemma 6.6. Letting x ¼ ln�1 and using the fact that

cn�1ðln�1Þ ¼ b�n�1 ¼ bþn�1 ¼ cnðln�1Þ; which holds by (5.44) of Lemma 5.5 and

because LB ¼ 0; gives (6.18). &

At this point it is not difficult to establish the inequality

c2mðxÞX max
�npspx

ðrðsÞ þ c2m�1ðgðsÞÞÞ ð6:19Þ

for xA½�n; 0Þ; and the analogous inequality corresponding to the second equation in
(1.4), using Lemma 6.6 and the monotonicity of cn: As c2m is monotone increasing
we have that

c2mðxÞXc2mðsÞXrðsÞ þ c2m�1ðgðsÞÞ ð6:20Þ

for any �npspxo0; from which (6.19) follows directly. To prove equality in (6.19)
over the range of x given in Proposition 6.2 we need an additional argument which is
based on the second claim of Lemma 6.6.
Before proving Proposition 6.2, however, we must first deal with some technical

issues that arise from the possible jump discontinuity in cn at x ¼ 0; or equivalently,
from the possibility that the interval An has positive length, in which case An � f0g is
a plateau. In this direction we have the following result, which in spirit is not unlike
Lemma 6.7. It is followed by Proposition 6.10, which extends the inequalities (6.4) to
x ¼ 0:

Lemma 6.9. All intervals An have the same length, say cðAnÞ ¼ aþn � a�n ¼ LA; and

moreover LAp1: Let anX0 be defined by

an ¼ aþn � aþn�1 ¼ a�n � a�n�1;
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that is, An�1 ¼ An � an: Then

anX1; p ¼ an þ anþ1; ð6:21Þ

hold for every n. If in addition LA > 0 then

an ¼ 1 ð6:22Þ

for every n, and so p ¼ 2:

Proof. From the periodicity property Anþ2 ¼ An þ p in (5.19) all even-indexed
intervals have the same length cðA2mÞ ¼ L0; as do all odd-indexed intervals
cðA2mþ1Þ ¼ L1: Also, we have the inequalities

aþn�1paþn � 1pa�n ; a�n�1pa�n � 1paþn ; ð6:23Þ

which follow by taking the limits x-0 from the left and right in (6.4) using

Proposition 6.1. The second inequality in the first display of (6.23) gives cðAnÞ ¼
aþn � a�n p1 for every n; and so maxfL0; L1gp1: If it is the case that L0 ¼ L1 then all

intervals An have the same length LAp1; and moreover one has anX1 directly from
(6.23) while the second formula in (6.21) follows from (5.19). In particular, if L0 ¼
L1 ¼ 0 then we are done.
Thus we assume for the remainder of the proof that maxfL0; L1g > 0: We must

show that L0 ¼ L1 and also that (6.22) holds. First assume that minfL0; L1go1:We
claim in this case that there is a strict separation

An�1oAn ð6:24Þ

between adjacent intervals. To prove this suppose first that L0o1: Then using (6.23)
with n ¼ 2m and 2m þ 1 gives

aþ2m�1oaþ2m�1 þ 1� L0 ¼ aþ2m�1 þ 1� ðaþ2m � a�2mÞpa�2m;

aþ2moaþ2m þ 1� L0 ¼ a�2m þ 1pa�2mþ1;

and so A2m�1oA2moA2mþ1 which implies (6.24). If instead L1o1 then one argues
similarly.
Still assuming that minfL0; L1go1; we have that maxfL0; L1g > 0 and so

without loss L0 > 0 and L0XL1: Then A2m � f0g is a plateau hence so is FðA2m �
f0gÞ ¼ ðA2m � 1Þ � f0g; thus

A2m � 1DAk ð6:25Þ

for some ko2m in the light of the strict separation (6.24). As aþ2m�2oa�2m�1pa�2m � 1

by (6.23) and (6.24), we have that A2m�2oA2m � 1 so necessarily k ¼ 2m � 1
in (6.25). Thus L0pL1; hence L0 ¼ L1; and so (6.25) is an equality and we have
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a2m ¼ 1: Thus proves all intervals An have the same length, and now a symmetric
argument shows that an ¼ 1 also for odd n:
There remains to prove (6.22) when L0 ¼ L1 ¼ 1: In this case we still have

An�1pAn; although the gap condition (6.24) can fail and the intervals abut. As
before each An � f0g is a plateau and hence so is ðAn � 1Þ � f0g; but now

An � 1D
[n�1

k¼�N

Ak:

But from this inclusion one sees directly that An � 1 ¼ An�1 must hold, giving
(6.22). &

Proposition 6.10. If LA ¼ 0 then the inequalities in (6.4) both hold at x ¼ 0; while if

LA > 0 then

cn�1ð0Þ ¼ cnð0Þ � 1pcnð0Þ ð6:26Þ

holds.

Proof. If LA ¼ 0 then cn and cn�1 are single valued and continuous at x ¼ 0; so the
result holds by taking limits x-0 from the left and right and (6.4).
If LA > 0 then cnð0Þ ¼ An and cn�1ð0Þ ¼ An�1: We have An�1 ¼ An � 1 by

Lemma 6.9, so the equality in (6.26) holds. The right-hand inequality An � 1pAn

holds because cðAnÞp1: &

We now prove the second main result of this section.

Proof of Proposition 6.2. Without loss we consider even n ¼ 2m and establish the
first equation in (1.4) in ½�n; d0�; for some d0 > 0 as in the statement of the
proposition. We assume for simplicity of exposition that LA ¼ 0; and so the
functions cn�1 and cn are single-valued and continuous throughout ½�n; m�;
including at x ¼ 0: In case LA > 0 these functions have jumps at x ¼ 0 and our
proof must be appropriately modified.
From the fact that c2m is monotone increasing and from the first inequality in

(6.4), where we also recall Proposition 6.10, we have that (6.20) holds whenever
�npspxpm: Thus (6.19) holds for every xA½�n; m�: Let d0A½�n; m� denote the last
point to the right of �n such that (6.19) is an equality throughout ½�n; d0�; that is,

d0 ¼ supfdA½�n; m� j the inequality ð6:19Þ is an equality

for every xA½�n; d�g: ð6:27Þ

Noting that (6.19) is an equality at x ¼ �n by Lemma 6.8, we see that d0 is well-
defined. If d0 ¼ m then we are done, so assume for the remainder of this proof that
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d0om: Then (6.19) is an equality:

c2mðd0Þ ¼ max
�npspd0

ðrðsÞ þ c2m�1ðgðsÞÞÞ ð6:28Þ

at x ¼ d0; and so the first equality in (6.2) holds. Although we do not yet know that
d0 > 0; we observe that this fact will follow immediately once the second equality in
(6.2) is established, in the light of (6.6) which also holds at x ¼ 0:
Let us now establish the strict inequality

rðd0Þ þ c2m�1ðgðd0ÞÞorðd0Þ þ c2mðgðd0ÞÞ ð6:29Þ

of the leftmost and rightmost terms of (6.2). Indeed, if (6.29) fails then we have the
equality c2m�1ðgðd0ÞÞ ¼ c2mðgðd0ÞÞ; and therefore

c2m�1ðgðxÞÞ ¼ c2mðgðxÞÞ for every xA½d0; m�;

from the monotonicity (5.35) of c2m�1 and c2m and from the inequality in (3.3). But
in this case the inequalities

rðxÞ þ c2m�1ðgðxÞÞp max
�npspx

ðrðsÞ þ c2m�1ðgðsÞÞÞ

pc2mðxÞprðxÞ þ c2mðgðxÞÞ;

which follow from (6.4) and (6.19), are equalities throughout ½d0; m� and this
contradicts the definition of d0: Thus (6.29) holds.
We therefore wish to prove the rightmost equality in (6.2). Assuming it is false, so

that c2mðd0Þorðd0Þ þ c2mðgðd0ÞÞ; one has by continuity that for any g1Aðd0; m�
sufficiently near d0;

c2mðxÞorðxÞ þ c2mðgðxÞÞ for every xA½d0; g1�: ð6:30Þ

From the definition (6.27) of d0 one may choose such g1 so that inequality (6.19) is
strict at x ¼ g1; and so

rðxÞ þ c2m�1ðgðxÞÞp max
�npspx

ðrðsÞ þ c2m�1ðgðsÞÞÞoc2mðg1Þ

for every xA½�n; g1�: ð6:31Þ

Now let

g2 ¼ inffgA½d0; g1� j c2mðxÞ ¼ c2mðg1Þ for every xA½g; g1�g: ð6:32Þ

Necessarily c2mðg2Þ ¼ c2mðg1Þ; and so (6.30) and (6.31) imply that both inequalities
in (6.4), with n ¼ 2m; are strict at x ¼ g2; that is, (6.5) holds there. Thus by Lemma
6.6 we have c2mðxÞ ¼ c2mðg2Þ for every x near g2; which contradicts the definition
(6.32) of g2 if g2 > d0: Thus g2 ¼ d0: But this is impossible, as with (6.31) it
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implies that

max
�npspd0

ðrðsÞ þ c2m�1ðgðsÞÞÞoc2mðg1Þ ¼ c2mðd0Þ;

contradicting (6.28). This establishes (6.2).
To prove the first inequality in (6.3) we assume that d0om and note that the

maximum taken in (6.2) does not occur at the endpoint s ¼ d0; in view of the strict
inequality. Thus the maximum in the right-hand side of the inequality in (6.19) is
constant for x in a neighborhood of d0: On the other hand, from the definition (6.27)
of d0 and from the monotonicity of c2m we conclude that the inequality in (6.19) is
strict for every xAðd0; g3Þ; for some g3 > d0; and so c2mðxÞ > c2mðd0Þ for every such
x: We conclude from this, again using the monotonicity of c2m; that the first
inequality in (6.3) holds throughout ðd0; m�:
To prove the second inequality in (6.3) we note for every xAðd0; m� that

rðd0Þ þ c2mðgðd0ÞÞ ¼ c2mðd0Þoc2mðxÞprðxÞ þ c2mðgðxÞÞprðxÞ þ c2mðgðd0ÞÞ;

where in addition to the first inequality in (6.3) we have used (6.2) and (6.4), and as
well the monotonicity of c2m: &

We are now in a position to prove our first main theorem.

Proof of Theorem A. All the results claimed in this theorem have already been
established in this and earlier sections, and only need be put in context.

Assuming it is not the case that xk-0 uniformly, we have the limits m and n in
(5.14), at least one of which is nonzero. The inclusion in (3.1) follows by taking the
corresponding limit in (5.6), and as noted (5.16) both m > 0 and n > 0:
Proposition 5.3 establishes formula (3.2) with sets graphðcnÞ of the form (5.32),

and with the sets Bn: The continuity and single-valuedness of the set-valued functions
cn in ½�n; m�\f0g follows from Lemma 5.6 and Proposition 6.1, with the latter result
providing the limits of cnðxÞ as x-0 and the formula for the intervals An in (3.5).
These facts together with (5.42) of Lemma 5.5 show the formulas (3.4) and (5.32) for
the set graphðcnÞ are equivalent. The monotonicity of cn is noted in (5.35), and the
ordering and periodicity properties (3.3) of these functions are also noted. Formula
(3.5) for the sets Bn; which are intervals, is given in Lemma 5.5, with Lemma 5.1.
Formula (3.7), which by (5.42) is equivalent to (3.8) when A0 has length zero, holds
as 0 ¼ a0AA0 where (5.13) is used. The claims about the lengths LA and LB of the
intervals An and Bn follow from Lemmas 6.9 and 6.7, respectively, and the continuity
of cn at x ¼ 0 when LA ¼ 0 follows from (3.5).
Finally, Proposition 6.2 establishes the max-plus equations (1.4), and their

extension to x ¼ 0 when LA ¼ 0 follows by continuity. &
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7. Bounds on and exact values of p

Here we use the max-plus equations to derive upper and lower bounds for the
additive eigenvalue p: Remarkably, for a large class of nonlinearities these upper and
lower bounds coincide and can be given in a simple and explicit form. We also see
how p can be interpreted as the spectral radius of a nonlinear operator in the spirit of
[36]. This analysis leads to a dynamical systems problem which involves the iteration
of a set-valued map.

Recall the function h given by Eq. (1.16). Also define a function h̃ by

h̃ðxÞ ¼ rðxÞ þ rðg�1ðxÞÞ

and note that hð0Þ ¼ h̃ð0Þ ¼ 2:
We continue to assume (6.1) holds in addition to our standing assumptions.

Proposition 7.1. We have that

pX max
�npxpm

hðxÞ: ð7:1Þ

If r possesses a nonzero derivative r0ð0Þa0 at the origin then p > 2 and hence LA ¼ 0:

Proof. From the first inequality in (6.4), we have that

cnðxÞ � cn�1ðgðxÞÞXrðxÞ; ð7:2Þ

and by replacing n with n � 1 and x with gðxÞ in (7.2) we have

cn�1ðgðxÞÞ � cn�2ðg2ðxÞÞXrðgðxÞÞ ð7:3Þ

for every xA½�n; m�\f0g: Combining (7.2) and (7.3) and using the periodicity
condition in (3.3) gives

cnðxÞ � cnðg2ðxÞÞXrðxÞ þ rðgðxÞÞ � p ¼ hðxÞ � p: ð7:4Þ

If n is even then the left-hand side of (7.4) is nonpositive for every xA½�n; 0Þ from the
monotonicity of cn; while the same holds for every xAð0; m� if n is odd. In any case
we conclude that hðxÞ � pp0 for every xA½�n; m�\f0g; hence for every xA½�n; m�; and
so (7.1) holds.

If r0ð0Þ exists and is nonzero then h0ð0Þ ¼ ð1� k�1Þr0ð0Þ also exists and is nonzero
by (1.8). Thus hðxÞ > hð0Þ ¼ 2 for some x near 0 and this gives p > 2 from (7.1).
Thus LA ¼ 0 by Lemma 6.9. &

In the following result recall our conventions, given near the end of Section 3, on

g�1 and g�2:
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Proposition 7.2. We have that

pp max
�nptp0

max
0pspg�1ðtÞ

rðsÞ
� �

þ rðtÞ
� �

¼ max
0pspm

max
�nptpgðsÞ

rðtÞ
� �

þ rðsÞ
� �

ð7:5Þ

and also that

pp max
0ptpm

max
g�1ðtÞpsp0

rðsÞ
� �

þ rðtÞ
� �

¼ max
�npsp0

max
gðsÞptpm

rðtÞ
� �

þ rðsÞ
� �

ð7:6Þ

both hold.

Proof. Noting that Eq. (3.28), which was obtained from the max-plus equations

(1.4), holds at least for xAð0; m�; we replace c2mþ1ðtÞ with c2mþ1ðg2ðxÞÞ in that

formula to obtain

p þ c2mþ1ðxÞ � c2mþ1ðg2ðxÞÞp max
g2ðxÞptpgð�nÞ

h1ðx; tÞ;

where the monotonicity of c2mþ1 justifies this replacement. Upon letting x-0 we

obtain

pp max
0ptpgð�nÞ

h1ð0; tÞ ¼ max
�nptp0

h1ð0; gðtÞÞ

¼ max
�nptp0

max
0pspg�1ðtÞ

rðsÞ
� �

þ rðtÞ
� �

¼ max
0pspm

max
�nptpgðsÞ

rðtÞ
� �

þ rðsÞ
� �

;

to give (7.5), where we have used the definition (3.29) of the function h1 and where
the final equality above comes about by switching the order in which the maxima are
taken. The proof of (7.6) is similar. &

Proposition 7.3. If r is monotone increasing in ½�n; 0� then the formula (3.15) for p

holds. The analogous result holds if r is monotone decreasing in ½0; m�:

Proof. From (7.5) and the monotonicity assumption on r in ½�n; 0� we have that

pp max
0pspm

ðrðgðsÞÞ þ rðsÞÞ ¼ max
0pspm

hðsÞ:

This inequality together with (7.1) yields the result. The proof for r decreasing in
½0; m� is similar. &

Proposition 7.4. If r is monotone decreasing in ½�n; 0� then

p ¼ max
0pxpm

h̃ðxÞ ¼ max
�npxpm

h̃ðxÞ: ð7:7Þ

The analogous result holds if r is monotone increasing in ½0; m�:
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Proof. From (7.6) and the monotonicity assumption on r in ½�n; 0� we have that

pp max
0ptpm

ðrðg�1ðtÞÞ þ rðtÞÞ ¼ max
0ptpm

h̃ðtÞ: ð7:8Þ

From Eq. (3.30) we have for every xA½�n; 0Þ that

p þ c2mðxÞ ¼ max
gðmÞptpg2ðxÞ

ðh0ðx; tÞ þ c2mðtÞÞ ¼ max
gðxÞptpm

ðh0ðx; gðtÞÞ þ c2mðgðtÞÞÞ

X max
gðxÞptpg�1ðxÞ

ðh0ðx; gðtÞÞ þ c2mðgðtÞÞÞ

X max
gðxÞptpg�1ðxÞ

h0ðx; gðtÞÞ
� �

þ c2mðxÞ;

where the monotonicity of c2m has been used. Therefore from the formula (3.31)
for h0

pX max
gðxÞptpg�1ðxÞ

max
g�1ðtÞpspx

rðsÞ
� �

þ rðtÞ
� �

¼ max
gðxÞptpg�1ðxÞ

ðrðg�1ðtÞÞ þ rðtÞÞ;

where again the monotonicity of r has been used. Noting that the union of the

intervals ½gðxÞ; g�1ðxÞ� for xA½�n; 0Þ equals ð0; m�; we maximize the above expression
over such x to give

pX max
0ptpm

ðrðg�1ðtÞÞ þ rðtÞÞ ¼ max
0ptpm

h̃ðtÞ;

which with (7.8) yields the first equality in (7.7).

To prove the second equality in (7.7) take any tA½�n; 0Þ and let s ¼ g�1ðtÞ; so
sAð0; m�: Then tXg�2ðtÞ and so rðtÞprðg�2ðtÞÞ ¼ rðg�1ðsÞÞ; hence h̃ðtÞph̃ðsÞ: This
implies the desired inequality.
The proofs for r increasing in ½0; m� are similar. &

Let us now interpret the additive eigenvalue p as the spectral radius of a nonlinear
operator. We refer to [36], in which some of these ideas are more fully and
systematically developed. Denoting

JðxÞ ¼ ½g2ðxÞ; gð�nÞ�;

we have the inequality

c2mþ1ðxÞX� p þ h1ðx; tÞ þ c2mþ1ðtÞ ð7:9Þ

for every tAJðxÞ from Eq. (3.28), at least for x in the range (3.32) where this
equation is valid. Let us restrict xA½0; m�; noting that every such x lies in the
range (3.32) and satisfies JðxÞD½0; m�: Then we may substitute (7.9) into itself
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repeatedly to obtain

c2mþ1ðx0ÞX� np þ
Xn

i¼1
h1ðxi�1; xiÞ þ c2mþ1ðxnÞ ð7:10Þ

for any so-called admissible sequence ðx0; x1; x2;y; xnÞ; namely a sequence satisfying
x0A½0; m� and xiAJðxi�1Þ for every 1pipn: (Heuristically one might think of such
sequences dynamically as orbits obtained by iterating the set-valued map J:) As
noted in [36], for every x0A½0; m� and nX1 there exists an admissible sequence for
which (7.10) is an equality, and so

np þ c2mþ1ðx0Þ ¼ max
xiAJðxi�1Þ
1pipn

Xn

i¼1
h1ðxi�1; xiÞ þ c2mþ1ðxnÞ

 !
: ð7:11Þ

Upon dividing (7.11) by n and taking the limit n-N we obtain

p ¼ lim
n-N

max
xiAJðxi�1Þ
1pipn

1

n

Xn

i¼1
h1ðxi�1; xiÞ

 !0
@

1
A; ð7:12Þ

valid for any x0A½0; m�: Note also that for any fixed nX1 the maximum on the right-

hand side of (7.12) differs from p by an amount of order Oðn�1Þ: As in [36],
Eq. (7.12) can be viewed as an additive and nonlinear analog of the well-known

formula rðTÞ ¼ limn-N jjT jj1=n for the spectral radius of a linear operator T :

8. The proof of Theorem B

This section is devoted to the proof of our second main theorem.

Proof of Theorem B. The fact that at least one of the quantities m and n is positive
means that the sequence xk does not tend uniformly to zero, and so Theorem A
implies that both m > 0 and n > 0: Corollary 6.4 with Proposition 6.2 implies that
both the max-plus equations (1.4) of Theorem A hold throughout ½�n; m�\f0g; and
also at x ¼ 0 if LA ¼ 0: Corollary 6.4 also gives Eq. (3.13), which when substituted
into the second equation of (1.4) and periodicity (3.3) used yields Eq. (3.12). Note
that (3.13) holds at x ¼ 0 even when LA > 0; by (6.26) of Proposition 6.10.
Proposition 7.3 establishes the formula (3.15) for p: If r0ð0Þ > 0 then p > 2; and also
m > 0 and n > 0; as in a discussion following the statement of Theorem B.
To complete the proof of Theorem B there remains to prove the constancy

property (3.14), and also Eq. (3.16) under the strict monotonicity condition.
Let us first prove (3.14). Taking any xAð�n; 0Þ we claim that

c2mþ1ðg2ðxÞÞpc2mþ1ðxÞp max
xpspm

c2mþ1ðg2ðsÞÞ ¼ c2mþ1ðg2ðxÞÞ; ð8:1Þ
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so that all terms in (8.1) are actually equal. To establish (8.1) we note that xpg2ðxÞ
together with the monotonicity of c2mþ1 gives the first inequality there. The final

equality also holds by monotonicity. The second inequality in (8.1) is a consequence
of (3.12) and the fact that hðsÞpp for every s in that formula, which follows from

(3.15). We therefore conclude from (8.1) that c2mþ1ðxÞ ¼ c2mþ1ðg2nðxÞÞ for every n;

and taking the limit n-N gives c2mþ1ðxÞ ¼ c2mþ1ð0�Þ: This shows constancy in

ð�n; 0Þ and hence in ½�n; 0Þ by continuity, to give (3.14).
If p > 2 then LA ¼ 0 by Theorem A, and so c2mþ1ðxÞ is continuous at x ¼ 0: We

observe further that hð0Þ ¼ 2 and so the maximum on the right-hand side of
Eq. (3.12) does not occur at s ¼ x when x ¼ 0: This implies that the right-hand side
of (3.12) is constant as x varies in a neighborhood of x ¼ 0; and thus throughout
½�n; d� for some d > 0; as claimed.
Now let us prove (3.16), assuming that r is strictly increasing in ½�D; 0�: If LB > 0

then (3.16) holds by (6.15) of Lemma 6.7. Therefore we assume that LB ¼ 0; and we
know that gðmÞX� n by (3.1). We have that

rðmÞ þ c2m�1ðgðmÞÞ ¼ c2mðmÞ ¼ b�2m ¼ bþ2m ¼ c2mþ1ðmÞ ¼ rðmÞ þ c2mðgðmÞÞ

by (3.13), by (5.43) of Lemma 5.5, and by Lemma 6.8. Thus c2m�1ðgðmÞÞ ¼
c2mðgðmÞÞ: It follows from this, from the ordering (3.3), and from the fact that c2m�1
is monotone decreasing and c2m is monotone increasing, that

c2m�1ðxÞ ¼ c2mðxÞ ¼ k for every xA½�n; gðmÞ� ð8:2Þ

for some constant k: Now taking the left inequality in (6.4) of Lemma 6.6 for
n ¼ 2m; and also the right inequality in (6.4) but for n ¼ 2m � 1; gives

c2m�1ðgðxÞÞpc2mðxÞ � rðxÞ ¼ k� rðxÞ ¼ c2m�1ðxÞ � rðxÞpc2m�1ðgðxÞÞ

in the range (8.2), and hence

rðxÞ þ c2m�1ðgðxÞÞ ¼ k: ð8:3Þ

But the composition of c2m�1 and g is monotone increasing, and r is strictly
increasing in ½�n; gðmÞ�D½�D; 0�; and so (8.3) forces gðmÞ ¼ �n to hold. &
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