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Abstract

Two homogeneous measures of noncompactness β and γ on an infinite dimensional Banach space X

are called “equivalent” if there exist positive constants b and c such that bβ(S) ≤ γ(S) ≤ cβ(S)

for all bounded sets S ⊂ X . If such constants do not exist, the measures of noncompactness are

“inequivalent.” We ask a foundational question which apparently has not previously been considered:

For what infinite dimensional Banach spaces do there exist inequivalent measures of noncompactness

on X? We provide here the first examples of inequivalent measures of noncompactness. We prove

that such inequivalent measures exist if X is a Hilbert space; or if (Ω,Σ, µ) is a general measure space,

1 ≤ p ≤ ∞, and X = Lp(Ω,Σ, µ); or if K is a compact Hausdorff space and X = C(K); or if K is a

compact metric space, 0 < λ ≤ 1, and X = C0,λ(K), the Banach space of Hölder continuous functions

with Hölder exponent λ. We also prove the existence of such inequivalent measures of noncompactness

if Ω is an open subset of Rn andX is the Sobolev spaceWm,p(Ω). Our motivation comes from questions

about existence of eigenvectors of homogeneous, continuous, order-preserving cone maps f : C→C and

from the closely related issue of giving the proper definition of the “cone essential spectral radius” of

such maps. These questions are considered in the companion paper [28]; see, also, [27].

Key Words: Kuratowski measure of noncompactness; inequivalent measures of noncompactness;

classical Banach spaces.



1 Introduction

If (X, d) is a metric space and S is a bounded subset of X , then K. Kuratowski [22] has defined α(S),

the Kuratowski measure of noncompactness (or MNC) of S, by

α(S) := inf{δ > 0 | S =

n⋃

i=1

Si for some Si with diam(Si) ≤ δ, for 1 ≤ i ≤ n <∞}.

As usual, the diameter of a bounded set T ⊂ X is defined by

diam(T ) := sup{d(x, y) | x, y ∈ T}.

If (X, d) is a complete metric space, then one easily verifies the following fundamental fact:

(A1) α(S) = 0 if and only if S is compact, for all bounded sets S ⊂ X .

Property (A1) explains the terminology “measure of noncompactness.” It is also straightforward to

verify the following properties, which hold whether or not (X, d) is complete:

(A2) α(S) ≤ α(T ) for all bounded sets S ⊂ T ⊂ X ;

(A3) α(S ∪ {x0}) = α(S) for all bounded sets S ⊂ X and all x0 ∈ X ; and

(A4) α(S) = α(S) for all bounded sets S ⊂ X .

If (X, ‖ · ‖) is a normed linear space and S and T are bounded subsets of X , we shall denote by

co(S), the convex hull of S, namely the smallest convex set containing S, and we shall write

S + T := {s+ t | s ∈ S and t ∈ T}, λS := {λs | s ∈ S},

where λ is any scalar. If d(x, y) := ‖x − y‖ for x, y ∈ X and α denotes the Kuratowski MNC on X ,

then G. Darbo [12] observed the following properties also hold:

(A5) α(co(S)) = α(S) for all bounded sets S ⊂ X ;

(A6) α(S + T ) ≤ α(S) + α(T ) for all bounded sets S, T ⊂ X ; and

(A7) α(λS) = |λ|α(S) for all bounded sets S ⊂ X and all scalars λ.
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Property (A7) is sometimes referred to as the “homogeneity of α.” Note that properties (A4) and (A5),

along with (A1), already imply a classical theorem of Mazur (see [29], and [11] page 180): If X is a

Banach space and S ⊂ X is compact, then co(S), the closure of co(S), is compact.

One further property satisfied by the Kuratowski MNC is the so-called “set-additivity property,”

namely

(A8) α(S ∪ T ) = max{α(S), α(T )} for all bounded sets S, T ⊂ X .

Although the Kuratowski MNC is a useful tool in analysis, it is not nearly as widely known as

it should be. The utility of the Kuratowski MNC is particularly apparent in fixed point theory. To

illustrate we recall Darbo’s fixed point theorem [12].

Theorem 1.1 (Darbo [12]). Let G be a closed, bounded, convex set in a Banach space X and

f : G→G a continuous map. Assume that there is a constant c < 1 such that α(f(S)) ≤ cα(S) for

all S ⊂ G, where α denotes the Kuratowski MNC. Then f has a fixed point in G and the set of fixed

points of f in G is compact.

Corollary 1.2 (Darbo [12]). Let G be a closed, bounded convex set in a Banach space X . Assume

that U : G→X satisfies ‖U(x)−U(y)‖ ≤ c‖x−y‖ for all x, y ∈ G, where c < 1. Assume that C : G→X

is a compact, continuous map. Define f(x) := U(x) + C(x) and assume that f(x) ∈ G for all x ∈ G.

Then f has a fixed point in G and the set of fixed points of f in G is compact.

The above corollary generalizes both the Schauder fixed point theorem and, in a weak sense, the

contraction mapping principle. It is striking that there is no known proof of the corollary (in the

stated generality) which does not use the Kuratowski MNC.

If (X, ‖ · ‖) is a Banach space, we shall denote by B(X) the set of all bounded subsets of X .

We say a map β : B(X)→[0,∞) is a homogeneous measure of noncompactness on X or ho-

mogeneous MNC if β satisfies properties (A1)-(A7) with β replacing α in these formulas. Many

authors (see [2], [4], [5]) place a more restrictive condition in their definition and additionally require

the set-additivity property (A8). Clearly, if β satisfies properties (A1) and (A8), then it satisfies

properties (A2) and (A3), but the converse is false. Most authors (see [2], [4], [5]) say that a map

β : B(X)→[0,∞) is a “measure of noncompactness” (homogeneity is understood) if β satisfies prop-

erties (A1) and (A4)-(A8). However, we shall not demand that our homogeneous MNC’s satisfy
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property (A8). We are aware of few applications in analysis which require the use of property (A8)

as opposed to properties (A2) and (A3). Furthermore, as we shall discuss in Section 2, there are

important examples of maps β : B(X)→[0,∞) which satisfy properties (A1)-(A7) but not necessarily

property (A8). A more flexible axiomatic treatment of measures of noncompactness, closer in spirit

to our approach here, is given by Banaś and Goebel in [7].

For the purposes of this paper, the issue of set-additivity will be unimportant. We shall prove

in Section 2 that there is a canonical procedure which assigns to each homogeneous MNC β (in our

sense) a homogeneous MNC ξ which satisfies property (A8). Furthermore, β = ξ if β already satisfies

property (A8). Moreover, in all of our constructions, whenever we obtain inequivalent homogeneous

MNC’s β1 and β2, our canonical construction will give inequivalent homogeneous MNC’s ξ1 and ξ2

which satisfy the set-additivity property of property (A8).

There are many examples of homogeneous MNC’s; see [2], [4], [5], [7] and references there. For the

reader’s convenience, we recall two examples. If (X, d) is a metric space and r > 0, we shall always

write

Br(x) := {y ∈ X | d(y, x)< r}. (1.1)

If (X, ‖ · ‖) is a Banach space and S ∈ B(X), we define α̃(S), the so-called “ball MNC” or “Hausdorff

MNC” of S, by

α̃(S) := inf{r > 0 | S ⊂
n⋃

i=1

Br(xi) for some xi ∈ X, for 1 ≤ i ≤ n <∞}.

One can check that α̃ satisfies properties (A1)-(A8) and that for all S ∈ B(X),

α̃(S) ≤ α(S) ≤ 2α̃(S),

where α is the Kuratowski MNC on X . However, one should note that, for applications in fixed point

theory, there are important differences between α and α̃; see Section 3 of [34] and [31].

For our second example, let (K, d) be a compact metric space and let C(K) denote the usual

Banach space of continuous maps f : K→R with norm ‖f‖ := sup
x∈K

|f(x)|. If S is a bounded subset of

C(K) and δ > 0, we define

ωδ(S) := sup{|f(x)− f(y)| | f ∈ S and x, y ∈ K satisfy d(x, y) ≤ δ},

ω(S) := lim
δ→0+

ωδ(S).
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One can prove that ω is a homogeneous MNC on C(K) and ω satisfies property (A8). Furthermore, it

is a special case of results in [32] (see, also, [3] for related theorems) that for every bounded S ⊂ C(K)

we have
ω(S)

2
≤ α(S) ≤ ω(S),

where α denotes the Kuratowski MNC. Note that property (A1) for ω implies the Ascoli-Arzelà

theorem. The homogeneous MNC ω plays an important role in [24], [36], [37].

The restriction of ω to any closed linear subspace Y of C(K) also gives a homogeneous MNC on Y .

An old result of Banach [6] implies that for any separable Banach space Z, there is a linear isometry

L : Z→Y ⊂ C([0, 1]) which maps Z onto a closed linear subspace Y of C([0, 1]). Using L, one can

define a homogeneous MNC ω̃ on Z by

ω̃(S) := ω(LS).

If, abusing notation, α denotes the Kuratowski MNC on Z, one has, for all bounded sets S ⊂ Z,

ω̃(S)

2
≤ α(S) ≤ ω̃(S).

In general, if β and γ are homogeneous MNC’s on a Banach space (X, ‖ · ‖), we shall say that β

dominates γ if there exists c > 0 such that

γ(S) ≤ cβ(S)

for all S ∈ B(X). We shall say that β and γ are equivalent if β dominates γ and γ dominates β,

that is, if there exist positive constants b and c such that, for all S ∈ B(X),

bβ(S) ≤ γ(S) ≤ cβ(S). (1.2)

If β and γ are not equivalent, we shall say they are inequivalent. A great deal of effort has been

expended in proving that various measures of noncompactness are equivalent and in finding the optimal

constants b and c in equation (1.2). Here we raise the following basic problem:

Question A. For what infinite dimensional Banach spaces (X, ‖ · ‖), do there exist inequivalent

homogeneous measures of noncompactness β1 and β2 on X?

Despite its basic nature, it seems that Question A has not been raised before and poses significant

difficulties.
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We believe that Question A is of considerable intrinsic interest, and we shall study the question

in its own right here. However, our original motivation comes from problems in nonlinear analysis, in

particular, from the problem of generalizing the classical linear Krein-Rutman theorem (see [10], [21],

[24], [35], [36], [37], [38], [41], [42] and references there) to the case of continuous, homogeneous, order

preserving maps f which take a closed cone C into itself. Such maps arise in numerous applications,

for example, in the study of max-plus operators, which in turn arise in problems in delay-differential

equations; see [24], [25], [26]. Moreover, such maps typically are not compact, and this gives rise to

significant difficulties in their analysis. Often one wants to find an eigenvector of f with eigenvalue

equal to rC(f) = r, the so-called “cone spectral radius of f .” This problem (see [24], [35], [36]) is

closely related to measures of noncompactness and to correctly defining the “(cone) essential spectral

radius of f ,” denoted ρC(f). In [28] we explore these issues further, and in particular, our explicit

construction of inequivalent MNC’s in the present paper plays a significant role in the analysis in [28].

See also [35] and [36] for definitions, references to the literature and related theorems.

If X is an infinite dimensional complex Banach space and L : X→X is a bounded linear map,

there are several definitions of ess(L), the essential spectrum of L; and these definitions are, in general,

inequivalent. However, it is known that the essential spectral radius of L, namely the quantity ρ(L)

defined by

ρ(L) := sup{|λ| | λ ∈ ess(L)},

is independent of the particular definition of ess(L). If β is any homogeneous MNC on X (for example,

if β = α) one can define

β(L) := inf{c ≥ 0 | β(LS) ≤ cβ(S) for all bounded S ⊂ X}.

More generally if C is a closed cone in a Banach space X and f : C→C is continuous, homogeneous

and order-preserving, one can define

βC(f) := inf{c ≥ 0 | β(f(S)) ≤ cβ(S) for all bounded S ⊂ C}.

It is proved in [29] that for the Kuratowski MNC α,

ρ(L) = lim
n→∞

α(Ln)1/n = inf
n≥1

α(Ln)1/n,

and it follows easily that if β is a homogeneous MNC equivalent to α, then

ρ(L) = lim
n→∞

β(Ln)1/n.
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For a general continuous, homogeneous, and order-preserving map f : C→C, where C is a cone in a

Banach space X , and for a homogeneous MNC β on X , one can follow the approach in [24], [35], [36]

and try to define ρC(f), the cone essential spectral radius of f , by

ρC(f) = lim
n→∞

βC(fn)1/n. (1.3)

One would hope that for such a definition one would have that (a) ρC(f) is independent of β;

(b) ρC(f) ≤ rC(f); and (c) ρC(f) is always defined and finite. However, with the aid of results

in this paper, it is shown in [28] (see also [27]) that, in general, the definition of equation (1.3) has

serious failings and that properties (a), (b) and (c) may fail even for continuous maps f which are

linear on C where C is a total cone. Indeed, we prove in [28] that for a general homogeneous MNC β,

even the inequality (b) above may fail. Revised definitions of the cone essential spectral radius and

new theorems about existence of eigenvectors are given in [28].

A brief outline of this paper may be helpful. In Section 2 we give some general theorems which

provide methods for finding inequivalent homogeneous MNC’s which satisfy the set-additivity prop-

erty (A8). In Sections 3-6 we apply the results of Section 2 to various special cases. Our generic

theorem is the following: For a “suitable” Banach space X , we prove that there exists a so-called

“graded family” of homogeneous, set-additive MNC’s, namely, an uncountable set {βt}t>0 of homo-

geneous, set-additive MNC’s which are pairwise inequivalent, and with βs dominating βt if 0 < s < t.

The formal definition is given in Section 2. In Section 3, we assume that (Ω,Σ, µ) is a general measure

space and 1 ≤ p < ∞, and we prove this theorem for X = Lp(Ω,Σ, µ) provided that X is infinite di-

mensional. In Section 4, we assume that K is a compact, Hausdorff space with infinitely many points,

and we prove the theorem for X = C(K). As a corollary, we obtain the theorem for X = L∞(Ω,Σ, µ).

In Section 5, we assume that (K, d) is a compact, metric space with infinitely many points and that

0 < λ ≤ 1, and we prove the theorem for X = C0,λ(K), the Banach space of Hölder continuous

functions with Hölder exponent λ. In Section 6, we assume that Ω is an open subset of R
n, that m is a

positive integer, and that 1 ≤ p ≤ ∞, and we prove the theorem for the Sobolev space X = Wm,p(Ω).

In fact, using these theorems and results of Section 2, one can easily obtain a wide variety of more

general results. Thus if Y is a Banach space, K is a compact Hausdorff space with infinitely many

points and X = C(K; Y ) denotes the Banach space of continuous functions f : K → Y , our generic

theorem holds for X . This follows from Theorem 2.12 below and the fact that C(K; R) is linearly

isomorphic to a closed, complemented linear subspace of C(K; Y ).
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2 Generating Inequivalent Measures of Noncompactness

In view of our interest in cones and cone mappings [24], [35], [36], [37], [38] we shall initially define

(weakly) homogeneous MNC’s on “wedges,” although our main interest here will be in MNC’s on

Banach spaces.

Let (X, ‖ · ‖) be a normed linear space. A set C ⊂ X will be called a wedge if C is a convex set

and λC ⊂ C for all λ ≥ 0. A wedge will be called a cone if additionally C ∩ (−C) = {0}. A wedge C

will be called a complete wedge in (X, ‖ · ‖) if C is a complete metric space in the metric derived

from the norm on X . If C is a wedge in a normed linear space (X, ‖ · ‖), then B(C) will denote the

collection of bounded subsets of C and as before, B(X) will denote the collection of bounded subsets

of X .

If C is a complete wedge in a normed linear space (X, ‖ · ‖), a map β : B(C)→[0,∞) may satisfy

certain properties:

(B1) β(S) = 0 if and only if S is compact, for every S ∈ B(C);

(B2) β(S) ≤ β(T ) for every S, T ∈ B(C) with S ⊂ T ;

(B3) β(S ∪ {x0}) = β(S) for every S ∈ B(C) and x0 ∈ C;

(B4) β(S) = β(S) for every S ∈ B(C);

(B5) β(co(S)) = β(S) for every S ∈ B(C);

(B6) β(S + T ) ≤ β(S) + β(T ) for every S, T ∈ B(C); and

(B7w) β(λS) = λβ(S) for every S ∈ B(C) and every λ ≥ 0.

If C = X and (X, ‖ · ‖) is a Banach space over R or C, it may also be true that

(B7) β(λS) = |λ|β(S) for every S ∈ B(X) and every scalar λ.

Definition. If C is a complete wedge in a normed linear space (X, ‖·‖), a map β : B(C)→[0,∞) which

satisfies properties (B1)-(B7w) will be called a weakly homogeneous measure of noncompactness

on C. If C = X and X is a Banach space and if β satisfies properties (B1)-(B7), then β will be called

a homogeneous measure of noncompactness on X .
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If 0 < r ≤ 1 and β : B(C)→[0,∞) satisfies properties (B1)-(B6), and if γ(S) := β(S)r, then γ also

satisfies properties (B1)-(B6). Thus properties (B7w) and (B7) are useful normalizing conditions.

We shall say that a map β : B(C)→[0,∞) satisfies the set-additivity property if

(B8) β(S ∪ T ) = max{β(S), β(T )} for every S, T ∈ B(C).

Of course property (B8), with (B1) for S = {x0}, implies properties (B2) and (B3) and implies, for

n <∞, that β(
⋃n

i=1 Si) = max
1≤i≤n

β(Si). For brevity, we shall henceforth refer to a (weakly) homogeneous

MNC which satisfies the set-additivity property (B8) as a (weakly) homogeneous, set-additive

MNC.

The main results of this paper concern the existence of graded families of homogeneous MNC’s on

various spaces, defined as follows.

Definition. Let X be a Banach space. By a graded family of homogeneous MNC’s we mean an

uncountable collection {βt}t>0 of homogeneous MNC’s on X , indexed by t > 0, such that if 0 < s < t

then βs dominates βt but βs is inequivalent to βt. Further, if all the MNC’s βt are set-additive, we

say that {βt}t>0 is a graded family of homogeneous, set-additive MNC’s.

Recall that for most authors (see [2], [4], [5]) an MNC is a map β : B(X)→[0,∞) which satisfies

properties (B1) and (B4)-(B8). For us, this is a homogeneous, set-additive MNC. Unlike most

authors [2], [4], [5], we do not assume that our MNC’s necessarily satisfy property (B8) because

we are aware of few applications in which property (B8), as opposed to properties (B2) and (B3),

plays a crucial role. Furthermore, property (B8) is not preserved by a variety of simple algorithms

which generate homogeneous MNC’s.

For example, suppose that (X, ‖ · ‖) is a normed linear space and C ⊂ X is a complete wedge.

Suppose that β is a weakly homogeneous MNC on C and that L : X→X is a linear map such that

LC ⊂ C and L|C is continuous. For n ≥ 1 a fixed integer, define γ : B(C)→[0,∞) by

γ(S) :=

n∑

j=0

β(LjS). (2.1)

The construction in equation (2.1) plays an important role in [35] and [36], and the reader may easily

verify that γ is a weakly homogeneous MNC on C, and also that γ is homogeneous if C = X and β

is homogeneous. However, γ need not satisfy property (B8) even if β is the Kuratowski MNC. (Note
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that it is incorrectly claimed in [35] and [36] that γ satisfies property (B8), but property (B8) is not

needed in the proofs there.)

If (X, ‖ · ‖) is a Banach space and β is a homogeneous MNC on X , properties (B1)-(B7) are not

independent, as the following three results show.

Proposition 2.1. Let C be a complete wedge in a normed linear space (X, ‖ · ‖) and assume that

β : B(C)→[0,∞) satisfies properties (B1), (B2) and (B6). Then, for all S, T ∈ B(C) with β(T ) = 0,

we have

β((S ∪ {0}) ∪ T ) = β(S ∪ {0}). (2.2)

In addition, we have that

β(S ∪ T ) = β(S) (2.3)

if C is a linear subspace of X .

Proof. The reader can check that

(S ∪ {0}) ∪ T ⊂ (S ∪ {0}) + (T ∪ {0}).

Property (B1) implies that T is compact so T ∪ {0} has compact closure and (using property (B1)

again), β(T ∪ {0}) = 0. Properties (B2) and (B6) now give

β((S ∪ {0}) ∪ T ) ≤ β(S ∪ {0}) + β(T ∪ {0}) = β(S ∪ {0}).

Property (B2) implies that β(S ∪ {0}) ≤ β((S ∪ {0}) ∪ T ), so we obtain equation (2.2).

Of course, if we assume property (B3), equation (2.3) follows immediately from equation (2.2).

The point is that, if C is a linear subspace, equation (2.3) and, of course, property (B3), follow from

our given assumptions. If C is a linear subspace of X , select x0 ∈ S and note that −x0 ∈ C. The

reader can verify that

S ∪ T ⊂ S + (T ∪ {x0}) + {−x0}

It follows from properties (B1), (B2) and (B6) that

β(S ∪ T ) ≤ β(S) + β((T ∪ {x0}) + {−x0})

≤ β(S) + β(T ∪ {x0}) + β({−x0}) = β(S).

Property (B2) implies that β(S) ≤ β(S ∪ T ), so β(S ∪ T ) = β(S).
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Proposition 2.2. Let (X, ‖ · ‖) be a Banach space and let β : B(X)→[0,∞) be a map which satisfies

properties (B1), (B2), (B6) and (B7w). Then for all S ∈ B(X) and for all T ∈ B(X) with β(T ) = 0

we have

β(S) = β(S), β(S + T ) = β(S).

Furthermore, if α denotes the Kuratowski measure of noncompactness on X , there exists c ≥ 0 such

that

β(S) ≤ cα(S)

for all S ∈ B(X), and so α dominates β.

Proof. First, property (B2) implies that β(S) ≤ β(S). If ε > 0 and Bε(0) is as in equation (1.1),

we have that S ⊂ S + Bε(0), so property (B6) implies that β(S) ≤ β(S) + β(Bε(0)). Because

Bε(0) = εB1(0), property (B7w) implies that

β(S) ≤ β(S) + εβ(B1(0)).

Since ε is arbitrary, we see that β(S) ≤ β(S), hence β(S) = β(S).

If β(T ) = 0, property (B1) implies that β(−T ) = 0. If follows from property (B6) that β(S+T ) ≤

β(S) + β(T ) = β(S). Since S ⊂ (S + T ) + (−T ), we see that

β(S) ≤ β((S + T ) + (−T )) ≤ β(S + T ) + β(−T ) = β(S + T ),

so β(S + T ) = β(S).

Define c := β(B1(0)). Let S ∈ B(X), denote d := α(S), and let ε > 0. Then there exist sets Si for

1 ≤ i ≤ n < ∞, with S =
⋃n

i=1 Si and diam(Si) < d + ε. Select xi ∈ Si for each 1 ≤ i ≤ n, define

T := {xi | 1 ≤ i ≤ n} and note that S ⊂ T + Bd+ε(0). It follows that

β(S) ≤ β(T ) + β(Bd+ε(0)) = (d+ ε)β(B1(0)) = (α(S) + ε)c.

Since ε > 0 is arbitrary, β(S) ≤ cα(S).

Corollary 2.3. If (X, ‖ · ‖) is a Banach space, then β : B(X)→[0,∞) is a homogeneous MNC if and

only if β satisfies properties (B1), (B2), (B5), (B6) and (B7). Furthermore, if this is the case then β

is dominated by the Kuratowski MNC α.
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Proof. This follows directly from Propositions 2.1 and 2.2.

In contrast to the case of a Banach space, if C is a complete cone in a normed linear space and β

is a weakly homogeneous MNC on C, then the interdependence of properties (B1)-(B7w) is unclear,

and one can prove [28] that β is not necessarily dominated by the Kuratowski MNC.

We now suppose that (Z, ‖ · ‖) and (Z1, ‖ · ‖1) are Banach spaces with Z ⊂ Z1. We assume that

the inclusion map i : Z→Z1 is continuous, so there exists a constant M with

(C1) ‖x‖1 ≤M‖x‖ for all x ∈ Z.

We also assume that there exist continuous linear maps Pn : Z→Z, indexed by integers n ≥ 1, with

the following properties:

(C2) there exists a constant C with ‖Pnx‖ ≤ C‖x‖ for all x ∈ Z and all n ≥ 1;

(C3) there exists a constant C1 with ‖Pnx‖1 ≤ C1‖x‖1 for all x ∈ Z and all n ≥ 1; and

(C4) for every n ≥ 1 there exists a constant cn with ‖Pnx‖ ≤ cn‖Pnx‖1 for all x ∈ Z.

The following theorem provides the basic construction which will be used to obtain inequivalent

homogeneous MNC’s. While the hypotheses of this result may seem unnatural, we shall see that it

can be applied to many important examples of Banach spaces Z.

Theorem 2.4. Let (Z, ‖ · ‖) and (Z1, ‖ · ‖1) be Banach spaces with Z ⊂ Z1 such that property (C1)

holds for some M . Also assume there exist linear maps Pn : Z → Z, for n ≥ 1, for which properties

(C2)-(C4) are satisfied. Let α (respectively, α1) denote the Kuratowski MNC on Z (respectively, on

Z1). With B(Z) denoting the collection of bounded subsets of Z, define A(Z) ⊂ B(Z) by

A(Z) := {S ∈ B(Z) | lim
n→∞

α((I − Pn)S) = 0}. (2.4)

For M as in property (C1) and S ∈ B(Z), define

β(S) := inf{α1(A) +Mα(B) | S ⊂ A+B, for some A ∈ A(Z) and B ∈ B(Z)}. (2.5)

Then β is a homogeneous MNC on Z, with β(S) = α1(S) for all S ∈ A(Z) and β(S) ≤ Mα(S) for

all S ∈ B(Z). If additionally there exists a sequence of sets Sn ∈ A(Z) for n ≥ 1 such that α(Sn) > 0

for all n ≥ 1 and

lim
n→∞

(
α1(Sn)

α(Sn)

)
= 0, (2.6)
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then β is inequivalent to α.

Proof. For convenience we shall denote A := A(Z) and B := B(Z). The reader can verify, using

the linearity of the maps Pn, that (a) if α(S) = 0, then S ∈ A; (b) if A1 ∈ A and A2 ∈ A, then

A1 + A2 ∈ A; (c) if A ∈ A, then co(A) ∈ A; and (d) if A ∈ A and λ is a scalar, then λA ∈ A. In

particular, {0} ∈ A, and for S ∈ B we obtain from equation (2.5) that

β(S) ≤ α1({0}) +Mα(S) = Mα(S). (2.7)

We next show that β(S) = α1(S) for all S ∈ A. If we take A = S and B = {0} in equation (2.5),

we see that β(S) ≤ α1(S). Conversely, suppose that S ⊂ A + B, where A ∈ A and B ∈ B. Using

property (C1), it follows that

α1(S) ≤ α1(A) + α1(B) ≤ α1(A) +Mα(B),

and this, with equation (2.5), implies that α1(S) ≤ β(S). Thus α1(S) = β(S).

To prove that β is a homogeneous MNC on Z, by Corollary 2.3 it is enough to prove that β

satisfies properties (B1), (B2), (B5), (B6), and (B7). We begin with property (B1). If S is compact,

then (2.7) implies that β(S) = 0. Conversely, suppose that β(S) = 0. We have to prove that

α(S) = 0. Given ε > 0, equation (2.5) implies that there exist A ∈ A and B ∈ B with S ⊂ A + B

and α1(A) +Mα(B) < ε. Because A ∈ A, there exists N such that α((I − Pn)A) < ε for all n ≥ N .

Because we have

(I − PN )S ⊂ (I − PN )A+ (I − PN )B,

it follows that

α((I − PN )S) ≤ α((I − PN )A) + α((I − PN )B) < ε+ α((I − PN )B).

Using property (C2), we deduce that α((I − PN )B) ≤ α(B) + α(PNB) ≤ (1 +C)α(B) and so

α((I − PN )S) < ε + (1 +C)α(B) < ε+
(1 +C)ε

M
.

Let N be as above and let cN be as in property (C4), where we can assume that cN ≥ 1. Since

β(S) = 0, select A′ ∈ A and B′ ∈ B with S ⊂ A′ +B′ and

α1(A
′) +Mα(B′) <

ε

cN
.

12



Using property (C3) we see that

α1(PNA
′) ≤ C1α1(A

′) <
C1ε

cN
,

and using (C4), we derive from this that

α(PNA
′) ≤ cNα1(PNA

′) < C1ε.

Property (C2) yields that

α(PNB
′) ≤ Cα(B′) <

Cε

McN
≤
Cε

M
.

Since PNS ⊂ PNA
′ + PNB

′, we see that

α(PNS) ≤ α(PNA
′) + α(PNB

′) <

(
C1 +

C

M

)
ε.

Finally, because S ⊂ PNS + (I − PN )S we conclude that

α(S) ≤ α(PNS) + α((I − PN )S) <

(
C1 +

C

M

)
ε+

(
1 +

1 + C

M

)
ε.

Since ε > 0 is arbitrary, we obtain that α(S) = 0 and β satisfies property (B1).

The fact that β satisfies property (B2) is straightforward and is left to the reader.

To verify property (B5), note that property (B2) implies that β(S) ≤ β(co(S)). On the other

hand, given ε > 0 and S ∈ B, select A ∈ A and B ∈ B with S ⊂ A+ B and

α1(A) +Mα(B) < β(S) + ε.

Recall that co(A) ∈ A. It is well known that the sum of convex sets is convex so co(A) + co(B) is

convex and thus co(S) ⊂ co(A) + co(B). It follows that

β(co(S)) ≤ α1(co(A)) +Mα(co(B)) = α1(A) +Mα(B) < β(S) + ε.

Since ε > 0 is arbitrary, β(co(S)) ≤ β(S) and hence β(co(S)) = β(S).

To prove property (B6), let S, T ∈ B and ε > 0. Then there exist A,A′ ∈ A and B,B′ ∈ B with

S ⊂ A+ B and T ⊂ A′ + B′, and both

α1(A) +Mα(B) < β(S) + ε, α1(A
′) +Mα(B′) < β(T ) + ε.
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Recall that A +A′ ∈ A and note that S + T ⊂ (A+ A′) + (B + B′). It follows that

β(S + T ) ≤ α1(A+A′) +Mα(B +B′)

≤ (α1(A) +Mα(B)) + (α1(A
′) +Mα(B′)) < β(S) + β(T ) + 2ε.

Since ε > 0 is arbitrary, we see that β(S + T ) ≤ β(S) + β(T ).

The proof that β is homogeneous (property (B7)) is straightforward and is left to the reader.

Finally, if there exists a sequence of sets Sn ∈ A for n ≥ 1, as in the statement of the theorem, we

have

lim
n→∞

(
β(Sn)

α(Sn)

)
= lim

n→∞

(
α1(Sn)

α(Sn)

)
= 0,

so β and α are inequivalent.

We shall show below that, in general, the homogeneous MNC β constructed in Theorem 2.4 need

not satisfy the set-additivity property. However, because α and α1 in Theorem 2.4 do satisfy the set-

additivity property, β as constructed in this theorem “almost satisfies” this property. More precisely,

we have the following result.

Proposition 2.5. With the notation and assumptions of Theorem 2.4, let Si ∈ B(Z) for 1 ≤ i ≤ n

and S :=
⋃n

i=1 Si. Then
β(S)

2
≤ max

1≤i≤n
β(Si) ≤ β(S) (2.8)

where β is the homogeneous MNC given by (2.5).

Proof. Because Si ⊂ S for 1 ≤ i ≤ n and β is a homogeneous MNC, it holds that β(Si) ≤ β(S) for

1 ≤ i ≤ n. This gives the second inequality in (2.8).

To prove the first inequality in (2.8), fix ε > 0 and for each i with 1 ≤ i ≤ n select Ai ∈ A(Z) and

Bi ∈ B(Z) such that Si ⊂ Ai +Bi and

α1(Ai) +Mα(Bi) < β(Si) + ε.

Such Ai and Bi exist from the definition (2.5) of β. Let A :=
⋃n

i=1 Ai and B :=
⋃n

i=1 Bi. Then the

reader can easily verify that A ∈ A(Z) and B ∈ B(Z), and that S ⊂ A+B, and so

β(S) ≤ α1(A) +Mα(B), (2.9)
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again using (2.5). Now α1(A) = max
1≤i≤n

α1(Ai) and α(B) = max
1≤i≤n

α(Bi), and so there exist j and k,

with 1 ≤ j, k ≤ n, such that α1(A) = α1(Aj) and α(B) = α(Bk). Therefore,

α1(A) +Mα(B) ≤





2(α1(Ak) +Mα(B)) < 2(β(Sk) + ε), if α1(A) ≤Mα(B),

2(α1(A) +Mα(Bj)) < 2(β(Sj) + ε), if α1(A) ≥Mα(B).

(2.10)

Combining (2.9) and (2.10), we have that

β(S) < 2

(
max
1≤i≤n

β(Si) + ε

)
,

and as ε is arbitrary, the proposition is proved.

To prove that, in general, the homogeneous MNC β constructed in Theorem 2.4 is not set-additive,

we shall need to construct Banach spaces which are infinite direct sums of other Banach spaces. This

general construction will also be used later, in Theorem 2.13, to obtain Banach spaces which possess

graded families of homogeneous MNC’s.

Let (Yn, ‖ · ‖n), for n ≥ 1, be a sequence of infinite dimensional Banach spaces over the same scalar

field K, where K = R or K = C. Let Z denote the space of all infinite sequences y = (y1, y2, y3, . . .),

where yn ∈ Yn for each n ≥ 1, such that lim
n→∞

‖yn‖n = 0, and let

|||y||| := sup
n≥1

‖yn‖n (2.11)

denote the norm on Z. One easily checks that (Z, ||| · |||) is a Banach space, and we sometimes denote

Z = (⊕∞
n=1Yn)c0 for this space.

Alternatively, an `p direct sum can also be defined as follows. With (Yn, ‖ · ‖n) as above, let p be

fixed satisfying 1 ≤ p ≤ ∞. Let Z denote the space of all infinite sequences y = (y1, y2, y3, . . .), where

yn ∈ Yn for each n ≥ 1, such that |||y|||<∞, where

|||y||| :=





( ∞∑

n=1

‖yn‖
p
n

)1/p

, if 1 ≤ p <∞,

sup
n≥1

‖yn‖n, if p = ∞,

(2.12)

denotes the norm on Z. Again one easily checks that (Z, ||| · |||) is a Banach space, and we sometimes

denote Z = (⊕∞
n=1Yn)`p for this space. As will be noted in Section 3, the space `p(N) is an example of

such a space Z.
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We also consider the following variation on the above constructions. With (Yn, ‖ · ‖n) as before, fix

a nonincreasing sequence an of positive reals satisfying an ≤ 1 for n ≥ 1. (Later we shall additionally

assume that lim
n→∞

an = 0, although we do not need this condition at present.) If Z = (⊕∞
n=1Yn)c0 then

let Z1 denote the space of infinite sequences y = (y1, y2, y3, . . .), where yn ∈ Yn for each n ≥ 1, such

that lim
n→∞

an‖yn‖n = 0, and let

|||y|||1 := sup
n≥1

an‖yn‖n (2.13)

denote the norm on Z1. If on the other hand Z = (⊕∞
n=1Yn)`p , then let Z1 denote the space of infinite

sequences y = (y1, y2, y3, . . .), where yn ∈ Yn for each n ≥ 1, such that |||y|||1 <∞, where

|||y|||1 :=





( ∞∑

n=1

ap
n‖yn‖

p
n

)1/p

, if 1 ≤ p <∞,

sup
n≥1

an‖yn‖n, if p = ∞,

(2.14)

denotes the norm on Z1. In any case it is easily verified that (Z1, ||| · |||1) is a Banach space. Clearly

|||y|||1 ≤ |||y||| for all y ∈ Z, and so we have the continuous inclusion Z ⊂ Z1.

With Z and Z1 as above, define continuous linear projections Pn : Z → Z and Qn : Z → Z by

(Pny)j :=





yj, for 1 ≤ j ≤ n,

0, for j > n,

(Qny)j :=





yj, for j = n,

0, for j 6= n.

(2.15)

Note that

|||Pny||| ≤ |||y|||, |||Pny|||1 ≤ |||y|||1, |||Pny||| ≤ a−1
n |||Pny|||1,

hold for every y ∈ Z and n ≥ 1. Thus the hypotheses (C1)-(C4) of Theorem 2.4 hold with M = 1 as

in the statement of that result, and so it follows upon defining

β(S) := inf{α1(A) + α(B) | S ⊂ A+B, for some A ∈ A(Z) and B ∈ B(Z)}, (2.16)

that β is a homogeneous MNC on Z.

Lemma 2.6. With (Z, ||| · |||) and (Z1, ||| · |||1) the sequence spaces as above, and with the norms (2.11)

and (2.13), or else (2.12) and (2.14), let m ≥ 1 be any integer and let c and d be real numbers satisfying

0 < d < c. Define the set

S(c, d;m) := {y ∈ QmZ | |||y||| ≤ c} ∪ {y ∈ Z | |||y||| ≤ d},
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with Qm as in (2.15). Then

β(S(c, d;m)) = 2(am(c− d) + d)

for the homogeneous MNC β given by (2.16).

Proof. Let us make several observations before proceeding with the proof. First note that

α((I − Pn)T ) ≤ α(T ), α(QnT ) ≤ α(T ), α1(QnT ) ≤ α1(T ), (2.17)

hold for every T ∈ B(Z) and n ≥ 1, for the projections Pn and Qn in (2.15). These are a consequence

of the inequalities |||(I−Pn)y||| ≤ |||y|||, |||Qny||| ≤ |||y|||, and |||Qny|||1 ≤ |||y|||1, which hold for every y ∈ Z.

Also note that

α1(T ) = anα(T ), if T ⊂ QnZ and T ∈ B(Z), (2.18)

which holds because |||y|||1 = an|||y||| for every y ∈ QnZ.

For simplicity let us write S := S(c, d;m). We first prove that

β(S) ≤ 2(am(c− d) + d). (2.19)

Let

A := {y ∈ QmZ | |||y||| ≤ c− d}, B := {y ∈ Z | |||y||| ≤ d}.

Then the reader can verify that A ∈ A(Z) and B ∈ B(Z), and further that S ⊂ A + B. Also,

α1(A) = amα(A) from (2.18), as A ⊂ QmZ. Thus

β(S) ≤ α1(A) + α(B) = amα(A) + α(B). (2.20)

Recall (see Proposition 5, Section A, in [33], or [14]) that if T is a ball of radius r in an infinite

dimensional Banach space (W, ‖ · ‖) and αW denotes the Kuratowski MNC on W , then αW (T ) = 2r.

Since QmZ and Z are both infinite dimensional Banach spaces, we have that α(A) = 2(c − d) and

α(B) = 2d, and with (2.20) this gives (2.19).

We now prove that

β(S) ≥ 2(am(c− d) + d). (2.21)

Fix any ε > 0. Then there exist A′ ∈ A(Z) and B′ ∈ B(Z) such that S ⊂ A′ +B′ and

α1(A
′) + α(B′) < β(S) + ε. (2.22)
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Define sets A′′ and B′′ by

A′′ := (QmA
′) ∪ {0}, B′′ := (QmB

′) ∪ {y ∈ Z | |||y||| ≤ d},

noting that A′′ ∈ A(Z) and B′′ ∈ B(Z), with S ⊂ A′′ + B′′. We claim that the chain of inequalities

amα(A′′) + α(B′′) ≤ amα(A′′) + α(B′) = α1(A
′′) + α(B′) ≤ α1(A

′) + α(B′) (2.23)

holds. First note that the equality in (2.23) follows from (2.18) applied to the set A′′ ⊂ QmZ. The

final inequality in (2.23) follows from the final inequality in (2.17) applied to the set A′. The first

inequality in (2.23) will hold once we have proved that

α(B′′) ≤ α(B′). (2.24)

To establish (2.24), we first note that

(I − Pn)S ⊂ (I − Pn)A′ + (I − Pn)B′ (2.25)

for every n ≥ 1. As (I − Pn)Z is an infinite dimensional Banach space, and as

(I − Pn)S = {y ∈ (I − Pn)Z | |||y||| ≤ d}

for n ≥ m, it follows that α((I − Pn)S) = 2d for n ≥ m. Also, lim
n→∞

α((I − Pn)A′) = 0 because

A′ ∈ A(Z). Additionally, α((I − Pn)B′) ≤ α(B′) for all n from the first inequality in (2.17). Thus it

follows from (2.25) with these observations that

2d ≤ α(B′). (2.26)

From the definition of B′′ we now have that

α(B′′) = max{α(QmB
′), 2d} ≤ max{α(B′), 2d} = α(B′),

where we have used the second inequality in (2.17) and the inequality (2.26). This proves (2.24), and

establishes (2.23). Upon combining (2.22) with (2.23), we obtain

amα(A′′) + α(B′′) < β(S) + ε. (2.27)

Let us now establish the two inequalities

2c ≤ α(A′′) + α(B′′), 2d ≤ α(B′′). (2.28)
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The first inequality in (2.28) holds because QmS ⊂ QmA
′′ +QmB

′′ and α(QmS) = 2c. The second

inequality in (2.28) holds because {y ∈ Z ||||y||| ≤ d} ⊂ B′′. With this, it follows immediately from (2.27)

and (2.28), that

inf{amu+ v | u ≥ 0, v ≥ 2d, and u+ v ≥ 2c} < β(S) + ε.

However, it is a simple exercise to prove that

inf{amu+ v | u ≥ 0, v ≥ 2d, and u+ v ≥ 2c} = 2(am(c− d) + d),

with the infimum achieved at u = 2(c− d) and v = 2d. This proves that

2(am(c− d) + d) < β(S) + ε.

Since ε > 0 is arbitrary, (2.21) holds, which completes the proof of the lemma.

The next result shows that the homogeneous MNC β constructed in Theorem 2.4 need not satisfy

the set-additivity property. Also, this result shows that the first inequality in (2.8) is sharp in the

sense that the denominator 2 in the first term cannot, in general, be decreased.

Proposition 2.7. Let (Z, ||| · |||) and (Z1, ||| · |||1) be as in Lemma 2.6, with the notation as in the

statement of that result.

(1) Let m ≥ 1 be any integer for which am < 1 and let ci and di be real numbers satisfying

0 < di < ci, for i = 1, 2, and also c2 < c1 and d1 < d2. Also let Si = S(ci, di;m) for i = 1, 2, and

S = S1 ∪ S2. Then

β(S) > max{β(S1), β(S2)}. (2.29)

(2) Let m ≥ 1 be any integer for which am < 1 and fix a real number θ satisfying am < θ < 1.

Then there exist ci and di, and sets Si and S as in (1) above, such that

β(S)

2 − θ
= β(S1) = β(S2) (2.30)

holds.

Proof. (1) It is easy to see that S = S(c1, d2;m). It follows from Lemma 2.6 that

β(S) = 2(am(c1 − d2) + d2), β(S1) = 2(am(c1 − d1) + d1), β(S2) = 2(am(c2 − d2) + d2).
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From this, using the properties of ci and di, one easily verifies (2.29).

(2) Now with θ as in the statement of the proposition, fix any c1 > 0. With ε > 0 a small

parameter, let

d1 := ε, c2 := c1θ −

(
(1 − θ)(1 − am)

am

)
ε, d2 :=

(1− θ)amc1

1 − am
+ (2 − θ)ε.

By choosing ε sufficiently small, one easily verifies that all the required conditions are satisfied and

that (2.30) holds.

Although the homogeneous MNC β constructed in Theorem 2.4 need not satisfy the set-additivity

property, our next theorem shows that there is a canonical construction which assigns to a general

homogeneous MNC β on a Banach space X a homogeneous, set-additive MNC γ on X , and for which

β dominates γ. In the particular case that β arises from the construction in Theorem 2.4, we have in

fact that β and γ are equivalent.

Theorem 2.8. Let C be a complete wedge in a normed linear space (X, ‖ · ‖) and let β be a weakly

homogeneous MNC on C. If S ∈ B(C), define γ(S) by

γ(S) := inf{ max
1≤i≤n

β(Si) | S =

n⋃

i=1

Si for some Si with 1 ≤ i ≤ n <∞}. (2.31)

Then γ is a weakly homogeneous, set-additive MNC on C, and γ(S) ≤ β(S) for all S ∈ B(C). If

C = X and β is homogeneous, then γ is homogeneous.

Suppose additionally that we are in the setting of Theorem 2.4, with β given by equation (2.5) in

the statement of that result, and with X = Z a Banach space. Then it is the case that

β(S)

2
≤ γ(S) ≤ β(S) (2.32)

for every S ∈ B(Z), and so β and γ are equivalent MNC’s. Also,

γ(S) = β(S) = α1(S) (2.33)

for every S ∈ A(Z).

Remark. In the fundamental Question A posed in the Introduction, we asked whether there exist

inequivalent homogeneous MNC’s β1 and β2 on a given infinite dimensional Banach space X . If such
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MNC’s exist, then we may take one of them to be the Kuratowski MNC on X , say β2 = α. Then α

dominates β1 by Proposition 2.2, and Theorem 2.8 implies that there is a homogeneous, set-additive

MNC γ1 on X with β1 dominating γ1. It follows that γ1 and α are inequivalent homogeneous, set-

additive MNC’s on X . Thus, whenever there exist inequivalent homogeneous MNC’s on a Banach

space X , there exist inequivalent homogeneous, set-additive MNC’s on X .

Proof of Theorem 2.8. If S =
⋃n

i=1 Si, it is immediate from property (B2) that β(Si) ≤ β(S) for

1 ≤ i ≤ n, so γ(S) ≤ β(S) and β dominates γ.

We now verify that γ satisfies the properties (B1)-(B6), along with (B7w) or (B7), and (B8), as

claimed. We begin with (B1). First, if S ⊂ C and S is compact, then β(S) = 0, and thus γ(S) = 0

since β dominates γ. Now assume that γ(S) = 0. We must prove that S is compact. To this end, let

xk ∈ S for k ≥ 1 be any sequence in S. Then it suffices to prove that this sequence has a convergent

subsequence. If the set A := {xk | k ≥ 1} has only finitely many distinct elements, then certainly a

convergent subsequence exists, so assume that A has infinitely many distinct elements. Since γ(S) = 0,

for each n ≥ 1, there exist a finite collection of sets Si,n, for 1 ≤ i ≤ N (n), such that S =
⋃N(n)

i=1 Si,n

and β(Si,n) < 1
n for each i. For n = 1, it follows that there exists an integer i1 with 1 ≤ i1 ≤ N (1) such

that T1 := Si1,1 contains infinitely many elements of A. Let us define sets Tj for j ≥ 1, inductively

as follows. Suppose, for some m > 1, that we have found sets T1 ⊃ T2 ⊃ · · · ⊃ Tm−1 such that for

1 ≤ j ≤ m − 1 it is the case that Tj ⊂ Sij ,j for some ij with 1 ≤ ij ≤ N (j), and that Tj contains

infinitely many elements of A. If we note that

Tm−1 =

N(m)⋃

i=1

(Si,m ∩ Tm−1),

it follows that there exists an integer im satisfying 1 ≤ im ≤ N (m), such that Sim,m ∩ Tm−1 contains

infinitely many elements of A. If we define Tm := Sim,m ∩ Tm−1, then Tm ⊂ Tm−1 and Tm ⊂ Sim,m,

and Tm contains infinitely many elements of A. We have thus defined Tj inductively for all j ≥ 1.

Since each Tj contains infinitely many elements of A, we can choose a strictly increasing sequence

of integers kj for j ≥ 1, such that yj := xkj
∈ Tj. We define the set B := {yj | j ≥ 1}. Repeated

application of property (B3) for β shows that if we define Bn := {yj | j ≥ n} for positive integers

n, then β(B) = β(Bn). Since Bn ⊂ Tn and β(Tn) < 1
n , we see that β(B) < 1

n for all n ≥ 1. Thus

β(B) = 0 and B is compact. It follows that the sequence yj , for j ≥ 1, has a convergent subsequence,

which is thus a convergent subsequence of xk, as desired. Thus S is compact.
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To prove property (B2) for γ, suppose that S, T ∈ B(C) and S ⊂ T . Given ε > 0, there exist sets

Tj, for 1 ≤ j ≤ m <∞, with

T =

m⋃

j=1

Tj, max
1≤j≤m

β(Tj) < γ(T ) + ε. (2.34)

Property (B2) for β implies that β(Tj ∩ S) ≤ β(Tj), and since S =
⋃m

j=1(Tj ∩ S) we obtain that

γ(S) ≤ max
1≤j≤m

β(Tj ∩ S) ≤ max
1≤j≤m

β(Tj) < γ(T ) + ε.

Since ε > 0 is arbitrary, γ(S) ≤ γ(T ).

Next, we prove that γ satisfies the set-additivity property (B8). If S, T ∈ B(C), then γ satisfies

property (B2), so

max{γ(S), γ(T )} ≤ γ(S ∪ T ).

Given ε > 0, there exist sets Si, for 1 ≤ i ≤ n <∞, with

S =

n⋃

i=1

Si, max
1≤i≤n

β(Si) < γ(S) + ε. (2.35)

Similarly, there exist sets Tj, for 1 ≤ j ≤ m <∞ satisfying (2.34). Thus S ∪T = (
⋃n

i=1 Si)∪ (
⋃m

j=1 Tj)

and

γ(S ∪ T ) ≤ max{ max
1≤i≤n

β(Si), max
1≤j≤m

β(Tj)} < max{γ(S) + ε, γ(T ) + ε}.

Since ε > 0 is arbitrary, we conclude that

γ(S ∪ T ) ≤ max{γ(S), γ(T )},

which proves property (B8) for γ.

Property (B3) holds for γ, as it is a special case of property (B8), using (B1).

To prove property (B4) for γ we have to show that γ(S) = γ(S) for all S ∈ B(C). Property (B2)

implies that γ(S) ≤ γ(S). Given ε > 0, there exist sets Si, for 1 ≤ i ≤ n <∞ satisfying (2.35). Since

n is finite, S =
⋃n

i=1 Si and

γ(S) ≤ max
1≤i≤n

β(Si) = max
1≤i≤n

β(Si) < γ(S) + ε.

Since ε > 0 is arbitrary, we obtain that γ(S) ≤ γ(S), so γ(S) = γ(S).
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We next show that γ satisfies property (B5). We have to prove that γ(co(S)) = γ(S), and since

S ⊂ co(S) and γ(S) ≤ γ(co(S)), it suffices to prove that γ(co(S)) ≤ γ(S). Given ε > 0, there exist

sets Si, for 1 ≤ i ≤ n <∞ satisfying (2.35). Define ∆ ⊂ R
n to be the simplex given by

∆ := {λ = (λ1, λ2, . . . , λn) ∈ R
n | λi ≥ 0 for 1 ≤ i ≤ n and

n∑

i=1

λi = 1}

and define Ti := co(Si). If we define a set T by

T := {
n∑

i=1

λixi | (λ1, λ2, . . . , λn) ∈ ∆ and xi ∈ Ti for 1 ≤ i ≤ n},

we leave to the reader the exercise of proving that S ⊂ T ⊂ co(S) and that T is convex, and so

T = co(S). Let ‖ · ‖∞ denote the sup norm on Rn, so ‖λ‖∞ := max
1≤i≤n

|λi|, where λ = (λ1, λ2, . . . , λn).

Select κ with 0 < κ < ε
n and for λ ∈ ∆ define

Bκ(λ) := {µ ∈ ∆ | ‖µ− λ‖∞ < κ}.

Let Bκ(λj), for 1 ≤ j ≤ p, be a finite covering of the compact set ∆, where λj := (λj
1, λ

j
2, . . . , λ

j
n) ∈ ∆

for each j. Define Γi := co(Ti ∪ {0}) and note that

(λj
i + κ)Γi ⊃ {sy | 0 ≤ s ≤ λ

j
i + κ and y ∈ Ti}.

It follows that

co(S) = T ⊂

p⋃

j=1

( n∑

i=1

(λj
i + κ)Γi

)
,

so

co(S) =

p⋃

j=1

(( n∑

i=1

(λj
i + κ)Γi

)
∩ co(S)

)
. (2.36)

Using the properties of β, we see that

β(Γi) = β(Ti ∪ {0}) = β(Ti) = β(Si),

so

β

(( n∑

i=1

(λj
i + κ)Γi

)
∩ co(S)

)
≤ β

( n∑

i=1

(λj
i + κ)Γi

)

≤
n∑

i=1

(λj
i + κ)β(Γi) =

n∑

i=1

(λj
i + κ)β(Si) ≤

n∑

i=1

(λj
i + κ)(γ(S)+ ε)

= (1 + nκ)(γ(S) + ε) < (1 + ε)(γ(S) + ε).
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The above estimate and equation (2.36) imply that γ(co(S)) < (1 + ε)(γ(S) + ε), and since ε > 0 is

arbitrary, we obtain that γ(co(S)) ≤ γ(S), as desired.

We now prove that γ satisfies property (B6). If S, T ∈ B(C), then given ε > 0, there exist sets Tj,

for 1 ≤ j ≤ m < ∞, and sets Si, for 1 ≤ i ≤ n < ∞, satisfying (2.34) and (2.35), respectively. We

then have S + T =
⋃n

i=1

⋃m
j=1(Si + Tj). Furthermore, since β satisfies property (B6), we obtain

β(Si + Tj) ≤ β(Si) + β(Tj) < γ(S) + γ(T ) + 2ε

for 1 ≤ i ≤ n and 1 ≤ j ≤ m. It follows that γ(S + T ) < γ(S) + γ(T ) + 2ε. Since ε > 0 is arbitrary,

we conclude that γ(S + T ) ≤ γ(S) + γ(T ).

The proof of weak homogeneity (property (B7w)) of γ follows easily from equation (2.31) using

the weak homogeneity of β. Similarly, if C = X and β is homogeneous (property (B7)), one easily

sees that γ is also homogeneous. We leave the details to the reader.

Lastly, we prove the claims in the final paragraph of the statement of the theorem, where β is

given by Theorem 2.4. For any S ∈ B(Z) we have (2.32) by Proposition 2.5. Now let S ∈ A(Z),

and suppose that S =
⋃n

i Si for some Si, for 1 ≤ i ≤ n < ∞. Then Si ∈ A(Z) for each i, and so

β(S) = α1(S) and β(Si) = α1(Si) for every i, by Theorem 2.4. Thus

β(S) = α1(S) = max
1≤i≤n

α1(Si) = max
1≤i≤n

β(Si).

From this and from (2.31) one easily sees that (2.33) holds, as claimed.

With the aid of Theorem 2.8, we can give a refinement of Theorem 2.4.

Theorem 2.9. Let the assumptions and notation of the statement of Theorem 2.4 hold, including the

existence of sets Sn ∈ A(Z) for n ≥ 1 with α(Sn) > 0 such that the limit (2.6) holds. Then there exists

a homogeneous, set-additive MNC γ on Z such that γ is inequivalent to α, and for which γ(S) = α1(S)

for all S ∈ A(Z). Moreover, γ(S) ≤Mα(S) for all S ∈ B(Z) where M is as in condition (C1).

Proof. Theorem 2.4 implies that the homogeneous MNC β given by equation (2.5) is inequivalent to

α, and that β(S) = α1(S) for all S ∈ A(Z). Theorem 2.8 implies that if γ is defined by equation (2.31),

then γ is a homogeneous, set-additive MNC on Z which is equivalent to β, and is thus inequivalent to α.

Also, γ(S) = β(S) = α1(S) for all S ∈ A(Z), again by Theorem 2.8. Finally, γ(S) ≤ β(S) ≤ Mα(S)

for all S ∈ B(Z) by Theorems 2.4 and 2.8.
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In our applications we shall actually have more information. For the reader’s convenience, in

Theorems 2.10 and 2.12 we explicitly describe two situations we shall encounter.

Theorem 2.10. Let Z be a Banach space with norm ‖ · ‖ and let α denote the Kuratowski MNC

on Z. Suppose for each t > 0 that (Zt, ‖ · ‖t) is a Banach space with Kuratowski MNC αt, and that

Z ⊂ Zt with the inclusion map continuous. Assume further that for each integer n ≥ 1 there is a

continuous linear map Pn : Z→Z, and that for each t ≥ 0 there is a constant C(t), such that

‖Pnx‖t ≤ C(t)‖x‖t

for every x ∈ Z, where for t = 0 we denote (Z0, ‖ · ‖0) := (Z, ‖ · ‖). Also assume that for each n ≥ 1

and t > 0, there is a constant cn(t) with

‖Pnx‖ ≤ cn(t)‖Pnx‖t

for every x ∈ Z. Define A(Z) as in equation (2.4). For each ordered pair (s, t) with 0 < s < t, assume

that there exists a sequence Sn ∈ A(Z), for n ≥ 1, with αs(Sn) > 0 for every n ≥ 1 and

lim
n→∞

(
αt(Sn)

αs(Sn)

)
= 0. (2.37)

Then for each t > 0 there exists a homogeneous, set-additive MNC γt on Z such that γs and γt are

inequivalent whenever 0 < s < t. Furthermore, if Zs ⊂ Zt whenever 0 < s < t and if the inclusion

map is continuous, then {γt}t>0 is a graded family of homogeneous, set-additive MNC’s on Z.

Proof. If, for fixed t > 0, we let Zt take the role of Z1 in Theorem 2.4, equation (2.5) gives a

homogeneous MNC βt on Z. If we then apply Theorem 2.8 to βt, we obtain from equation (2.31)

a homogeneous, set-additive MNC γt on Z such that γt(S) = βt(S) = αt(S) for all S ∈ A(Z). If,

whenever 0 < s < t, there exists a sequence of sets Sn ∈ A(Z) for n ≥ 1 as in the statement of the

theorem, it follows that

lim
n→∞

(
γt(Sn)

γs(Sn)

)
= lim

n→∞

(
αt(Sn)

αs(Sn)

)
= 0,

so γt and γs are inequivalent. Finally, if Zs ⊂ Zt with a continuous inclusion map whenever 0 < s < t,

it follows easily from the explicit formula (2.5) that βs dominates βt. Further, as γs is equivalent to βs

and γt is equivalent to βt by Theorem 2.8, it follows that γs dominates γt. Thus {γt}t>0 is a graded

family of homogeneous, set-additive MNC’s on Z, as desired.
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Our next proposition is straightforward, but it will prove useful in our subsequent work.

Proposition 2.11. Let (X, ‖ · ‖) be a Banach space and let P : X→X be a continuous linear

projection. Define X1 = PX and X2 = (I − P )X , so X1 and X2 are closed linear subspaces of X ,

and let γj and βj, for j = 1, 2, be homogeneous MNC’s on Xj. If β(S) := β1(PS)+β2((I −P )S) and

γ(S) := γ1(PS) + γ2((I −P )S) for S ∈ B(X), then γ and β are homogeneous MNC’s on X . Further,

if β1 and γ1 are inequivalent MNC’s on X1, then β and γ are inequivalent MNC’s on X .

Proof. The fact that β and γ satisfy properties (B2), (B5), (B6) and (B7) follows easily from the

linearity and continuity of P and the fact that βj and γj are homogeneous MNC’s. If S ∈ B(X) and

S is compact, then, by the continuity of P , the sets PS and (I − P )S are compact, so β1(PS) =

0 = β2((I − P )S). It follows that β1(PS) = 0 = β2((I − P )S) and β(S) = 0. Conversely, if

β(S) = 0, then β1(PS) = 0 and β2((I − P )S) = 0, so PS and (I − P )S are compact. It follows that

T := PS+(I − P )S is compact; and since S ⊂ T , the set S has compact closure. Using Corollary 2.3,

we conclude that β and γ are homogeneous MNC’s.

If β1 and γ1 are inequivalent, then, because β(S) = β1(S) and γ(S) = γ1(S) for every S ⊂ X1, it

follows that β and γ must be inequivalent. (This is the only part of the proof which uses that P is a

projection.)

IfX0 is a closed linear subspace of a Banach space (X, ‖·‖), recall that X0 is called complemented

if there exists a continuous linear projection P of X onto X0. It sometimes happens that for each

t > 0 we have a homogeneous, set-additive MNC ξt on X0 such that ξs is inequivalent to ξt whenever

0 < s < t. Our next theorem shows that in this situation we obtain homogeneous, set-additive MNC’s

γt on X for t > 0 such that γs is inequivalent to γt whenever 0 < s < t.

Theorem 2.12. Let (X, ‖ · ‖) be a Banach space and X0 a closed, complemented linear subspace of

X . Assume that for each t > 0 there exists a homogeneous, set-additive MNC ξt on X0 such that ξs is

inequivalent to ξt whenever 0 < s < t. Then, for each t > 0, there exists a homogeneous, set-additive

MNC γt on X such that γs is inequivalent to γt whenever 0 < s < t.

Furthermore, if ξs dominates ξt for some s and t, then γs dominates γt. Thus if {ξt}t>0 is a graded

family of homogeneous, set-additive MNC’s on X0, then {γt}t>0 is a graded family of homogeneous,

set-additive MNC’s on X .
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Proof. Let P : X→X0 be a continuous linear projection ofX ontoX0 and let α denote the Kuratowski

MNC on X . If S ∈ B(X) and t > 0, define

ηt(S) := ξt(PS) + α((I − P )S).

Proposition 2.11 implies that ηt is a homogeneous MNC on X , but ηt does not necessarily satisfy the

set-additivity property. Thus we use Theorem 2.8 and define γt(S) by

γt(S) := inf{ max
1≤i≤n

ηt(Si) | S =

n⋃

i=1

Si for some Si with 1 ≤ i ≤ n <∞}.

Theorem 2.8 implies that γt is a homogeneous, set-additive MNC on X . If S ⊂ X0 = PX , note that

ηt(S) = ξt(S). Since ξt satisfies the set-additivity property, it follows that for such S that

γt(S) = ηt(S) = ξt(S). (2.38)

Since ξs is inequivalent to ξt whenever 0 < s < t, it follows from equation (2.38) that γs is inequivalent

to γt. The proof that γs dominates γt if ξs dominates ξt follows from our explicit formulas for ηt and

γt. Details are left to the reader.

With the aid of the theorems of this section we can now describe some large classes of Banach

spaces which possess many inequivalent homogeneous measures of noncompactness.

Theorem 2.13. Let (Yn, ‖ · ‖n), for n ≥ 1, be a sequence of infinite dimensional Banach spaces over

the same scalar field K, where K = R or K = C. Either let Z := (⊕∞
n=1Yn)c0, namely the Banach space

of all infinite sequences y = (y1, y2, y3, . . .), where yn ∈ Yn for each n ≥ 1 and lim
n→∞

‖yn‖n = 0, and

with the norm ||| · ||| given by (2.11); or let Z := (⊕∞
n=1Yn)`p for some p with 1 ≤ p ≤ ∞, namely the

Banach space of all infinite sequences y = (y1, y2, y3, . . .), where yn ∈ Yn for each n ≥ 1 and |||y|||<∞,

where ||| · ||| is the norm given by (2.12). Then there exists a graded family of homogeneous, set-additive

MNC’s {γt}t>0 on Z.

Proof. Let an, for n ≥ 1, be a nonincreasing sequence of positive reals with an ≤ 1 for n ≥ 1

and lim
n→∞

an = 0. For t > 0, let (Zt, ‖ · ‖t) denote the space of infinite sequences y = (y1, y2, y3, . . .)

with yn ∈ Yn for each n ≥ 1, and which satisfies the following properties. If Z = (⊕∞
n=1Yn)c0 then

lim
n→∞

at
n‖yn‖n = 0 and

|||y|||t := sup
n≥1

at
n‖yn‖n.
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If Z = (⊕∞
n=1Yn)`p then |||y|||t <∞, where

|||y|||t :=





( ∞∑

n=1

atp
n ‖yn‖

p
n

)1/p

, if 1 ≤ p <∞,

sup
n≥1

at
n‖yn‖n, if p = ∞.

In any case, with ||| · |||t the norm on Zt, the reader can easily verify that (Zt, ||| · |||t) is a Banach space.

Also, Z ⊂ Zt for all t > 0, with Zs ⊂ Zt whenever 0 < s < t, and all the inclusions are continuous,

having norm less than or equal to 1.

Let us also define linear maps Pn : Z → Z and Qn : Z → Z by the formulas (2.15). Then

|||Pny||| ≤ |||y|||, |||Pny|||t ≤ |||y|||t, |||Pny||| ≤ a−t
n |||Pny|||t,

for all n ≥ 1 and y ∈ Z, and every t > 0. Define Sn ⊂ Z by

Sn := {y ∈ QnZ | |||y||| ≤ 1}

for n ≥ 1, and note that Sn ∈ A(Z), where A(Z) is defined by equation (2.4). The set Sn can be

considered as a subset of Zt, and in the norm in this space, Sn is isometric to the closed ball of radius

at
n, centered at 0, in the infinite dimensional Banach space Yn with norm at

n‖ · ‖n. Thus αt(Sn) = 2at
n

where αt denotes the Kuratowski MNC on Zt. It follows that if 0 < s < t, then the limit (2.37) holds.

We have thus verified the hypotheses of Theorem 2.10, and Theorem 2.13 follows directly.

3 Inequivalent Measures of Noncompactness on Lp spaces

Throughout this section, (Ω,Σ, µ) will denote a general measure space. Thus Ω is a set, Σ is a σ-

algebra of subsets of Ω with Ω ∈ Σ and µ is a measure on Ω, with measurable sets being the elements

of Σ. We shall denote by Lp(Ω,Σ, µ), where 1 ≤ p ≤ ∞, the usual Banach space whose elements

are equivalence classes of measurable functions. For the most part we consider the case of p < ∞.

Discussion of the case p = ∞ will be deferred to the next section; see Corollary 4.7.

The main result of this section is the following theorem.

Theorem 3.1. Let (Ω,Σ, µ) be a measure space and assume that 1 ≤ p < ∞. If the space

Lp := Lp(Ω,Σ, µ) is infinite dimensional, then there exists a graded family of homogeneous, set-additive

MNC’s {γt}t>0 on Lp.
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A necessary and sufficient condition for the space Lp(Ω,Σ, µ) to be infinite dimensional is given

below in Lemma 3.3.

Remark. Theorem 3.1 can be stated in a more elegant way. Suppose that 1 ≤ p < ∞, and recall

that a Banach lattice X for which ‖x+ y‖p = ‖x‖p + ‖y‖p whenever x ∧ y = 0, is called an abstract

Lp space. We refer to pages 1-15 of [23] for further details and definitions. A classical result of

S. Kakutani (see [17] or Theorem 1.b.2 on page 15 of [23]) implies that an abstract Lp space X , where

1 ≤ p < ∞, is linearly isometric to Lp(Ω,Σ, µ) for some measure space (Ω,Σ, µ). Furthermore the

linear isometry Λ : X→Lp(Ω,Σ, µ) can be chosen so that Λ and Λ−1 respect the partial orderings on

X and Lp(Ω,Σ, µ). It follows from Theorem 3.1 that on an infinite dimensional abstract Lp space X ,

where 1 ≤ p <∞, there exists a graded family of homogeneous, set-additive MNC’s {γt}t>0.

Let us begin by treating the special case of the space `p(N), namely, the case where Ω = N is the

set of positive integers and µ is the counting measure on N. Thus for 1 ≤ p < ∞, the set `p(N) is

the collection of maps x : N→R such that ‖x‖p := (
∑∞

i=1 |x(i)|
p)1/p is finite, where here ‖ · ‖p denotes

the norm. We shall also consider the Banach space `p(N × N) of maps y : N × N→R in the norm

‖y‖p := (
∑∞

i=1

∑∞
j=1 |y(i, j)|

p)1/p. The analogous spaces for p = ∞ are also considered.

Proposition 3.2. Let 1 ≤ p ≤ ∞. Then there exists a graded family of homogeneous, set-additive

MNC’s {γt}t>0 on `p(N).

Proof. There is a one-one map σ of N × N onto N. Fixing such a map σ, define a linear map

Lσ : `p(N)→`p(N×N) by Lσx = y, where y(i, j) = x(σ(i, j)). One can check that Lσ is an isometry of

`p(N) onto `p(N×N). Next note that `p(N×N) is linearly isometric to (⊕∞
n=1Yn)`p where Yn := `p(N)

for all n ≥ 1. Thus we are in the situation of Theorem 2.13, from which Proposition 3.2 follows.

Let us now recall a few measure theoretic generalities. For a measure space (Ω,Σ, µ), a set E ∈ Σ is

an atom if both µ(E) > 0 and there do not exist disjoint measurable sets E ′ and E ′′ with E = E ′∪E ′′

and both µ(E ′) > 0 and µ(E ′′) > 0. If E1 and E2 are atoms, it follows that either µ(E1 ∩ E2) = 0

or else both µ(E1 \ (E1 ∩E2)) = 0 and µ(E2 \ (E1 ∩E2)) = 0 hold. We shall say that E1 and E2 are

equivalent atoms if µ(E1 ∩E2) > 0. It is easy to see that this is an equivalence relation on the set

E of all atoms.
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If f : Ω→R is measurable, one defines (see [39], page 73) the essential range of f , denoted R(f),

as follows: r ∈ R is an element of R(f) if and only if, for every ε > 0, the set f−1((r − ε, r + ε)) has

positive measure. If [c, d] is a compact interval such that µ(f−1([c, d]))> 0, one can prove by repeated

bisections of [c, d] that [c, d]∩ R(f) 6= ∅. It follows, by taking [c, d] = [−n, n] with n sufficiently large,

that R(f) 6= ∅ must always hold. (We avoid the trivial case of µ(Ω) = 0.) We further claim that if

E ⊂ Ω is an atom then there exists some r ∈ R such that f(x) = r for almost every x ∈ E. Indeed,

take any r ∈ R(f |E), where R(f |E) denotes the essential range of the restriction of f to E. Then for

every ε > 0 the set f−1((r− ε, r+ ε))∩E has positive measure, and thus the set E \ f−1((r− ε, r+ ε))

has measure zero. It follows that |f(x) − r| < ε for almost every x ∈ E, and as ε is arbitrary, that

f(x) = r almost everywhere on E.

Our next lemma is obvious for most measure spaces, but we have not found a reference for the

general case. We are indebted to Shelley Goldstein for a suggestion which simplified our original

argument.

Lemma 3.3. Let (Ω,Σ, µ) be a measure space and assume that 1 ≤ p < ∞. Then Lp(Ω,Σ, µ) is

infinite dimensional if and only if there exist infinitely many pairwise disjoint measurable sets Ωn, for

n ≥ 1, with 0 < µ(Ωn) <∞ for all n.

Proof. Denote Lp := Lp(Ω,Σ, µ) for simplicity of notation. If sets Ωn, for n ≥ 1, as in the statement

of the lemma exist and if χΩn is the characteristic function of Ωn, then any finite subcollection of

{χΩn | n ≥ 1} is linearly independent and χΩn ∈ Lp for 1 ≤ p ≤ ∞. Thus Lp is infinite dimensional.

Conversely, suppose that 1 ≤ p <∞ and Lp is infinite dimensional. With E denoting the set of all

atoms in Σ, recall the equivalence relation on E described above. Note that two atoms E1 and E2 are

equivalent if and only if their characteristic functions χE1 and χE2 are equal almost everywhere. Now

let E0 ⊂ E denote the set of all atoms E for which µ(E) < ∞, and consider this equivalence relation

restricted to E0. If the number of equivalence classes in E0 is infinite, there exist atoms Ek ∈ E0 for

k ≥ 1 with µ(Ej ∩Ek) = 0 whenever j 6= k. If we define Ω1 = E1, and Ωn = En \ (
⋃n−1

k=1 Ek) for n ≥ 2,

the sets Ωn satisfy the conditions of the lemma and we are done.

Thus we can assume that the number of equivalence classes in E0 is finite. If there areN equivalence

classes, select an atom Ek from each equivalence class, and define F = Ω \
⋃N

k=1 Ek. Now suppose

there exists a measurable set G1 ⊂ F such that 0 < µ(G1) < ∞. Then G1 is not an atom, being
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disjoint from each Ek, and so there exists a measurable set G2 ⊂ G1 such that 0 < µ(G2) < µ(G1).

Continuing in this fashion we obtain a sequence of measurable sets G1 ⊃ G2 ⊃ G3 ⊃ · · · such that

0 < µ(Gn+1) < µ(Gn) < ∞ for every n ≥ 1. Upon setting Ωn = Gn \Gn+1, we again see that we are

done.

Thus we may assume that whenever G ⊂ F is a measurable set then either µ(G) = 0 or µ(G) = ∞.

It follows that if f ∈ Lp and Qε := {r ∈ R | |r| > ε} for ε > 0, then µ(f−1(Qε) ∩ F ) = 0; otherwise

we would contradict
∫
Ω |f |p dµ < ∞. Thus |f(x)| ≤ ε almost everywhere on F , and since ε > 0 is

arbitrary it follows that f(x) = 0 almost everywhere on F . Further, since Ek is an atom for each k,

with 1 ≤ k ≤ N , there exists rk ∈ R, with rk dependent on f , such that f(x) = rk almost everywhere

on Ek. We have thus shown that for every f ∈ Lp, there exist real numbers rk, for 1 ≤ k ≤ N , such

that f =
∑N

k=1 rkχEk
in Lp, where χEk

denotes the characteristic function of Ek. This contradicts the

assumption that Lp is infinite dimensional, and completes the proof.

Lemma 3.4. Assume that 1 ≤ p ≤ ∞ and that (Ω,Σ, µ) is a measure space, and denote Lp :=

Lp(Ω,Σ, µ). Assume that for each integer n ≥ 1 there is a measurable set Ωn such that 0 < µ(Ωn) <∞

for all n ≥ 1 and Ωm ∩ Ωn is empty whenever m 6= n. Define a linear map P : Lp→Lp by

(Pf)(x) :=





1

µ(Ωn)

∫

Ωn

f dµ, for x ∈ Ωn,

0, for x ∈ Ω \
∞⋃

n=1

Ωn.

Then P is a continuous linear projection, with ‖P‖ = 1, and whose range PLp ⊂ Lp is linearly

isometric to `p(N).

Proof. We consider only the case that 1 ≤ p < ∞, the case p = ∞ being treated similarly but

with slight modifications. The linearity of P is obvious, as is the fact that P 2 = P . Also, Hölder’s

inequality gives

|(Pf)(x)| ≤

(
1

µ(Ωn)

∫

Ωn

|f |p dµ

)1/p

for every x ∈ Ωn. It follows that

∫

Ω
|Pf |p dµ =

∞∑

n=1

∫

Ωn

|Pf |p dµ ≤
∞∑

n=1

∫

Ωn

|f |p dµ =

∫

Ω
|f |p dµ,
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so ‖P‖ ≤ 1. If f is the characteristic function of Ωn for some n ≥ 1, then Pf = f , so ‖P‖ = 1.

If g ∈ PLp, we know that there exist quantities an for n ≥ 1 such that g(x) = an for all x ∈ Ωn

and g(x) = 0 for x ∈ Ω \
⋃∞

n=1 Ωn. Upon defining V g ∈ `p(N) by (V g)n := anµ(Ωn)1/p, one can easily

check that ‖V g‖ = ‖g‖ and that V : PLp → `p(N) is onto.

We now prove the main theorem of this section.

Proof of Theorem 3.1. By Lemma 3.3 there exist pairwise disjoint, measurable sets Ωn for n ≥ 1

with 0 < µ(Ωn) < ∞ for all n ≥ 1. Lemma 3.4 implies that there is a continuous linear projection

P : Lp→Lp such that PLp is linearly isometric to `p(N), and by Proposition 3.2 there exists a graded

family of homogeneous, set-additive MNC’s {ξt}t>0 on PLp. Thus by Theorem 2.12, there exists a

graded family of homogeneous, set-additive MNC’s {γt}t>0 on Lp.

Theorem 3.1 implies a corresponding result for any infinite dimensional Hilbert space.

Corollary 3.5. Let H be an infinite dimensional Hilbert space. Then there exists a graded family of

homogeneous, set-additive MNC’s {γt}t>0 on H .

Proof. If H is separable, H is linearly isometric to L2([0, 1]) with Lebesgue measure, so Corollary 3.5

follows from Theorem 3.1 in this case.

Thus we assume that H is not separable and use Theorem 2.12 to reduce to the separable case.

There exists a countable, infinite family of orthonormal vectors {en | n ≥ 1} in H . If H0 denotes the

closed linear span of {en |n ≥ 1}, then H0 is separable and there exists an orthogonal linear projection

P of H onto H0. Since H0 is separable, there exists a graded family of homogeneous, set-additive

MNC’s {ξt}t>0 on H0. Corollary 3.5 now follows from Theorem 2.12.

4 Inequivalent Measures of Noncompactness on C(K)

If K is a compact, Hausdorff space, C(K) will denote the Banach space of continuous maps f : K→R

with the norm ‖f‖ := sup
x∈K

|f(x)|. Our main goal in this section is to prove the following result.

Theorem 4.1. Let K be a compact Hausdorff space with infinitely many elements. Then there exists

a graded family of homogeneous, set-additive MNC’s {γt}t>0 on C(K).
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We shall prove Theorem 4.1 by considering two separate cases, namely, the case where the set K∗

of accumulation points in K is infinite, and the case where K∗ is finite. Here K∗ ⊂ K is defined by

K∗ := {x ∈ K | {x} is not an open set}. (4.1)

With K a compact Hausdorff space, let us observe that K∗ is closed and thus compact. Also, K∗ 6= ∅

if and only if K is an infinite set; in particular, if K is infinite but K∗ = ∅ then {{x} | x ∈ K} would

be an open cover of K without a finite subcovering, contradicting the compactness of K. Let us note

further that if x ∈ K∗, then every neighborhood of x contains infinitely many points of K.

With the next two lemmas, we treat the case that K∗ is an infinite set.

Lemma 4.2. Let K be a compact Hausdorff space. Assume that there exists a decreasing sequence

of nonempty open sets Un ⊂ K, for n ≥ 1, with U1 = K and Un+1 ⊂ Un for all n ≥ 1, and where

Un\Un+1 is an infinite set for all n ≥ 1. Then there exists a graded family of homogeneous, set-additive

MNC’s {γt}t>0 on C(K).

Proof. We define A :=
⋂∞

n=1 Un =
⋂∞

n=1 Un. Since Un is a decreasing sequence of compact, nonempty

sets, A is compact and nonempty. We define Z := C(K) with the usual norm ‖·‖, and for convenience

we set Bn := Un \ Un+1.

Our strategy now is to use Theorem 2.10 to prove our lemma. Let an, for n ≥ 1, be a nonincreasing

sequence of positive reals with a1 ≤ 1 and lim
n→∞

an = 0. For t > 0, let Zt denote the set of functions

f : K→R such that f |A is continuous, f |(K \A) is continuous, and ‖f‖t <∞, where

‖f‖t := max

{
sup
x∈A

|f(x)|, sup
n≥1

(
at

n sup
x∈Bn

|f(x)|

)}

denotes the norm on Zt. Again, one can easily verify that (Zt, ‖ · ‖t) is a real Banach space; in proving

this fact, it is useful to note that for every open neighborhood V of A, there is an integer N = N (V )

such that Un ⊂ V for all n ≥ N (V ). One also has that Z ⊂ Zt for t > 0, with Zs ⊂ Zt whenever

0 < s < t, with all the inclusion maps having norm less than or equal to 1.

Since K is a normal space, for each n ≥ 1 there exists a continuous map ψn : K→[0, 1] with

ψn(x) = 0 for all x ∈ Un+1 and ψn(x) = 1 for all x ∈ K \Un. Define linear maps Pn : Z→Z for n ≥ 1

by

(Pnf)(x) := ψn(x)f(x),
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and note that

‖Pnf‖ ≤ ‖f‖, ‖Pnf‖t ≤ ‖f‖t, ‖Pnf‖ ≤ a−t
n ‖Pnf‖t,

holds for all n ≥ 1 and f ∈ Z, and every t > 0. (We remark that, in contrast to our earlier application

of Theorem 2.10, the maps Pn here are not projections.)

For each n ≥ 1, define

Yn := {f ∈ Z | f(x) = 0 for all x ∈ Un+1 ∪ (K \Un)}.

Note that Yn is a closed linear subspace of (Z, ‖ · ‖), and also of (Zt, ‖ · ‖t) for all t > 0, and thus is a

Banach space in each of these norms. Further, ‖f‖t = at
n‖f‖ for all f ∈ Yn, and because Un \Un+1 is

an infinite set, Yn is infinite dimensional.

Again with A(Z) defined by equation (2.4), where α is the Kuratowski MNC on Z, define Sn :=

{f ∈ Yn |‖f‖ ≤ 1} ⊂ Z for n ≥ 1. As before, Sn ∈ A(Z). Then Sn, considered as a subset of (Yn, ‖·‖t),

is the closed ball of radius at
n, so αt(Sn) = 2at

n where αt denotes the Kuratowski MNC on Zt. Thus,

if 0 < s < t, the limit (2.37) holds. We have verified the hypotheses of Theorem 2.10, so Lemma 4.2

follows directly.

The hypotheses of Lemma 4.2 will be satisfied if K has infinitely many accumulation points.

Lemma 4.3. Let K be a compact Hausdorff space and let K∗, the set of accumulation points, be

given by (4.1). Assume that K∗ has infinitely many elements. Then there exists a graded family of

homogeneous, set-additive MNC’s {γt}t>0 on C(K).

Proof. Under the assumption that K∗ is an infinite set, there exists x∗ ∈ K∗ such that every

open neighborhood U of x∗ contains infinitely many elements of K∗. If not, then for every x ∈ K∗

there exists an open neighborhood Vx of x such that x is the only element of K∗ in Vx. But then

{Vx | x ∈ K∗} is an open covering of the compact space K∗, and this open covering has no finite

refinement, a contradiction.

We may thus fix x∗ ∈ K∗ so that every open neighborhood U of x∗ contains infinitely many

elements of K∗. Recall that for any x ∈ K∗, every open neighborhood of x contains infinitely many

elements of K. Let U1 := K and fix any x1 ∈ K∗ with x1 6= x∗. Next select an open neighborhood

U2 of x∗ with x1 6∈ U2 and select x2 ∈ K∗ ∩ U2 with x2 6= x∗. In general, we proceed by induction.

Suppose we have found open neighborhoods Uj of x∗ for 1 ≤ j ≤ n such that U j+1 ⊂ Uj for 1 ≤ j < n
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and such that there exists xj ∈ (K∗ ∩ Uj) \ U j+1 for 1 ≤ j < n. Then select xn ∈ K∗ ∩ Un with

xn 6= x∗ and select Un+1 to be an open neighborhood of x∗ such that Un+1 ⊂ Un and xn 6∈ Un+1.

Since Un \ Un+1 is an open neighborhood of xn ∈ K∗, the set Un \ Un+1 contains infinitely many

elements of K. Thus Lemma 4.3 follows from Lemma 4.2.

To complete the proof of Theorem 4.1, it suffices, by virtue of Lemma 4.3, to assume that K∗ is a

finite set. Here it is useful to consider the Banach spaces c(Θ) and c0(Θ), where Θ is an infinite set.

(The set Θ here is not endowed with a topology, but is simply an index set.) We recall some definitions.

Let b(Θ) denote the Banach space of all bounded maps f : Θ→R in the norm ‖f‖ := sup
θ∈Θ

|f(θ)|. We say

that f ∈ b(Θ) is an element of c(Θ) if and only if for every ε > 0, there exists a finite set S = S(ε, f)

such that

sup{|f(θ1) − f(θ2)| | θ1, θ2 ∈ Θ \ S} < ε.

One can easily check that c(Θ) is a closed linear subspace of b(Θ) and hence a Banach space. Given

f ∈ c(Θ) and any finite subset S ⊂ Θ, define A(f ; S) to be the closure of {f(θ) | θ ∈ Θ \ S}. If F (Θ)

denotes the collection of all finite subsets S ⊂ Θ and if f ∈ c(Θ), it is easy to show that there is a

unique real number r such that
⋂

S∈F(Θ)

A(f ; S) = {r}. (4.2)

For f ∈ c(Θ) and r as in equation (4.2) define Lf by

Lf := r. (4.3)

One can check that L : c(Θ)→R is a continuous linear functional and ‖L‖ = 1. We define c0(Θ) ⊂ c(Θ)

by

c0(Θ) := {f ∈ c(Θ) | Lf = 0}.

Then c0(Θ) ⊂ c(Θ) is a closed complemented subspace, in fact with a one-dimensional complement

spanned by e : Θ→R, the function identically equal to 1.

Proposition 4.4. Let Θ be an infinite set. Then there exists a graded family of homogeneous,

set-additive MNC’s {γt}t>0 on c(Θ), and similarly on c0(Θ).

Proof. By Theorem 2.12 it is enough to prove the result for c0(Θ). As is well-known, Θ and Θ × N

have the same cardinality (see [20], page 280), so there is a one-one map σ of Θ × N onto Θ. Fixing
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such a map σ, define a linear map Uσ : c0(Θ) → c0(Θ × N) by Uσf = g, where g(θ, n) = f(σ(θ, n)).

One can check that Uσ is an isometry of c0(Θ) onto c0(Θ×N). Thus it suffices to prove the result for

c0(Θ × N).

One now easily checks that for a function g : Θ × N → R, one has that g ∈ c0(Θ × N) if and only

if both g(·, n) ∈ c0(Θ) for every n ∈ N and lim
n→∞

‖g(·, n)‖c0(Θ) = 0. From this one sees directly that

c0(Θ ×N) is linearly isometric to (⊕∞
n=1Yn)c0 where Yn := c0(Θ) for all n ≥ 1. The result now follows

from Theorem 2.13.

We now prove the main result of this section.

Proof of Theorem 4.1. It is enough to consider the case where K∗ is a nonempty finite set. We

consider first the special case that K∗ is a singleton, so K∗ = {x∗} for some x∗ ∈ K. We claim that

C(K) is linearly isometric to c(Θ) where Θ := K \ {x∗}. By virtue of Proposition 4.4, the proof of

Theorem 4.1 will be complete in this case. We begin by proving that if f ∈ C(K), then f |Θ ∈ c(Θ).

First observe that K \ U is a finite set for any neighborhood U of x∗ as every point in K \ U is both

open and closed. From this observation, and from the continuity of f at x∗, one directly shows that

f |Θ ∈ c(Θ). Thus define H : C(K) → c(Θ) by setting Hf := f |Θ for f ∈ C(K). It is clear that H

is linear and that ‖Hf‖ = ‖f‖ for all f ∈ C(K). To see that H is onto, given f ∈ c(Θ), we define a

map g : K→R by g(x) := f(x) for x ∈ Θ and g(x∗) := Lf , where L is defined as in equations (4.2),

(4.3). We leave to the reader the verification that g is continuous and Hg = f .

Now suppose more generally that K∗ has n elements, say K∗ = {x1, x2, . . . , xn}, where 1 ≤ n <∞.

Let U1 be an open neighborhood of x1 such that xj 6∈ U1 for 2 ≤ j ≤ n. Then U1 \U1, being disjoint

from K∗, is an open set. Thus U1 is an open set, and of course, a closed set. We define ψ(x) = 1 for

x ∈ U1 and ψ(x) = 0 for x ∈ K \ U1. Since U1 is both open and closed, ψ is a continuous function.

If we define P : C(K)→C(K) by

(Pf)(x) := ψ(x)f(x),

then P is a continuous linear projection whose range P (C(K)) is clearly linearly isometric to C(S),

where S := U1. Noting that S is a compact Hausdorff space and an infinite set, and that for every x ∈ S

with x 6= x1 the set {x} is both open and closed, we conclude from the first part of this proof (where

n = 1) that the space C(S) and hence P (C(K)) each possess a graded family of homogeneous, set-

additive MNC’s. Thus, by Theorem 2.12, the space C(K) possesses a graded family of homogeneous,
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set-additive MNC’s. With this, the theorem is proved.

If [a, b] is a finite interval of reals and 1 ≤ m < ∞, then Cm([a, b]) denotes, as usual, the Banach

space of m times continuously differential functions f : [a, b]→R in the norm

‖f‖ := sup
a≤t≤b

|f (m)(t)|+
m−1∑

j=0

|f (j)(a)|.

We have the following result for this space.

Corollary 4.5. There exists a graded family of homogeneous, set-additiveMNC’s {γt}t>0 onCm([a, b]).

Proof. It is well-known that Cm([a, b]) is linearly isomorphic to the Banach space C([a, b])× Rm by

the map

Jf := (f (m), f(a), f (1)(a), f (2)(a), . . . , f (m−1)(a)).

There is a continuous linear projection of C([a, b])× Rm onto C([a, b]), so the result follows by Theo-

rems 2.12 and 4.1.

We recall that C(K) is a Banach lattice, and we refer the reader to [23] or [42] for basic definitions

and theorems about Banach lattices. In general, if X and Y are Banach lattices, one says that X and

Y are linearly order isometric (see [23]) if there is a linear isometry Λ of X onto Y such that Λ

and Λ−1 preserve the natural partial ordering on X and Y associated with the lattice structures. A

Banach lattice X is called an abstract M-space if ‖x + y‖ = max(‖x‖, ‖y‖) whenever x ∧ y = 0.

Of course C(K) is an abstract M -space for K a compact Hausdorff space. An element e of a Banach

lattice X is called a strong unit of X provided that, for every x ∈ X , it is the case that ‖x‖ ≤ 1

if and only if |x| ≤ e. If e denotes the function identically equal to 1 on K, then e is a strong unit

in C(K); however, not every abstract M -space has a strong unit. If X is an abstract M -space, a

classical result of S. Kakutani asserts (see [24], Theorem 1.b.6, page 16 and [18]), that X is linearly

order isometric to a Banach sublattice of C(K) for some compact Hausdorff space K. If, in addition,

X has a strong unit, then X is linearly order isometric to C(K) for some compact Hausdorff space K.

Kakutani (see [13], [18], [23]) has also explicitly described the closed sublattices of C(K) for K a

compact Hausdorff space. If X is a closed linear subspace of C(K), then X is a sublattice if and only

37



if there is a collection F of ordered triples (k1, k2, λ) with k1, k2 ∈ K and λ ≥ 0 such that

X = {f ∈ C(K) | f(k1) = λf(k2) for every (k1, k2, λ) ∈ F}. (4.4)

See Theorem 1.b.5 in [23]. More generally, if K is a compact Hausdorff space, and F is a collection

of ordered triples (k1, k2, λ) with k1, k2 ∈ K and λ ∈ R, and if X is defined by (4.4), then X is called

a G-space. Thus any Banach sublattice of C(K) is a G-space. A. Grothendieck [16] introduced

G-spaces, and later Y. Benjamini [8] proved that every separable G-space X is linearly isomorphic to

C(S) for some compact Hausdorff space S. (Of course, all linear isomorphisms are understood to be

continuous).

In view of these remarks we easily obtain the following result.

Theorem 4.6. Let X be an infinite dimensional Banach space and assume that X satisfies at least

one of the following conditions: (a) X is an abstract M -space with a strong unit; (b) X is a separable

abstract M -space; (c) X is a separable G-space; or (d) X ⊂ C(K) is a G-space, where K is a compact

metric space. Then there exists a graded family of homogeneous, set-additive MNC’s {γt} on X .

Proof. If (a) is satisfied, Kakutani’s theorem implies that X is linearly order isometric to C(K)

for some compact Hausdorff space K. Since X is infinite dimensional, K must have infinitely many

points. The conclusions of Theorem 4.6 now follow from Theorem 4.1. If X satisfies condition (c),

Benyamini’s theorem [8] implies that X is linearly isomorphic to C(S), for some compact Hausdorff

space S, so we again obtain Theorem 4.6 from Theorem 4.1. If X satisfies condition (b), Kakutani’s

theorem implies that X is linearly order isometric to a separable Banach sublattice of C(K) for some

compact Hausdorff space K, so X is linearly isomorphic to a separable G-space, and case (b) reduces

to case (c). If K is a compact metric space, it is well-known that C(K) is separable, so if X ⊂ C(K)

is a G-space, then X is separable, and case (d) reduces to case (c).

The following result extends Theorem 3.1 to the case of p = ∞.

Corollary 4.7. Let (Ω,Σ, µ) be a measure space. If the space L∞ := L∞(Ω,Σ, µ) is infinite

dimensional, then there exists a graded family of homogeneous, set-additive MNC’s {γt}t>0 on L∞.

Proof. We see that L∞ is an infinite dimensional abstract M -space with a strong unit. Thus the

result follows from part (a) of Theorem 4.6.
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Remark. It is natural to conjecture that Theorem 4.6 remains true if X is any infinite dimensional

abstract M -space, but this question remains open. Y. Benyamini [9] has given an example of a non-

separable abstract M -space Z such that Z is not linearly isomorphic to a closed, complemented linear

subspace Y of C(K) for any compact Hausdorff space K. Thus Benyamini’s space Z falls outside

the scope of Theorem 4.6. However, Z is a special case of the class of Banach spaces considered in

Theorem 2.13, so the conclusions of Theorem 4.6 also hold for Benyamini’s M -space Z.

5 Inequivalent Measures of Noncompactness on Hölder Spaces

Let (K, d) be a compact metric space with metric d. For a given real number λ with 0 < λ ≤ 1, we are

interested here in C0,λ(K), the Banach space of Hölder continuous functions f : K→R with Hölder

exponent λ. Recall that a continuous function f : K→R is Hölder continuous with Hölder exponent

λ if and only if ‖f‖λ <∞ where

‖f‖λ := sup
x∈K

|f(x)|+ sup
x,y∈K

x6=y

(
|f(x)− f(y)|

d(x, y)λ

)
(5.1)

is the norm on C0,λ(K). Given δ > 0, it is sometimes convenient to use the equivalent norm

‖f‖λ,δ := sup
x∈K

|f(x)|+ sup
x,y∈K

0<d(x,y)≤δ

(
|f(x)− f(y)|

d(x, y)λ

)
.

It is known (see Lemma 5.2 of [37]) that the Kuratowski MNC obtained from ‖ · ‖λ equals the Kura-

towski MNC obtained from ‖·‖λ,δ. We remark that part of our interest here stems from questions about

the essential spectral radius and the cone essential spectral radius of so-called linear “Perron-Frobenius

operators” on C0,λ(K); see Sections 5 and 6 of [37].

Our goal in this section is to prove the following result.

Theorem 5.1. Let (K, d) be a compact metric space with infinitely many points and let 0 < λ ≤ 1.

Then there exists a graded family of homogeneous, set-additive MNC’s {γt}t>0 on C0,λ(K).

For the remainder of this section, (K, d) will denote a compact metric space with infinitely many

points and λ will denote a fixed real number with 0 < λ ≤ 1. Our assumptions imply that (K, d) has an

accumulation point. Let x∗ ∈ K denote any accumulation point, which will remain fixed throughout

this section. For each n ≥ 1 we select xn ∈ K with d(xn, x∗) > 0 and

d(xn+1, x∗) ≤
d(xn, x∗)

10
,
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and for n ≥ 1 we denote

εn :=
d(xn, x∗)

10
.

For the remainder of this section the above points xn will remain fixed.

We shall denote by X the Banach space

X := {f ∈ C0,λ(K) | f(x∗) = 0},

which we note is a closed subspace of C0,λ(K) of codimension one, and is thus a complemented

subspace. Thus by Theorem 2.12, it suffices to prove Theorem 5.1 with X replacing C0,λ(K). Let us

also observe that

‖f‖ := sup
x,y∈K

x6=y

(
|f(x)− f(y)|

d(x, y)λ

)
(5.2)

is a norm on the space X , and in fact the norms given by equations (5.1) and (5.2) are equivalent on

X . Below we shall always use the norm (5.2) on X .

Our strategy in proving Theorem 5.1 will be to show that `∞(N) is linearly isomorphic to a

closed, complemented linear subspace of X , and thus Theorem 5.1 will follow from Theorem 2.12 and

Corollary 4.7. To this end we define linear maps R : X→`∞(N) and E : `∞(N)→X by

(Rf)(n) :=
f(xn)

ελn

for every n ≥ 1, where f ∈ X , and

(Eg)(x) :=





(
ελn − d(x, xn)λ

)
g(n), for x ∈ Bn,

0, for x ∈ K \
∞⋃

n=1

Bn,

(5.3)

where g ∈ `∞(N), and where

Bn := Bεn(xn) ⊂ K

in the notation (1.1). Note that Bm ∩ Bn = ∅ for m 6= n, so Eg is well-defined as a function on K.

Also note the estimate

|(Eg)(x)| ≤ ελn|g(n)| ≤ ελn‖g‖ (5.4)

for every x ∈ Bn, for all n ≥ 1. We think of R as the operation of restriction of f to the set

S := {xn | n ≥ 1} ∪ {x∗}, and E as the operation of extending a map g, defined on S, to all of K,
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with a weight factor of ε−λ
n or ελn. It still must be shown that the above operators indeed map into

the indicated spaces, and that they are continuous operators.

Lemma 5.2. The operator R is a continuous linear map of X into `∞(N).

Proof. Linearity of R is clear. If f ∈ X , we have

|(Rf)(n)| =
|f(xn)|

ελn
=

10λ|f(xn)− f(x∗)|

d(xn, x∗)λ
≤ 10λ‖f‖

for all n ≥ 1, and so ‖Rf‖ ≤ 10λ‖f‖, so R is a continuous linear map.

Lemma 5.3. The operator E is a continuous linear map of `∞(N) into X . Also, we have that

RE = I, the identity operator on `∞(N).

Proof. The linearity of E is clear. We also see from the formulas for R and E that (REg)(n) =

ε−λ
n (Eg)(xn) = g(n) for any n ≥ 1, and thus RE = I . We have to prove that Eg ∈ X for every

g ∈ `∞(N), and that E : `∞(N)→X is continuous. We shall in fact show that for every such g, and

denoting f := Eg, that we have

|f(x)− f(y)|

d(x, y)λ
≤ (1 + 10−λ)‖g‖ (5.5)

for every x, y ∈ K with x 6= y. The estimate (5.5) implies that f ∈ C0,λ(K), and noting that x∗ 6∈ Bn

for all n ≥ 1, we have that f(x∗) = 0 and thus f ∈ X . Therefore (5.5) implies that Eg ∈ X and

‖Eg‖ ≤ (1 + 10−λ)‖g‖, as desired.

Thus fix g and f as above, and take any x, y ∈ K with x 6= y. We consider four cases, based on

whether x and/or y belong to the balls Bn.

Case 1: There exists n ≥ 1 such that x, y ∈ Bn. In this case our formula (5.3) for f gives

|f(x)− f(y)|

d(x, y)λ
=

(
|d(x, xn)

λ − d(y, xn)λ|

d(x, y)λ

)
|g(n)| ≤

(
|d(x, xn)

λ − d(y, xn)λ|

d(x, y)λ

)
‖g‖.

We have |d(x, xn) − d(y, xn)| ≤ d(x, y) by the triangle inequality, so |d(x, xn) − d(y, xn)|λ ≤ d(x, y)λ.

A simple calculus argument shows that |uλ − vλ| ≤ |u − v|λ whenever u and v are nonnegative reals

and 0 < λ ≤ 1, so it follows that |d(x, xn)λ − d(y, xn)λ| ≤ d(x, y)λ. Using this estimate we see that

|f(x)− f(y)|

d(x, y)λ
≤ ‖g‖,
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which verifies the desired estimate (5.5) for Case 1.

Case 2: There exist m ≥ 1 and n ≥ 1 with m 6= n such that x ∈ Bm and y ∈ Bn. By symmetry

in the roles of x and y, we can assume that m < n. Using (5.4), we have that

|f(x)− f(y)|

d(x, y)λ
≤

|f(x)|+ |f(y)|

d(x, y)λ
≤

(
ελm + ελn
d(x, y)λ

)
‖g‖ ≤

(
(1 + 10−λ)ελm
d(x, y)λ

)
‖g‖, (5.6)

where we have used the fact that εn ≤ 1
10εm in the final inequality. By the triangle inequality we have

10εm = d(x∗, xm) ≤ d(x∗, xn) + d(xn, y) + d(y, x) + d(x, xm) < 10εn + εn + d(y, x) + εm

and thus

d(x, y) > 9εm − 11εn ≥ 9εm −
11εm
10

> εm,

and so it follows from this and from (5.6) that

|f(x)− f(y)|

d(x, y)λ
≤ (1 + 10−λ)‖g‖.

This verifies the estimate (5.5) for Case 2.

Case 3: One of the points x and y lies in some ball Bm, while the other does not lie in any ball

Bn. For definiteness, assume that x ∈ Bm for some m ≥ 1, while y 6∈ Bn for all n ≥ 1. Our formula

for f gives f(y) = 0 and so with (5.3) we have

|f(x)− f(y)|

d(x, y)λ
=

|f(x)|

d(x, y)λ
=

(
ελm − d(x, xm)λ

d(x, y)λ

)
|g(m)| ≤

(
ελm − d(x, xm)λ

d(x, y)λ

)
‖g‖. (5.7)

By the triangle inequality we have d(x, y) ≥ d(y, xm) − d(x, xm) ≥ εm − d(x, xm) > 0, and so

d(x, y)λ ≥ (εm − d(x, xm))λ ≥ ελm − d(x, xm)λ.

It follows from this and from (5.7) that

|f(x)− f(y)|

d(x, y)λ
≤ ‖g‖,

to give (5.5) in Case 3.

Case 4: We have both x 6∈ Bn for every n ≥ 1, and y 6∈ Bn for every n ≥ 1. In this case

f(x) = f(y) = 0 and the estimate (5.5) trivially holds. With this final case, (5.5) is established, and

the proof of the lemma is complete.
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With these preliminaries, we are almost ready to prove Theorem 5.1, but it is convenient to state

one more lemma first.

Lemma 5.4. The operator P := ER is a continuous linear projection of X onto a closed linear

subspace X0 := PX ⊂ X . The restriction of R to X0 is a one-one, continuous linear map of X0 onto

`∞(N).

Proof. By Lemma 5.3 we have RE = I , and so P 2 = (ER)2 = E(RE)R = ER = P . Thus P is a

projection on X .

Now let h ∈ X0, say h = ERf for some f ∈ X . If Rh = 0 then RERf = Rf = 0, so h = 0. Thus

we see that R|X0 is one-one. Next let g ∈ `∞(N) and set f = Eg. Then RERf = (RE)2g = g. Since

ERf ∈ X0, this shows that R|X0 maps onto `∞(N).

Proof of Theorem 5.1. As noted earlier in this section, there exists a graded family of homogeneous,

set-additive MNC’s {ηt}t>0 on `∞(N) In the notation of Lemma 5.4, the restriction R|X0 is a linear

homeomorphism of X0 onto `∞(N), so there exists a graded family of homogeneous, set-additive

MNC’s {ξt}t>0 on X0. Lemma 5.4 implies that P is a continuous linear projection of X onto X0, so

Theorem 2.12 implies that there exists a graded family of homogeneous, set-additive MNC’s {γt}t>0

on X . As previously noted, this implies the corresponding result for C0,λ(K).

6 Inequivalent Measures of Noncompactness on Sobolev Spaces

In this section Ω will always denote a fixed, open subset of R
n, while m will denote a fixed positive

integer and p is either a real number with 1 ≤ p <∞ or p = ∞. If α = (α1, α2, . . . , αn) is an n-tuple

of nonnegative integers and u ∈ Lp(Ω), then Dαu will denote the distributional partial derivative of

u. We shall write |α| =
∑n

i=1 αi. As usual (see [1], pages 44-45) the Sobolev space Wm,p(Ω) is given

by

Wm,p(Ω) := {u ∈ Lp(Ω) |Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m}.

The following theorem is the main result of this section.

Theorem 6.1. There exists a graded family of homogeneous, set-additiveMNC’s {γt}t>0 onWm,p(Ω).
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Fix any point x0 ∈ Ω and quantities 0 < a < b such that A ⊂ Ω, where

A := {x ∈ Ω | a < ‖x− x0‖ < b}.

We keep the point x0 and the quantities a and b fixed for the remainder of this section. By using so-

called extension theorems for Sobolev spaces (see [1], pages 83-94) we see that there exists a continuous

linear map E : Wm,p(A)→Wm,p(Ω) with the property that (Eu)(x) = u(x) for almost every x ∈ A.

If v ∈ Wm,p(Ω), we define the restriction map R : Wm,p(Ω)→Wm,p(A) by (Rv)(x) = v(x) for x ∈ A.

The map R is continuous and linear. Clearly, RE = I , the identity map on Wm,p(A).

With these preliminaries, the proof of the next lemma is essentially identical to the proof of

Lemma 5.4 and is left to the reader.

Lemma 6.2. The operator P := ER is a continuous linear projection of Wm,p(Ω) onto a closed

linear subspace X := P (Wm,p(Ω)) ⊂ Wm,p(Ω). The restriction of R to X is a one-one, continuous

linear map of X onto Wm,p(A).

With this, we now prove our main theorem for Sobolev spaces.

Proof of Theorem 6.1. By using Theorem 2.12 and Lemma 6.2, we see that the problem of finding

a graded family of homogeneous, set-additive MNC’s on Wm,p(Ω) reduces to the same problem on

Wm,p(A).

We make a further reduction by projecting onto the space of radial functions in Wm,p(A), which

forms a closed, complemented subspace ofWm,p(A). Recall that if p <∞ then Z := Cm(A)∩Wm,p(A)

is dense in Wm,p(A) in the norm on Wm,p(A). Define Q : Z → Z by

(Qu)(x) :=
1

cn−1

∫

|ω|=1

u(|x|ω) dω (6.1)

for u ∈ Z and x ∈ A, where dω denotes surface area on the unit sphere and cn−1 denotes the surface

area of the unit sphere in R
n. The map Q can be shown to extend to a continuous linear projection of

Wm,p(A) into Wm,p(A) whose range Y := Q(Wm,p(A)) ⊂Wm,p(A) consists of the radially symmetric

functions in Wm,p(A). If p = ∞ then Wm,∞(A) ⊂ C(A), and again Q as in (6.1) defines such a

projection onto a subspace Y . Thus in any case, it suffices to find a graded family of homogeneous,

set-additive MNC’s on Y .
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The space Y is, in turn, linearly isomorphic to the Sobolev space Wm,p(a, b). If u : (a, b)→R, it is

known that u ∈Wm,p(a, b) if and only if u has m−1 continuous, bounded derivatives on (a, b) with the

function u(m−1) absolutely continuous (and consequently differentiable almost everywhere), and with

u(m) ∈ Lp(a, b). Let c be a fixed element of (a, b) and define a linear map J : Wm,p(a, b)→Lp(a, b)×Rm

by

Ju := (u(m), u(c), u(1)(c), u(2)(c), . . . , u(m−1)(c)).

It is relatively easy to show that J is a linear isomorphism of Wm,p(a, b) onto Lp(a, b) × R
m, so we

conclude that Y is linearly isomorphic to Lp(a, b)× Rm.

Thus it is enough to find a graded family of homogeneous, set-additive MNC’s on Lp(a, b)× Rm.

By Theorem 2.12 it is enough to find a graded family of homogeneous, set-additive MNC’s on the

subspace Lp(a, b). However, such exists by Theorem 3.1 if p <∞, and by Corollary 4.7 if p = ∞.
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