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ABSTRACT 

Suppose that  E is a finite-dimensional Banach space with a polyhedral 

norm [[. H, i.e., a norm such tha t  the unit  ball in E is a polyhedron. R"  

with the sup norm or R" with t h e / l - n o r m  are important  examples. If D 

is a bounded set in E and T :  D ~ D is a map such that  liT(y) - T(z)[I <_ 

[[ Y - z [[ for all Y and z in E, then T is called nonexpansive with respect 

to [[ • [[, and it is known that  for each z E D there is an integer p = p(z) 

such that  l imj~ooTJP(z)  exists. Furthermore, there exists an integer N,  

depending only on the dimension of E and the polyhedral norm on E, 

such tha t  p(z) ~_ N: see [1,12,18,19] and the references to the literature 

there. In [15], Scheutzow has raised a question about  the optimal choice 

of N when E = R",  D = K " ,  the set of nonnegative vectors in R",  and 

the norm is the /1-norm. We provide here a reasonably sharp answer to 

Scheutzow's question, and in fact we provide a systematic way to generate 

examples and use this approach to prove that  our estimates are optimal 

for n ~_ 24. See Theorem 2.1, Table 2.1 and the examples in Section 3. 

As we show in Corollary 2.3, these results also provide information about  

the case D = R",  i.e., T : R"  ---, R" is ll-nonexpansive. In addition, it 

is conjectured in [12] tha t  N = 2" when E = R"  and the norm is the sup 

norm, and such a result is optimal, if true. Our  theorems here show tha t  

a sharper result is t rue for an impor tant  subclass of nonexpansive maps 

T : (R", 11" Hoo) --' (R", ll" Iloo). 

* Par t ia l ly  s u p p o r t e d  by  NSF DMS89-03018.  
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1. I n t r o d u c t i o n  

The structure of the set of periodic points of stochastic matrices and the con- 

vergence properties of iterates of stochastic matrices are well understood. Here 

we shall try to obtain (among other results) sharp analogues for £l-nonexpansive 

mappings of the known stochastic matrix theory. One motivation for such a study 

is to understand nonlinear analogues of diffusion on finite state spaces, and this 

is the point of view taken in [1] and [15]. However, we are also motivated by a 

variety of other applications described in [10, 11], where cone mappings g which 

are nonexpansive with respect to Hilbert's projective metric are described. After 

an appropriate change of coordinate (see [13, pp. 529-530]), such maps are often 

nonexpansive with respect to the sup norm on R". 

We begin by recalling some standard notation and basic theorems. Fix a 

positive integer n and define K "  -- {x • R '~ : xi ~ 0 for 1 _< i _< n}, the 

nonnegative vectors in R n. For x, I / •  R n we define a partial ordering by z _~ 1/if 

and only if 1 / -x  • K n. I f D  C R a, a map T : D --* R '~ is called "order-preserving 

on D" if, for all x, I / •  D such that x _~ 1/, one has Tz _< T1/. If [[. I[ denotes some 

norm on D, a map T :  D ~ R" is called "nonexpansive" (with respect to I1" II) if 

liT(x) - T(1/)I[ _< IIx - 1/11 for all z , 1 / •  D. As usual, I1" II1 and [[. lifo denote the 

~l-norm and the sup norm respectively, so 

Ilxlll = ~ Ix~l and Ilxlloo = max{Ix/l: 1 < i < n}. 

If E is a finite-dimensional vector space, a norm II. II on E is called "polyhedral" 

i f B  = {z[ Hx[[ _< 1} is a polyhedron. Equivalently, a norm H" H on E is polyhedral 

if and only if there exist continuous linear functionals ~0i, ~ z , . . . ,  q0m on E such 

that  for all x E E 

]{zll = sup{l~i(x)l : 1 < i < m}. 

Obviously, the £l-norm and the sup norm on R" are polyhedral. As already 

noted, if E is a finite-dimensional vector space with a polyhedral norm I[" [I, D 

is a bounded subset of E and T : D -* D is a nonexpansive map, then for 

every x E D there exists an integer p - p(z) such that limj._.oo Tip(x) exists. 

Furthermore, there exists an integer N, dependent only on the dimension of E 

and the polyhedral norm, such that p(x) _< N for all z E D. See [1, 12, 18] and 

the references cited there. 
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The case that E = R" and I1" II = I1" Iloo plays a crucial role in [12, 18]. This 
is because any finite-dimensional vector space E with a polyhedral norm can be 

imbedded by a linear isometry into (R" ,  II" Iloo) fo r  s o m e  m. It is proved in [12] 

that for (R", I1" IIoo) one has 

(1.1) 

where 

(1.2) 

N <_ 2"-r(-), 

However, it is conjectured in R n that N = 2 n, and it is not hard to show that 

this estimate is, if true, best possible (see [12]). 

In work in progress, R. Lyons and the author have sharpened the estimates 

(1.1) and (1.2) for general n and also established some weak evidence that  the 

conjecture may be true. For example, we have proved the conjecture for n = 

3 (n = 1 and n = 2 are fairly easy cases). 

If ~" is some subclass of the set of nonexpansive mappings T : D --* D, where D 

is a bounded set in a finite-dimensional Banach space E with a polyhedral norm, 

it may be possible to refine the number N. Thus it may be possible to find a 

number N,  _< N such that if T E ~ and z E D, there exists p = ~ z )  _< N ,  such 

that limj--,~ T i P ( z )  exists. In our work below we shall indicate an important 

class ~" of such (nonlinear) maps in (R n, [[. I[~) for which N.  < 2" (in fact, we 

shall give a much sharper estimate for .51.). Specifically, we shall consider maps 

T which, for all vectors x and y in some subset D1 of D, satisfy 

(1.3) T(~ ̂  y) = T(~) ̂  T(y). 

Here z A y denotes the minimum of two vectors z and ~/: 

(1.4) x A y = z, where z i  = z i  A Yi = m i n ( x i , Y i ) .  

It turns out that  our theorems also apply to maps T : K n ---* K n such that  

T(0) = 0 and T is nonexpansive with respect to the £1-norm. For this class of 

maps our estimates for sup{pz : x E K"}  provide a reasonably sharp answer to 

a question raised by Scheutzow [15]. In fact we shall show with simple examples 

that  our estimates are optimal for n < 24. A trick used by Scheutzow [16] also 

provides estimates on sup{pz : x E R n} when T : R n ~ R n is £1-nonexpansive 

and has a fixed point: see Corollary 2.3. However, we do not investigate the 

optimality of our estimates in this case. 
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2. Bas ic  E s t i m a t e s  for t h e  P e r i o d s  o f  Per iod ic  E l e m e n t s  

We begin by recalling some further definitions, notation and results. A map 

T : D C R n --* R n is called "integral preserving (on D)" if for all x • D, 

n n 

(2.1) E ( T z ) ,  = E z , ,  
i = 1  i = 1  

where zi denotes the ith component of z • R n. The map T is called "sup- 

decreasing (on D)" if 

(2.2) IIT~II,~ _< Ilxll.¢ for a n ,  • D. 

If T : K n --* K n or T : R n --* R n and T is integral preserving, then it is a result 

of Crandall and Tartar [5] (see, also, Ackoglu and Krengel [1] and Scheutzow 

[15]) that  T is nonexpansive with respect to the £1-norm if and only if T is order- 

preserving. If T :  R n --~ R n, u = (1 ,1 , . . . ,  1) and T(x + cu) -- T(x) + cu for all 

x • R n and c • R, it is also proved in [5] that T is order-preserving if and only 

if T is nonexpansive with respect to the sup norm. 

If T : D ~ R n and there exists x • D such that TP(x) is defined (where T p 

denotes the pth iterate of T) and TP(x) = z, then x is called "a periodic point 

(with respect to T)." The minimal such integer p is called the "period of x". If 

T : D ~ D we shall say that  "T has period p" if p is the minimal integer such 

that  limk--.~¢ TkP(x) exists for all z • D. As noted in [15] and as we s h a l l  see in 

detail later, if T has period p, it need not be true that there exists x • D such 

that x is periodic with respect to T and x has period p. 

If S C R n is a finite set, we shall write 

= min{x Ix • $} 

to denote the vector whose ith component zi satisfies 

,,, = ~ n { = ~  I~ • S}. 

If S = {yi e R"]I _< j _< p} we shall also write 

P 

min{yly • S} = A Y~" 
j----1 
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If A C R n is a finite set, the lower semilattice generated by A is defined to be the 

smallest set V such that  A C V and such that  for all vectors y E V and z E V 

one has y A z E V. One can easily verify that 

v = = min{vlv e s } , s c  A}. 

Equivalently, if A = {yJ E R"I1 < j _< p}, then V comprises all vectors z which 

can be expressed in the form 

P 

A z =  y~, wherel_<ik_<p f o r l < k < p .  
k = l  

One can see that  V has a minimal z0 such that z0 _< z for all z E V, namely 

z0 - -  m i n ( z  e A } .  

If y and z are vectors in R n, we write y < z if y _< z and y ~ z. 

If V is as above and F C V and there exists ~ E V such that  z _< ~ for all 

z E F, then we define maxv(F) ,  the maximum of r in V, by 

m a x v ( r )  = min{~ E V[ ~ _> z for all z E F}. 

Notice that m a x v ( r )  may differ from the maximum of F in R n. If y E V, y is 

called irreducible if 

(2.1) y > maxv{¢ E V i e  < y} -- z, 

and, following [15], we define 

(2.2) I(y)  = {iJyl > zi}. 

The minimal element z0 E V is defined to be irreducible. The height of a vector 

z E V, h(z), is defined by 

(2.3) 

h(z) = sup{klqej E V, 0 < j < k - 1, such that  e0 < el < e2 < . . .  < ek-1 < z}. 

We define h(zo) = 0 for the minimal element. As noted in [15], a simple induction 

on h(x) shows that  for every x E V, 

(2.4) x = maxv{z  E V I z < x and z irreducible}. 

One reason for studying the lower semilattiee V is provided by the following 

result of Scheutzow [15]. 
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LEMMA 2.1 (Scheutzow [15]): Let T : K "  = {x E R n : z >_ 0} ---, K "  be 

a nonexpansive map with respect to the ~l-norm and suppose T(O) = 0. Let 

z E K "  be periodic with period p and let V be the lower semilattice generated 

by A = {T¢(z)Ij > 0}. Then T(V)  C V = d / o r  all y, z E V one has 

(2.5) T(y A z) = T(y) h T(z). 

Mappings which satisfy (2.5) on V need not be gl-nonexpansive. For example, 

if A is a given n x n matrix, define a map T : R" ---, R" by 

(2.6) (T(x))i = m~.'n(aii + z j). 
$ 

The map in (2.6) arises in many applications, e.g., statistical mechanics [3, 4, 7] 

and operations research [6, 9]. One can easily check that 

T(y h z) = T(y) A T(z) for all y, z e R n 

and 

T ( y + c u ) = T ( y ) + c u  for all y E R", c E R ,  

where u = (1 ,1 , . . . ,  1). It follows from our previous remarks that  T is nonex- 

pansive with respect to the sup norm on R n. 

Motivated by the above remarks we shall consider the following situation: T : 

D C R n ~ R '~ is a map and ~ E D is a periodic point of T of period p. Let 

A = { T J ( ~ )  : 0 _< j < p} and let V be the lower semilattice generated by A 

and assume that T can be extended to V in such a way that (2.5) is satisfied for 

all y, z E V. In this framework Scheutzow [15, Theorem 3.1] has proved that  p 

divides ~cm(1, 2 , . . . ,  n). (If S is a set of positive integers, ~cm (S) will denote the 

least common multiple of the integers in S and gcd(S) will denote the greatest 

common divisor of the integers in S.) If y E V is irreducible (as an element of 

V), and the period of y is q, it is also proved in [15] that q _< n. If y E V is 

irreducible and the period of y is q, then TJ(y) is irreducible for all j > 0 and 

I(TJy) N I(Tky) is empty for 0 _ j < k < q, where I(~) is defined by eq. (2.2). 

If, in the framework above, S denotes the set of periods py of irreducible 

elements y E V, we shall now find a variety of restrictive conditions on S. We 

begin with a simple lemma. 
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LEMMA 2.2: Let X be a set with a partied ordering < and T : D C X ~ X a 

map wh/ch preserves the partied ordering: x < y implies T z  <_ Ty. Assume that 

• D is a periodic point of T with period p. Then no two distinct dements of 

A = {Ti(~)[0 < j < p} are comparable, i.e., f fz ,  y • A and z ~ y, it is not true 

tha t  z < y. 

Proof: The partial ordering is assumed such that  a < b and b < a imply a = b 

a n d a _ <  b a n d b _ < c i m p l y a _ <  c. If there exist x ,y  • A, x ~ y ,  such that  

x < y, then there existsr ,  0 < r < p s u c h t h a t  y = Tr(x) > z. Using the 

order-preserving property of T, we find 

(2.7) Ti t (x)  <__ T(i+~)r(z) for a l l j  > 0. 

On the other hand, TIA is one-one, so using that y ~ x we deduce that equality 

does not hold in (2.7) for any j _> 0. It follows from this fact, from (2.7) and 

from properties of the partial ordering that 

(2.8) Tit (z)  • Tkr(x) for 0 _< j <" k. 

Equation (2.8) implies that the cardinality of A is not finite, a contradiction. 
| 

PROPOSITION 2.1: Let T : D C R" ~ R'* be a map and suppose that ~ • D 

is a periodic point of T of period p. /£ A = {TJ(~)I j > 0} and V is the lower 

semilattice generated by A, assume that T has an extension to V such that 

T(x A y) = T(x) h T(y) for edl z, y • V. 

Then there cannot exist irreducible elements yl, y2, . . . ,  yr Of V, with periods 

Pl,P2,.. .  ,Pr respectivdy, such that pi > 1 for 1 < i < r, gcd(pi,pi) = 1 for 

1 < i < j < r and ~i=lPJ > n. 

Proof: Suppose, to the contrary, that there exist irreducible elements like 

yl ,  y2 , . . . ,  yr. We already know that I(Tiy  k) fq I (T iy  k) is empty for 0 < i < j < 

pk. Suppose we can prove that I(Tiy  k) N I (T iy  ") is empty whenever 0 < i < 

pk, 0 < j < p, and 0 < k < s < r. Then the sets I(Tiy~),O <_ i < pk,1 < k < r, 

are pairwise disjoint, nonempty subsets of {1, 2 , . . . ,  n}, and there are ~=IPi  > n 

such sets. This is impossible. 
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Thus fix k a n d 8  with 1 < k < s < r a n d i  a n d j  w i t h 0  < i < p~ and 

0 ~_ j < p,. If we write 7 = Ti(Yk),~ = TJ(F ' ) ,~  = p h  a n d ~  = P, ,7  and 

( are irreducible elements of V of periods ~ > 1 and p > 1 respectively and 

gcd(~, p) = 1. It remains to prove that I(7 ) N I ( ( )  is empty. Suppose not and fix 

m • 1(7 ) N I( ( ) .  It must then be true that 7 < ( or ( < 7 (we know that ( ~ 7 

because ,~ ~/~). If not, we have (( h 7) < ( and (( A 7) < 7 and this implies that 

(( A 7),. < (., and ( (AT)re<Tin,  

which is impossible. For definiteness assume that 7 < ~. We know that TJ is 

order-preserving on V; and because TP[V is the identity, T -1 = T p-1 is also 

defined and order-preserving on V. For any integers a and fl it follows that 

7 = Ta~(7) < T°~(()  = Ta~+~z(~) • 

Because ~ and/J  are relatively prime, for any integer u with 0 < v < p, we can 

find integers a and fl so 

By replacing ~ by some power of T applied to ~, we can assume also that  

It follows that 

7 < T V ( ( ) < T ~ ( ~ )  f o r 0 ~ u < p  and 

(2.9) 7 -< min{T~(~) : 0 _< z, < p}. 

However, the right-hand side of (2.9) is the minlmal element and a fixed point 

of T. It follows that 7 is the minimal element of V and a fixed point of T, and 

this contradicts the assumption that the period of 7 is greater than one, and we 

conclude that I(7)  N I ( ( )  is empty. | 

Remark 2.1: In the notation of Proposition 2.1, let S = {m I m is the period of 

an irreducible y E Y),  so we know S C (1, 2 , . . . ,  n}. If q = lcm(S)  and y E V is 

irreducible, it follows that 

( 2 . 1 0 )  = 
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Since we know that  

(2.11) ~ = maxv{y  E V ly < ~ and y irreducible}, 

it follows easily from (2.10) that 

> 

353 

(2.12) W r+l << ~. 

If 1 _< j < r and a and fl are any integers we have 

wJ = T PJ(w j)  < T P (w j+l)  = T PJ+ PJ+'(wJ+I); 

and since gcd(pi ,pj+l  ) divides r, we conclude that  for any integer m we have 

(2.13) w j < Tm'(wi+l) .  

Taking j = r, we conclude from (2.12) and (2.13) that 

w r < T"~r(~) for all m E Z. 

Now choose k, 1 _< k < r, and assume, by way of induction, that  there exist 

mi, 1 < i < k, with ml = 0, such that mi is not congruent to mj  rood r for 

l <_i < j < k a n d  

(2.14) w r + l - k < T  m~+'j(~) for all m E Z  and for l < j < k .  

Lemma 2.2 now implies that Tq(~) = ~, so p divides q. Since Proposition 2.1 

imposes restrictions on the possible sets S, we already know more than just  p 

divides ~cm(1, 2 , . . . ,  n). It 

PROPOSITION 2.2: Let notation and assumptions be as in Proposition 2.1. There 

do not exist irreducible elements w 1 , w 2 , . . .  , w r+l of V of periods pl,  p2 , . . . ,  Pr+l 

respectively such that w j < w j + l  for 1 < j < r and pj > r for 1 < j < r + 1 and 

gcd(pi,pj) divides r for I < i < j < r + 1. 

Proof." Suppose, to the contrary, that  irreducible elements wJ as above exist. 

We know that w r+l < Tk~ for some k, and by replacing ~ by Tk~ we can assume 

that 
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Because w r+l-k E V, we know that there exist integers ij, 1 _< j <_ p, with 

0 _< ij < p, such that 

(2.15) w r+a-k = n~n{T i' (~) : 1 <_ j <_ p}. 

If every integer ij,  1 < s < p, is congruent to some mj,  rood r, then (2.14) and 

(2.15) imply that 

(2.16) w r+l-k = min{T m~+mJ (~) : m E Z and 1 <_ j _< k}, 

and using (2.16) and (2.5) we see that 

(2.17) r (w = 

Eq. (2.17) contradicts the assumption that P1 > r for 1 _< j _< r + 1. It follows 

that  there exists an integer is, which we relabel m}+l, such that  

(2.18) W r+l-k <_ T " + ' ( ~ )  

and such that  m~+, is not congruent to mj for 1 _< j _< k. 

Using (2.13) and (2.18) we conclude that 

w r-k < T " ~ + ~ + '  (() for m 6 Z, 

and since we already know that 

w r - k < w  r + l - k S T  "~+'~j(() f o r m 6 Z ,  l < _ j < k ,  

the inductive step is complete. It follows that (2.14) is valid for k = r which 

implies that  

(2.19) w x _< min{Ti(~): j e Z}. 

Because the right-hand side of (2.19) is the minimal element of V and because 

w 1 E V, we have equality in (2.19) and w 1 is afixed point ofT,  which contradicts 

the assumption that pl > r. | 

If one knows more information about the numbers gcd(pi,pj) in Proposition 

2.2, then the conclusion of Proposition 2.2 can be refined. There are many 

examples of such results. Our next lemma presents only one such sharpening of 

Proposition 2.2, but it is a refinement which we shall need later. The reader may 

want to concentrate on the case p -- 2 in the following proposition. The proof 

becomes transparent then and various technicalities vanish. 
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PROPOSITION 2.3: Let notation and assumptions be as in Proposition 2.1. There 

do not ex/st irreducible elements wJ in V of periods pj, 1 < j < m + 1 with the 

following properties: (a) wJ < w j+l for 1 < j < m, where m = p2 _ p + 1 

and p >_ 2 is an integer, (b) gcd(pi,pj) divides r = p2 for 1 < i < j < m + 1, 

(c) there exists an integer t ,0  < t < m, such that gcd(pm+l-t,pi) divides p for 

1 < j  < m + l  a n d j  # m + l - t  and (d )  pj > p2 = r  f o r a l l j  # m + l - t  and 

Pm+ l - t  ~> P. 

Proo~ We can assume w "+1 < ~. We shall assume that the Proposition is false 

and obtain a contradiction. First assume t = 0. For notational convenience write 

A = p,~ and p = Pm+l. For any integers a and fl we have 

T ~ ( w  " )  = w "  < T ~ ( w  re+l) = T~+~g(wm+l) .  

Because gcd~m+l- t ,p j )  divides p for j # m + l  - t ,  we derive that for any integer 

v we have 

w m < T~P(w "+1)) <_ T~P(~). 

Writing r = p2, it follows that there exist integers mj  = (j - 1)p for 1 _< j _< p 

such that  mi and mj are not congruent mod r for 1 < i < j < p and 

w " < T  ~r+'¢(~) for v 6 Z  and l < j _ < p .  

Furthermore, because pm > r, the same argument used in Proposition 2.2 shows 

that  there exists an integer mp+x such that mp+t is not congruent mod r to mj  

for 1 _< j < p and 
w "~ <_ Tin '+ '(() .  

Now, arguing just as in Proposition 2.2, we see that for 0 < k < m - 1 we have 

w m - t < T  vr+m¢(~) f o r v 6 Z ,  l < j < p + k ,  

where mi and mj are not congruent rood r for 1 < i < j < p + k. 

k = m - 1, so p + k = r, the above inequality implies that 

Taking 

w'  _< TJ(~) for all j E Z. 

As in Proposition 2.2, this implies that w 1 is a fixed point of T, which contradicts 

Pl > r .  
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Next consider the case t = m. If we apply the argument of Proposition 2.2 to 

the points wi ,2  < j S m + 1, and note that  2 = m + 1 - p(p - 1), we see that  

there exist integers Pi, 1 S j S m = p(p - 1) + 1, such that  p~ is not congruent 

to P1 rood r for 1 < { < j < m and 

(2.20) w 2 _< T ~ (~) for 1 _< j _< m. 

Since gcd(pl, p2) divides p, the argument used in Proposition 2.2 shows that  

(2.21) w I < T  ~p+~(() for l _ < j _ < m  and all v 6 Z .  

It follows that ,  by replacing pj  by pj  + n i t  for an appropriate integer hi, we can 

assume 0 _< P1 < r, and eq. (2.21) will still hold and it will be true that P1 # pk 

for 1 < j < k < m. If we divide S = {#i]1 _< j < m} into equivalence classes 

by saying that  pj is equivalent to pk if P1 -= pk (rood p), then each equivalence 

class can contain at most p elements because pj S p2 for all j .  Since there are 

p(p - 1) + 1 elements in S, we conclude that for each integer k with 0 < k < p, 

there exists j such that pj = k (rood p). Using this fact and (2.21) we conclude 

that  w* S TJ(~) for all j .  This implies that  w 1 is the minimal element of V and 

that  p, = 1, a contradiction. 

It remains to consider the case 0 < t < m. Arguing as in Proposition 2.2, we 

see that  

w ' + 2 - t  <_T"r+"*~(~) f o r a l l v E Z  and l <_j < _ t - 1 ,  

where mi and rnj are not congruent rood r for 1 < i < j < t - 1. Furthermore, 

there exists rnt, not congruent to rni rood r for 1 < i < t - 1, such that  

w m+2-' < T'* ((). 

Let k be an integer such that kp < t < (k + 1)p. First consider the case 

t = kp. The same argument used in the case t = m shows that  there are integers 

hi, 1 < j < k, such that  ni is not congruent to nj rood p for 1 < i < j < k and 

w m+2-t __~ T "~ (~) for 1 < j < k. 

(Each n i equals an appropriately chosen rni.) Writing A = p,n+l-~ and p = 

p , ,+2- t  and recalling that gcd(A, #) divides p, we find that  for any integers a and 

/9 we have 
Win+ 1-t _~_ Ta~(w'+ I-') < Ta~+~(w m+2-') 
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and 

w ~+I-' < T~P(w m+2-') < T~P+"J (~), 

for all v 6 Z and 1 < j _< k. Because A > p, the usual argument implies that 

there exists an integer nk+, such that nk+l is not congruent to n i rood p for 

l <_j < k a n d  
w re+l- '  _< T" '+ ' (~) .  

Because gcd(pm+,- t ,p ,n- t )  divides p, the same argument used above shows that 

(2.22) w " * - t < T  ~p+"j(~) f o r v 6 Z ,  l _ < j < k + l .  

We clearly have k _< p - 1, and we can assume 0 _< nj < p for 1 _< j _< k + 1. If 

k = p - 1, (2.22) implies that  w " - t  is the minimal element of V, contradicting 

the assumption that pm-t  > p2. (This part of the argument is also valid if 

kp < t < ( k + l ) p . )  I f k  < p - l ,  consider all integers of the f o r m n  j + i p  

for 1 < j < k + l  and for 0 _< i < p. There a r e p ( k + l )  such integers and 

if we label them vi for 1 < i < (k + 1)p, vi is not congruent to */j rood r for 

1 < i < j _< (k + 1)p. Furthermore, if we write 7" = kp + 1, we have 

(2.23) wm+l-r  <Trr+r ' ( ( )  f o r l < i < r + ( p - 1 ) ,  v 6 Z .  

Now the same argument used in Proposition 2.2 shows that,  for kp + 1 < r < m, 

there are integers vi, 1 < i < r + (p - 1), such that  vi is not congruent to vj rood 

r f o r l _ < i < j _ < r + ( p - 1 ) .  T a k i n g r = m i n e q .  ( 2 . 2 3 ) , s o r + ( p - 1 ) = r  ~, 

we obtain a contradiction as in the proof of Proposition 2.2. 

It remains to consider the case kp < t < (k + 1)p, k < p - 1. In this case 

we see by the argument used in the case t = m that there are k + 1 integers 

hi,  1 < j < k + 1, such that nl is not congruent to n / m o d  p for 1 < i < j < k + 1 

and 

w m+2-t_<T "~(() f o r l _ < j < k .  

The same argument as in the case t = kp shows that 

w " ~ + I - ' < T  ~p+"j(~) for a l l v e Z ,  l _ < j _ < k + l .  

Furthermore, because A > p, there exists an integer nk+2 such that  nk+2 is not 

congruent to nj  rood p for 1 < j <_ k + 1 and 
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Just as in the case t = kp we find that 

(2.24) w m-'  < for e z, i < j < k + 2. 

If k + 2 _> p, (2.24) implies that w m-t < TJ(~) for all j and w m-t is the minimal 

element of V, a contradiction. Thus we can assume k + 2 < p. We can also 

assume that 0 _< nj < p for 1 < j < k + 2. As before consider the (k + 2)p 

integers nj + ip, I < j < k + 2, 0 <_ i < p, rdabd them ui, 1 < i < (k + 2)p, and 

note that ui is not congruent to uj mod r for 1 < i < j _< (k + 2)p. Also, setting 

r = (k + 1)p, we see that 

(2.25) w m+1-r <_ w m-t < T "r+vj (~) for v E Z, 1 _< j _< r + p. 

As in the case t = kp, eq. (2.25) is valid for (k -F 1)p _< 7- _< rrt with integers 

vj, 1 < j _< ~" + p, which axe pnirwise incongruent rood r. Taking r = m - 1, we 

find that r + p = r and that w 2 is the minimal element of V. Because/~z > 1, w 2 

is not the minimal element of V, and this contradiction completes the proof. 

1 

Our interest in Propositions 2.2 and 2.3 derives from the fact that one can 

determine conditions which imply that some given set of irreducible dements in 

V is totally ordered. Our next lemma describes one such set of conditions. For 

notational convenience, define, for y E V, 

(2.26) f /(y;T) = ft(y) = {TJ(y)IJ > 0}. 

PROPOSITION 2.4: Let notation and assumptions be as in Proposition 2.1. As- 

sume that t/j, 1 < j < s, is a set of irreducible elements of periods qi > 

1,1 < j < s. (We a11ovc s = O, in which case {ItJll < j < s} is empty.) 

Assume that zJ, 1 < j < r + 1, is a set of irreducible elements of periods 

Pi > 1,1 < j  < r + l .  Assume that ged(qi,qi) = 1 for l < i < j < s and 

ged(qi,pt) = 1 for 1 < i < s and 1 < k < r + 1. Suppose that fl(z i) N ft(zJ) is 

empty for 1 < i < j < r + 1. (Note that the latter condition is automatically 

satis~ed ffPi ~ Pj for 1 < i < j < r + 1.) Finally, suppose that 

a 

Pi + Pi > n - E qh 
k=l 
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for 1 _< i < j < r + 1. Then there exists a permutation ~ o f { i , 2 , . . .  , r  + 1) and 

integers kj with 0 < kj < pj for 1 < j _< r + 1, such that i f  w i = Tk~ (z j) for 

j = or(i), then w i < w i+1 for 1 < i < r. (Note that w i is an irreducible e/ement 

of V of period Po(i).) 

Proof." The argument used in Proposition 2.1 shows that  if ( and ,1 are irre- 

ducible elements of V of periods pl and p2 respectively with pi > 1 for i = 1,2 

and gcd(p,, P2) = 1, then I ( ( )  N I(~) is empty. Applying this observation we see 

that  the sets I(Ti(yJ ) ), 0 <_ i < qj, 1 <_ j <_ s, are palrwise disjoint and nonempty, 

so 
[qj --1 ] 

contains at least m = l~=lq  j elements. Furthermore, the s~me argument shows 

that I(Tk(zJ)) n F is empty for k E Z and 1 _< j < r + 1. Thus I(Tk(zJ)) is 

contained in F', where 

r'= {j[1 <_j <_n,j ¢ r},  

and F' has n - m elements. 

We first prove the Proposition in the case r = 1. We know that  if z = z k, k = 1 

or 2, then 

I(Ti(z))  N I (Ti (z ) )  = ¢ for 0 _< i < j < pt.  

Suppose that  for all i and j with 0 < i < p, and 0 < j < ~ it is not true that  

Ti(z ~) < Tk(z  2) and it is not true that  TJ(z 2) < Ti(z*). For convenience, fix i 

and j and put ( = T~(z 2) and ,1 = Ti(z~). Since we know that  ( # ,7, we are 

ass,,ming that  ( A ~ < ( and ( A ,1 < ~7 (otherwise ( _< ~7 or y/_< (). It follows that  

I(()f]I(TI) is empty: if k 6 I(()NI(~),  we would have ( k A ~  < ( t  and (kAT/k < T/~. 

Thus we are assuming that the nonempty sets I(TizJ),O <_ i < p j , j  = I or 2, are 

palrwise disjoint. However, there are Pl +/}2 > n - m such sets and each such set 

is contained in F', which has n - m elements. This is impossible, so there exist 

i ,0 _< i < Pl and j , 0  < j < P2, such that 

(2.27) Ti(z*) < TJ(z 2) or TJ(z 2) < Ti(zl). 

Thus we have proved the lemma for r = 2. By applying T p*-i to both sides of 

(2.27), we see that we can also take i = 0 in (2.27). Also, the same argument 
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shows that for z i and zJ with 1 _< i < j < r-{- 1, there exists u = v(i,j) such that 

0 <_ v < pj and 

(2.28) T" z i < z i or z i < T " z  i .  

By using mathematical induction, we can now assume, by permuting z j ,2  < 

j < r + 1, and applying powers of T, that zJ < z j+l for 2 < j < r. For every 

j , 2  < j < r, there exists kj,O < kj < Pl, such that 

If Tk2(z 1) < z 2, we let w ~ = T k ' ( z  1) and wJ = zJ for j >_ 2 and we are done. 

Similarly, we are done if T k'+l (z 1) > z r+l. Otherwise, let m > 2 be the first 

integer such that 

T ~, (z 1 ) < z m. 

By definition we have that 

T~(z 1) > z~ 

SO 

for 2 < j < m ,  

Tk,,,(z 1) = w ~-1  = T~, , , -k . , - , (T~, , , - ' z  1) > T k ~ ' - k ' - ' ( z " - l )  ~_ w " - 2 .  

Thus, if we define wJ = z j for m _ j < r + 1 and 

and 

T k,~ (z 1) = w m-1 

T k " - k ' - ~ ( z  m - j )  = w 'n- j -1  for 1 _< j < m -- 2, 

the conditions of the Proposition are satisfied. | 

The condition in Proposition 2.4 that 

$ 

Pi + Pj > n -  ~ qk 
k = l  

for all i , j  such that  1 < i < j < r + l  is too restrictive for some of our applications. 

Our next proposition gives another of the many possible variations of the theme 

in Proposition 2.4. 
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PROPOSITION 2.5: Let notation and assumptions be as in Proposition 2.1. As- 

sume that m >_ 2 and r >_ 2 and that, for l <_] <_ r e + r - l ,  z i is an irreducible 

element of V of period pj > 1. Assume that n(Z i) f"l ~(Z j) (see eq. (2.26)) is 

empty for 1 < i < j < m + r -- 1. Suppose that 

w ~  

Z p j > n  and p j + p k > n  fora11 j ~ k  
j=l 

with l < j < m + r - 1 ,  m < k < m + r - 1 .  

Then there exists a one-onemap a from {i l l  < j < r + l }  to {/11 < j < m + r - 1 }  

and integers kj,O < kj < pj, for I < j < m + r - 1, such that  f f w  i = TkJ(zJ), 

where j = a(i), then w i < w i+l for 1 < i < r. 

Proof." Consider the sets I (Ta(z i ) )  for 1 _< i < ra and 0 < a < pi. By 

assumption there are E~=lp j > n such sets, and they are all nonempty. We also 

know that  I (T~(z i ) )  N I (Ta(z i ) )  is empty  for 0 < a </~ < pi. A simple counting 

argument implies that  there are integers i and j with 1 < i < j < ra mad integers 

0 <_ ot < Pi and 0 </9 < Pi such that  

I (T~(z i ) )  N I (Ta(z i ) )  # 0. 

As we have seen this implies that  

T~(z i) < T~(z i) or T#(z i) < T"(z i ) .  

Assuming for definiteness that  the first inequality holds, we define v x = Ta(z  i) 

and v 2 = T#(z  i)  and write ql = pi and q2 = Pi" Thus we have v I < v 2 and v k is 

irreducible with period qk, k = 1,2. 

We now work only with v 1, v 2 and the r - 1 elements z k for m < k < m + r - 1. 

We know that  p,  + p k  > n for m < s < k < m +  r -  1 and 

ql + p~ > n and q2 + pk > n for m < k < m + r - 1 .  

It  may happen that  q, + q2 _< n, but this will be irrelevant because we already 

know that  v I < v 2. If we now apply the argument of Proposition 2.4, start ing 

with z "+1,  we find that  after relabeling v l , v  2, and z k , m  < k < m + r - 1 and 

applying powers of T we obtain the conclusion of Proposition 2.5. | 

If  S is a nonempty subset of {j : 1 < j < n}, we now place several conditions 

on S which are motivated by Propositions 2.1-2.5. 
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CONDITION A: S does not contain a subset Q such that (1) gcd(i , j )  = 1 for 

all i , j  E Q with i ~ j and (2) EieQi > n. 

CONDITION B: S does no__tt contain disjoint subsets Q and R which satisfy the 

following properties: (1) gcd(i , j )  = 1 for i , j  E Q, with i ~ j .  (2) gcd(i, k) = 1 

for all i E Q and k E R. (3) R has r + 1 elements, r >_ 1,i > r for all i E R, 

and gcd(i , j )  divides r for all i , j  E R with i ~ j .  (4) i + j  > n - (EteQk) for all 

i , j  E R with i ~ j .  

The possibility that Q is the empty set in Condition B is allowed. In that case 

conditions (1) and (2) in B are vacuous and EkeQk = 0. 

A little thought shows that if S satisfies condition B (with r = 1) then S 

satisfies condition A, but we prefer to state condition A separately for simplicity. 

CONDITION C: S does not contain disjoint subsets Q and R with the following 

properties: (1) gcd(i , j )  = 1 for all i , j  E ~ such that i ~ j .  (2) gcd(i, k) = 1 for 

all i E ~ and k E R. (3) R has m + 1 elements where m = p2 _ p + 1 and p >_ 2 

is an integer and gcd(i , j )  divides r = p2 for all i , j  E R with i ~ j .  (4) There 

exists 7 E R such that gcd(7, j  ) divides p for all j E R, j  ~ 7, and 7 > P and 

j > p 2 f o r j ~ 7 .  (5) i + j > n - ( E t e Q k ) f o r a l l i , j E R w i t h i ~ j .  

CONDITION D: S does not contain a set R with the following properties: (1) 

R = { p j l  l _ < j _ < m + r - 1 } , w h e r e m > _ 2 , r > _ 2 , a n d p i ~ p j f o r l - < i < j - <  

r e + r - 1 .  (2) g c d ( p i , p j ) d i v i d e s r f o r l  < i  < j  < r e + r - 1  andp i  > r  for 

I < i < m + r - I. (3) ~'~n=lpj > n and pj "~- Pk ~> rt for all j ~ k such that 

1 <_j < _ r e + r - 1  a n d r e <  k < _ m + r - 1 .  

If S c {j [1 _< j _< n} we say that S is "admissible for n" if S satisfies conditions 

A, B, C and D. If S C {jI 1 _ j _< n} and S is admissible for n, then one can 

check that S is admissible for n + 1; but it may happen that S is admissible for 

n + 1 and not admissible for n. 

We define an ad hoc function ~(rt) by 

(2.29) ~(n) = sup{Icm(S)[ S C {I,2,... ,,} and 

Ssatisfles conditions A, B, C and D }. 

We have ~o(1) = 1, and the values of ~o(n) are tabulated in Table 2.1 below for 

n _< 24. Because the fact that S is admissible for n implies that S is admissible 

for n-t- 1, we have that ~(n) _< ~(n + 1). It is also clear that if S C {j : 1 _< j _< n} 
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and Ejcsj <_ n, then S is admissible for n, and this implies that 

(2.30) ~(n) _) sup{Icm(S)IS C {I, 2,..., n}, E j -- n} -- ~(n). 
rex 

The function ~b(n) in (2.30) is the maximal order of an element of the permutation 

group on n letters. 

THEOREM 2.1 : Let T : D C R n be a map and suppose that ~ E D is a periodic 

point o fT  of (minlmM) period p. If V is the lower semilattJce generated by 

A = {T¢(~) I J --- o}, 

assume that V C D and that 

T(:r ^ y) = T(z) A T(y) for a/ /x,  y 6 V. 

Then p diodes lcm(S), where S C UI1 ~_ j <_ n} is s o m e  set which satisfies 

conditions A, B, C and D. ~ h ~ o ~ e ,  p < ~,(n), where ~,(,) is der~ed in 
(2.29). 

Proo/~ For each z E V, let Pz denote the period of z. Let 

S1 = {pz I z E 1f, x < ~ and z is irreducible}. 

We know (see Remark 2.1) that p divides lcm(S1). If lcm(S1) = 1, S, = {1} = S, 

and we are done. Otherwise, take S = S~ - {1} and note that  p divides lcm(S). 

We claim first that S satisfies condition A. If not, there are irreducible elements 

yJ in V, 1 < j _< m, of periods pj, 1 < j < m, such that gcd(pi,pj) = 1 for 

1 _< i < j _< m and pj > 1 for 1 < j _< m and E~"=lpj > n. (In the notation of 

condition A, Q = {pj : 1 < j _< m}.) However, this contradicts Proposition 2.1. 

We next claim that S satisfies condition B. If not, let 

Q = { q i l l < j < s }  and R={p~ l l<_ i<_r+l}  

be sets satisfying (1), (2), (3) and (4) in condition B and let y¢, 1 _< j _< s, be 
irreducible elements in V of period qj,1 _< j _< s, and zi,1 < i _< r + 1, be 

irreducible elements of periods pi, 1 < i < r + 1. Proposition 2.4 implies that,  by 

permuting the z i and applying appropriate powers of T, we can assume z i < z i+l 

for 1 < i < r. Under these operations the corresponding periods are permuted 
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and it remains true that gcd(pi,pj) divides r for 1 < i < j < r + 1 and pi > r for 

1 < i < r + 1. However, Proposition 2.2 asserts that this is impossible. 

The proof that  S must satisfy condition C follows as above if one uses Propo- 

sition 2.3 instead of Proposition 2.2. Details are left to the reader. 

If S fails to satisfy condition D and R is as in condition D, then there are 

irreducible elements zJ ,  1 < j < m + r - 1 with periods p j ,  1 < j < m + r - 1, 

such that  R = { p j }  satisfies conditions (1), (2) and (3) in D. By using Proposition 

2.5, we obtain irreducible elements w', 1 < i < r + 1, of periods pi > r such that  

w ~ < w i+1 for 1 < i < r and g c d ( p i , p j )  divides r for 1 < i < j < r + 1. This 

contradicts Proposition 2.2. 

It foUows that  S is admissible for n and obviously p < lcm(S) < ~(n). | 

We tabulate (Table 2.1) the values of ~(n) for 1 < n < 24 and indicate admis- 

sible sets S for which 7~(n) = lcm(S). 

Even for relatively small values of n like 23 or 24 it is not a trivial matter  

to compute ~(n) by hand, so it may be worthwhile to indicate a verification 

procedure for this table. One can check that S = {6,14,16, 20} is admissible 

for n = 20, so ~(20) > 1680. Because ~ is monotonic, it suffices to prove 

that  ~(23) = 1680 in order to verify that  ~(j)  = 1680 for 20 < j < 23. H T 

is a set which is admissible for rt = 23 and T # {1}, lcm(T) is a product of 

terms chosen from 2 ~, 0 < a < 4,3 ~, 0 < fl < 2,5,7,11,13,17,19 and 23. 

By a laborious case-by-case analysis, one can show that  if T contains an odd 

number j >_ 9, then lcm(T) < 1680; it is easiest successively to eliminate odd 

numbers in order of decreasing size. It follows that  if lcm(T) > 1680, T contains 

only even numbers and odd numbers j < 7. If 22 E T and lcm(T) _> 1680, 

note that  condition A and the fact 11 ~ T imply that T contains only even 

elements. Again, a case-by-case analysis shows that, if 22 E T and T contains 

only even integers, then lcm(T) < 1680, so if lcm(T) _> 1680, 22 ~ T. Note that  

lcm(6, 8, 14, 22) = 1848, and T = {6, 8, 14, 22} satisfies conditions A, B and C, 

but not D, so condition D is needed. Similarly, condition C is needed to eliminate 

T = {12,16, 20, 22}. Another case-by-case analysis shows that if lcm(T) >_ 1680, 

then 18 ~ T. Thus one can show that  if lcm(T) > 1680 and T is admissible for 

n = 23, then T contains no odd integer j >_ 9 and 18, 22 ~ T. It follows that  9, 

11, 13, 17, 19 and 23 cannot be factors of lcm(T), so 

lcm(T) <_ 16 x 3 x 5 x 7 = 1680. 
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Table 2.1: Values of ~o(n) for 1 < n < 24 

. ~ ( . )  . ~(.) 

I 1 13 120 

2 2 = lcm(2) 14 168 = lcm(8,12,14) 

3 3 = lcm(3) 15 180 = lcm(9, 12,15) 

4 4 = Icm(4) 16 336 = Icm(12,14,16) 

5 6 = lcm(2, 3) ' 17 420 = lcm(3, 4, 10,14) 

6 12 = lcm(4, 6) 18 420 

7 12 i 19 840 = 1cm(5,8,12,14) 

8 24 = lcm(6,8) 20 1680 = lcm(6,14, 16, 20) 

9 24 21 1680 

10 60 = lcm(4,6,10) 22 1680 

11 60 23 1680 

12 120 = lcm(8,10,12) 24 2640= lcm(16,20,22,24) 

Theorem 2.1 provides constraints on the possible period p _< ~(n) of a periodic 

point ~ of T. We illustrate one such constraint. 

COROLLARY 2.1: Let notation and assumptions be as in Theorem 2.1. I f  pl 

and I)2 are distinct prime numbers and (~ and fl are positive integers such that 

p~ + p~ > .  and p,p~ > .  and p~ > p~, it foUows that p ¢ p~p~. 

Proof: Suppose not, so p = p~'p~. We know that p divides lcm(S), where 

S = {p, ]z E V, z < ~, z is irreducible of period p,}. It follows that there must 

be irreducible elements z and y in V of periods rrtlp~ and m2p~ respectively, 

where ml and m2 are integers and mlp~ <_ n and m2p~ < n. We know that  

2p~' > p~' +p~ > n, so ml = 1. Condition A implies that p~' and m2p~ must have 

a common factor. It follows that Pl divides m2, which contradicts the assumption 

that plp~2 > Ft. | 

A typical application of Corollary 2.1 and Theorem 2.1 is that,  for n = 12, the 

number p in Theorem 2.1 is never equal to 11j for j _> 2 , j  an integer. 

In view of the difficulty of computing V~(,) precisely, it is important to have 

upper and lower bounds for t0(n). As usual, we denote by [z] the greatest integer 



366 R.D. NUSSBAUM 

m _< x. We define O(rn) = lcm({j[1 _< j _< m}). 

PROPOSITION 2.6: / f~ (n )  is defined by eq. (2.29), then 

n (2.31) ~o(n) _< nlcm({jll _< j < [21} ) - n0([~]), 

hr .  J. Math. 

(2.32) 

Fhrthermore, we have, for all n, 

(2.33) ~a(n) _< nexp(1.0388312]) and 

Given any e > O, we have, for n sufBeiently large, 

(2.34) 

Proof." 

that 

~o(n) >__ 21cm({j]1 <_j _< [4 ] + 1})=20([4] + 1). 

< 2". 

_<. e p((1 + 

Suppose that S C {il l  < j _< n} satisfies condition A. It sumces to prove 

lcm(S) _< 

If j E S and j <_ [n/2], then j divides 0([n/2]). If [n/2] < j _< n and j = rnlrn2 

where ml > 1,m2 > 1 and gcd(ml,m2) = 1, it foUows that rai <_ [n/2] and r-i 

divides 0([n/2]) for i = I or i -- 2 and therefore j = mlmz  divides 0(In/2]). If 

j E S, the only remaining possibility is that j = p~, where pl is a prime and 

[n/2] < p~ < n. However, there can be at most  one such dement  in S; for if 

k E S and k = p2 ~, where P2 is a prime and [n/2] < k _< n and k ~t j ,  then P1 ¢ P2 

and gcd(j, k) = 1 and j % k > n, which contradicts condition A. It follows that 

either Ca) lcm(S) divides O([n/2]) (if S does not contain an dement  j = p~ such 

that pl is a prime and In/2] _< j _ n) or (b) lcm(S) divides p~O([n/2]), where pl 

is a prime and In/2] < p~ _< n. In either case, (2.31) is satisfied. 

Next define T -- {2j11 <_ j <_ [n/4] + 1}. In order to prove (2.31), it suffices 

to prove that T satisfies conditions A, B, C and D because then ~o(n) >_ lcm(T). 

Condition A is obvious, since M1 dements of T are divisible by 2. If condition 

B fails the set Q in condition B must be empty and the number r in B satisfies 

r _> 2. But then the set R must contain at least 3 elements and at least two of 

these dements must be less than or equal to 2[n/4]. However, this contradicts 

the assumption that i % j  > n for ail i , j  E R, i  ~t j ,  and condition B is satisfied. 
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Essentially the same argument shows that condition C is satisfied; details are 

left to the reader. To see that  condition D is satisfied, suppose not and let 

pj E T ,  l _ < j _ < m + r - l ,  be as in condition D. B e c a u s e m > 2 a n d r  > 2 i t  

follows that  pj < 2([n/4] - 1) for some j ,  1 _< j < m + r - 1. If j < m, select k 

so that  m < k < m + r - 1 and observe that pj + pk _< n. If m < j _< m + r - 1, 

select k so that 1 < k < m and again observe that pj + Pk < n. Thus we obtain 

a contradiction in either case, and we conclude that  condition D is satisfied. 

It is a classical result (see Theorem 12 in [14]) that 

O(m) < exp(1.03883m) for all m > 1. 

Furthermore, given ~ > 0, there exists an integer me such that 

0(m) <  p((1 + for m _> m,. 

Thus, the first part  of eq. (2.33) and eq. (2.34) are immediate consequences of 

eq. (2.31). 

Table 2.1 shows that ~(n) < 2" for n < 24, and it is a simple calculus exercise 

Cleft to the reader) to prove that  

n exp(1.03883[n/2]) < 2" for all n > 16. 

We conclude that  ~(n) < 2" for all n. | 

As an immediate consequence of Theorem 2.1 and our earlier remarks we have 

COROLLARY 2.2: Let K "  = {x E R"[x >_ 0} and let T : K n --~ K "  be a map 

such that T(O) -- 0 and T is nonexpansive with respect to the £1-norm on R". 

Then,/ 'or every x E K",  there exists an integer p = Pz such that Hmk-.oo T~P(x) 

exists. The integer p divides lcm(S) where S C {j]l  _< j < n} is a set which 

satis•es conditions A, B, C and D. It is also true that p < ~(n), where ~(n) 

is defined by eq. (2.28), tabulated in Table 2.1 for n < 24 and estimated in 

Proposition 2.6 for general n. 

Theorems 4.1 mad 4.3 in [15] suggest that results like Corollary 2.2 can be used 

to provide information about the case of an ~l-nonexpansive map T : R" ~ R". 

Unfortunately, this author and Michael Scheutzow have independently observed 

an error in the proof of Theorem 4.1 in [15]. However, Scheutzow has provided 

an elegant correction in [16], and with the results of [16] and Corollary 2.2, we 

can study the case of an el-nonexpansive map T : R" ~ R". 
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COROLLARY 2.3: Let T : R" --~ R" be a map w~ch is £1-nonexpansive and 

has a fixed point ;Co. Then, for every z E R", there exists a r~inirnal integer 

p = p,  such that limk~oo TtP(x) exists. The integer p divides £cm(S), where 

S C {j : 1 _< j _< 2n} and X is admissible for 2n. It is a/so true that p < ~(2n), 
where ~ is defined by eq. (2.28). 

Proof." By replacing T by S -1TS ,  where S(x+xo),  we can assume that T(0) = 0. 

For notational convenience we write 

K 2" = ( (y , z ) :  y,z  e K"} .  

Scheutzow defines an isometry 7 of R" into K 2" by 

7(x) = (x V 0 , - ( x  ^ 0)). 

If F C K 2" denotes the range of 7, it is observed in [16] that there is an £1- 

nonexpansive retraction p of K 2" onto P given by 

p(y,  z)  = ( (y  v z)  - z, (y v z) - y). 

Thus, if we define T1 : K 2" --* K 2" by 

T1 (~) = (TTT-1p)(~), 

TI(0) = 0, T1 is £1-nonexpansive and 

T~ = 7TJT-lp.  

Using these observations and Corollary 2.2, we obtain the conclusions of Corollary 

2.3 from the known results for 2"1. | 

The next corollary also follows immediately from our previous results. 

COROLLARY 2.4: Let E = (R", II • II) be a finite-dimensionM Banach space of 

dimension n with a polyhedral norm I1" II. Assume that D C E is a bounded 

set and T : D --* D is a map which is nonexpansive with respect to I1 II. Let 

b D D be a set such that for all x, y E D, x h y E D. Assume that T has an 

extension ~ ' :  b --*/9 such that ~'(z ^ y) = ~'(z) ^ T(y) for all z, ~I E [~. Then 

for every z E D, there exists an integer p = p,  such that l imk-,~ TkP(z) exists. 

The integer p~ divides lcm(S), where S is some set which is admissible for n. 

Furthermore, we have p,  < ~(n) < 2" for a l / n  where ~(n) is defined by eq. 

(z2s). (s~ ~so Table e.~ and Propositio= Z6.) 
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Remark 2.2: If T : E --* E is nonexpansive with respect to I[" l[ and T has a fixed 

point w, then the bounded set D in Corollary 2.3 can be taken to be D = BR(w), 

the ball of radius R and center w. 

As a very special case of Corollary 2.4, we mention a class of examples which 

arises in many applications [3, 4, 6, 7]. | 

COROLLARY 2.5: Let A be an n x n matrix, deline A by 

k I 
(2.35) ~ = i n f { ~ ' ~ a j ,  j,+,[1 <j i~n for l  <~i¢~k+l andjk+l=jl} 

i--1 
and assume A = O. (The inf in eq. (2.35) is taken over all k >_ 1 and all sequences 

( j l , j 2 , . . .  , jk+l)  satisfying the given conditions.) Define T : R" --* R" by 

(2.36) (T(x))~ = min(a~i + xi).  $ 

Then for every z E R n there exists an integer p = Pz such that limk_.oo Tkn(x) 

exists. There exists a set S, admissible for n, such that p d/v/des lcm(S), and 

p~ < ~o(n), where ~(n) is &t/ned in eq. (2.29) and ~o(n) < 2 n. 

Proof: We have already noted that T is nonexpansive with respect to I1" Iloo, 
that T(~ + cu) = T(~) + cu for all x e R" and c e R(u = (1, 1 , . . . ,  1)), and 

T(x A Y) = T(x) ^ T(y) for all x and V in R ~. If ,X is defined by (2.35), it is known 

[3] that there exists w E R n such that 

T ( w ) = . ~ u + w ,  u = (1 ,1 , . . . , 1 ) ,  

so if A = 0, T has a fixed point in R n. Corollary 2.5 now follows immediately 

from Corollary 2.3 and Remark 2.2. | 

Remark 2.3: If minj(a~j) = 0 for 1 < i < n, one can easily check that T(0) = 0 

and A = 0, and the general situation (for A = 0) reduces to this ease by a change 

of coordinates. | 

Remark 2.4: The estimate p,  _< ~0(n) is not best possible for the class of maps 

in Corollary 2.4. It is proved in [13] that  if T is given by eq. (2.35) and ), = 0, so 

T has a fixed point, then there is a set S C {k]l < k < n} such that  Ej¢s j  < n 

and such that  if p = lcm(S), then llm~_~oo TkP(x) exists for all x E R ~. In [13] 

the set S is described in terms of the matrix A = (aq). In particular this proves 

that  p < ¢(n) for ¢(n) as in eq. (2.30). This also proves a conjecture which was 

made by R. B. Grittlths [8] in response to a question from this author. | 
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3. Examples  Concerning the Optimality of  Estimates for Periods 

In this section we wish to give some systematic ways of constructing integral- 

preserving, order-preserving maps T : K "  ~ K" .  We shall use these examples 

to prove that  ~0(n) is a best possible upper bound (in the context of Theorem 

2.1) for 1 < n < 24. 

In order to save space we collect our hypotheses. We shall always denote by u 

the vector in R ~ such that ui = 1 for 1 < i < n. 

Definition 3.1: A map T : K "  --* Kn satisfies H3.1 if T is integral-preserving 

and order-preserving and T(cu) = cu for all c > 0. | 

All of our subsequent examples will satisfy H3.1. Recall that if T satisfies H3.1, 

T is nonexpansive with respect to the l l -norm and T is sup decreasing. 

LEMMA 3.1: Suppose that n = mr, where m and r are positive/ntegers, and 

consider K "  as the r-fold Cartesian product of K m. I f  f : K m ~ K m satisfies 

H3.1 and T : K "  --* K "  is defined by 

(3.1) T(y l ,  y 2 , . . . ,  yr) = (f(yr) ,  yl,  y2 , . . . ,  yr-1), 

where yi E R ra for 1 < j < r, then T satist~es H3.1. IfzJ E K 'n is a periodic point 

of f of period Pi for 1 < j < r and f f  f~(z i )  f~ ~(z  k) is empty for 1 < j < k _< r 

(see eq. (2.26)), then z = (z 1, z 2 , . . . ,  z r) is a periodic point of T of period 

rlcm(iv ll < j < r}). 
Proof: We leave to the reader the easy verification that T satisfies H3.1. Because 

f~(zJ) [q ll(z k) is empty for j # k, one can see that Ti(z )  cannot equal z unless j 

is a multiple of r. Furthermore, we have that 

T'r (z )  = ( f ' ( z l ) ,  f ' ( z 2 ) , . . . ,  f ' ( z r ) ) .  

Thus the smallest value of s such that T°r(z) = z must be divisible by pj for 

1 _< j _< r, so s = Icm({pj]l < j _< r}}. | 

Note that  if pj ~ Pt for j ~ k, then ~(z j) N ~(z t)  is empty for j ~ k. 

The proof of the next lemma is trivial and is left to the reader. 

LEMMA 3.2: Suppose that n = rn + r, where rn and r are positive integers, and 

consider K n as the Cartesian product of K m and K r. I f  f : K m --* K m and 

g : K = ~ K r both satisfy H3.1 and i f T  : K "  --* K "  is defined by 

T ( y , z ) = ( f ( y ) , g ( z ) ) ,  y e K  '~, z • K  r, 
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then T satisfies H3.1. I f  ~ E K m is a periodic point o£ f o[ period p, and Y. E K r 

is a periodic point of 9 of period I>2, then ~ -- (.~, ~.) is a periodic point o f t  of 

period lcm(pl,/)2). 

With the aid of Lemmas 3.1 and 3.2, we can already show that  the estimate 

p _< ~o(n) is optimal for 1 < n < 11. 

LEMMA 3.3: For 1 <_ n <_ 11, there exists a map T : K "  --* K "  such that T 

satisfies H3.1 (see Definition 3.1), and T has a periodic point z of period ~o(n) 

(see Table 2.1). 

Proof: For 1 _< n _< 5 it suffices to take T to be an appropriate permutation. 

Since ~o(6) -- ~0(7) = 12,~0(8) = ~(9) = 24 and ~(10) = ~o(11) = 60, it suffices, 

by using Lemma 3.2 with r = I and g the identity on K 1, to prove Lemma 3.3 

for n = 6, 8 and 10. 

By Lemma 3.1, it suffices, for n = 6, to find a map f : K s --* K s which satisfies 

H3.1 and has periodic points ~ and ~ in K s of period 3 and 2 respectively. For 

then the map T in eq. (3.1) will have period 2 lcm(3,2) = 12. If f is defined by 

f(Y,, Y2, Ys) = ((Ya V 1) + (~2 A 1) -- i, ~1, (~3 A I) Jr- (~2 V 1) -- 1), 

f satisfies H3.1, and if ~ = (2, 1,1) and ~?, = (1, 0,1), ~ and ~ have period 3 and 

2 respectively. (Recall that  a V b = max(a, b).) 

Since 24 = 2 lcm(4, 3), Lemma 3.1 shows that to prove Lemma 3.3 for n = 8, it 

suffices to find a map f : K 4 --* K 4 which satisfies H3.1 and has periodic points 

and ~, of periods 4 and 3 respectively. Such a map is provided by 

f(Yl, Y2, Ys, Y,) = ((Ys h 1) + (y, V 1) - 1, Yl, Y2, (93 V 1) Jr (Y4 h 1) - 1), 

w i t h  ~ = (2 ,1 ,1 ,1 )  and ~ = (1 ,0 ,0 ,  1). 

Finally, since 60 = 2 lcm(6, 5), Lemma 3.1 shows that to prove Lemma 3.3 

for n = 10, it suffices to find a map f : K 5 ~ K s which satisfies H3.1 and has 

periodic points ~ and ~ of periods 6 and 5 respectively. A map of this type is 

given by 

j ( x , ,  = v 1) + A 1) - 1, A 1) + V 1) - 1, x , )  

with ~ = (2, I, I, 2, I) and ~, = (I, 0, 0, 0, 0). $ 
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The example of a map T which we have constructed here for n = 6 can be 

shown to be equivalent, by a change of variables, to an example in [15]. 

To continue further it seems useful to have a more systematic way of generating 

examples of maps satisfying H3.1. In the following work we modify our notation 

slightly and define 

(3.2) K ~ . = { x 6 R " I x > 0 )  and K_" = {x 6 R " l z  <_ 0}. 

LEMMA 3.4: / f  S : R 2 --, R 2 is defined by 

(3 .3 )  = ((x, v o) + (x,  A A O) + (** V 0)), 

then S 2 = S o S is an integral-preserving, order-preserving, sup-decreasing re- 

traction o f R  2 onto K~ U K~ = D ~. 

Proof." If f and g are any two integral-preserving, order-preserving maps of R n 

into R"  or K "  into K " ,  it is easy to see that g o f  is integral-preserving and order- 

preserving. One ear, cheek that S is integral-preserving and order-preserving, so 

S 2 is also. A direct calculation shows that if z 6 K.~ or K2_, then S2(z) = z. It 

remains to prove that  S2(x) E K~ U K~ for all z E R 2. If x E R 2 and Zl _> 0 

and x2 _< 0, a calculation gives 

S2(z ) = : ( x , + z 2 , 0 )  if z l + z 2 > 0 ,  
[ ( 0 , z l + z 2 )  if z l + z 2 < 0 ,  

so S2(z) 6 D 2. A similar calculation applies if zl _< 0 and z2 > 0, so S 2 is a 

retraction onto D 2. 

Because S2(cu) = cu for all c 6 R,u  = (1,1), and S z is order-preserving, one 

obtains that  IIS2(x)lloo _< Ilzlloo for all z 6 R 2. | 

Our real interest, of course, is in proving the analogue of Lemma 3.4 for R". 

THEOREM 3.1: / f K ~  and K_" are defined as in eq. (3.2) and if  D" = K_?. OK_", 

there exists an integral-preserving, order-preserving, sup-decreasing retraction p 

of R"  onto D". 

Proof." For 1 _< j ,  k _< n and j # k, define a map Sjh : R" ~ R" by 

= y ,  



Vol. 76, 1991 PERIODIC POINTS 373 

where 

! / i =z i  f o r i # j , k , ! / j = ( z j V 0 ) + ( z k A 0 )  and Y t = ( z j A 0 ) + ( z k V 0 ) -  

Because Sjk is integral-preserving and order-preserving, S]k is also, and a calcu- 

lation as in Lemma 3.4 shows that S]k[D" is the identity map. If ~ E R n and 

T/= S]t(~), one can also verify as in Lemma 3.4 that if ~r = 0 for some r, then 

t/r = O; and if ~i~t < O, either r/j = 0 or t/t = O. 

We have already proved Theorem 3.1 in the case n = 2 in Lemma 3.4, so 

assume by induction that the theorem is true for R " - l , n  > 3, and consider R" 

as R 1 × R " - l .  Let a be the integral-preserving, order-preserving retraction of 

R "-1 onto D " - I  and define r : R" ~ R" by 

r(=,,=') = ( = , , , ( = %  = c x ,  =' c R " - ' .  

Note that  r is integral-preserving and order-preserving and rID" is the identity 

map. Similarly $12j is integral-preserving and order-preserving for 2 < j < n and 

S~j[D a is the identity map. Define a map p by 

(3.4) p = ,.,,12,,,13~14 . . .  

where composition of maps is indicated in (3.4). We know that p is integral- 

preserving and order-preserving and p[D" is the identity, so it suffices to prove 

p(R n) C D". Forz E R", definer(z) = ~, so we know~j > 0for allj > 2 

or ~j < 0 for all j > 2. For definiteness assume that ~j >_ 0 for 2 _< j < n. If 

~I _~ 0, p(~c) E K~ and we are done, so assume ~I < 0. If ~x +~, >_ 0, a calculation 

~ves  

S~.(~) = (0, ~2, ~s,.. •, ~.-1, ~, + ~.) C D", 

so p(z) E D" and we are done. Thus we assume that ~1 + ~, < 0, so 

sL( ) = (6 + e,, e2,..., 0). 

Applying the map $2._1 we see that if ~1 + ~. + ~n--1 ~-- 0, then 

2 2 S l . _ I S I . ( ~ )  = (0, (2, ( 3 , . . . ,  ( . - 2 ,  (1 + ( . - 1  + (n, 0) 6 D" ,  

so p(:r) E D"  and we are done. Thus we can assume that ~I + ~ . - I  + ~. < 0 and 

2 2 S l n - l S l n ( ~  ) = (~1 "~-~n-1 "~ ~n,~2, . . .  ,~n--2, 0, 0) • 
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Continuing in this way we see that if, for j > 3, 

S~i. . .  S~,,(~) ~ D, 

then 

(3.5) 

Isr. J. Math. 

where the final n - j + 1 coordinates on the right side of (3.5) equal zero and 

~ + E [ = j ~  < 0. Thus we either obtain that S~j . . .  S~n(~ ) E D for some j )_ 3, 

so p(z) E D, or 

S~3... SI~.(0 ¢ O and 

S123...S12n(~) = ~1 " [ -E~k ,~2,0 , ' . . ,O =071 '~72 '0 " " ' 0 )= r ] '  
k----3 

where r/l < 0 and T/2 ~ 0. But now a calculation gives 

S~n(T/) = { (O,r/1 + T/,,O,...,O) if r h + ~2 _> O, 
(~l Jr T]2, 0, 0, . ,0 )  if ~1"~-~2 <~0. 

In either case S~,(t/) = p(z) E D n, and the proof is complete. (The map p is 

sup-decreasing because p is order-preserving and p(cu) = cu for all real c.) | 

Remark 3.1: An ex~mluation of the proof of Theorem 3.1 shows that we have 

proved that the retraction can be chosen to be a composition of some of the maps 

S~k. | 

Our next theorem is an extension of Theorem 3.1. 

THEOREM 3.2: Let aj,O <_ j < k, be a strictly increasing sequence of tea/ 

numbers with s0 = 0. For 0 < j < k define 

Bi = (z E K"l~ju < x < ~i+1~} and Bk = (x E K"l~ku < =} 

and 
k 

B = j~oBJ. 
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Then there ex/sts an integral-preserving, order-preserving retraction r of K" onto 
B. 

Proof." First assume that k = I, let p be a retraction as in Theorem 3.1 and 

define r(x)  by 

~(~) = p(~  - ~ , . )  + ~,~. 

Because p is integral-preserving and order-preserving, r is also. Thus we have, 

for x E K " ,  

r(~) > r(0) = p ( - a , u )  + ~lU = - ~ , u  + ~ u  = 0. 

Because p(x - a l u )  E D~ U L)n_, we can thus say that r(x)  E B0 or r(x)  E B1. 

Also if x E B0 or B1, then x - a l u  E D n_ or D~ and p(x - a l u )  = x - a l u  and 

r(x)  = x. Thus r is the desired retraction. 

Assume, by way of mathematical induction, that we have proved the theorem 

for some/¢ _> 1. Let a j ,  0 < j < /c  + 1 be a strictly increasing sequence of real 

numbers with s0 = 0. Let B~ be as defined in the theorem and define ]~  by 

B~ # = {x ~ K n [otju < x < ¢~j-F,u} for 0 _< j <_ k, B~+ 1 = {z Ix _> oZk+lU }. 

By induction there exists an integral-preserving, order-preserving retraction 

k 
a:K" - -*  U Bj. 

.i=o 

Let p be the retraction in Theorem 3.1 and define pl by 

Define a map r by 

p,(,) = p(x -~,+~)+~k+l-.  

r ( = )  = ~ ( p , ( x ) ) .  

Because Pl and ~ axe integral-preserving, order-preserving maps of K "  to K " ,  r 

is also. We claim that r is a retraction of K "  onto B ~ I ~k+ln~ 

I fx  E K " ,  we must prove that r(x) E B'. If~ = pl(x), we know that ~ _> o~k+lu 
I or ~ _< ~ + l u .  In the first case, a(~) = ~ E Bk+ 1, because ~ leaves elements of 

Bk L e d .  If ~ _< ak+~u, we know that ~(~) E B and ~(~) _< ~(~k+lu) = ~k+~u, 
k I Be. and these two facts imply that ~(~) = r(x) is an element of B U j= 0 Bj C 

We leave to the reader the routine verification that r iB '  is the identity map. 

By induction, the proof is complete. | 

Our immediate motivation for proving Theorems 3.1 and 3.2 is the following 

result. 
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THEOREM 3.3: Suppose that for 1 _< j _< r, fj : K" --} K" is a map which 

satisfies H3.1 (see Definition 3.1) and fj has a periodic po/nt x # of period pj. 

Then there exists a map T : K" ~ K" which satisfies H3.1 and has periodic 

points ~J ofperiodpj for 1 < j < r. Furthermore, II(~#,T) 0 II(~k,T) is empty 

for l  < j < k < r .  

Proof.." Select a positive number fli such that  

xJ<f l j u  for 1 < j  < r - 1 .  

k Define ao = 0 and irk = Ej=I~ j for 1 < k < r - 1. Define B i by 

] 3 / =  {xl%u < x < %+1u} for 0 < j < r - 1 and Br-1 = _< ~}. 

Define ¢1 = xJ + %-1u for 1 _< j _< r and for x G Bj-1  define 

F ( x )  : f j ( x  - oCj_lU ) -~ {:~j_l u,  1 < j < r. 

Because B i N B~ is either empty or consists of a single point of the form cu and 

because fj(cu) = cu for all c _> 0 and 1 < j _< r, the map F is well-defined on 
r--1 B = Ui=oB j. Using in addition the order-preserving property of f j ,  one sees that  

F(Bi)  C Bj for 0 _< j _< r - 1. It is also not hard to verify that  F is integral- 

preserving and order-preserving as a map of B to B and that  ~J is a periodic 

point of F of period pi. By Theorem 3.2 there exists an integral-preserving, 

order-preserving retraction r of K n onto B. If one defines T = F o r, T satisfies 

H3.1 and ~J is a periodic point of period pj of T. 1 

With the aid of Theorem 3.3 we can complete the proof that  the upper bound 

qo(n) is optimal for 1 < n < 24. 

THEOREM 3.4: For each n, 1 < n < 24, there exists an integral-preserving, 

order-preserving map T : K" ~ K" such that 

T ( c u )  = cu  for all c > 0, 

u = (1, 1 , . . . ,  1), and T has a periodic point z of period ~(n). (The function 

~(n) is d,~i;ned in eq. (2.29) and tabulated in Table 2.1.) 

Proof: We have already proved Theorem 3.4 for I < n < 11 in Lemma 3.3. 
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For n = 12, note that ~0(12) = 120 = 2 × (12 × 5). By Lemma 3.1 and Theorem 

3.3, it suffices to find a map T : K s ~ K e which satisfies H3.1 and has periodic 

points y and z of period 12 and 5 respectively. We have already proved that  

there exists f l  : K 6 --* K 6 which satisfies H3.1 and has a periodic point of period 

12, and there is clearly a permutation f2 : K s --~ K e which has a periodic point 

of period 5. The existence of T now follows from Theorem 3.3. 

Since q0(13) = t0(12) = 120, the existence of T : K 13 --* K 13 which satisfies 

H3.1 and has a periodic point of period 120 follows from Lemma 3.2 and the 

corresponding result for n = 12. 

Since ~o(14) = 168 = 2 x (7 × 12), it suffices by Lemma 3.1 and Theorem 3.3 

to find m aps /1  a n d / 2  of K 7 into K 7 which satisfy H3.1 and possess periodic 

points of period 12 and 7 respectively. However, we already know there is such 

a map with periodic point of period 12 and there is a permuta t ion /2  which has 

a periodic point of period 7. 

Since ~0(15) = 180 = 3x lcm(4, 5, 6), it suffices, with the aid of Lemma 3.1 and 

Theorem 3.3, to find m a p s / 1 , / 2  a n d / 3  of K s into K s which satisfy H3.1 and 

have periodic points of periods 4, 5 and 6 respectively. Clearly, the m a p s / 1 , / 2  

a n d / 3  can be taken to be appropriate permutations. 

For n = 16, we know that ~(16) = 336 = 2 × (7 x 24), so by the same argument 

already used, it suffices to find maps f l , / 2  of K s into K s which satisfy H3.1 and 

have periodic points of period 24 and 7 respectively. Again, we already know 

there is such a map f l ,  and the map /2 can be taken to be an appropriate 

permutation. 

Since ~o(17) = qo(18) = 420, the usual argument using Lemma 3.2 shows that  

it suffices to find an example for n = 17. By Lemma 3.2 it suffices to find a map 

/1 : K 1° --* K 1° which satisfies H3.1 and has a periodic point of period 60 and 

a m a p / 2  : K 7 ~ K 7 which satisfies H3.1 and has a periodic point of period 

7. We already know that /1 exists a n d / 2  can be taken to be an appropriate 

permutation. 

We know that there is a m a p / 1  : K 12 --* K 12 which satisfies H3.1 and has a 

periodic point of period 120, and there is clearly a permuta t ion /2  : K 7 ~ K 7 

which has a periodic point of period 7. It follows by Lemma 3.2 that there is 

a map T : K 19 --* K 19 which satisfies H3.1 and has a periodic point of period 

840 = ~(19). 

Since ~0(n) = 1680 for 20 < n < 23, it suffices as usual to find a suitable map 
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T : K 2° ~ K 2°. Because 1680 = 2 x (40 x 21), Lernma 3.1 and Theorem 3.3 show 

that  it suffices to find maps f l  and f2 of K 1° to K 1° such that  each map satisfies 

H3.1, f l  has a periodic point of period 40 and f2 has a periodic point of period 

21. The map f2 can he taken to he an appropriate permutation. To prove the 

existence of a map like f l ,  we apply Lemma 3.1 and Theorem 3.3 again. Since 

40 = 2 x (5 x 4), it suffices to find maps gl and g2 of K 5 into K 5 which satisfy 

H3.1 and possess periodic points of period 4 and 5 respectively. The maps gl 

and g2 can be taken to be permutations of order 4 and order 5 respectively. 

We know that  7~(24) -- 2640 = 2 x (120 x 11), so by Lemma 3.1 and Theorem 

3.3, it suffices to tlnd maps f l  and f2 of K 12 into itself which satisfy H3.1 and 

have periodic points of period 120 and 11 respectively. A map like f l  is already 

known to exist and f2 can be taken to be a permutation of order 11. | 

Remark 3.2: Lemmas 3.1 and 3.2 and Theorem 3.3 can be used in general to 

construct maps T : K "  ~ K "  which satisfy H3.1 and have periodic points of a 

given period p _< ~o(n). In this way one obtains a lower bound for ~0(n). Thus, if 

n -- 28, 9240 --- 2 lcm(140, 33), and using Lemma 3.1 one finds that there exists a 

map T : K 2s --* K 2s which satisfies H3.1 and has a periodic point of period 9240 

if there exist maps fi : K 14 ~ K 14, i = 1, 2 which satisfy H3.1 and have periodic 

points of period 140 and 33 respectively. There is a permutation map f2 and in 

R 14 of order 3 x 11. Also, there are permutation maps 91 and g2 in R 7 of orders 

10 and 7 respectively, so Lemma 3.1 implies that there is a map f l  : K 14 --~ K 14 

which satisfies H3.1 and has a periodic point of period 140 -- 2 lcm(10, 7). It 

follows that  ~(28) ~_ 9240, and with further effort one can actually prove that  

~o(28) = 9240. Similarly, one finds that ~(48) >_ 2((2640) x 17 x 7) = 628320. 

| 

Remark 3.3: For n _> 1, let P(n) denote the set of positive integers p such that  

there exists T : K "  ~ K "  which satisfies H3.1 and has a periodic point of period 

p. If r ~ 2 divides n and P l ,P2 , . . .  ,Pr are elements of P(n/r) ,  we know that 

r lcm({p ll < j < r)) e (n) .  Similarly, if nl  and are positive integers such 

that  nl + n2 = n and Pl E P(n l )  and P2 E P(n2), then lcm(pl,P2) E P(n). 

Finally, of course n E P(n). Is it true that every element of P(n) arises in one of 

these ways? | 
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