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PERIODIC POINTS OF POSITIVE LINEAR OPERATORS AND
PERRON-FROBENIUS OPERATORS

ROGER NUSSBAUM*

Let C(S) denote the Banach space of continuous, real-valued maps f : S — IR
and let A denote a positive linear map of C(S) into itself. We give necessary
conditions that the operator A have a strictly positive periodic point of minimal
period m. Under mild compactness conditions on the operator A, we prove that
these necessary conditions are also sufficient to guarantee existence of a strictly
positive periodic point of minimal period m. We study a class of Perron-Frobenius
operators defined by

(4)(0) = 3. b(B)slus(),

and we show how to verify the necessary compactness conditions to apply our
theorems concerning existence of positive periodic points.

1 Introduction

Recently, in [10], the following question was raised: Do there exist a nonnegative, continuous
function k : [0,1] x [0, 1] = R and strictly positive, continuous functions f; : [0, 1] — IR and
f1:[0,1] = IR with fy # f; such that for all s € [0,1]

/ (s, 0 fo(t)dt = fi(s)and [ (s, O fu(B)dt = fols)?

A simple classical argument shows that this question does not have a positive answer if
k(s,t) > 0 for all s and ¢.

In this paper we shall be interested in generalizations of the above question. Let
S denote a compact, Hausdorff space, C'(S) the Banach space of continuous, real-valued
functions z : S — IR with ||z|| = sup{]z(s)| : s € S} and P(S) := P, the set of nonnegative
functions in C(S). In this notation, F,(S), the interior of P(S), is the set of functions z
such that z(s) > 0 for all s € S. The cone P induces a partial ordering by z < y if and only
ify—xe P.If A: C(S) — C(S) is a linear operator, we shall say that A is “positive” if
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A(P(S)) ¢ P(S). It is well known and easily proved that if A : C(S) — C(S) is a positive
linear operator, then necessarily A is a bounded linear operator. As usual, if f € C(S), m is
a positive integer, and 4 : C(S) — C(S) is a bounded, linear operator, we shall say that “f
is a periodic point of A of minimal period m” if A™(f) = f and A?(f) # f for 0 < j < m.
We shall consistently use the above notation.

We can now state the main questions of interest here.

Question 1. Assume that m is a given positive integer, S is a compact, Hausdorff space
and A : C(8) — C(S) is a positive, linear operator. Does there exist fo € P;(5) such that
fo is a periodic point of A of minimal period m?

Question 2. Let m, S and A be as in Question 1. Does there exist fo € P(S) such that fp
is a periodic point of A of minimal period m?

Despite their similarity, there are important differences between these two questions.
We shall find necessary conditions that Question 1 have a positive answer; and we shall prove
that, under mild compactness conditions on A, these necessary conditions are also sufficient.
We shall prove that a slight variant of the necessary conditions for Question 1 also leads,
under mild compactness conditions on A, to sufficient conditions that Question 2 have a
positive answer.

Ifb : S — R,¢ > 1, are given nonnegative, continuous functions such that
T2 bi(s) = b(s) is a finite, continuous function, and if w; : § — §,4 > 1, are given
continuous functions, then one can define a positive linear operator A : C(S} — C(S) by

(Az)(s) = im—(s)x(wi(s)).

Such operators are sometimes called “Perron-Frobenius operators” and represent a major
interest of this paper. Establishing appropriate compactness conditions on A so that we
can apply our theorems turns out to be a delicate problem, and existing results in the
literature seem inadequate for our purposes. These difficulties are already apparent in a
simple example studied in Corollary 6.2 below, where S = [0,1], ¥ > 1 is a real number and
A:C(S) — C(S) is given by

(Az)(1) = tz((1 = 8)F) + (1 = )z (1 — F).

This paper is rather long, so a guide to the principal results may be in order. In
Section 2 we present the following theorem, which gives necessary conditions for Question 1
to have a positive solution.

Theorem 1.1 Let S be a compact, Hausdorff space, A : C(S) — C(S) a positive, linear
operator and m a positive integer. Assume that there exists fy € P.(S) such that fy is a
periodic point of A of minimal period m. Then the following conditions hold:

(1) There exists 8 € P,(S) with A(9) = 6.
(2) There ezist closed, nonempty proper subsets E; C S, 0 < j < m, with B, = Ey, such

that (a) "J25' E; = 0 and (b) whenever f € C(S) and f|E; = 0 for some 0 < j < m—1,
it follows that Af|E;1 = 0.
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In Corollary 2.1 below we prove that, if m is a prime, the sets E; in Theorem 1.1
can be chosen pairwise disjoint for 0 < ¢ < m. For general m we can always arrange that,
for 0 < i < k <m, either F; = E; or B; N E), = .

In Section 3 we start from the necessary condition (2) in Theorem 1.1 and ask what
further conditions are necessary to insure a positive answer to Question 1 or Question 2. We
observe (see Theorem 3.5 below) that Questions 1 and 2 for general m can be reduced to the
case that m is a prime, so we restrict attention to the case that m is a prime. The following
theorem is a special case of Theorem 3.1 in Section 3.

Theorem 1.2 Let S be a compact, Hausdorff space, A : C(S) — C(8S) a positive linear oper-
ator and m a prime number. Assume that there exist closed, nonempty sets E;, 0 < j <m,
as in condition (2) of Theorem 1.1. Suppose, also, that there exists § € P(S) such that
A(8) = 0 and 8(so) > 0 for some sy € E := UL E;. Finally, assume that at least one of the
following compactness conditions on A is satisfied: '

(@) For every M > 0 and for every f € C(S) such that —M8 < f < MY, the norm closure
of {(A™)3(f)|j > 1} is compact in the norm topology.

(b) p(A) < 1, where p(A) denotes the essential spectral radius of A.

Then it follows that there exist positive reals a and b and fy € P(S) such that af < fy < b9
and fy ts a periodic point of A of minimal period m.

In Theorem 3.1A below we also show that a version of Thecrem 1.2 holds for a class
of nonlinear maps A : P(S) — P(S), although we do not pursue this point in this paper.

As a very special case of Theorems 1.1 and 1.2 (see Remark 3.2), we obtain a
complete answer to our original question about integral operators.

Corollary 1.1 Let m be a prime number, S a compact, Hausdorff space and p a regular,
Borel measure on S such that u(G) > 0 for every nonempty, open subset G of S. Let
k: 8 xS~ IR be a continuous, nonnegative function and define A : C(S) — C(S) by

(4)(s) = [ k(s, z(t)u(ds).

Then A has a periodic point fy € Po(S) of minimal period m if and only if the following
conditions are satisfied:

(1) There exists 6 € P.(S) with A(0) = 0.

(2) There exist compact, nonempty, proper subsets E; of 5, 0 < i < m, with E,, = E,,
such that (a) NZG'E; = 0 and (b) k(s,t) = 0 for (s,t) € UM E; x E;_,, where E;
denotes the complement of E;.

Much of the rest of this paper is devoted to finding useful hypotheses which imply
the compactness condition (a) of Theorem 1.2. It is straightforward to prove that condition
(b) of Theorem 1.2 implies condition (a) of Theorem 1.2. However, it will generally be the
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case that for Perron-Frobenius operators A of interest, p(A), the essential spectral radius of 4,
equals 7(A), the spectral radius of A4; and condition (b) of Theorem 1.2 cannot be satisfied.
The reader’s attention is particularly directed to Theorem 3.3, which gives a framework
applicable to Perron-Frobenius operators and gives conditions under which condition (a) of
Theorem 1.2 is satisfied.

In general, under the conditions we consider, the Krein-Rutman theorem and its
generalizations only insure the existence of an eigenvector § € P(S) of A with eigenvalue
r(A), although it may well happen that 6§ € P,{S). Theorem 3.4 of Section 3 gives hypotheses
which insure that @ satisfies the hypotheses of Theorem 1.2.

One can also ask whether A* the Banch space adjoint of 4 : C(S) — C(S), has
periodic point p* € P(S)* of minimal period m. Theorem 4.1 of Section 4 provides an answer
to this question. One can also argue more directly from the results of Section 3, but at the
cost of unnecessary hypotheses.

Sections 5 and 6 of this paper are devoted to the theory of Perron-Frobenius op-
erators.. Section 5 treats the existence and uniqueness of positive eigenvectors of Perron-
Frobenius operators and represents a slight generalization of unpublished 1989 notes which
the author wrote in response to questions from Professor Jeff Geronimo. Also note that the
important quantity p(A) (see equations (19)-(22) in Section 5) will in general be strictly less
than s(A) (see eqn. (34)), which has been studied in the literature [1, 2, 6, 9, 11]. Indeed,
we have p(A) < s(A) = 1, even for simple examples like those in Corollaries 5.2 and 6.2.
Theorem 5.1 gives hypotheses under which Perron-Frobenius operators have an eigenvector
in P(S) with eigenvalue r(A4). The same theorem also gives hypotheses under which the
compactness condition (a) of Theorem 1.1 is satisfied and for which every eigenvector u of
A, the complexification of A, with eigenvalue ¢, |{| = r(A), is Hdlder continuous. Corollaries
5.1 and 5.2 are special cases of Theorem 5.1. We especially draw the reader’s attention to
Corollary 5.2, which illustrates the delicate calculus questions which can arise in verifying
the hypotheses of Theorem 5.1. Theorems 5.2 and 5.3 in Section 5 deal with the question
of whether r(A) is the only eigenvalue o of A with |a] = r(A4) and with the question of the
algebraic multiplicity of r(A).

In Theorem 6.1 of Section 6 we present a version of our fundamental Theorem
3.1 which is directly applicable to Perron-Frobenius operators. A simple, but illuminating
example is given in Corollary 6.2.

2 Periodic Points of A: Necessary Conditions

Theorem 2.1 Let S be a compact, Hausdorff space and A : C(S) — C(S) a positive,
linear operator. For a given integer m, assume that there exists a strictly positive function
fo € P.(S) which is a periodic point of A of minimal period m. Then the following conditions
hold:

(1) There exists 6 € P,(S) with A() = 8.

(2) There exist closed, nonempty, proper subsets E; C 5,0 < j < m, with E, = Ey,
such that (o) N E; = 0 and (b) whenever f € C(S) and f|E; = 0 for some j with
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0<j<m~—1, it follows that Af{E; 1 = 0.

Proof. Define f; = A’(f,) for 0 < j < m. Because A(f;) = fj41 for 0 < j <m —1, we see
that A(8) = @ for ¢ := Z;":‘Ol f;. Also, because f; € P(S) for 1 < j <m~1land fo € P.(S),
we conclude that 8 € P,(S). If ¥ € F,(S), there exists & > 0 such that ¥ — af € P(S), so
by applying A we see that A(¢)) —af € P(S) and A(y) € Po(S). It follows that A maps the
interior of P(S) into itself, so by applying A repeatedly we see that f; = A7(fo) € P.(S) for
1<j<m-—1.

For j € ZZ, define f; = f;, where 0 < ¢ < m —1and j =4 (mod m). For ¢ € 7,
define r; := max{r|f; > rfi-1} and R; := min{R| f; < rfi1}. If r; = R; for some ¢, then
fi—1 = Af; for some A > 0. By applying A repeatedly, one derives that Af; = f;-; for all j
and that fy = A™f;. The latter equation implies that A = 1 and f; = fy, a contradiction.
Thus we know that r; # R; for all i.

We claim that r; = rj; =: 7 and R; = R;y; =: R for all 7 and that » < 1 < R.
Recalling that f; > r;f;_; and applying A we see-that f;y) > r;f;, and the latter inequality
implies that r;.1 > r;. It follows that v <1y < - < 71y < 1y = 1y, which implies that

Tig] =T =7 foralli € ZZ.

A similar argument shows that R; = R;4; =: R for all 4.

To see that r < 1, we assume not and argue by contradiction. If » > 1, then
fix1 = fi for each 4; and because fi.1 # fi, there exists s; € S with fi11(s;) > fi(s;). Adding
these inequalities and taking s = s; for some fixed j, we obtain

m—~1 m—1
> faa(sy) > Y filsg),
=0 =0

which is a contradiction. The proof that R > 1 is similar and is left to the reader.

Let C; = {s € S| fi(s) = rfi1(s)} and D; = {s € S|fi(s) = Rfi_1(s)}. We claim
that if f € C(S) and f|C; = 0 for some i, then Af|Ciy1 = 0. Thus assume that f|C; = 0
and f # 0 and, for ¢ > 0, let G. = {s € S}|f(s)] > €}. For ¢ sufficiently small, G, is a
closed, nonempty set disjoint from C;. There is an open neighborhood H, of C; such that the
closure of H, is disjoint from G.. Urysohn’s theorem implies that there is a continuous map
e : S — IR such that ¢ (s) = 1for all s € G, ¥(s) =0forall s € H,, and 0 < ¢.(s) < 1
for all s € S. We have that ||.f — fl} <, so ||[A(Wf) — A(/)l] < ||Alle. Since .f = 0 on
H, fi—rfici 2 0and (f; — rfi—1)(s) > 0 for all s ¢ H,, there exists A, > 0 such that

=A(fi = rfic1) S vUef < A(fi —rfimn).

It follows that
—AA(fi = rfi1) S A f) < AMA(fi — rfich)-
Because A(f; —rfi_1) = fiy1 — 7fi and fi1, — rf; vanishes on Ciyq, we see that A(i.f)

vanishes on Cjy;. Taking the limit as € — 0%, we conclude that A(f) vanishes on Ci ;. A
similar argument shows that if f vanishes on D;, then Af vanishes on D;, ;.
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Notice that if s € ﬂ?f_‘BIC’j, then H;-”:‘Ol ﬁz—(l%) = r™ = 1, which contradicts that
fact that r < 1. It follows that ﬂ;”:‘blcj is empty. A similar argument shows that ﬂ;-”:“ole
is empty. We complete the proof by either defining £; = C; for 0 < § < m or by defining
Ei=Djfor0<j<m. O
Remark 2.1. Let assumptions and notation be as in Theorem 2.1 and define f; ., = f; for
J € ZZ. The sort of reasoning used in Theorem 2.1 actually proves much more. Suppose that
aj, 0 < j < m, are real numbers. If Z;";ol a;f; = 0, then Z;”:_Ol a5 i =0forallk € 2. If
P = P(S) and 75" a;f; € OP (respectively, Po) then 727" a;f4x € OP (respectively, Ps)
for all k € ZZ. If, for fixed real numbers a;, 0 < j < m, we have that ¥7;' a;f; := g € 9P,
define for k£ > 0 B, = {s € S| (A¥g)(s) = 0}. If f € C(9) and f|E;, = 0, then the same
reasoning used in Theorem 2.1 shows that Af|E..y = 0.

In fact we can provide more information about the sets F; than is given in Theorem
2.1. In particular, as we shall now show, if m is a prime, the sets F; can be taken to be
pairwise disjoint.

Corollary 2.1 Let hypotheses be as in Theorem 2.1. In addition to the properties listed in
Theorem 2.1, the sets E; can be selected so that for 0 < i < k < m either E; = E, or
E;NEy=0. If m is a prime, we can always arrange that BE;NEy =0 for 0 <i <k <m.

Proof. Suppose that £ is a closed nonempty subset of S and that there exists f € P(S)
such that £ = {s € S| f(s) = 0}. Let F = {s € S|{(Af)(s) = 0}. Then the proof of
Theorem 2.1 shows that for every h € C(S) with h|E = 0 we have Ah|F = 0. We shall use
this observation.

Let f;, 7 € ZZ, and 0 be as defined in the proof of Theorem 2.1 and let

r; =sup{r > 0| f; > rfj_i}.

We have seen in the proof of Theorem 2.1 that r; = r < 1 is independent of j. As in the
proof of Theorem 2.1, we define E; = {s € S| f;(s) = rf;_1(s)}, and we recall that E; is
a proper, closed, nonempty subset of S with ﬂ;”:“{)lEj = . If J is any finite collection of
integers, we define Ey by E; = MyesF;. If vis an integer, we define J+v = {j+v|j€ J},
80 FEyqy = NjesEit,. We now select J € {0,1,---,m — 1} such that E; # @ and such that
Er, = 0 for every subset I € {0,1,---,m — 1} such that [J]| < [L]. Our construction insures
that |J| :== & < m. For this choice of J, we define £, := Ej,, for v € 7. For each v € Z,
we define

Jy=4{1€{0,1,---,m—1}|i= j+ v (mod m) for some j € J}.

We note that || = & and £, = E;,. We shall write J 4+ v; = J + vy {mod m) if J,, = J,,,.

We claim that if E,, v € Z, in Theorem 2.1 are replaced by E,, then the properties
mentioned in Theorem 2.1 and in the statement of this corollary are satisfied. To see this,
first define a function g, by

gv = Z(fj-{—u - Tfj+V—1)

jeJ
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and note that E;y, = E, = {s € S|g,(s) = 0}; note also that our construction gives
E; #0. If E;y, =0 for some v € 7, then g, € P,(S) and there exists § > 0 with g, > 6.
Applying A repeatedly, we see tht g, > 66 for all 4 > v. If 4 is an integral multiple of m,
we deduce that go > 06; and the latter inequality contradicts the assumption that E; # 0.
Thus we conclude that E, # 0 for all v € Z. Since E; 1s a closed, proper subset of S for all
j € 77, we easily conclude that B, is a closed proper subset of S for all v and that

M By = NRGE; = 0.

As observed above, g, € P(S) and E, = {s]|g,(s) = 0}. Since A(g,) = gy4+; and
B, = {s|gu+1(s) = 0}, our original remarks imply that if h € C(S) and hlE, = 0, then
AW B, =0. i R X R

Ho<pu<v<mand E,NE, #0, we see that E;, N E;, := E; # 0, where
L:=J,UJ,. By our selection of J, we must have that |L| = &, so J, = J, and Eu =E,.

Suppose, by way of contradiction, that m is a prime and that, for g and v with
0 < u<v<mwe have E‘“ N E, # 0. As observed above, we must have J, = J,. If j5 € J,
there must exist ¢ € J, with ¢ = jo + p (mod m), and it follows that there must exist j; € J
with ¢ = j; + v (mod m). It follows that for any jy € J, there exists 5; € J with jo+p = j;
(mod m) and p := p — v. Using this observation repeatedly, we see that for 0 < s < m,
there exists j, € J with j;, = jo + sp (mod m). If j, = g, for 0 < s <t < m, we find that
(t —s)p = 0 (mod m). However, this is impossible, because 0 < t —5 < m, 0 < —p < m
and m is a prime. It follows that J has at least m distinct elements, which contradicts our
earlier observation that |J] < m. O

Actually, the proof of Corollary 2.1 yields more than we have stated. Let notation
be as in Corollary 2.1. If 0 < p < v < m and E‘,L nE, # 0, we have seen that J, = J,.
The same argument as above shows that the latter equation is impossible if p := v — p is
relatively prime to m. Furthermore, the equation J, = J, places many other constraints.
For example, if |[J| = m — 1, one must have that J, # J, for 0 < p < v < m.

Theorem 2.1 gives necessary conditions for a given positive, bounded linear op-
erator A : C(S) — C(S) to have a periodic point f, € P, of minimal period m. If
fi € P, 0 < j < m, are specified functions with f, = fy, one can also ask whether
there exists a bounded, positive linear operator A, given by a continuous integral kernel,
such that A7(fo) = f; for 0 < j < m. For m = 2 there is a simple answer to this question.

Corollary 2.2 Let S be a compact, Housdorff space and p a reqular Borel measure on S
such that p(G) > 0 for every nonempty, open set G C S. Suppose that fy € Po(S) and
f1 € P.(8) are given functions with fo # fi. There ezists a continuous, nonnegative function
k8§ %8~ [0,00) such that [k(s,t)fo(t)u(dt) = fi(s) and [k(s,t) fi(t)u(dt) = fo(s) for
all s € S if and only if fo and fi satisfy the following conditions:

(1) If gols) = 242 and g,(s) = B then

min{go(s) : s € S} =min{gi(s): s € S} :=r,

where 0 <7 < 1.
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(2) If By = {s|fo(s) = rfi(s)} and By = {s| f1(s) = 7fo(s)}, then Ey and F; have

nonempty interiors.

Proof. Suppose first that there exists a bounded, positive linear operator A : C(S) — C(S)
such that Afy = fi and Afi = fo and (Af)(s) = [k(s,¢)f(t)u(dt) for some continuous,
nonnegative function k. By applying Remark 1 to fy — rf; or by recalling the proof of
Theorem 2.1, we see that min{go(s) : s € S} := 7 and min{g:(s) : s € S} = r. Since we
assume that fy # fi, the proof of Theorem 2.1 shows that 0 < r < 1.

As noted in the proof of Theorem 2.1 and in Remark 2.1. if f € C(S) and f|E, = 0,
then Af|F), = 0. Because we assume that u(G) > 0 for any nonempty, open subset of S, we
easily deduce that k|E; x Ey = 0, where £’ denotes the complement of a set E. Similarly,
we see that k|Ey x B} = 0. Because k is continuous, it follows that k|E; x Fy = 0 and
k|Ey x Fy = 0, where F; denotes the closure of E; If Fy has empty interior, it follows that
k| By x S = 0. However, this contradicts the fact that A(§) = 6, where 8 := fy + f1 € P.(S5).
Similarly, we obtain a contradiction if F; has empty interior.

Conversely, assume that fo and f; satisfy conditions (1) and (2) of Corollary 2.1.
Because Ey and E; have nonempty interiors, there exist nonnegative, continuous functions
;0 S — R, 1=0,1, such that ¢;(t) = 0 for all t ¢ E; and [¢;(t)p(dt) = 1. Define k(s, )
by

(r f1(s) = fols))
(- 7)

We leave it to the reader to verify that

(fols) = rfi(s)

k(s,t) = (Wo() (fo(t) ™ + —*‘(—T‘_I—_T)"“(wl(t))(fo(t))_l-

/ k(s, ) fo(t)u(dt) = fi(s) and / k(s, 1) fu(E)u(dt) = fols). O

If m in Theorem 2.1 is a prime, we shall see in Section 3 that the necessary con-
ditions of Theorem 2.1, together with mild compactness conditions on A, provide sufficient
conditions for the existence of a strictly positive periodic point of minimal period m. In
general, suppose that Hf’:l pit = m, where p;, 1 < ¢ < k, are distinct prime numbers and
a;, 1 <1 < k, are positive integers. For 1 <4 < k, define v; = & and B; = A%, where A is
as in Theorem 2.1. By Theorem 2.1, there exists 8 € P,(S) with A(8) = 6 and B;(6) = 6 for
1 <17 < k. Since fo € P,(S) is a periodic point of A of minimal period m, f; € P.(S) is also
a periodic point of B; of minimal period p;. Thus we can apply Theorem 2.1 to the positive,
bounded linear operator B; to obtain necessary conditions that B; have a periodic point in
P, of minimal period p;, 1 < 7 < k. We shall see in Section 3 that these necessary conditions
on B;, 1 < i <k, together with mild compactness conditions on B;, 1 < i < k, insure that
A'has a periodic point in P, of minimal period m.

3 Periodic Points of A: Sufficient Conditions

In this section we shall prove that if A satisfies a mild compactness condition and m is a
prime, then the necessary conditions of Theorem 2.1 are also sufficent to insure that A has
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a periodic point fy € P,{(S) of minimal period m. The case that m is not a prime can be
easily analyzed and reduced to the prime case: see Theorem 3.5.

Our first lemma is a kind of extension theorem for continuous functions. It will play
a crucial role in our subsequent work.

Lemma 3.1 Letm be a positive integer and suppose that E;, 0 < { < m~1, are closed (possi-
bly empty) subsets of a normal, Hausdor[f space T. Assume thath; : E; = IR, 0 < ¢ <m—1,
are continuous maps, that h: T — IR is a continuous map and that

-1
Z hi(zx) for all z € ﬂ;’;f)lEz-.

i=0
Then there ezist continuous maps h; : T — IR such that
() Wil = il B,
() $75" hi(z) = A(z) for allz € T.

If, in adition, there ezists B > 0 such that |h(z)| < B for allx € T and |hi(z)] < B for all
r€F;,0<i<m~—1, then h;, 0 <i<m—1, can be chosen so that |h;(z)| < ((m+ 1)\B
forallz €T, 0<i<m~1.

Proof. We argue by induction on m. If m = 1, Lemma 3.1 is obvious: define ho(z) = A(z)
for all z € T and note that if B exists, then |ho(z)| < B < ((m + 1)) B for all z € T. Take
m > 1 and assume we know the Lemma for smaller values of m. Define ho(z) = ho(z) for
z € By and define ho(z) = h(z) — S27 hy(z) for ¢ € NIZTYE;. If z € By N (M2LE;), our
assumptions imply that these definitions agree, so kg is a continuous, real-valued function
with domain Ey U (N2 E;). The Tietze extension theorem implies that fg can be extended
t0 a continuous map (whlch we also designate ho) ho : T — IR. Furthermore, if B exists,
we have that |hy(z)] < mB for all z € Eq UNZTLE;, so the extension Ao : T — IR can
also be chosen to satisty |ho(z)] < mB for all z € T By our construction, we have that
h(z) — ho(z) = £27" hi(z) for all = € T3 E;. Define h by h(z) = h(z) — ho(z) forz € T
and notice that & is continuous and h(z) = S hi(z) for all z € NP7 E; and (if B exists)
|A(z)] < By := (m+1)B and |h(z)] < B < By, forallz € E;, 1 <4< m — 1. By our
inductive assumption, for 1 < i < m — 1, h; has a continuous extension fzi : T — IR such
that h(z) = =77 hi(z) for all z € T and (if B exists) |hi(z)| < (mh)By = ((m+ 1)!)B for
allz €T, 1<4i<m—1. This completes the proof. O
We shall actually only use a very special case of Lemma, 3.1.

Lemma 3.2 Let m be an integer with m > 2 and suppose that E;, 0 < i < m, are closed
(possibly empty) subsets of a normal, Hausdorff space T and that E,, = Ey. Assume also
that N5'E; = 0. Let r be a positive real number and set p = max(r,7 ) and N = m{(m +
1)I. Then there exist positive, continuous functions f; : T -+ (0,00} with fm, = fo and
fi(s) =rfic1(s) foralls € E;, 1 <i<mand p < fi(s) < pN foralls €T, 1<i<m.
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Proof Define A : T—)IRbyh()——Oforalltanddeﬁneh E; = IR by hy(t) = In(r) for
all t € E;, 0 <i < m. Because N’ E; = 0, the conditions of Lemma 3.1 are satlsﬁed (with

= |In(r)| = In(p )) and there exist continuous maps h; : T — R such that A;(£) = In(r ) for
aIl t€ B and Y75 hy(t) = 0 for all £ € T and |Ry(t)] < ((m + DY In(r)] < ((m+ 1)1 In(p)
for all t € T. We define h,, = hg, and we define g+ T — IR by g;(t) = exp(ﬁi(t)) for
0 <4< m. It follows that g; € Po(T), gm = o, GilEs =, 175" ¢:(t) = 1 for all £ € T" and,
for n:= (m+ 1), p™ < g;(t) < p" for aH teT, 1 <t<m. Wedefine f4(t) =1 for all
t € T and we define f; : T — (0,00), 1 < k <m, by

The reader can verify that, with this definition of f; for 0 < &k < m, all the stated conditions
of Lemma 3.2 are satisfied. 0
At this point we need to recall some standard results. If Y is a real Banach space
and B : Y — Y is a bounded linear map, ¥ will denote the complexification of ¥ and
B:Y — Y will denote the complexification of B. We define a norm on the complex Banach
space ¥ by
lu + dv]] = max{||(cos(f)u + sin(B)v]] : 0 < 8 < 27},

where v and v are elements of ¥ and ¢ = v/—1. We shall denote by U(B) the spectrum of B,
and we shall define o(B) := o(B). We shall always denote by r(B) the spectral radius of B,
and we recall that || B¥|| = || B¥|| and

n—0o0

lim [|B"[% = iuf [|B"]|* = sup{]A| : A € o(B)}. (1)

If T is a bounded subset of V', recall that o(T), the measure of noncompactness of
T, is defined by

o(T) =inf{d > 0|T = U;?:lTj, where k < coand diameter(T;) < dforl < j <k} (2)

Properties of the measure of noncompactness can be found in Section 1 of [14]. If Y and Z
are Banach spaces and B : Y — Z is a bounded linear map, we define a(B) by

a(B) = inf{c > 0| a(B(T)) < ca(T) for all bounded sets T C Y'}. (3)

The map B — «(B) is a seminorm; a(B) < ||B|| and a(B) = 0 if B is compact. If
B:Y — Y is a bounded linear map and if there exists an integer N such that BY = U +C,
where ||U|| < 1 and C is compact, then a(BY) = a(U) < 1. Further results about the map
B — a(B) are given in [12, 14].

If B:Y — Y is a bounded linear map, we shall always denote by p(B) the radius
of the essential spectrum of B; and we recall that

. AL nyy
o(B) = lim (a(B")¥ = inf (a(BY)*. @

Our previous remarks imply that p(B) < r(B). Further results concerning the essential
spectrum and the radius of the essential spectrum can be found in [12, 13, 15].
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If C is a closed, bounded convex subset of a Banach space X and L : X — X is
a bounded linear map such that L(C) C C, our next lemma recalls conditions which imply
that L has a fixed point in C.

Lemma 3.3 Let Y be a Banach space and L:Y — Y a bounded linear map. Assume that
there exists a closed, bounded conver set C C'Y such that L(C) C C. Suppose that any one
of the following conditions holds:

(a) There ezists zo € C such that the sequence y, = § 523 L’ (z0) has a subsequence which
s convergent in the weak topology on Y.

(b) There exists xg € C such that the closure of {L¥(z0) : k > 0} in the norm topology is
compact in the norm topology.

{c) p(L) <1, where p(L) denotes the essential spectral radius of L.

Then L has a fized point in C.

Proof. Suppose that condition (a) holds and that a subsequence y;, converges weakly to z.
Because C is closed and convex in the norm topology, it is also closed in the weak topology,
and zy € C. The proof of the mean ergodic theorem (see [21] , pages 213-214) shows that
L(z) = z. (We use here the fact that C is bounded, so {||L*(z)|| : n > 0} is bounded for
every z € C.) ‘

To complete the proof, it suffices to show that (¢) = (b) = (a). If

M = {L¥(zy) : k >0}

has compact closure in the norm topology, then Mazur’s theorem (see [5] , p.416) implies
that €6(}), the closed, convex hull of M, is compact in the norm topology. Since y;, € zo(M)
for all k > 1, the sequence y; has a subsequence which is convergent in the norm topology,
and hence in the weak topology.

If p(L) < 1, there exists an integer n and a constant ¢ < 1 such that a(L") = ¢ < 1.
Ifz € Cand M := {L¥(z) : k > 0}, then M C C is a bounded set and a(M) < co. We
have that

L (M) UGS (@) = M,

and since o(U}S1L(z)) = 0, a(M) = a(L™(M)) < ca(M). The latter inequality implies
that a(M) = 0, so M has compact closure in the norm topology. O

If X;, 0 <4 < m—1, are Banach spaces, we can form a Banach space ¥ = It X
Hy= (20,21, -, Tm-1) € Y, we define [[y|| = max{[|zlj; : 0<1 < m— TNWIfEX;=X;=X
for1<i<j<m-1land A: X — X isabounded linear operator, we can define a bounded
linear operator ® : ¥ — Y by

‘D((xml‘l, e ',$m~1)) = (Ail?m-h Axg, Azy, - - ‘:Afﬁm-z), (5)

and one easily sees that ||®*|| = || A¥|| for k£ > 0. If C is a closed, bounded convex subset of
Y and ®(C) C C, we need a condition on 4 which insures that ® has a fixed point in C.
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Lemma 3.4 Let X be a Banach space, m > 2 a positive integer and A : X — X a bounded
linear map. Let Y =T]25' X and let &:Y — Y be defined by equation (3. 5). Assume that
there erists a closed, bounded conver set C C Y such that ®(C) C C and suppose that any
one of the following conditions holds:

(a) For any g = (go,gl,-‘-,gm 1) € C, there exists an increasing sequence of integers
k; — oo such that k; Zk oL A™(gq) is convergent in the weak topology on X asi — oo.

(b) For any g = (g0, 91, , 9m-1) € C, the norm closure of {A™ (go) : j > 0} is compact
i the norm topology. :

(c) p(A) <1, where p(A) denotes the essential spectral radius of A.
Then there exists h € C with ®{h) = h.

Proof. Take f = (fo, f1,--", fm-1) € C. We shall refer to f;,, 0 < t < m — 1, as the t-
coordinate of f. Define f; = f; if j € Z and j = t (modm), 0 < t < m — 1. For a positive
integern, f €Y andz € X, wedefine @, : Y - Y and B, : X — X by

1 n-1 1 n—1 )
@, ( Z(I)J(f Yand B, (z) = nEAm](:c). (6)
3=0
A calculation shows that for k£ > 1, the t-coordinate of ®,.x(f) is given by
LS w(Bs (25 -5 7
;TL- kS m4t— s = E ] fm+t s = k(gf)' ( )

$=0

One can see that g; in the preceding equation is the t-coordinate of 1 375! ®*(f), so the
convexity of C implies that (go, 1, -, gm-1) € C. Because ®(C) C C and A*(f;) is one
of the coordinates of ®*(f) and C is bounded, {A*(f;) : k > 0} is bounded for each j. A
calculation shows that for 0 <t <m -1,

g1 = A(g:) + %(fm = A™(fr41))

Applying By to the above equation, we obtain that for 0 <# < m — 1,

Bu(gis1) = AlBl00) + - (fuvs — A™ (o). Q

Asume now that condition (a) of Lemma 3.4 holds. If g; is as above, it follows that
there exists a sequence k; — oo such that By, (go) converges weakly to hy as 1 — oo. It
follows from eq. (8) and the fact that A™(f,,) is bounded for 0 < ¢ < m — 1 that By, (g;)
converges weakly to A(hg). By using eq. (8) and repeating the argument one shows that
By, (g:) converges weakly to A*(hg) as 1 — oo for 0 < ¢ < m — 1. It now follows from eq. (7)
that @, (f) converges weakly to (hg, Aho, -+, A™ 'hg) as ¢ — oo. By using condition (a)
of Lemma 3.3, we conclude that & has a fixed point in C.

To complete the proof, it suffices to prove that condition (c) implies condition (b)
and conditon (b) implies condition (a). If f = (fo, f1,* "+, fm—1) € C and condition (b) holds,
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Mazur’s theorem implies that €a({A™(f,) : 7 > 0}) := D is compact in the norm topology.
Since By(fo) € D for k > 1, the compactness of D implies that there exists a subsequence
ki — oo such that By, (fo) converges in the norm topology (and hence in the weak topology)
as ¢ — co. Thus condition (a} is satisfied.

If p(A) <1, eq. (4) implies that p(A™) < 1, so there exists k > 1 with a(A™) = ¢,
e< . If f=(fo,f1, " frn-1), define M = {A"U(fg j > 0} and note that our previous
remarks show that M is bounded. Arguing as in Lemma, 3.3, we see that

a(A™H(M)) = o(M) < ca(M),

so a(M) = 0, M has compact closure, and condition (b) is satisfied. O
We can now prove our basic theorem for the existence of periodic points of A.

Theorem 3.1 Let S be a compact, Hausdorff space and A : C(S) — C(S) a linear operator
such that A(P) C P, where P := P(S) is the set of nonnegative functions in C(S). Let m
be a prime number. Assume that the following conditions are satisfied:

(1) There exist closed, nonempty subsets E; C S, 0 < j < m, with E,, = Ey, such that ()
7o E; =0 and (B) whenever f € C(S) and f|E; = 0 for some j with 0 < j <m —1,
it follows that Af|E;11 = 0.

(2) There exists € P such that A(6) = 0 and 0(sq) > 0 for some sg € UL E; .= E.
In addition assume that at least one of the following compactness conditions on A is satisfied:

(a) For every M > 0 and every fo € C(S) with —M8 < fo < M8, there exists a sequence
k; — oo such that the sequence Ellej;”ol A™(fo) converges in the weak topology on
C(S) as i — co.

(b) For every M > 0 and for every fy € C(S) such that —M6 < f, < M0, the norm
closure of {A™(fo) |7 > 1} is compact in the norm topology.

(c) p(A) < 1, where p(A) denotes the essential spectral radius of A.

Then it follows that there exist positive reals a and b and fo € P such that af < fo < b9,
A™(fo) = fo, and A (fo) # fo for0 < j < m.

Proof. Let Y and ® be as defined in Lemma 3.4 and let r # 1 be a positive real num-
ber. By Lemma 3.2, there exist functions g; € P,, 0 < j < m, with g, = go, such that
gilB; = rg;1|Ej for 1 < j < m and go(s) = 1 for all s € S. We define fj = fg;, so it
remains true that fJ|E' = rf] 1|E; for 1 < j < m. By the continuity and positivity of the
functions g;, there are numbers a > 0 and & > 0 such that a < gi(s) <bforall s € S and
for 0 < j < m, and this implies that af < fj < for0<j<m.

Now define a set C C Y by

C={(fo, fro-++, fm1) €Y|af < f; < bfand f;1E; = rf;1|E; forl <j <m}  (9)
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Our convention is that subscripts are taken modulo m, so f,, = f; and f,_y = f_;. Our
previous remarks show that ( fo, Fisros fm_1) € C, so C is nonempty. The reader can verify
that C' is closed, bounded and convex.

We next claim that $(C) C C. To see this, suppose that f = (fo, fi, -, fm-1) € C
and write ®(f) = (ho, h1."+, Am-1), 50 h; = A(fi_1) for 0 < ¢ < m ~ 1. We know that
af < f;; < b8 for all i, so we have

aA{0) = af < A(fi1) = hs < DA(D) = b8

for 0 <4 < m - 1. By assumption, (f;_; — 7 fi—a)|Fi—1 = 0 for all i, so the defining property
of the sets E; implies that

Alfic1 = rfico)| B = (hy — rhi-1)| By = 0

for all i. This proves that &(f) € C, so (C) C C.

If f={(fo-fr. -, fm-1) € C, we know that af < fy < b6 ; so if condition (a) of
Theorem 3.1 is satisfied, there exists a sequence k; — oo such that By, {fs), where By is given
by eq. (6). A similar argument shows that if condition (b) of Theorem 3.1 is satisfied, then
condition (b) of Lemma 3.4 is satisfied. It follows that if condition (a), (b) or (c) of theorem
3.1 is satisfied, then the corresponding condition of Lemma 3.4 is satisfied, and thus Lemma
3.4 implies that ® has a fixed point in C.

Let ( fo, Foeee ) e 1) € C denote a fixed point of ®. The definition of ® implies
that Af2 c=fifor1<i<m (where fm = fo) so we see that Am(fg) = f,. We claim
that A fo # fg Suppose, by way of contradiction, that A fo = fy. Then we obtain that
Ji = Ai(fy) = fo for all 5. This implies that (fi — rfl_l)[E = (1 — r) fo|E; = 0 for all ; and
since 7 # 1, we conclude that fo|B; = 0 for all i and fo| E = 0. However, 0 < af(s) < fo(s)
for all s, so 8|F = 0 ; and this contradicts the assumption that &(sy) > 0 for some sy € E.
It follows that A(fo) # fo ; and because m is a prime, we conclude that AT(fo) # fo for
0<ji<m. O
Remark 3.1. The above argument actually proves slightly more than is stated. Let hy-
potheses and notation be as in Theorem 3.1. Let r be any positive real, r # 1, and £ an
integer with 0 < & <m— 1. Then there exist positive reals a and b and gy € C(S) such that
afl < go < b, go is a periodic point of A of minimal period m, and Agy|Ex = rgo| Ek.
Remark 3.2. Theorems 2.1 and 3.1 imply, as a very special case, Corollary 1.1 of the
Introduction. Observe that Theorem 2.1 implies that if A in Corollary 1.1 has a periodic
point fo € Fo(S) of minimal period m (m a prime), then A(8) = @ for some ¢ € P.(S) and
there exist sets Ej; as in condition (2) of Theorem 2.1. If f € C'(S) and f|E; =0, then, for
all s € E; we have

(A9)s) = [ FO)k(s, u(d) =
5-E;
If k(sq,%0) > 0 for some (sg,tp) € Ejq1 X E; , we select an open neighborhood G of ¢y with
G C E; such that k(so,t) > 0 for all £t € G. There exists a nonnegative, continuous function
f which is positive on G and equal to zero on E;. Because we assume that u(G) > 0, this
implies that (Af)(so) > 0, which is a contradiction. Thus we must have that k(s,¢) = 0 for
all (s,t) € Ui, NEj % E; 3)-
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Conversely, suppose that conditions (1) and (2) of Corollary 1.1 are satisfied. Then
it is clear that conditions (1) and (2) of Theorem 2.1 are satisfied . Also, A is compact, so
p(A) =0 <1, and Theorem 3.1 implies that A has a periodic point fo € P,(S) of minimal
period m.

The argument in theorem 3.1 has little to do with the linearity of 4, and one can
give a version of Theorem 3.1 for nonlinear operators. Recall that a map A4 : P(S) — P(5)
is called “order-preserving” if A(z) < A(y) whenever 0 < z < y. The map A is called
“homogeneous of degree one” if A(Az) = AA(z) for all nonnegative reals A and all z € P(S).
fc:S8xS8 — IR is a nonnegative, continuous map and A : P(S) — P(S) is defined
by (Az)(s) = max{c(s,t)z(t)|t € S}, then A provides an example of a continuous, order-
preserving map which is homogeneous of degree one and takes bounded sets to sets with
compact closure. Such maps arise in many applications.

If € P(S) and a and b are positive reals, we shall write

[a6,86] := {f € C(S) | a6 < f < b}

Theorem 3.1A Let m be a prime, S a compact Hausdorff space, and A : P(S) — P(S)
an order-preserving map which is homogeneous of degree one. Define @ = [[75' P(S) and
define @ : Q@ — Q by ®(90, 91, 9m-1) = (ho,h1, -, A1), where by = A(g;_1) and
9-1 = gm-1- Assume that there exist real numbers a < 1 < b, § € P(S)and compact,
nonemply sets B; C S, 0 < i < m, with E,, = Fy, which have the following properties:

(a) A(0) =0 and 8(so) > 0 for some sq € E := Ul E;.

(b) If f and g are any two functions in C(S) such that f € [a8,b6], g € [aB,b8] and
fIE; = g|E; for some i, 0 < i < m, then Af|E;q = Ag|Eigr.

(¢) N B = 0.

(d) For any closed, nonempty, convez set G C [175 a8, b0] such that ®(G) C G, ® has o
fized point in G.

Then A has a periodic point go € [a8,b6] of minimal period m.

Proof. Define N = m(m +1)! and select r > 1 such that a <7~ < ¥ < b. Let G C Q be
defined by

G={(fo, f: " fm1) €Q|af < f; <0 and fj|E; = rf;_1|E; for 1 < j < m}.

We know by Lemma 3.2 that there exist functions g; € P»(5), 0 < j < m, g, = go, with (1)
N < gj(s) <rV¥ forall s € S and for 0 < j < m and (2) 9ilE; =rg;|E;for 1 <j<m.
If we define f; = Og;, then (fo, f1,--, fm-1) € G, 50 G # 0. It is easy to see that G is
closed and convex. Essentially the same argument as in Theorem 3.1 shows that ®(G) C G:
the fact that A is order-preserving and homogeneous of degree one and that assumption (2)
in Theorem 3.1A is satisfied suffice to replace positivity and linearity of A in Theorem 3.1.
By assumption (4) in the Theorem, & has a fixed point f = (fy, f1,- -, fm-1) € G. By the
definition of ® we see that A(f;) = fi;, for 0 < i < m — 1 and that A™(fo) = fo. Since m
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is a prime, it follows that either A(fy) = fo or A™(fy) = fo but A¥(fo) # fo for 0 < j < m.
If A(fo) = fo, then f; = fo for all j; and since f;(s) — 7f;-1(s) = (1 — 7)fo(s) = 0 for all
5 € Ej, fo{s) = 0 for all s € F; and for all j. It follows that fo(s) = 0 for all s € F. Since
af < fo, we conclude that 6(s) = 0 for all s € F, which contradicts assumption (1) of the
theorem. O

Theorem 3.1A can be applied to maps like Az(s) = max{c(s,t)z(¢) [t € S}. We
hope to pursue these and related nonlinear questions in a future paper.

Theorem 3.1 provides sufficient conditions for the existence of a nonnegative periodic
point of A of minimal period m. If one is only interested in the existence of a strictly positive
periodic point of A of minimal period m, Theorems 2.1 and 3.1 can be combined to yield
the following cleaner result.

Theorem 3.2 Let S be a compact, Hausdorff space, A : C(S) — C(S) a positive linear
operator and m a prime number. Assume that A satisfies at least one of the following
compactness conditions:

(a) For every g € C(S) there exists a sequence k; — oo such that Elj FHA™) (g) con-
verges in the weak topology on C(S) as i — co.

(b) For every g € C(S) , the norm closure of {A™(g) : j > 1} is compact in the norm
topology.

(c) p(A) <1, where p(A) denotes the essential spectral radius of A.

Then A has a periodic point fo € Po(S) of minimal period m if and only if the following two
conditions are satisfied:

(1) There exists 6 € P,(S) with A(G) = 0.

(2) There exist closed, proper, nonempty subsets E; C S, 0 < j < m , with B, = Ey ,
such that (a) "G E; = 0 .and (8) whenever f € C(S) and f{E; = 0 for some j with
0<ji<m—1, it follows that Af|E;4; = 0.

Proof. The necessity of these conditions follows from Theorem 2.1 and the sufficiency from
Theorem 3.1. O

Remark 3.3. Our motivation for introducing conditions (a) and (b) in Theorems 3.1
and 3.2 instead of restricting attention to the much simpler assumption (condition (c)) that
p(A4) < 1 = r(A) comes from “Perron-Frobenius operators”, which will be treated in Sections
5 and 6. For Perron-Frobenius operators it is often the case that p(A4) = 7(A). In the follow-
ing work we shall prove some theorems which are applicable to Perron-Frobenius operators
and which allow the verification of Condition (2) of Theorem 3.1 even when p(A) = r(A).
The existence of § as in Theorem 3.1 or 3.2 is closely related to generalizations of
the Krein-Rutman theorem and to the concept of irreducibility. If Y is a real Banach space,
a closed, convex set K C Y is called a closed cone (with vertex at 0) if K N (—K) = {0}
and MK C K for all A > 0. The cone is called “total” if the closed linear span of K
equals Y. If L : ¥ — Y is a bounded linear operator, K is a total cone, L(K) C K
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and p(L) < r(L) := r, then it is proved in [15] that there exist y € K,y # 0 and
v EKRK ={feY"|f(z)>0forallz€ K},y* #0, with L(y) = ry and L*(y*) = ¢* .
The classical Krein-Rutman theorem treats the case that L is compact (so p(L) = 0 ) and
r(L) > 0. K, # 0, the operator L is called “irreducible” if for every A > r and ¢ € K —{0}
, (A= L) z) = AV (AILY (z) € K,. For cones with empty interior, a more general
definition of irreducibility is given in the appendix of [18]. It is easy to show that if L is
irreducible, r = (L), and L(y) = ry for some y € K — {0} , then y € K.,

In the context of Theorem 3.1, if 7{A) = 1 and A is irreducible, we deduce that
8 € K, . However, the assumption that A is irreducible is frequently too restrictive. To see
this, suppose that .S is a compact, Hausdorff space and that A : C(S) — C(S) is a positive,
bounded linear operator. Suppose (compare condition (1) of Theorem 3.1) that there exist
closed, nonempty sets F; ¢ S,0 < j < m , with B, = Ey , such that if f € C(S) and
fIE; =0 then Af|Ej.; = 0. Define E = UJ3'E; and note that if f € C(S) and f|E =0,
then Af|E = 0. It follows that if f|[E = 0, then A*(f)|E = 0 for k > 0 , and so, for
A >r1(A), we must have that (\[ ~ A)"}(f)|[E =0 . If E # 5, there exists f € P(S) — {0}
such that f[E = 0 . For this f we have that (Al — A)7}(f)[E = 0 for A > r(A4) , s0 A is
not irreducible. In particular, if condition (1) of Theorem 3.1 holds and UT:“(JlEj # S, then
A is not irreducible. Furthermore, if m is a prime and the hypotheses of Theorem 2.1 are
satisfied, then we have seen in Corollary 2.1 that the sets F; can be chosen pairwise disjoint.
It follows that if A is irreducible and the hypotheses of Theorem 2.1 are satisfied with m
a prime, then S = E is the union of m pairwise disjoint, closed nonempty sets, so § must
have at least m connected components.

In view of the difficulties described above, it seems useful to formalize the the role
played by the set £ = U;”;OIE]» in Theorem 3.1. First, however, it is convenient to prove the
following lemma.

Lemma 3.5 LetY and Z be Banach spaces and assume that 7 : Y — Z is a bounded linear
map of Y onto Z. Suppose that A : YA—> Yond B:Z — Z are bounded linear maps such
that Br = wA. Then it follows that r(B) < r(A) and p(B) < p(A).

Proof. Let ||y[|; denote the norm on ¥ and {|z||; denote the norm on Z. Similarly, if S € ¥
(respectively, S C Z ) let diam;(S) (respectively, diamy(S) ) denote the diameter of S with
respect to the norm on Y (respectively, with respect to the norm on Z). We denote by oy
(respectively, a, ) the measure of noncompactness on ¥ (respectively, on Z). Finally, for
r >0, we define B-(0) ={y € Y : |ly|h <r}and V;(0) = {z € Z: ||2ll, < r}.

We claim that #A7 = Bix for all J = 1. We know this is true for j = 1. If the
equation holds for some particular j > 1, we obtain

(B'm)A = (B)(nA) = (B)(Br) = B*'x = (n AV)(A) = nAi*,

and we conclude by induction that 7A* = B*r for all k > 1.

Because 7 is onto, the open mapping theorem implies that there exists § > 0 such
that 7(B1(0)) D V5(0), so m(B;-1(0)) D Vi(0). It follows that

B (V1(0)) C Bin(Bs-1(0)) = w42 (B;s-1(0)).
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We deduce from these inclusions that
|1B7]l2 = sup{[| B7 (2) ||z : 2z € Vi(0)} < sup{l(rA))®)ll2 : y € Bs-1(0)} < Jj|} [|A7]] 167"

It follows that .
5 = 1 Bill7 < Tim (5~ VNG = (A
r(B) = Jim 1Bl < Jimm (67wl 1470 = r(A).

It remains to prove that p(B) < p(A). If we can prove that there exists a constant
C such that ay(B?) < Cay(A%) for all j > 1, then the desired result follows by taking j&
roots and taking limits as § — co. It remains to prove the existence of C. Suppose T' C Z
and ay(T) = d. Given ¢ > 0, there exist sets 71,73, -+, T, such that T = U7_;T; and
diamy(T;) < d+ € for 1 < j < n. For each j, select z; € T; and y; € Y with #(y;) = z;. For
each z € T} we have ||z — z;||2 < d+¢, so there exists y = y,; € ¥ with [y —y;ll; < 6~} (d+¢)
and w(y) = z. Define S; := {y.; : z € T;}. By our construction we have that 7(S;) = T;
and. diam, (S;) < 2671(d + ¢). It follows that

as(BH(T))) = aa(BFn(S;)) = aa(rA*(S))) < |lnll ax(AF)ea () < il en(AF)267H(d + o).
We conclude that
ap(BH(T)) = max{ax(B*(Ty)) - 1 < j<n} < lnllen(AF) (2671 (d +e).
Since ¢ > 0 was arbitrary, we have, taking C = (267!)||x|],
ay(BH(T)) < Con (A¥)en(T),

which implies that op(B*) < Coy(A%) for k> 1.0
As an immediate consequence of Lemma 3.5, we obtain

Lemma 3.6 Let S be a compact, Hausdorff space and A : C(S) — C(S) a positive linear
operator. Let E be a closed, nonempty subset of S such that whenever g € C(S) and
g|E = 0 it follows that Ag|lE = 0. If f € C(E), select g € C(S) such that g|E = f and
define B : C(E) — C(E) by

B(f) = A(9)|E. (10)
Then B is well-defined and B is a bounded linear operator such that || B?|| < || 47|} for all
j 2 1, 7(B) < r(4) and p(B) < p(A).

Proof. Define m : C(S) — C(E) by m(g) = ¢|E, so 7 is a bounded linear operator of norm
one. The Tietze extension theorem implies that 7 is onto; and in fact, given f € C(E), there
exists g € C(S) with n(g) = f and such that for all s € S

inf f < g(s) < sup /. (11)
E E

To show that B is well-defined, note that if 7(g;) = 7(ga), then (g2 — g1)|F = 0, so A(ga —
@)|E =0, and Ag|E = Ags|E. The definition of B also shows that Br = wA, so Lemma
3.5 implies that 7(4) > r(B) and p(A4) > p(B). The proof of Lemma 3.5 also shows that
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Bim =7 Al for all j > 1. Given f € C(E), choose g € C(S) with (g) = f and ||f]] = ||g]|.
It follows that

1B (AN = 1B (zg)ll = i A7 (g)l| < il NA7 N Mgl < A7) L1

which implies that ||B7|| < [|A7]]. O

Our next theorem is motivated by applications to Perron-Frobenius operators, for
which the framework described below will be satisfied by taking ¥ to be a Banach space of
Holder continuous functions on a compact metric space (5, d) or a Banach space of analytic
functions.

Theorem 3.3 Let S be a compact, Hausdorff space and let X denote the real Banach space
C(S). Assume that (Y, ||-|lv) is a real Banach space and that there ezists a continuous, one-
one linear map i : Y — X such that i(Y") is a dense linear subspace of X. Let L: X — X be a
positive linear map and suppose that A 1Y — Y is a bounded linear map such that iA = Li.
Then we have r(A) > r(L), and if p(A) < r(L), r(L) = r(A). If P denotes P(S) and

p(A) < 7(L) :=r, then there exists y € i1 (P), y # 0, with A(y) = ry. If p(A) < r(L) =1
and if y €Y is such that {[iA*(y)|| : k& > 0} is bounded, then the set {||AF(y)lly : &k > 0} is
bounded. If p(A) < r(L) =1 and if there exists a constant C with ||L*|| < C for all k > 1,
then the following results hold:

(a) For everyy € Y and every ( € C with [(] = 1, {¢” kA%(y) : k > 0} has compact closure
in the norm topology on (Y, || - |ly). Here Y denotes the complezification of Y and A
the complexification of A.

(b) For every z € X and every ¢ eCwith || =1, {¢*L*(x) : k > 0} has compact closure
in the norm topology on on X. Here X denotes the complexzification of X and L the
complexification of L.

(c) IfC€C, || =1, and M = {y € Y|A(y) = Cy} and N = {z € X | L(z) = Cz}, then M
is a finite dimensional vector space and i(M) = N. Furthermore, N = {z € X |({I ~
LY (z) = 0 for some k > 1}.

(d) For everyy € Y and every { € € with [(| = 1, yp := n~! P CIAI(y) converges
in the || - ||y topology to an element Qy(y) € Y with A(Qy(v)) = Qy(y). For every
z € X and every ( € C with || =1, 3, :=n" 1370 (}C_]L](I‘) converges in the norm

topology on X to an element Q(z) with L(Q(z )) = Q(z). The maps Q : X — X and
Qv : Y = Y are bounded linear proyectwns

Proof. The assumption that 7 : ¥ — X is continuous implies that there is a constant C,
with [liy|l < Cqllylly for all y € Y. The assumption that i is one-one and 7L = A7 implies
that if z € € is an eigenvalue of A with eigenvector w € Y, then z is also an eigenvalue of
L with eigenvector i(w) € X. In particular, ap(A), the point spectrum of A, is contained
in op(L). ¥ B:Y — Y is a bounded linear operator, we shall write || B||y for its operator
norm.
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Let e € X denote the function identically equal to 1 and recall that || L™]] = ||L*(e)]|
for all n > 0. Because {2 [z > e} contains an open set set in X and ¢(Y") is dense in X, there
exists y € Y with e < i(y). Because L"(P) C P for n > 0, we see that

0< L™e) < L*(i(y)) = i(A™(y))-
Taking norms and recalling that ¢ is continuous gives

L™= N2l < LGN = 1AW < TElA™ v lylly-

Taking n* roots and letting n approach infinity we obtain

r(L) = lim [LMF < lim [A"E = r(A),

=00

Let o(A) and (L) denote the spectrum of A and L respectively. It is known that p(A) = p(A)
and r(L) = r(L), so if p(A) < (L), it follows from results in [12, 13] that for every z € o(A)
with |z] > p(A), z is an eigenvalue of A with finite algebraic multiplicity and with eigen-
vector w, € Y. It follows that if z € o(A) and |z| > p(A), then z € o(L). We know that

o(A) < (L) < r(A), so the above remarks imply that

r(A) = sup{lz] : z € o(A)and |z| > p(A)} < r(L).

Thus, if p(A) < (L), we have proved that r(A) = r(L). Note that i~ (P,) C i7}(P),
so the interior of 5}(P) in Y is nonempty, and one easily derives that ¥ = (i"'(P)) —
(i71(P))). Because i is one-one, the reader can verify that ¢"(P) is a closed cone in Y. If
one now applies the generalization of the Krein-Rutman theorem in Remark 3.3 (see [15]) ,
one finds that there exists y € i71(P), y # 0, with A(y) = ry and r = r(L).

Now assume that p(A) < (L) =1, so r(A) = 1. For any ¢ > 0, the set

{zea®) : 2] > pA) +)

is finite, so there exist reals 8 and v with p(A) < 8 < 1 < 7 such that {z € C||z| = 3}

contains no element of o(A). Let I'y and T, denote circles centered at the origin, oriented
counterclockwise, and with radii 8 and 7y respectively. Define

! i) lgs - 1 At
P= 2_7ri/1‘7(Z~A) dz 5 Fa(z A) e
(In the previous equation i denotes v/—1, of course.) Because p(A) < r(A), it follows from
standard facts about the functional calculus for bounded linear operators that P : ¥ — Y is
a bounded linear operator with P(Y) C Y, P? = P, P is a projection with finite dimensional
range, AP = PA and B _

o(AMI = P)) ={z€0(A) : |2] < B}

Using this equation we see that r(A(I — P)) < 3, so there is a constant C3 such that for all
positive integers k we have

AU = P)*lly = AT = P)lly < Ca™.
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Any one-one linear map from a finite dimensional, Hausdorff topological space onto another
finite dimensional, Hausdorff topological space is known to be a homeomorphism. Applying
this theorem to the one-one linear map #[P(Y) : (P(Y), || lly) = GP(Y), ||+ ])), we see that
there exist positive constants C3 and C, such that

CsllePyll < |1Pylly < CulliPy]|
for all y € Y. Since A*P = A*P? = PA*P, AF maps P(Y) into itself, and we obtain
AR (Py)lly < Culfih¥(Py)].

Now suppose that y € ¥ is such that {||iA*(y)|| : k > 0} is bounded. Because we

have } B ~
i (y) — iA(T — P)(y) = iA*P(y),

and because we have proved that {||{A*(J — P)(y)|ly : k > 1} is bounded, we conclude
that {|iA*(Py)|| : & > 0} is bounded. It follows from our previous remarks that the set
{IIA*(Py)|ly : k> 0} is bounded, so we conclude that {IIA*()lly : k> 0} is bounded.

For the remainder of the proof we assume that p(A) < r(L) = 1 and that there
exists a constant C with ||L¥|] < C for all k¥ > 0. The assumption that [|L*|| < C implies
that {||L*(iy)|| : k > 0} is bounded for every y € Y, so our previous results imply that
{IA*(y)|ly : k > 0} is bounded for every y € V. We now claim that for every y € ¥ and
every ( € C with |¢] = 1 the set {¢7*A*(y) : k > 0} has compact closure in the norm
topology on (Y, |- liv). If S1 and Sy are sets in X, recall that S + Sy := {z; + 1, : 2; € S:}
and note that

{C*A ¥ w) - k> 0} C S+ 5y, (12)

where we define S; := {C"‘]\.’“(I ~P)y : k> 0} and S, := {¢"*A¥(Py) : k > 0}. Our
previous results imply that ||¢*AF(I — P)yHy — 0, so, denoting the measure of noncom-
pactness in (Y, 1] - lly) by &y, we have that &y (51) = 0. We also know that S; is bounded
in (Y Il - ly) and that S; is a subset of P(Y'), which is a finite dimensional vector subspace
of ¥, so we conclude that &y (S;) = 0. Equation (12) now implies that

ay ({CFAMy) k> 0}) < Gy (S1) + av(Sy) =

so {¢7*AF(y) : k > 0} has compact closure in (¥, || - [|y).
We next select z € X and ¢ €€, |¢] = 1. We must prove that {¢FLF(z) : k> 0}
has compact closure in X for every z € X. Given § > 0 and T C X, let

Ni(T)={z€e X : 1I€1fr||z —w|| < é}.

Select € > 0. Since Y is dense in X, there exists y € ¥ with ||i(y) — z|| < e. We have
proved that 7j, the norm closure of {(™*A*(y) : k > 0} in (Y, || - |ly) is compact, and
since ¢ : ¥ -+ X is continuous, T := ¢(7}) is compact in X. If & denotes the measure of
noncompactness on f(, it follows that

0=a(T) > a({¢ L () - k=0}) >0
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Because ||( ¥ L*(z) — ¢"*L*(iy)]| < Clly — x| < Ce for all k > 0, we have
{¢*L¥(z) - k> 0} C Ned(T),

so properties of the measure of noncompactness imply that
&{¢*Ik () : k> 0}) < 2Ce.

Since ¢ > 0 was arbitrary, we conclude that {{*L*(z) : k > 0} has compact closure in X.

It remains to prove statements (c) and (d) of the theorem. We know (for |[¢| =1
that p(A) = p(A) = p(¢™ 1A) and r(L) = r(L) = r(¢"'L), s0 our assumptions and previous
results imply that p(¢™'A) < r(¢™'A). The fact that M is finite dimensional now follows
immediately from properties of the essential spectrum: see [12, 13]. We have proved that
there exists a constant Cys with ||A®||y < Cj for all £ > 0. We have also proved that for
every y € ¥ and every ¢ €€ with [¢] = 1, {¢"*A*(y) : k& > 0} has compact closure in ¥,
so Mazur’s theorem implies that the closure of the convex hull of {¢~*A%(y) = k > 0} is
compact in V. Tt follows that for every y € ¥, the sequence y; := k! D Y *A*(y) has
a subsequence which converges in the norm topology on ¥. We have thus proved that the
hypotheses of the mean ergodic theorem are satisfied, so for every y € Y, (yx) converges in
the norm topology on Y to a fixed point u := Qy (y) of A, and Qy satisfies the properties in
statement (d). For every z € X and ( as above, {¢™*I*(z) : k > 0} has compact closure
in X and ||L*|| < C for all k > 0, so the same argument shows that for every = € X, the
sequence zy = k~ Elec ifi (z) converges in the norm topology on X to a fixed point
v=Q(z) of L, and Q is a bounded linear projection of X into itself.

Let m = dim(M). As we have already noted, ¢{(M) C N, and since 7 is one-one, this
implies that m < dim(N). If 4(M) # N, there must exist a set of m + 1 linearly independent
vectors £; € NV,1 < j < m+ 1. A simple argument, which we leave to the reader, shows
that there exists § > 0 such that if {§; : 1 < j < m + 1} is any set of m +.1 vectors
in X with [lz; — &f) < dfor 1 < j < m+1,then {€ : 1 < j < m+1}is a linearly
independent set of vectors. Take € > 0 with C'e < § and, using the density of i(Y), select
Y; € V,1<j<m+1, with lli(y;) — z;l < efor 1 <37 <'m+ 1. By our previous remarks,
there exist u; € M, 1 < j <m+ 1, such that

k—1
Jim 16713 ¢ A% (y;) — uglly = 0.
s=0

However, if we define Sy : Y - Y by Si(y) = D Y C“SAs(y) and Ty : X — X by
Ti(z) = k= 523 ¢~ L*(z) and if we recall (7' L(z;) = x;, we see that

k-1
1805k (w5)) = ll = I[Ti(o(y;) = z;)lf < & 20 12°1M11(y;) = 23] < Ce.

Taking limits as & — oo, we find that |[i(u;) — ;] < Ce < S for 1 < 7 < m + 1, so our
selection of § implies that {¢(u;) : 1 < j < m + 1} is a linearly independent set of m + 1
vectors in [V, which (recalling that 7 is one-one) contradicts dim(M) = m. Thus we must
have dim(M) = dim(N) and «{(M) =
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We still must prove that N = {z € X : there exists k > 1 with (¢I — L)*(z) = 0}.
Suppose not, so (I — {~'L)*(z) = 0 for some k > 2 and (I — ¢~'L)*~!(z) # 0. By replacing
by y = (I — ¢'L)*2(z), we can assume that k = 2. We write y; := (I — ("1L)(y) # 0
and B = ¢"'L. Assume, by way of induction, that B7(y) =y — jy,, which is true for j = 1.
Since B(y) =y — v, and By, = y;, we derive from B(y) = y — jy; that

B y)=B) - jypi=y- G+ n

and we conclude by induction that B¥(y) = y — ky; for all k > 1. However, this contradicts
the assumption that |[B7|| < C forall j > 1. O

Some general comments about Theorem 3.3 may be in order. Recall that if Z is
a complex Banach space and B : Z — Z is a bounded linear map with eigenvalue «, then
the the geometric multiplicity of o is the dimension of {z € Z : (al — B)(z) = 0} and the
algebraic multiplicity of « is the dimension of {z € Z : (ol — B)¥(z) = 0for some k > 1}.
Part (c) of Theorem 3.3 asserts that L has finitely many eigenvalues o with || = 1 and
that each such eigenvalue has finite algebraic multiplicity equal to its geometric multiplicity.
Nevertheless, it may happen that o(Z) = {z €T : |z < 1}: see the example at the beginning
of Section 5.

The assumption that L is positive in Theorem 3.3 plays a limited role. Assume
that X, Y, and ¢ are as in Theorem 3.3. Assume that A : Y - Y and L : X —» X
are bounded linear operators with ¢A = Li. Suppose that p(A) < r(L) and that the set
{IIZ¥|| : k > 0} is bounded. Then the same argument given in the proof of Theorem 3.3
shows that r(L)} > r(A). If 7{(L) = 1 = r(A), the same argument as in Theorem 3.3 shows
that statements (a)-(d) of Theorem 3.3 are satisfied.

Remark 3.4. The assumption that {||L*|| : k¥ > 0} is bounded plays an important role
in Theorem 3.3. If L : C(S) — C(S) is a positive, bounded linear operator, and if L(§) = @
for some 0 € P,, then it is known that (L) = 1 and that {||L*|| : & > 0} is bounded. To
see this, let s = min{f(s) : s € S} > 0 and note that for f € X := C(S) with ||f|| < 1 we
have —u™0 < f < u~14. It follows that

—uTANO) = —p 0 < AM(f) S T = Tt AR(9)

for all k£ > 0, which implies that ||A*|| < p=Y|6|| for all £ > 0. However, one can easily see,
even for 2 x 2 matrices, that the conditions r{4) = 1 and ||A*|| < C < oo for all k¥ > 0 may
be satisfied even though A has no fixed point in P,.

Remark 3.5. Let assumptions and notation be as in Theorem 3.3. (In particular we are
assuming that p(A) < r(L) = 1 and that {||L¥|| : k£ > 0} is bounded.) Assume also that
1 is the only eigenvalue of A of absolute value one. We claim that, for every z € X, L¥(z)
converges to a fixed point of L as & — oo.

In order to prove this assertion, first note that the above hypotheses imply that
there exist § < 1 and v > 1 such that 1 is the only element 2z of o(A) with 8 < |z| < «.
If P is defined as in the proof of Theorem 3.3, it follows from properties of the functional
calculus for linear operators and from statement (c) of Theorem 3.3 that P is a projection
with finite dimensional range M := {y € Y |A(y) = y}. If y € Y, the proof of Theorem 3.3
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shows that |[A¥(] — P)y|ly — 0, so

lim {IA%(y) ~ P()lly = lim [IA*(Py) — Pylly = [Py — Py|ly = 0.
If z € X, we claim that (L*z |k > 1) converges in the norm topology to a fixed point Q(z)
of L, where @ is the projection in statement (d) of Theorem 3.3. By using statements (c)
and (d) of Theorem 3.3, it suffices to prove that (L*¥(z)|k > 1) is a Cauchy sequence in X.
For z € X and € > 0, there exists y € ¥ with ||z — i(y)|| < e. It follows that

1L5(z) — L*(iy))l] = (1 L*(z) — i(A* ()] < Ce.
Also, we know that

i(A% () = iPW)IF < JlllIA* () — P(y)

Using these inequalities, we conclude that for all & sufficiently large, [|L*(z) —iP(y)|| < (C +
1)e, which proves that (L¥(z) : k£ > 1) is a Cauchy sequence and completes the proof.

If, in the notation of Theorem 3.3, p(A) < 7(L) = 1, Theorem 3.3 asserts that there
exists 0 € PNY, § # 0, with L(0) = 0. However, if A = L and if E;, 0 < j < m, are as in
Theorem 3.1, we do not have a completely satisfactory answer to the question of whether
8(s¢) > 0 for some so € E := U;-’:OIEJ». Our next theorem will address this question, but first
we need to recall some general results from the theory of positive linear operators.

If K is a closed cone in a real Banach space Y, K is called “normal” if there exists a
constant M such that whenever z € K, y € K, and y — z € K it follows that {|zf} < M|jy||.
The cone K is “generating” or “reproducing” if Y = {u —v : u, v € K}, and K is “total”
if ¥ is the closed linear span of K. If K is normal and generatingin Y and L : ¥ — V
is a bounded linear map with L{K) C K, then 7(L) € o(L). See [3, 17] or the appendix
of [19] for a proof. Surprisingly (see [20] and [16] ), this theorem is false in general if one
only assumes that K is total or generating, even if ¥ is a Hilbert space and L is a normal
operator.

y——>0.

Theorem 3.4 Let S be a compact, Housdorff space and let A : X := C(S) — X be a positive
linear operator. Assume (*): For every f € X, {A™(f) : n > 0} has compact closure in the
norm topology on X. (Note that Theorem 3.3 gives conditions which insure that (*) holds.)
Assume that E C S is a compact, nonempty set such that whenever f|E = 0 it follows that
Af|E = 0. Let B : C(E) — C(E) be defined as in Lemma 3.6 and assume that r(B) = 1.
Then there exists § € P(S) such that A(6) = 8 and 8(s) > 0 for some s, € E.

Proof.  Define 7 : C(5) — C(E) by n(h) = R|E. Because Cy := {A"(f) : n> 0} is
compact for each f € X, Cy is bounded, and the uniform boundedness principle implies that
there exists M such that ||A™{] < M for alln > 1. Lemnma 3.6 implies that || B™|| < ||A™|| < M
for all n > 1, so we have 7(B) < r(4) < 1. On the other hand, we assume that 7(B) = 1, so
r(A) = r(B) = 1. Let e € X denote the function identically equal to one and let e; = 7(e).
Notice that P(E) is a normal generating cone in C(E) and B(P(E)) C P(E), so our previous
remarks imply that 7(B) = 1 € o(B). If we define B, = }» ¥72) B7, the spectral mapping
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theorem implies that 1 € o(B,). Since B,(P(E)) C P(E) and ||L|] = ||L(e))|| for any
bounded, positive linear operator L : C(E) — C(E), we conclude that for all n > 0

1< 7(B) < 1Bl < 1Baen)l

We now claim that B satisfies the hypotheses of the mean ergodic theorem. If
g € C(E) and n(f) = g, we know from Lemma 3.6 that {B"(g) : n > 0} C m(Cy). Since
Cy is compact and 7 is continuous, {B"(g) : n > 0} has compact closure in the norm
topology; and Mazur’s theorem implies €0{B"g : n > 0} is compact. It follows that for any
g € C(E), the sequence (B,(g) : n > 0) has a convergent subsequence. We also know that
{liB*|| : » > 0} is bounded, so the mean ergodic theorem implies that there exists v € C(E)
such that ||B,(e1) — v|]| = 0 as n — oo and B(v) = v. Because ||B,(e;)|| > 1 for all n and
B,(P(E)) C P(E), we see that ||v|| > 1 and v € P(E).

Select u € P(S) with m(u) = v (where B(v) = v) and define A4, = L1372} A7,
The same argument given above shows that the hypotheses of the mean ergodic theorem are
also satisfied by A, so there exists w € P(S) such that ||4,(u) — wl] — 0 as n — oo and
A(w) = w. Since 7(A,(u)) = Bn(v) = v, m(w) = v and w := 0 satisfies the claims of the
theorem.O
Remark 3.6. Under the hypotheses of Theorem 3.4, one can see that there is fixed point
w € P(S) of A with lim,_e [|4n(e) — w|| = 0. It follow that if A(y) = ¢, ¢ € P(S) and
l]l = 1, then ¥ < w. For we have ¥ = A,(¢) < An(e), and A,(e) converges to w. Thus w
is a “dominant” fixed point of A in P(S).
Remark 3.7.  Assume all the hypotheses of Theorem 3.4 except condition (*). It can
then easily happen that B has a nonzero fixed point in P(E), but A does not have a fixed
point & with 8(sq) > 0 for some 5o € E. To see this, let S = {1,2} with the topology
inherited from IR. Identify C(S) with IR? in the obvious way and define A : C(S) — c(s)
by A((z1,%2)) = (1, 21+ 22). If E = {1} and f|[E =0 (so f = (0, ,)), then Af|E = 0. The
map B has nonzero fixed points in P(E), but if z; # 0, (21, 72) cannot be a fixed point of
A.

A more interesting example is provided by a special case of a “Perron-Frobenius”
type of operator. Let S = [0, 3], E = {0} and define 4 : C(S) — C(S) by

(Au)(t) = b(t)u(ct),

where 0 < ¢ <1, b(t) :== 1~ (In(t))~! for 0 < t < 7 and b(0) = 1. One can prove that A
is a positive linear operator. If f{E = 0, then we have Af|E = 0; and if B is defined as in
Lemma 3.6 and #,(0) = 1, then B(6;) = #,. One can prove that limy_,o, [|4%|| = co and that
r(A) =1, so 7(A) = r(B) = 1. However, one can also prove that if u € C(S) and A(u) = u,
then w(0) = 0. If ¢ : [§, 3] = IR is any continuous function such that b(3)¥(§) = %(3), one
can prove that ¢ has a unique extension to a function v € C(S) with Au=u. This implies
(contrast Theorem 3.3) that {u € C(S) : u = Au} is infinite dimensional.

Until now we have restricted ourselves to the case of periodic points of prime period.
However, the general case can be reduced to the case of prime periods.

Lemma 3.7 Let Y be a Banach space and B:Y — Y a bounded linear map. Assume that
u is a periodic point of B of minimal period m, and v is a periodic point of B of minimal
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period mao and let m = lcm{my, ms) denote the least common multiple of my and ms. There
ezist. real numbers o > 0 and f > 0 such that w := au + Pv is a periodic point of B of
minimal period m.

Proof. If m is a divisor of ms, we take w = v; and if my is a divisor of my, we take w = u.
Thus we can assume that m > m; and m > my. Obviously, A™(w) = w for any o > 0
and 8 > 0. For definiteness, we take 8 =1, s0 w = au+v. For 1 € § < m we know that
A¥(u) = w if and only if § = 0 (modm). Thus there exists § > 0 such that ||47(u) — uf] > ¢
for all j such that 1 < j < m and j is not divisible by m;. Select & > 0 so that

ab > sup{||A7(v) — v|| : 1 < j <m, jis not divisible by m, }.

For this choice of e it follows that aA?(u) + A7(v) # au + v for all j such that 1 < j < m
and j is not divisible by my. If @A?(u) + A7(v) = au +v and 1 < j < m, it follows that
j = m (modm,), and we have A7(v) = v. However, the latter equation implies that j is
divisible by mg. Since j is divisible by m; and m,, we must have 7 > m. It follows that for
our choice of e, w is a periodic point of A of minimal period m. O

Our next lemma casts Lemma 3.7 in a form which will be more directly useful.

Lemma 3.8 Let Y be a Banach space and B :Y — Y a bounded linear map. Suppose that
m = Hle p?j, where p;, 1 < j < k, are distinct prime numbers and o;,1 < j < k, are
positive integers. Assume that for each j, 1 < j < k, there exists a periodic point u; of B
of minimal period v;, where p?j is a divisor of v; and v; is a divisor of m. Then there ezist
nonnegative reals ¢;,1 < j < k, such that w = Zle c;u; 18 @ pertodic point of B of minimal
period m.

Proof. We know that w; := w; is a periodic point of B of minimal period v4. For
1 < s < k, assume that we have found nonnegative constants v;;,1 < j < s, such that.
ws 1= 33, V4,sY; 18 a periodic point of B of minimal period lem({r; : 1 < j < s}). By using
Lemma 3.7 we see that there are nonnegative reals o and 2 such that wsy1 = cw; + Busys
is a periodic point of B of minimal period lem({v; : 1 < 7 < k + 1}). Continuing in this
way we eventually obtain wy := Zle ¢;u;, where ¢; > 0, for 1 < j <%, and w has minimal
period lem({y; : 1 < j < k}) := my. Since pj” is a divisor of v; and v; is a divisor of m,
m=m,. O

We can now reduce the question of existence of a periodic point of period m to the
question of existence of various periodic points of prime periods.

Theorem 3.5 Let Y be a real Banach space, C a convex subset of Y and A :Y — Y a
bounded linear map with A(C) C C. Let m = [I5., pj’, where p;, 1 < j < k, are distinct
primes and oy, 1 < § < &, are positive integers, and define p; = mpj’l and B; = A", Then
A has a periodic point fy € C of minimal period m if and only if B; has a periodic point
v; € C of minimal period p; for 1 < j <k.

Proof. Suppose first that there exists a periodic point f; € C of A of minimal period m.
It follows that B;(fo) = A* (fo) # fo and that BY(fo) = A™(fs) = fo. Since p; is a prime,
this shows that fy € C' is a periodic point of B; of minimal period p; for 1 < j < k.
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Conversely, suppose that for each j, 1 < j < k, there exists a periodic point
v; € C of B; of minimal period p;. It follows that A™(v;) = BPi{v;) = v;. If v; denotes
the minimal period of v; as a periodic point of A, it follows that v; is a divisor of m; but
because Bj(v;) = A (v;) # vj, v; is not a divisor of p;. These two facts imply that p}’ is
a divisor of v; and v; is a divisor of m. Lemma 3.8 now implies that there are nonnegative
reals ¢;, 1 < 7 <k, such that w = Zle ¢;v; is a periodic point of A of minimal period m.
Because we must have ¢; > 0 for some j, we see that (Z§=1 ¢j) lw:=w e C and W is a
periodic point of A of minimal period m. O

If A: C(S) :=Y — Y is a positive linear operator and the maps B; are as in
Theorem 3.5, then Theorem 3.5 reduces the question of whether A has a periodie point in
P,(8S) or P(S) of minimal period m to the corresponding question of whether, for 1 < j < k,
the positive linear operator B; has a periodic point in Po(S) or P(S) of minimal period p;.
Since p; is a prime, the latter question can be addressed with the aid of Theorems 3.1-3 4.

If Y is a real Banach space, recall that ¥ denotes the complexification of ¥ and
that for a bounded linear operator B : Y — Y, B denotes the complexification of B. We
write o(B) = o(B) and we call any eigenvalue of B an eigenvalue of B.

There is clearly a close connection between existence of certain periodic points of B
and existence of certain eigenvalues. For reasons of length, we omit the proof of the following
simple theorem.

Theorem 3.6 Let Y be a real Banch space and B:Y — Y a bounded linear map. Assume
that go € Y is a periodic point of B of minimal period m = Hle p?j, where p;, 1 < j <k,
are distinct prime numbers and oy, 1 < 7 < k, are positive integers. Define v; = pﬂ}, Then,
for 1 < j <k, B has an eigenvalue A; € € such that \T =1 and )\;-'j # 1. Conversely, let m
and v; be as above and let B: Y — Y be a bounded linear map. Suppose that, for 1 < j < [,
B has an eigenvalue \; € € such that AT = 1 and A;j # 1. Then B has a periodic point

ho € Y of minimal period m.

4 Periodic Points of the Adjoint Operator

Given a real Banach space Y, Y* will denote the dual space of continuous, real-linear func-
tions, Y — R; and if B: Y — Y is a bounded linear map, B* will denote the Banach
space adjoint of B. If S is a compact, Hausdorff space and X = C(S), recall that X* is
linearly isometric to the Banach space of signed, regular Borel measureson S. If A: X — X
is a bounded, positive linear operator, it is natural, in view of applications to invariant mea-
sures, to ask whether A* has a positive periodic point x of minimal period m. Here y is
called “positive” if
pe P ={veX  v(f)>0VfeP(S)}

Alternately, P*(S) is the set of nonnegative, regular Borel measures on S. With the aid -
of Theorems 3.1-3.5, one can give conditions which insure that A* has a positive periodic
point, but these conditions involve unnecessary hypotheses. Thus we choose to argue more
directly.
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Theorem 4.1 Let S be a compact, Hausdorff space, A : X := C(S) = X be a positive,
bounded, linear operator and m be a prime number. Assume that E;, 0 < j < m, are
compact, nonempty subsets of S with £, = Ey such that (a) ﬂ;-”:’olEj = 0 and (b) for
0<j<m-1if f e X and f|E; = 0, then Af|Ejy, = 0. Let UTJ'E; = E and define
B : C(E) — C(E) as in Lemma 8.6, so B(f) = A(f)|E, where f € X and f|E =
Assume that there exists M > 0 such that ||B"|] < M for all n > 0 and that there ezists
8 € P(E)— {0} with B(8) = 0. Then there ezists vy € P*(S), vp # 0, such that vy is a
periodic point of A* of minimal period m.

Proof. Suppose that we can prove that there exists v € P*(E) with B*(v) # v and
(B*)™(v) = v. Because m is a prime, this will imply that v is a periodic point of B* of
minimal period m. We know that v is a regular Borel measure on E, and we can associate
a regular Borel measure # on S by defining 7(T') := v(I' N E) for every Borel subset T of S.
We claim that (A*)™(?) = 7 and A*(7) # 7, so ¥ is a periodic point of A* of minimal period
m. For p € X* and f € X, we shall often write (4, f) instead of u(f). We have, for f € X
and f = f|F, that

(A (& /A](f du»/AJ )du-—/ BI(f)dv = (B*Y (v), f).

It follows that ((A*)™(@),f) = (7,f) for all f € X, so (A7)™(#) = &. Also, because
B*(v) # v, there exists f € C(E) with (B*(v), f) # (v, f). If we select f e X with f|E = f,
it follows that (A*(9), f) # (7, f) and A*(7) # b.

The above remarks show that we may as well work with B from the begining and
assume that F = §.

We shall now use the idea of Theorem 3.1. We shall construct a closed, bounded
convex set D, and a bounded linear map which takes the set [, into itself and whose fixed
points in D, ;, give periodic points of B* of minimal period m. For "' C E, let [Y = £ —~T, the
complement of ' in £. Fix a number r, 0 < r < 1, and let ¢ and b be positive numbers which
will be selected more precisely later. Let Y = [[™;' C(E), the Banach space of ordered m-
tuples f = (fo, f1," -, frn—1) of elements of C(E). Let Z =[5! C(E)* denote the Banach
space of ordered m-tuples p = (pq, g1, -+, tm—1) of elements of C(F)*. Recall that Z is
naturally identified with Y™ by allowing u to act on f by

m—1

= (i fi)-

1=0

We define a closed, bounded, convex set D,, C Y* by
Deop = {{po, s ptm-1) |V j VBorel sets T C B}, a < (p2,6) < band y;(I) = rp; (1)}

As usual, indices are written modulo m, so g, = go- The condition that p; (I') = rp;_(T)
for all Borel sets I' C E7 is equivalent to assuming that {u; —rp;1, f;) = 0 for all f; € C(E)
such that f;|E; = 0.

Define B:Y — Y by B((fo, fi, -, fm-1)) = (9091, Gm-1), where g; = B(fi_1)
for 1 €4 < m. Similarly, define B* : Y* — Y* by B*((po, 21, -+ s bm—1)) = (Mos V1, * s Vit ),
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where v; = B*(u;41) for 0 < ¢ < m - 1. Under the previously mentioned identification of Y*
with Z| the reader can verify that B* is the Banach space adjoint of 5.

Arguing as in Theorem 3.1, the reader can verify that 5*(Dys) C Dyyp. The problem
is to prove that D, is nonempty. Suppose we can prove that for some choice of positive
reals a and b, Dy, # 0. Select p = (o, p1, - -+, tm—1) € Doy and define p* € D,y by

K 1 k-1
b= LB,
. §=0
We know that there exists a constant M such that [|B™| < M for all m > 0; so if we define
the norm on Y by

Hf07 flv"'vfm—lll :max{”fl” 01 S 1 S m — 1};

we see that [|B™]| = {{B™|| = [{(B*)™]| and [[(B)™|| £ M for all m > 0. It follows that
(u* : k > 1) is bounded in Y, and the Banach-Alaoglu theorem implies that there exists
a subsequence (p*), k; — co, such that p* converges in the weak star (w*) topology to v,
u* — v, Notice that by our construction, D, is the intersection of w* closed sets, so D,
is w* closed and v € D, ;. We have that

15" (4 -

1 ks
= LB )~ ull =,
so B*(uk) — v. It follows that for any f €Y,

lim (B*(u™), f) = (v, f) = lim (u*, B(f)) = (v, Bf).

i-00

This implies that (B*(v), f) = (v, f) forall f € Y, s0 B*(v) = v. If v = (vg, 11, , V1)
and B*(v) = v, we easily see that B*(1;) = 14—y for 1 < ¢ < m, and this implies that
(B*)™(w) = vo. If B*(vp) = 1y, a calculation shows that 1y = v; for 0 < j < m — 1. Since
(vj —rvi-1)(f) = 0 for all f € C(E) such that f|E; = 0, it follows that (1 — r)py(f) = 0
for all f € C(E) such that f|E; = 0, ie., vo(f) = 0 for all f € C(E) such that f|E; = 0.
Because E; is open in E and (U}":_OIE;) = (N3 Ey) = B, {B; :0<j<m-—1}isan
open covering of E and there exists a partition of unity {1;|0 < j <m — 1} subordinate to
{E; : 0<j<m—1}.If f € C(E), we can write f=3575";f, and because ¥; f|E; = 0,

we obtain
m—1
= z v (¥
=0

which contradicts v6(f) > a and proves that B*(vg) # vg.

Thus it only remains to show that D, # 0 for some positive reals a and b. Because
8 € P(E) -0, Gy :={s € E : 6(s) > 0} is nonempty and open. It is easy to see that
there exists a nonnegative, regular Borel measure u with u(Gy) > 0 (for example, define u
by p(f) = f(sq), where f € C(S) and sy € Gy).

If 41 is as above, the outer regularity of  implies that

inf{ w(E;NU) : Uopen, E;CU} =0, j=0,---,m—1,
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so that
inf{u(U2G BN U;) : Uyopen \B; C U, i=0,---,m—1} = 0.

Since 14(Gg) > 0, the previous equation implies that for approriate open sets U; with E; U
for j =0,1,---,m — 1, we have

pw(Gs N (UG BN U;)') > 0

Select such sets U; and define F; = Uj for j > 0. Because F; C FE is compact and
N2l F; = (), we can apply Lemma 3. 2 and we find that there exist h; € P.(F), 0 <i < m,
with Am = ho, such that h;(s) = 7h;_1(s) for all s € F;. Define x(s) = 0if s € UJZ (E’ﬂU )
and x(s) = 1 otherwise. Define g;(s) := x(s)hi(s). Our construction insures that g; is a
bounded, nonegative, Borel measurable function, g;(s) = rg;_1(s) for all s € E!, and g;
is strictly positive on the complement of U7. (E’ M U;). Thus it makes sense to define
u; € P*(E) by

wilf) 1= o) = [ F()gu(s)nlds).
Because 0(s)g;(s) > 0 for all s € H = Gy N (UG (E; NU;)) and u(H) > 0, it follows
that p;(f) = u(g:8) > 0. Thus there exist positive numbers a and b with ¢ < y;(8) < b for
0<i<{(m-1).
We claim that g = (o, pt1, - - -, ftm—1) € Dyp. To prove this it suffices to show that
if f € C(F) and f|E; =0, then p;(f) = rp;—1(f). However, we have

wi(f) — TNi»-l(f) = p((g; — Tgi—l)f)-

By our construction, we have (g — rg;1)|E! = 0 and FIE = 0,80 {g: — rgi-1)f = 0 and
wi(f) = ruia (). O

We assume in Theorem 4.1 that m is a prime. The case that m is not a prime can
be handled by combining Theorems 4.1 and 3.5.

5 Perron-Frobenius Operators: Existence and Unique-
ness of Positive Eigenvectors

In this section (5, d) will denote a compact metric space with metric d and A : C(S) — C(S)
will be a bounded, positive linear operator of the form

(4u)(s) = Zb (s)ulwi(s))- (13)

Here b; : § — IR and w; : § — S are given maps, and we shall usually make at least the
following assumptions:

H5.1. For 1 <4 < 00, b; : S — R is a nonnegative, continuous function. For each s € S,
o1 bi(8) i=b(s) < 0o and b: S — IR is continuous.
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H5.2. For 1 < i < oc,the maps w; : S — S are uniformly Lipschitz, i.e., there exists a
constant C, independent of 4, such that d{w;(t), w;(s)) < Cd(t, s) for all s,¢ € S and
alli > 1.

By Dini’s theorem, the assumption in H5.1 that b is continuous is equivalent to
assuming that Y7 b;(s) converges uniformly to b(s) as n — oo. If H5.1 is satisfied and
the w; are all continuous, it is easy to verify that A defines a bounded linear map from
X := C(S) to X. Operators of the form given by eq. (13) have been called “Perron-
Frobenius operators”. Such operators arise in many contexts, e.g., in the study of invariant
measures and in finding the Hausdorff dimension of various sets. See {1, 2] ,[4], [6] , {7, §],
[9, 11] for further references.

As was noted in Remark 3.3, the inequality p(A) < r(A) frequently fails for Perron-
Frobenius operators. This point was already implicitly observed by F.F. Bonsall [3], who
considered the case S = [0,1] C R and A : C(S) — C(S) defined by

(Az)(s) = m(%s)

If e denotes the function identically equal to one, Ae = e and r(4) = 1; but Bonsall observed
that if z, € C(S) is defined by z,(¢) = ¢7, where v €C and Re(7) > 0, then one has

Alzy) = (%)7-73'77

so the spectrum of A contains the closed unit disc in €. Since r(A) = 1, this shows that the
spectrum of A equals the closed unit disc inC : see Remark 2.7 in [15). More generally, if Sis a
finite union of intervals in IR and the functions b; and w; in eq. (13) are suitably differentiable,
it was observed in section 2 of [15] that A can be considered as a map A, : C*(S) — C™(S)
and that the spectrum of A, varies with n. See Theorem 2.3 and Remarks 2.5-2.7 in [15].
For most of the work here we shall need more than just the continuity of the maps
b;, i > 1. For simplicity, we shall usually restrict ourselves to the following Holder continuity
assumption, although our results can be extended to the case that there exists a modulus of
continuity for the maps b;, ¢ > 1, which satisfies a Caratheodory condition as in [2].

H5.3. For 1 < i< o, b; : S — IR is a continuous function. There exist constants M, > 0
and Ag, 0 < Ag < 1, such that

sup{i%m;s,teS,S¢t}§Mg<oo. (14)

Remark 5.1. For simplicity we shall restrict ourselves to operators of the form given by
eq. (13), but this excludes some interesting examples. To see this, suppose that S is the unit
circle in IR?, so C(S) can be identified with ¥, the Banach space of continuous, 27-periodic
maps y : IR = IR. Let b : Y — Y be a nonnegative 4r-periodic, continuous funiction and
define A:Y — Y by

(49)(6) = B(0)y(56) +b(6 + 2m)y(50 + ).
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The methods of this section apply to A; but considered as a map on C(S), 4 is not of the
proper form.

To remedy this deficiency, one can assume that, for a compact metric space (S, d),
S is given locally by an equation like eq. (13). More precisely, for each s € S, assume that
there exists an open neighborhood U of s, continuous, nonnegative functions b,y : U — IR,
and Lipschitzian functions w;y : U — S, which satisfy analogues of H5.1, H5.2, and H5.3
and for which

(Az)(t) = Z by (wiy(t))

for all t € U and all z € C(S). The results of this section extend to this more general class
of operators, but we omit details.
To continue, we shall need some notation. We shall denote by Z,, the collection of

ordered m-tuples I = (41,49, -, i) Of positive integers. If I € Z,,, I = (41,42, ,%m), and
H5.1 and H5.2 are satisfied, we define functions b7 : S — IR and w; : § — S by
bl(t) = bil (t)biz (wi1 (t))bia<wizwi1 (t)) T bim (wim—lwim—z T Wy (t)) (15)
and wi(t) = w;, w;,,_, - wi (1), (16)
where w; w;,_, ---w;; denotes the composition of functions. If J = (41,4, --,%,) € T, and
K = (bs11, 8502, - 5 3t) € Ly, we can write (J, K) = (i1,22, -+, %) € T;, and we have

b(‘],K)(t) = bJ(t)bK(wJ(t)) and b(J,is+1)(t) = bj(t)bis+l (w_](t)) and ’lU(Jyl{)(t) = ’lUK('LUJ(t)).

If J=0and s € S, we define b;(s) = 1 and wy(s) = s; and we define Ty to be the set whose
only element is 0. If I = (i1,42, -+, im) € L, we define Jo(I) = @ and

Jo () = (iy, 92, 4,) € I, for 1 <r<m.

Similarly, we define K,,(I) = 0 and K.(I) = (irsi,%rt2, "y im) € Iny for 0 < r < m.
Finally, we define i,(I) = i,, the vih element of I for 1 < v < m. In this notation, the
reader can check that for / € Z,,,

br(t) — br(s Z by, o0y (8 s, 1y (wa, 1y (8)) — bi, (y (wao_y(ny ()b iy (Wi (). (17)

By using the previous equation and changing order of summation (assuming H5.1 and H5.2),
we find that

S O - b <SS Y S bs(s)bilw () — blws () bx (wun (@) (18)

1€, v=1l JET,y K€Ly, i=1

This inequality will prove useful later.
The following lemma provides the motivation for the above notation.



Nussbaum . 73

Lemma 5.1 Assume H5.1 and H5.2 and let A be defined by eq. (13). Then for all f € C(S)
we have that

(A"f)(s) = Y bi(s (s)) and
I€Tn
[|A™|} = sup{ Z bi(s) : s € S}
1€Tm

If H5.3 is also satisfied and if f € C(S) is Holder continuous with
|f(o) — f(r)| < Md(o,T)* for allo,T € S,
(where 0 < A < 1), then for m > 1 and s,t € S we have

(A™H@) = (A" F)(s)] < M 32 by(t)d(wi(2), wi(s))

{€Im

IS S Ao (s)d(ws (8), w ()

v=lJ€eT,
where My and Ay are as in H5.8 and || f|| = sup,cs | f(s)]-

Proof. The equation for A™(f) follows by a simple induction on m, which we leave to the
reader. If e is the function identically equal to one, we know that ||A™| = ||A™(e)|l, and
this directly yields the equation for {{A™].

To obtain the final statement of the lemma, we observe that

[ATF)(E) = (A" () < X br(O1f (wr(®) = Flwr())+ 32 1F(wi(s))][br(t) — bi(s)].

IeZy, IeZn

By using the Hoélder estimate for f, we see that

2 br®OU (wr(t) = flwi(s))] < M3 br(t)d(ws (), wi(s)).

I€Tm I1€lm

By using eq. (18) and H5.3 we see that
2 1Fwrlibr(e) ~ or(s)] < A S [b:(2) = br(s)]

[E€Tm 1€Tm
m

A2 > ibJ(S)Ibi(wJ(t)) = bi(ws (s)A™™]

v=1JeL,.y 1=}

< MOHf”i Z bJ(S)(d(wJ(t);wJ(S)))‘OHAm—"”.

v=1J€eZ,

A

IA

A

Combining these inequalities gives the estimate in the lemma.O

We now ask whether the operator A given by eq. (13) has a nonnegative eigenvector
with eigenvalue 7(A). Without further assumptions than H5.1, H5.2 and H5.3, one can see
that A may fail to have such an eigenvector: take S = [0,1] and (Az)(t) = (3 + 3t)x(t) and
note that 7(A) =1 and Az # z for z € P(S) — 0.
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To discuss a suitable framework, we shall need to consider Banach spaces of Hélder
continuous functions on (S,d). For 0 < A < 1 afunction f € C(S5) is called Holder continuous
with Holder exponent X if

up( L0610

G0 i s,t€ S and d(s,t) > 0} < oo.

We define X, to be the real vector space of Holder continuous functions f : S —+ IR with
Holder exponent A. We define a norm || - | on X, by

If(s) — £ ()]

11 = sup{|f(s)] : 5 € S} +sup{™ iy

. 5,t €S and d(s,t) > 0},
and we recall that X is a Banach space in this norm.

If § = G, where G is a bounded open subset of IR, we could also consider certain
real Banach spaces of analytic functions on G or the Banach spaces C™*(S). If the functions
b; and w; were sufficiently smooth, we could improve the results we shall give here by working
in such Banach spaces.

For 6 > 0, it will be convenient to consider an equivalent norm |} - ||, o defined by

(s) — F(8)]

1 fllae =sup{|f(s)] : sES}—i—sup{lf PTERL i 5,te 8, 0<d(s,t) <6}

Obviously, we have
£ lne < MFIx < 1 liae + 2072 F

where || f]| will henceforth denote sup,.s |f(s)|. The above inequality shows that {| - |[x and
I lx6 are equivalent norms on X.

If {U;|1 < ¢ < m} is an open covering of the compact metric space (S.d), there
exists a Lipschitzian partition of unity {¢;|1 < ¢ < m} subordinate to {U;|1 < i < m}.
Using such partitions of unity, it is not hard to see that X is dense in X := C(S); and since
X1 CXyfor0< <1, X, is also dense in X. Clearly, the inclusion map 7 : Xj — X is
continuous. We shall need these facts later.

In the Banach space X, one can consider the measure of noncompactness a derived
from [} - ||x or the measure of noncompactness a4 derived from || - || ¢. The next lemma
shows that these two measures of noncompactness are actually equal.

Lemma 5.2 Let (S,d) be a compact metric space and, for 0 < A £ 1, let X, be the Banach
space defined above. Let cn and oy g denote the measures of noncompaciness on X, derived
respectively from the norms || - ||x and || - |xg- Then for any bounded set ' in X,, we have

ax([) = axe(T).

Proof. Because [|f|lx > ||fllre for all f € X, we certainly have that ax(T') < aye(I).
Because I" is a bounded set in X, the Ascoli-Arzela theorem implies that [' is precompact
as a subset of X := C(S). Thus, given € > 0, there exist sets I'; C T, 1 < 7 < m, such that
UT,T; =T and sup g [u(s) —v(s)| < min(e,e8*) forallu,v € Ty, 1 < j <m. Ifays(T) = p,
then by definition of the measure of noncompactness, there exist sets B;, 1 < ¢ < n, such
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that I' = U}, B; and the diameter of B; with respect to the norm || -||» ¢ is less than or equal
to p+e. Thus, for all u,v € B;, 1 <i < n, we have

lu = ] + supf(u(s) — v(s)) — (u(t) — v(O)ld(s, )™ : 0 < d(s,) < 6} < p+e.

We write I' = U; ;(B; N I';) and consider the diameter of B; N T'; with respect to the || - ||
norm. If u,v € B;NT; we have

sup lu(s) —v(s)| < e

If u,v € B;NT; and d(s,t) > 6, our definition of I'; implies that

|(u(s) = v(s) ~ (u(t) — v(t)ld(s, 1) < 0 [Juls) — v(s)] + |u(t) — v(t)[] < 2e.

Hu,ve B;NT;and d(s,t) <6, we have

l(u(s) = v(s)) = (u(t) — v(t)ld(s, )™ < p+e.

Combining these estimates, we find that if u,v» € B; N T, we have

lu=vlls = llu— vl +sup{l(u(t) — v(t)) — (u(s) = v(s)d(s,8)™ : 0 < d(s, 1)}
< e+ max(2e,p+¢€) < p+ 3e.

Thus T' can be expressed as a finite union of sets B; NT';, and diameter(B; NI';) < p+ 3¢
(in the norm |f - ||5). This implies that o, (") < p + 3¢, and since € > 0 is arbtrary, we have
proved that o (') < aye(l) = p. O

Assume that H5.1, H5.2 and H5.3 hold and that A : X := C(S) — X is defined by
eq. (13). Let Ag and M, be as in H5.3 and select A with 0 < A < )\g. Then by using Lemma
5.1 one can see that A(X,) C X, and A induces a bounded linear map A, : X5 — X, by
Ax(f) = A(f) for f € X,. Henceforth A) will denote this map.

To state our next theorem, we need to define some constants. If m is a positive
integer and ¢ and A are positive reals, we define reals p,,(6, ), pn{)) and r,, by

(8, A) = sup{lz b;(t)%ﬁ—(@: L0 < d(s,t) < 6}, (19)
pm{X) = 91_ig1+ pm (6, A) and (20)
Tm =sup{ >_ bs(t)|t € S}. (21)

If A =0, we define p,(0,0) = p,,(0) = . If 7(A) denotes the spectral radius of A, Lemma
5.1 implies that

1 L
7{A) = lim % = inf r7.
m—>00 m>1

We shall need a simple lemma concerning the functions p,(8, A) and p,,,(}).
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Lemma 5.3 Assume H5.1 and H5.2 and for 8 > 0 and A > 0 let pm(0, ),
be defined by equations (19)-(21). Then for all integers m,n > 1, we have

0 < pman(A) < Pm{A)pa(A) and
PO = inf{pm(N)7 : m > 1} = lim p, ().
IfO< A <A, 0<0<1,.and 0 >0, then we have
p‘m(gy (1 - 0)/\1 + J)‘Q) S pm(67 )‘l)l_apm(ga )‘2)0 and
A1 = )1 +0)g) < (AW ()"
Proof. If K € I, and s,t € S, we define a function gx(s,t) by

d(wk(s), wx(t))

s for s #1t, gx(s,s) =0.

gK(57 t) =
In this notation, we can write

pran(8,2) = sup{ D0 bun(t)gum(s,t)* 1 0 <d(s,t) <6}

I€Ip,JETn

|

i

I€Zm, JCIn

I€Tm JET,

Because d{w;(t), wr(s)) < C™d(t, s) < C™@ for C as in H5.2, we have

> by(wr(8))gs(wi(t), wr(s)* < pa(C™0, A).

Jeln

Substituting this estimate in the above equations gives

Nussbaum

pm(A) and 7y,

(23)

(24)

sup{ Z b](t)b](ﬂ)[(t))g‘](wl(t),ZU](S))/\g[(t, 3)’\ D0 <d(s,t) L6}

sup{ > b:(t)gr(t, )M 7 by (wi () gs(wr(t), wils))*) : 0 < d(s.t) <8}

pm+n(97 A) < sup{ Z bf(t)gf(t» S)Apn(cmgv /\) 0< d(51 t) < 9} < pm(g) )\)pn (meg’ /\)

IeTy,

Taking the limit as § — 0 in the above inequality gives the first inequality in Lemma 5.3.
The standard proof which gives the formula for the spectral radius of a bounded linear
operator shows that a sequence of nonnegative reals (p,(\) : m > 1) which satisfies the

first inequality in Lemma 5.3 necessarily satisfies eq. (22).

IfF0o < A < A, 0 <0 <1 and @ > 0, Holder's inequality implies that, for

0<d(s,t)<fand A={(1-0)A +0N,

Z by (t) 91 S, t = Z br(t 1(s, t))\l - U)bl( ) gl(s,t))‘w

I€Im Ielnm

< (X b@als ™)X bi©)ar(s, 1))

Iel,, Iel,
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Taking the supremum over s,t with d(s,t) < 8 on both sides of this inequality gives
pm (8, 2) < pm (8, A1) 7 pm (6, A2)?,
and taking limits as § — 0% yields
(1= )1 + 73a) < ()"0 (12)7.

If we take m roots and let m approach infinity in the above inequality and use eq. (22),
we obtain eq. (24). O

Theorem 5.1 Assume that H5.1,H5.2 and H5.8 hold and thet A : X = C(S) —» X s
defined by eq. (18). If g is as in H5.3 and 0 < A < X, then A(XA) C X,\ and A induces
a bounded linear map Ay : X — Xa by A\(f) = A(f) for f € X,. Let p(A,) denote the
essential spectral radius of Ay, r(A,) the spectral radius of Ay and r(A) the spectral radius of
A. If pu(X), Ty and p(X) are defined by equations (19)-(22), then we have, for 0 < X < X,

p(A)) < 5V = inf pm(N)7 = lim pm(X)7 and (25)

1 1
r(4\) > r(4) = Jim i = T}gfl . (26)
If we have that p(Ay) < r(A) (which will be true if p(A) < r(A) :=r), then it follows that
7(Ax) = 7(A4) :=r, and there exists u € P(S)N X, u # 0, with Ax(u) = ru. Furthermore,
E={yeXy: (rI~ A)*() =0 for some k > 1} is finite dimensional. If p(Ay) < r(A).
i Xx—+ X denotes the inclusion map, and y € X, 15 such that {[[r *A*(i(y))|| : & >0} is
bounded, then {|lr=*AL(y)|lx : &k > 0} is bounded. If p(A) < r(A) =71 and 0 < p < A, then

plp) <r and
A) < BT, o= L
If p(Ay) < 7(A) and if there exists D < oo such that ||A*|| < Dr* for all k > 1 (which will

be true if A(x) = rz for some z € F,(S)), then the following results hold:

(a) For every y € Xy and every ¢ € C with |{] = r, {(‘kA,\ {y) : k& > 0} has compact
closure in the norm topology on Xy. (Here X denotes the compleification of X, and
Ay denotes the complezification of Ay.)

(b) For every z € X and every { € € with l{l =r {¢” kAR(z) : k > 0} has compact
closure in the norm topology on X. (Here X is the complezification of X and A is the
complezification of A.)

(c) IfCeC (=71, and N = {z € X|A(z) = (z} and M = {y € X,\]/ix(yz = (y},
then M 1s finite dimensional and N = M. Furthermore, N = {z € X|(¢I -
AY*(z) = 0 for some k > 1}.

(d) For everyy € X, and every ( € C with |(| =7, yp :=n"} P (CrAL\) (y) converges
in the norm topology on X to an element z := Q\(y), and A,\(Q,\(y)) = (Qx\(y).
For every x € X and every ¢ € € with |¢| = 7, 2, := n~! L3¢ A (z) converges
in the norm topology on X to an element Q(z), and A(Q(z)) = ¢Q(z). The maps
Qx: Xy — X\ and Q: X — X are bounded linear projections.
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Proof. We shall use I to denote the identity operator on X or Xy and also to denote
I € 7., but the meaning should be clear from the context. Other notation will be consistent
with that in H5.1 and H5.2.

Let T be a bounded set in X, where 0 < A < X, and let 0 <eand 0 <9 <1 be
reals. Lemma 5.2 implies that v := a,4(T") = aa(T) and o, 6(AA(T)) = ax(A45(T)). By the
argument used in Lemma 5.2, there exist sets C;, 1 < ¢ < p < oo, such that T' = UE_,C;
and if u,v € Cj, then |ju — v|| < e and ju—v||y <v+e Foru,v € C;, write f =u — v, s0
(Ifll <eand ||fllx < v +e If My and Xp are as in H5.3 and m > 1, we obtain from Lemma
5.1 that

(AT () — (AT F)(s)]
k;g%j 2 G }o< (4 €)pml0,N) +

(s 0), wy(s))*
+ sup M Amv by(s) (L WIS
v<donss Z . Je%: : ds00 )

Because of H5.2, we have that for d(s,t) < @ and J € T,_;,

d(wy(t), ws(s))* _yd(s, 1) —1g%0-A -1
A AW AR AN AN 0k <Y 0TA L OV,
e SO <0 <0

By using H5.1 we see that

> bs(s) < [l

JEL, 1

Using these estimates in eq. (22), we see that

l(ATf)(t)—( f) m—-u v—1,w—1
0<5g%£9{ a0s1) }< (v + €)om (8, 2) +M06;1]IA il e

If we take the supremum of the lefthand side of this equation over all f =u — v, u,v € C;,
we find that for all u,v € C; we have

AT — ATvllne < JA™ e + (v + €)pm(6, A) + Moe 3 [|A™|fllpl|~C" .
v=|

It follows that

axs(AT(T)) = an(AY()) = sup ong(AT(C)

1<i<p

<A™+ (7 + om0 N) + Mae 3 | A bl e,

v=1

Since € > 0 is arbitrary, we conclude that
ax(A3(D)) < pm (6, Mo (D).
By taking limits as § — Ot we obtain from the previous equation that

(AT (T)) < pm(N)aa(D),
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which implies (see eq. (3)) that
(AT < pm(N).
Since we know (see eq. (4)) that

we conclude, using Lemma 5.3, that
P(AN) < nf pn(N)7 = lim (A= := 5(A).

Theorem 3.3 implies that r(A,) > r(A), so, using Lemma 5.1, we have proved the first two
displayed equations of Theorem 5.1. If p(A4,) < r(A4) := r, then Theorem 3.3 implies that
r(Ax) = r(A). Also, if p(A,) < r, Theorem 3.3 implies the existence of u as in the statement
of Theorem 5.1, and the fact that p(A,) < r implies that E is finite dimensional. If 5(}) < r,
the final displayed equation of Theorem 5.1 follows from Lemma 5.3.

If we define L = r~'A, the remaining assertions in Theorem 5.1 follow directly from
Theorem 3.3.0

If Ais as in Theorem 5.1 and if p(A,) < r(A) and ||4¥|| < Dr* for all k > 1, we
have shown that L := r~'A satisfies all hypotheses of Theorem 3.3. Thus, by using the
comments immediately preceding Remark 3.4 in Section 3, we conclude that there exist at
most finitely many z € € such that |z| = r(A) and z is an eigenvalue of A. Furthermore,
every such eigenvalue has finite algebraic multiplicity.

Verifying that p(Ax) < r{A) plays a crucial role in applying theorem 5.1. The
following corollary gives a trivial case for which p(A,) < r(A) is satisfied.

Corollary 5.1 Assume that H5.1, H5.2 and H5.3 are satisfied. In addition assume that
there exists an integer m > 1, a constant ¢ with 0 < ¢ < 1, and a positive real 8 such that
for all s,t € S with d(s,t) <8 and all I €T,

d(wr(s), wr(t)) < c™d(s, t). (27)

Assume also that v(A) > 0. Then if 0 < X < X (for Xy as in H5.3), it follows that
p{Ay) <r(A) =r(A) :=r. The condition r(A) > 0 will be sotisfied if

EH) =i b(0) >0 (28)
If r(A) > 0, there exists u € P(S) N Xy, u # 0, with Au = ru; and for 0 < A < Ao,
Ex:={y e Xa: (rI — Ay = 0 for some k > 0} is finite dimensional. If, in addition,
there ezists D > 0 such that ||A¥|| < Dr* for all k > 1, then statements (a)-(d) of Theorem
5.1 are satisfied.

Proof.  Assume first that r(A4) := r > 0. It suffices, by virtue of Theorem 5.1, to prove

that 5(A\) <rfor0 <A< Xp. If misasineq. (27)and J € Ly, one derives easily from eq.
(27), that, for 0 < d(s,t) < 6,

d(wy(s), ws(t)) < Pd(s, ).
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Using this inequality in eq.- (19), we obtain

Pmp(0, ) <A™ sup{ 3 by(t) : 0 < d(s,t) < 0} = Pr,
JETp

Since prmp(8, A) = pmp(A), we deduce that

Pmp(A) < Py

Taking nt2 roots, n = mp, letting p approach infinity and using Theorem 5.1, we obtain
~ o # A - _rer A
(AN < (0) = inf (pm(N)7 < ¢ inf v = c*r(A).

Since r(A) > 0, this shows that g(\) < r(4).

To complete the proof, we must also prove that r(A) > 0 if inf,egb(t) := & > 0.
However, if € is the function identically equal to one, we have A(e) > de, which implies that
A™(e) > é™e and that r(A) > 4. O
Remark 5.2. Corollary 5.1 is a crude result compared to Theorem 5.1. Suppose, for
example, that S is a compact subset of IR™ and that the metric d on S comes from a norm
|-l on IR™. Assume that H5.1, H5.2, and H5.3 are satisfied and that each map w; extends to
a C! map 10; defined on some open neighborhood U; of S. If I = (4,42, - -, %m), wr also has
a C! extension ;. Let 1/ (t) denote the Fréchet derivative of w; at t. If p,,(\) is defined by
eq. (20), the reader can easily verify that

) <sup{ 3" br@®) i ) : t € S} (29)
[T
The proof of Theorem 5.1 shows that p(AT) < pm(A). We know that p(AT) = (p(Ax))™ and
that 7(A™) = (r(A4))™, so to prove that p(A,) < r(A), it suffices to prove that there exists
m > 1 with
sup{ > bi@)[ar' @) : ¢ € S} <r(A™) = (r(A))™ (30)
IE€Tn
It may easily happen that eq. (30) is satisfied for some m > 1, even though the maps w; do
not satisfy the hypotheses of Corollary 5.1.
To illustrate the point of Remark 5.2, we discuss an example. Select a real number
k>1,let S =1[0,1] C R and for t € S define by(t) = ¢, be(t) = 1 ~¢t, wi(t) = (1 —
t)*, wa(t) = t* and b;(t) = w;(t) = 0 for i > 2. Then A: X = C(S) — X is given by

(Az)(t) = tz((1 = t)5) + (1 — Dz ("), 0 <t < 1; (31)
and one computes that

(A22)(t) = (1—)(1 - t)z(*) + (1~ )5 (1 = t5)F) + ¢(1 — (1 = )F)a((1 = 1))
+t(1 = t)*z((1 — (1 — 6)F)*). (32)

As usual, Ay : X, =& X, 0 < A <1, is the map induced by A.
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Corollary 5.2 Let A: X — X be the map induced by equation (31). For all k > 1, we have
r{A) = 1. There exists 6 > 0 such that if k >2—6 and 0 < A < 1, then p(4,) <1 =r(4),
A satisfies conditions (a), (b), (c) and (d) of Theorem 5.1 and N := {z € X : (I —
A)(z) =0 for some j > 1} is finite dimensional.

Proof. We have A(e) = e, where e is the function identically equal to one, so 7(A) = 1 for
allk > 1 and ||A™|} <1 for all m > 1 and for all £ > 1. Theorem 5.1 shows that in order to
prove that p(A,) < 1for 0 < A < 1, it suffices to prove that 5(1) < 1, where p()\) is given
by eq. (22). Thus, by eq. (20) and eq. (22), it suffices to prove that p,(1) < 1 for some
m > 1. We shall only consider m = 1 or m = 2. Using Remark 5.2 and eq. (30) for m =1
orm=2and X\ =1, we define

koy(t; k) i= kt(1 — t)* + k(1 — t)t*~) and

Koa(ti k) = K1 —t)(1 — t5)(F 1) + B2(1 — )tk (1 — tF)e 1kt
FEAH[ - (1 - OF)(1 = O)F 7+ B2 (1 — 0)F[L — (1 — £FF1(1 = 1)

and we note that it suffices to prove that
max{koy(t; k) : 0 <t <1} <1 or max{k?oy(t;k) : 0<t <1} < 1.
If k = 2, we have that max{20,(¢;2) : 0 <t <1} = 1. A calculation shows that

4oy(t;2) = 16v*(1 —v), v:=t(1 —¢t).

2

%, we conclude

Since 0 < v < }I for 0 <t <1and v — v}l — ) is increasing for 0 < v <
that

1.,,3
max{do(t:2)|0 < £ < 1) = 16(3)°(3) = % <1.
By continuity of k%05(t; k) in k, there exists § > 0 such that if |k — 2| < §, then
max{k’oy(t;k) : 0 <t <1} < 1.

We now assume that & > 2. Because o1(t; k) = o1(1 — t; k), o1(-; k) achieves its
maximum on [0,1] on [0,}] and ¢ (3;k) = 0. If 2 < k < 4, we claim that o} (t; k) > 0 for
0 <t < 1. First assume that 2 < k < 3. Then we have that for 0 <t < 3

Loyez by

o6 k) = [(1— 1) = £ 4 (k= )1 = 1) (1 =

Because 0 <t < 7 and 0 < k—2 < 1, we see that & < 1 and (35)F2 > 5. Tt follows that
both bracketed terms in the above equation are nonnegative, and the first term is strictly
positive for 0 < ¢ < 3, 50 of(t;k) > 0 for 0 <t < 3. If 3 < k < 4, it suffices to prove (since

01(3; k) = 0) that o} (t;k) <O0for 0 <t < 1. A calculation gives

ol (t: k) = (k — )I*3[—2t + (k- 2)(1 — )] + (k — 1)(1 = )**[—2(1 — &) + (k — 2)¢].
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Because (1 —t) >t for 0 < ¢ < 1 and 2 >k — 2, we see that —2(1 — t) + (k — 2)¢t < 0 for
0<t< i Ifte(0,3) issuch that —2¢ + (k ~ 2)(1 —t) < 0, it follows that o (¢; k) < 0.
However, if ¢ € (0, 3) is such that —2¢ + (k — 2)(1 — ¢) > 0, we see that
ol(t;k) < (k— 11 =) 3[~2t+ (k- 2)(1 - t)]
+(k — 1)1 = t)F3[=2(1 — t) + (k — 2)¢)
= (k-Dk -1 -t 3<0.

It follows that for any ¢ with 0 < ¢ < § and for 3 < k < 4, we have o{(¢; k) < 0. Thus we
have proved that for 2 < k& < 4,

1 1
2ok = k(=
27 ) (2
We leave to the reader the calculus exercise of proving that k(3)*~' < 1 for all £ > 2.

It is easy to see that k — o1 (¢; k) is strictly decreasing for each fixed ¢ with 0 < ¢ < 1,
so we conclude that for k£ > 4 we have ‘

max{ko (£ k) 1 0 <t < 1} = koy( )E-L,

max{oi(t;k) : 0 <t <1} <max{o(t;4) : 0<t <1} = .;_

This implies that for 4 < k < 8 we have
1
max{koi(t;k) - 0 <t <1} < 8(§) =1.
For k > 8, it suffices to estimate crudely. We have, for £ > 8§,

max{ko(t;k) : 0 <t <1}

I

1
max{koi(t;k) : 0<¢t < 5}

IA

1
max{kt(1 —t)F' : 0 <t < =)

+max{k(l —#)t*1: 0<t <

}

N o—

The reader can verify that
1
max{kt(1 —£)F1 . 0<t < 5} = (1 — k1!

and ) )
max{k(l —t)t:7' : 0<¢t < 5} = 16(5)’C

One can check that & — (1 + 2k~ 1)* is an increasing function of & for & > |z], so certainly
k — (1 — k~1)* is an increasing function of & for k > 8. Since limyee(1 — k1) = ¢71, we
obtain for £ > 8 that . .
A Y L P O A g -1
-k < e < e

Similarly, one can prove that £ — lc(%)"c is a decreasing function of &k for k > 8, so, for £ > 8§,
we obtain ] I {

<o) ==
k(Z) - 8(2) 32
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It follows that for k > & we have

8
max{koi(t; k) : 0<#<1} < (3—12—) +(z)et < 1.

7

(]

If £ > 1 and 4 is given by eq. (31), we conjecture that there exists A > 0 such
that p(4x) < 1 = r(A). If kK = 1, A is a projection operator onto Z := {z € X |z(1 —
s) = x(s) for 0 < s < 1}. Since the fixed point set of A is infinite dimensional for k = 1, it
follows that p(A,) > 1 for all A > 0.

As a contrast to the case that A : X — X has periodic points, we now describe
conditions which insure that if A is an eigenvalue of A and |A| = r(A4), then A = r(4) and
r(A) has algebraic multiplicity one. Assume H5.1, H5.2 and H5.3; and for 0 < A < ), and
an integer m > 1 define

w wrls A
sm(A) = sup{ > bI(t)ﬂ%%—t}\(—)z— 1 s5,t€ S, sF#t} (33)

1T,

For A = 1 the numbers s,(1) were used by Hennion [6]. If § > diameter(S), we have
Sm{A) = pm(6, ). The same argument used in Lemma 5.3 proves that

Smtn(A) < sm(A)sn(A) and
5(V) = Inf sp(A)= = Tim_sm(A)7. (34)

Clearly, we always have pm(\) < sn(A) and g(A) < 3()) for pn()) and 5(A) as in
eq. (20) and eq. (22). However, it may easily happen that p,,(A) < 8,.(})) or A(A) < 3(X).
To see this, let A denote the operator given by eq. (31) and studied in Corollary 5.2. By
taking ¢ =1 and s = 0 in eq. (33), one can prove that s,,(A) > 1for 0 < A < Xp and m > 1,
50 3(A) > 1 for 0 < XA < 1:= Ag. However, if £ > 2, we proved in Corollary 5.2 that either
p1(1) < 1or pp(1) < 1; and it follows that 5(1) < 1. Lemma 5.3 now implies that 5(\) < 1
for 0 <A< 1,50, for k>2and 0 <X <1we have 5(\) < 3())

. A more straightforward class of examples with g(\) < §()) for 0 < X < X can
be constructed as follows. Assume H5.1, H5.2 and H5.3 hold. Assume, moreover, that
§ = U}_,S;, where S; is compact and nonempty for 1 < j < n and S;N S, = @ for
1<ji<k<n. Assume that w;(S;) C S; and that w;|S; is a Lipschitz map with Lipschitz
constant ¢ < 1for 1 < and 1 < j < n. Finally, suppose that there exists u € P,(S) and
r=7(A) > 0 with Au = ru. Then we claim that 5(A) > 7 for 0 < A < Aq and 5(\) < r for
0 < XA < Xo. If we select 0 > 0 such that

d(S;, Sk) = inf{d(o,7) : 0 € S;, T € Sk} >0

for 1 < j <k <m, the proof of Corollary 5.1 shows that ()} < ¢*r for 0 < A < Xg. To see
that 3(A) > r, select § > 0 so that § < “(S < 67! for all 5,¢ € S. The equation

rRu(t) = 7 b (t)u(w(t))

I€Zy
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then easily implies that for all t € S

) z b(t) < r* < 5! Z br(%)

€T, [eT;

One derives from this equation that for all t,s € S and for all ¥ > 1,

Z b[(t) S (5—2 Z b[(s).

1€T, 1€}

Using the previous equation and equation (21), we see that for any sequence (t,, € S|m > 1)
we have L
3 L m ———
S b = =
Fix jk with 1 < j < k < n and select ¢ € S; and 7 € S5 with d(o,7) = d(S;, Si). For
I € I, we know that w;(7) € Sx and wi{o) € S; so we obtain

N2 Y byl o

I€Tn d(r,0)* 16Zm

It now follows from our previous remarks that
Jim s (A)7 = 5() 2 7.

Theorem 5.2 Assume that H5.1, H5.2 and H5.3 hold and let A : X := C(S) = X be given
by eq. (13). Let 3()\) be defined by eq. (34), suppose that there exists A, > 0, A\ < Ao, with
(M) < r(A) ;=71 and assume that there exists u € P,(S) with Au = ru. For each i > 1
assume that b; = 0 or b; € Po(S). Then if z is an eigenvalue of A and |z] = r{A), it follows
that z = r{A). Furthermore, r(A) has algebraic multiplicity one and u € X,,.

Proof. By possibly replacing the infinite sum in the definition of A{z) by a finite sum, we
can assume that b; € F,(S) for all relevant ¢ and write, for some N with 1 < N < oo

N

(Az)(t) =D b(t)z(wi(t)).

1=1

By replacing A by r~*4, we can assume that r = 1. We shall assume that N == co; the proof
is the same for N < co.

Because p(A1) < §(A) < 1 = r(A) and u € P.(S) satisfies Au = u, Theorem
5.1 implies that u € X,,. Define a map M = M, : X — X by (M,(2))(t) = u(t)z(?), so
(M7Hx))(t) = u(t)~'z(t). One can easily check that M, defines a bounded, linear, one-one
map of X onto X and of X, onto X,,. Furthermore, z is an eigenvalue of A of algebraic
multiplicity v if and only if z is an eigenvalue of M~'AM of algebraic multiplicity ». A
calculation shows that

N

N
(Az)(t) = (MPAM)( = > u(®) b (H)u(wi(t))z(wi(t)) := Z:El(t)m(wz(t))

i=1
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The reader can verify that b; and w;, 1 <14 < oo, satisfy H5.1, H5.2, and H5.3, with A, in
H5.3 replaced by A, and My by some constant 3.

We assume that 3()\;) < 1, so there exists n > 1 such that s,(\) = 4" < 1. It
follows that sp,(A;) <~ for p > 1. Because AF = M1 A*M, we have that

(A z)(t) == > bt)z(wr(t)) = Z w(t) 7 b {t)ulwr(t))z(wi (1)),

1€, TeT,

and br(t) = u(t)" by (t)u(wr(t)). If C = sup{u(t)~'u(s) : s,t € S}, we conclude that for
t,s € § with { # s we have

’UJI(t) ’LUI( | M -
&0 < SO 2 WO <O

If 3,,() is obtained by substituting b;(¢) for b;(¢) in eq. (33), it follows that Sap(My) < Cy™P
and 1 .
5(A1) = Eéflgm(/\l); = nli_rgo.gm(/\l); <<l

It follows from the above calculations that A satisfies the same hypotheses as A but
that, in addition, A(e) = e and £2, b;(t) = 1 for all ¢ € S. Now suppose that A(y) = ay,
where |af =1, [yl = 1 and y is complex-valued. Define Sy := {t € S||y(t)] = 1}. If t € Sy,
then by using the facts that |y(w;(¢))] < 1 for all ¢, b;(t) > 0 for all i, and 2, b;(t) = 1, we
see that y(w;{t)) = ay(t) for 1 < i < co. It follows that w;(Sy) C Sy for 1 < i < 0o and that
if ar # 1, y is not constant on Sp. If @ = 1, we assume, by way of contradiction, that y is not
constant on So. By using Remark 3.4 and Theorem 3.3 we see that y € X,

Because y € X,\l, we can define 6 > 0 by

d:=su {ly() y()l 5,1 €85, s#L, A=A} < oo

d(s, 1)*
If 5,¢ € Sy, we have y(w;(s)) = a™y(s) and y(wr(?)) = &™y(t) for all I € T,,, so
ly(s) =yl = 3 br(s)ly(wi(s)) ~ y(wr(®))]-
I€Z,,

Writing A := A, we know that for all s,¢ € Sy with s % ¢

|ly(wi(t) — y(wi(s))] _ d(wi(t), wi(s))*
: d(s, 1) ST

so we conclude that for s, € Sy with s # ¢

ly(t) — y(s)] <6 Bis) d(wi(t), wr(s))*

(.07 A S omNe

1€Zm
Taking the supremum over s,t € Sy gives § < Sm(A)d. Since we know that § > 0 and we as-
sume that 3,,(A) < 1 for m large, we have obtained a contradiction. It follows that o = 1 and
that y|Sy is constant. If y is not a scalar multiple of e, then by choosing appropriate scalars
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a and b, we can arrange that y; := a(y — be) satisfies max,csy1{s) = —mingesyi(s) = 1.
We see then that y; is an eigenvector of A with eigenvalue 1 and that ¥, is not constant on
Sy:={t €S : |u(t)] = 1}, a contradiction. Thus we conclude that {v € X : Av = v} is
one dimensional. Since we assume that there exists u € P,(S) with Au = u, our previous
results imply that

{veX : : Av=v}={veX: ik 2.1 with(I — A)*(v) = 0}.

O

It seems difficult to give hypotheses which yield the conclusions of Theorem 5.2 and
cover all interesting examples. The following theorem complements Theorem 5.2. As usual,
X denotes the complexification of X.

Theorem 5.3 Assume H5.1, let w; : S — S be continuous maps for 1 < i < oo and let
A: X :=C(S) = X be given by eq. (13). Assume the following:

{a) There ezists u € P,(S) with Au = ru, 7 =7r({4).

(b) There exists m > 1 and I, € L, such that (1) b;,(¢) > 0 for all t € S and (2) for all
t €S, wk (t) converges as k — oo.

Then, if o € € is an eigenvalue of A and || = r(A) :=r, &™ = r™. If w;, has precisely v
fized points in S, then we have

N={yeX wmy=A™y)={yeX: 3k>1wzth(m1 A™*(y) = 0} and

dimension{N) < v.

If wy. has a unique fized point in S, then r(A) is an eigenvalue of A of algebraic multiplicity
one, and 7(A) is the only eigenvalue of A of modulus r(A).

Proof. If M = M, is as in the proof of Theorem 5.2, define A = M~'AM, so, for z € C(S),

(Az)(t) = > bi(t)x(wy(t)) and Zb (t) = 1.

nMg

Just as in the proof of Theorem 5.2 we have that

A z)(t) = Z b[ (t)x(wr(t) = Z u(t)_1b1(t)u(w1(t))$(w1(t)).

I€T, I€T,

It follows that by, () > O for all t € S. Because the spectrum of A equals the spectrum of
A, with corresponding eigenvalues having the same algebraic multiplicity, it suffices to prove
the theorem for A instead of A. Also, by replacing A by r~'4, we can assume that r = 1.

Suppose that A(y) = ay, where |a| = 1 and y # 0 is complex-valued. It follows
that A" (y) = By, 8 = a™, and we have to prove first that § = 1. We can assume that
llyll = 1, and we define Sp:={t € S : |y(t)| = 1}. If t € Sp, we have that

3 bty (wi(t)) = By(t).

IeZn
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The same argument used in Theorem 5.2 shows that y(w,(t)) = By(¢) for all I € T, such
that b;(t) > 0. In particular y(wy,(¢)) = Py(t) for all ¢ € Sp. This implies that wy, (£} € Sp
for all all t € Sp. Select some ¢ € Sy. By assumption, limg_, w¥,(t) = 7 and necessarily
7 € Sp and wy,(7) = 7. However, if 8 # 1, this is a contradiction, because |y(7)| =1 and

y(wr(7)) = y(7) = By(r).

Next assume that wy, has precisely v < oo fixed points in S, and let u denote the
dimension of N (over C). Because A" (e) = e and e € P,(S), our previous results imply that

N={yeX:Ik>1with ( - A")*(y) = 0}.

It is known that there exist u linearly independent, real-valued functions y1, ye, ---, ¥y
which form a linear basis of N (over € ). We can also assume that y; = e. If y € N, our
previous arguments show that there exists 7 € S with wy, (7) = 7 and Jy(7)| = |ly]|. Select

a fixed point 7, of wy, and define §; = y; and ga = y» — oyy1, Where «; is chosen so that
U2{m1) = 0. By linear independence, g, # 0, and there exists a fixed point 73 of wy, such that
[2(m2)] = |||l # 0. Because §a(72) # 0 and §»(r1) = 0, we see that » # 71. Arguing by
induction, assume that we have defined

i-1
Ti=y;— 2 Cisys, 1<5<k
s=1
and have found fixed points 73, 79, -- -, 7 of w;, in such a way that

5:(r;)] = 151l and §;(r;) =0 for 1 < s < j.

These equations imply that the fixed points 71, 72, -~ -, 7 are all distinct. If & < pu, the
reader can easily check that there exist constants diyis, 1 < s < Kk, such that if fgqq s

defined by
k

Trtl = Yka1 = 2 Dren,s¥s,
s=1
then §eyi{75) = 0 for 1 < 5 < k. By linear independence, f|fzi1ll # 0, and our inductive
hypotheses imply that there exist constants g1 with

k
Prt1 = Ykal ~ 9, Chrl,s¥s-
s=1
It follows that there exists a fixed point 711 of wy, with |Jey1(Tes1)| = |Fkr1]] # 0. Since
Tr41{r5) =0 for 1 < j <k, we see that 7441 ¢ {7;]1 < 7 < k}. This completes the inductive
step. Eventually, we obtain §1, 9, - - -, §, and u distinct fixed points 71, 75, - - -, 7, of wr,,

so u < v.
If wy, has a unique fixed point, so » = 1, we have proved that dim(N) = 1; and
since

N> {ye X |3k > 1 with (I — A)*(y) = 0},
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1 is an eigenvalue of A of algebraic multiplicity one. If A(y) = ay for some y # 0 and some
a # 1 with |a| = 1, we have already seen that o™ = 1. But this implies that A" (y) = y and
y is not a constant function, which contradicts dim{(N) =1. O

The techniques of proof used in Theorems 5.2 and 5.3 may be applicable even if the
exact hypotheses are not satisfied. We illustrate this by considering a previous example.

Corollary 5.3 For k > 1, let A: X = C(S) — X be the map given by eq. (51). Then
o =1 is the only eigenvalue o of A of modulus 1, and 1 is an eigenvelue of A of algebraic
multiplicity one.

Proof. For any z € X, note that (Az)(0) = z(0) and (Az)(s) = (Az)(1-s)for 0 < s < 1.
If A(z) = ax, where ||z|] =1, |o| = 1 and @ # 1, it follows that z(0) = az(0) and z(0) = 0.

 Since Az(0) = Az(1), we find that z(1) = z(0) = 0. If S == {t € [0,1] | |z ()| = |||} = 1}, it
follows that Sy C (0,1). If ws(t) = t¥, the argument used in the proof of Theorem 5.2 shows
that wa{Ss) C Sp. If t € So, limjseo w%(t) := 7 i3 an element of Sy, because S; is closed.
However, 7 = 0 and 0 ¢ S, a contradiction.

To complete the proof, it suffices to prove that N = {z € X|Az = z} is
one dimensional. Suppose, by way of contradiction, that N contains a nonconstant func-
tion z (which can be assumed real-valued). Select ¢ € IR so that z; = z — ce van-
ishes at ¢t = 0. Since Az; = zy, it follows that z:(0) = 0 = z,(1). If we now define
S := {t € [0,1] : |z:1(t)] = ||z1]]}, the same argument used in the first part of the proof
gives a contradiction. O

Corollary 5.4 Let A: X := C(8) — X be given by eq. (18} and suppose that r(A} = 1.
Fither assume the hypotheses of Theorem 5.2 or make the following assumptions:

(1) Hypotheses H5.1, H5.2, and H5.3 are satisfied.
(2) There exists u € Po(S) with A(u) = u.

(8) There ezists A, 0 < A < Ay, with p(\) < 1, where p(A) is given by eq. (22) and Xy is
as in H5.5.

(4) There exists i, > 1 such that b;, (t) > 0 for allt € S and limy_,o, wk (t) ezists for every
tes.

Then there ezists a continuous, finite dimensional linear projection @@ : X — X of X onto
{z € X : Az =z} such that

Jim 4™z} — Q(z)|| = 0 for all z € X.
Furthermore, for every p € X*, (A*)" (1) converges in the weak* topology to Q*(u).

Proof. By assumption, there exists u € P,(S) with Au = u. Theorems 5.2 and 5.3 imply
that if o is an eigenvalue of A of modulus one, then a = 1. We assume that g(A) < 1 or
5(A\) < 1 for some A with 0 < A < Ag. Since g(A) < §(A), Theorem 5.1 implies that there
exists A, 0 < A < Ag, with p(4,) < 1. The existence of ¢ and the convergence properties of
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A™(z) as n — oo now follow from Theorem 3.3 and Remark 3.5, and the final statement of
the corollary is immediate from the definition of weak* convergence.0J

Remark 5.3. If S = {1,2,---,n}with the metric inherited from IR, then one can identify
C(S) with IR” by identifying f € C(S) with (f(1), f(2),---, f(n)). If B= (bjx) isann x n
nonnegative matrix, then, writing elements of IR™ as column vectors, B induces a linear map
z — Bz on R” and a corresponding map A : C{S) — C(S) by

(Af)(s) = D_b;(s)f (w;(s)),
jes

where b;(s) := bs; and w;(s) := j for all s,j € S. Clearly, A is a Perron-Frobenius operator
of the form in eq. (13). Recall that A is irreducible (in the sense of Section 3) if and only
if, for every ordered pair (7, j) with 1 <4,j < n, there exists a positive integer m = m(i, §)
such that the (4, j) entry of B™ is positive. It is immediate from eq. (33) in this case that
51(A)=0for0<A<1,s05(A\)=0for0 <A<

Now suppose that (S, d) is a general compact metric space, that A : X := C(S) = X
is given by eq. (13) and that H5.1-H5.3 are satisfied. Assume also that A is irreducible and
that 5(1) < r(A), where 3(1) is as in eq. (33). Because (1) < 3(1), Theorem 5.1 implies
_that there exists u € P(S), u # 0, with Au = ru and r = 7(4). Irreducibility of A implies
that u € Fo(S). In this situation, Hennion asserts in Theorem 2 of [6] that 7(A) is the
only eigenvalue of A of modulus r(A4). However, even in the case that S = {1,2,---,n},
this assertion is false: a nonnegative matrix B may have eigenvalues o with |o| = 7(B) and
a # r(B). The 2 x 2 matrix B defined by b; = 0 and bi; = 1 for ¢ # j provides the simplest
example.

Remark 5.4. Theorems 5.1, 5.2, and 5.3 are slight generalizations of unpublished notes
written by the author in 1989 in response to a question from Jeff Geronimo. The theorems
generalize results in [1], [6] and [9, 11].

Theorem 5.1 provides little information about the eigenvector v € P(S). By
strengthening the hypotheses in Theorem 5.1, one can obtain much more information about
u, in particular proving that v € P,(.S). We begin with a lemma.

Lemma 5.4 If M >0,0< A <1, and 8 > 0, define
K(M,0,)) :=={z € C(S) : 0 < x(s) < z(t)eap(Md(s,t)*) Vs,t € S with d(s,t) < 8}

Then K := K(M,0,1) is a closed cone in X (see Section 3 for definitions), and the set
{z e K : llz]| <1} := BN K is compact.

Proof. We leave to the reader the exercise of proving that X is a closed cone. To prove
that B; N K is compact, it suffices to prove that B, N K is equicontinuous. If = € BNk,
let So = {t € § : z(t) = 0}. Clearly S is compact (possibly empty), and the definition
of K implies that if s € Sy and d(t,s) < 4, then t € S;. Thus, if s, € S and dis,t) < 4,
either (a) s € Sp and t € Sy or (b) s € S\Sp and t € S\Sp. In either case we claim that if
d(s,t) <0 and z € B; N K we have

|z(s) — z(t)] < Md(s, 1),
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which implies equicontinuity. The inequality is obvious in case (a). In case (b) the definition
of K implies that for d(s,¢) < § we have

log(z(s)) — log(z ()| < Md(s, t)*.
We can assume that 0 < z(s) < z{¢) < 1, and the mean value theorem implies that for some
¢ with log(z(s)) < € < log(z(t)) < 0 we have
lz(s) —x(t)] = exp(log(z(t))) — exp(log(z(s)))
exp(©)llog(z(1)) — log(a(s))] < Md(s,t)

Il

This proves equicontinuity. O
Suppose that C is a closed cone in a real Banach space Y and L : ¥ = Y is a
bounded linear map with L(C) C C. Define

[Lllc = sup{[IL(®)]| - v € C and |ly|| < 1} and
ac(L) =inf{k >0 : o{L(B)) < ka(B) VB C C, B bounded}.
Define (see [15}) rc(L), the cone spectral radius of L, and pc(L), the cone essential spectral
radius of L, by
L oyt
re(L) = if [L"g = lim [[L"]|¢ and
i M - )t

po(L) = inf(ac(LM)> = lim (ac(L™)*.
It is proved in [15] that if po(L) < (L), then there exists y € C\{0} with L(y) = ry,
7 =r¢(L). In the case that L|C is compact, this was proved by Bonsall [3].

Theorem 5.4 Let (S,d) be a compact metric space and suppose that A : X := C(S) - X
is given by eq. (18). Assume the following:

(1) H5.1 and H5.2 are satisfied.

(2) There exist My >0, 0 >0, A with 0 < A < 1 and an integer n such that for all I € T,,
we have by € K{M,, 8, )), where K(M,, 8, \) is as in Lemma 5.4.

(3} For n and @ as in (2), there ezists ¢ with 0 < ¢ < 1 such that
d(wi(t), wr(s)) < c*d(t, s)
for allt,s € S with d(t,s) <8 and for all I € T,,.

(4) For allt € S, Yrer bi(t) > 0.

Then there ezists M > 0 such that A"(K(M,0,))) C K(M,8,), and A™ has an eigenvector
u € K(M,80,)) with eigenvalue (r(A))* :=r" > 0. If S is connected, u(s) >0 for alls € S;
and in general Sy := {s € S : u(s) = 0} is open and closed. If § >diameter(S), u(s) > 0
for all s € S. The operator A has an eigenvector

v= nz—: I AT (u) € P(S)

j=0

with eigenvalue r = r(4).
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Proof. Select M so that My + Mc™ < M. We claim that AY(K) C K, where
K :=K(M,§,)). IfI €I, and s,t € S satisfy d(s,t) <, then

d(wr(t), wr(s)) < c"d(s,t) < 0.
It follows that if d(s,t) < 0 and z € K and I € T, then we have
z(wr(s)) < z(wi(t)ezp(Md(wi(s), wi(t))*) < z(wr(t))exp(Mc™d(s, 1)) and
br(s) < by(t)ezp(Mod(s,t)*).
Using these inequalities, we find that

(A™z)(s) = Z br(s)z(w;(s)) 2 br(t)z(wy ())exp((My + ™ M)d(s, t)*)

I€Z,, I€T,
((A"2)(t)ezp(Md(s, 1)*).

The above inequality proves that A®(K) C K.
By Lemma 5.4, the set {z € K : ||z|| < 1} is compact, so A?|K is compact and
pr (A™) = 0. The constant function e is in K, so

i (A%) 2 lim [[A% (e[| = 7 (A7) = (r(4))".

IN

The opposite inequality is obvious, so we conclude that rx(A") = (r(4))". By assumption
{4) and H5.1, there exists § > 0 with

> bit) >4,

€T,
and it follows that A”(e) > de and r(A™) > §. Using the remarks which preceded Theorem
5.4, we conclude that there exists v € K, |[uf] = 1, with A"(u) = r™u, and 7 = r(A). The
proof of Lemma 5.4 showed that K C X, so u € X. The proof of Lemma 5.4 also showed
that So = {t € S|u(t) = 0} is open and closed, so if S is connected, Sy must be empty.
Similarly, we saw that Sp = {t € S|d(t,S) < 6}, so if & >diam(S), Sy must be ermpty.
Finally, the fact that v is an eigenvector of A with eigenvalue r follows by a straightforward
calculation. O

6 Perron-Frobenius Operators: Existence of Periodic
Points

We now wish to give a version of Theorem 3.1 for Perron-Frobenius operators. In order to
do this properly, we need a slight generalization of Lemma 3.2 in which we arrange that the
functions f; of Lemma 3.2 are Lipschitzian.

Lemma 6.1 Let m > 2 be an integer and suppose that E;, 0 < i < m, are closed,
nonempty subsets of a compact metric space (S,d) and that E,, = Ey. Assume also that
NZGYE; = 0 and let r be a positive real number. Then there exist positive, Lipschizian func-
tions f; + S — (0,00), 0 < i < m, with frn = fo and fi(s) = rfi_i(s) for all s € E,
1<i<m.
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Proof. A compactness argument shows that there exists § > 0 such that N7 V3(E;) = 0,
where V3(E;) := {s € S : d(s, E;) < é}. Define h;(t) = log(r) for all ¢t € Vg(E }. Because
ﬂﬁolVg(E) (Z) Lemma 3.1 1mphes that there exist continuous extensions /; : S — IR with
hi(t) = log(r) for all t € V5(E;) and 75! hy(t) =0 for all t € S.

By compactness, there exists a finite open covering {Bs (se) : 1<k <n}ofS,
where B& (s¢) denotes an open ball of radius ¢ 5 and center s;. As is well-known, there exists a
Llpschltz partition of unity subordinate to this covering, so there exist nonnegative, Lipschitz
functions ¢, : S — [0,00), 1 < k < n, with support(¢) C B%(sk) and Y7, k() = 1 for all

t € S. We now define functions 7;, 0 < ¢ < m, by

Because ¢, 1 <k < n, is Lipschitzian, the functiops Bi, 1 < i < m, are Lipschitzian. We
claim that (a) Y7y hy(t) = 0 for all t € S and (b) hy(¢) = log(r) for all ¢ € E;, 1 < ¢ < m.
Claim (a) follows from the corresponding fact for the functions h;:

m=1 _ m—1 n n m-l
S hi(s) = 33 duls)hilse) = Z Br(s)( D hi(sk)) =
=0 i=0 k=1 k=1 =0

For claim (b), notice that if ¢ € E; and ¢, () # 0, then d(t, s;) < g and s, € V3(E;) and
hi(se) = log(r). It follows that, for ¢ € E;,

n

hi(t) = i h {sg) = Z t)(log(r)) = log(r).

k=1 k=1

We define ¢;(t) = exp(hs;(¢)) and note that g; is Lipschitz. If we now argue as in the proof
of Lemma 3.2, the conclusion of Lemma 6.1 follows. O

We can now state a version of Theorem 3.1 for Perron-Frobenius operators. As
usual, A, is the map induced by A on the space X, of Holder continuous functions on 5.

Theorem 6.1 Let (S,d) be a compact metric space and assume that the following conditions
hold:

{a) Hypotheses 5.1, 5.2 and 5.9 are satisfied and A : X = C(S) — X is defined by eq.
(13).

(b) For Ao as in H5.8 and p(\) as in eq. (22), there exists A, 0 < A < Ag, such that either
2A) < r(A) or, more generally, p(Ay) < r(A).

(c) There ezist closed, nonempty sets B; C S, 0 < ¢
that B, = Ey, N2, F; = 0, and whenever f € C(S
0<i<m-—1, it follows that Af|F;; = 0.

< m, m a prime number, such
} and f|E; = 0 for some i with

(d) The spectral radius v(A) of A equals one, and there exists § € P(S)NX, with A() =0
and 8(sq) > 0 for some sp € £ = UL E;.
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Then there exist a > 0 and b > 0 and a periodic point gg € X of A of minimal period m
with af < go < b4.

Note that Theorem 3.3 implies that if r(A) = 1 and conditions (a) and (b) of
Theorem 6.1 are satisfied, then there exists § € (P(S)\{0}) N X with A(#) = 6. Theorems
3.3 and 3.4 provide conditions under which one can also guarantee that 6(sy) > 0 for some
Sp € E.

Proof of Theorem 6.1. By Lemma 6.1, there exist Lipschitzian functions
fi € P(S), 0 <1 < m, with f, = fo and fi|E; = rfiq|E; for 1 <4 < m, where r
is a positive real number, 7 # 1. Replacing the functions f; by f; := 8f;, we see that for
1<i<m, ﬁ € Xj, f:[E', = rfi_1|Ei, and there exist positive reals a and b with af < fl < b6.

We now proceed as in the proof of Theorem 3.1. Define Yy = [[75' X, to be
the Banach space of ordered m-tuples y = (xg, %1, -, Zm—1) Of elements of X, and let
®, : Y\ — Y, be defined by

‘3,\((9507351; T mm«l)) = (A,\Zm—la Axzo, Arz1, - -, AAIm-Z)-
Define a set C), C Y), by
Cx={(90: 91, -, gm-1) € Y5 : af < g; < b0 and g;|E; =rg;1|E; for 1 < j < m}.

As usual, in the previous equation indices are written mod m, so g, = gg. Our previous
remarks show that (fo, f1,-- -, fm_l) € Cy, so Cy # 0. One easily sees that C) is closed and
convex, and the same argument as in Theorem 3.1 shows that &,(C,) < C).

If g= (90,91, *, gm—1) € C), note that

5 (g) = (A5™90, A" g1, -, A" gm).

Note also that A™ is a Perron-Frobenius operator and that p(A7) = (p(Ax))" < 1. If i is
the inclusion map of X, into X, we obviously have that

l7A5™ (g)]| < bll9]| for k> 1,

so Theorem 5.1 implies that {A5™(g;) : k > 0} := S is bounded in the X} norm for each j,
0<j<m~—1. Since p(A}) < 1, select v > 1 and ¢ < 1 such that a(4{™) = ¢ < 1. (Here
« denotes the measure of noncompactness in X).) Since Ay™(S;) differs from S; by only a
finite set, we have a(A{™(S;)) = a(S;), so we conclude that

a(S;) = a(A™(55)) < ca(S;),

and a(S;) = 0,0 < j <m-— 1. It follows that {®%™(g) |k > 0} has compact closure in
X, for every g € C). Since ®5(g9) € C if 0 < p < m—1 and g € C,, it follows that
{<I>§m+“(g) : k> 0} has compact closure in X, for g € Cy and 0 < p < m — 1. One derives
from this that {®)(g) : j > 0} has compact closure in X, for every g € C,.

Now take a fixed h € C) and define Dy by

Dy = @o({®(h) ] j 2 0}) C C.
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Mazur’s theorem implies that IJ, is a compact, convex set in X, and one easily checks that
@, (D)) C D,, so Schauder’s fixed point theorem implies that ¢, has a fixed point gy € D,
The remainder of the proof now follows as in Theorem 3.1. O

Our next corollary gives a simple situation in which condition {¢) of Theorem 6.1
is satisfied.

Corollary 6.1 Let hypotheses be as in Theorem 6.1, except replace condition (c) by the
following assumption:

(v ) For a prime number m, there ezist closed, nonempty sets E; C S, 0 < j < m, with
Em = Eo and 0L, E; = 0 such that w;(E;) C E;—y for 1 <j<m andi>0.

Then the conclusion of Theorem 6.1 remains valid.

Proof. The reader can verify that condition () of Corollary 6.1 implies condition (c) of
Theorem 6.1. O

Corollary 6.1 shows why the assumptions of Corollary 5.1 are much too restrictive
if one is interested in periodic points. For suppose condition (v ) of Corollary 6.1 is satisfied.
Then there cannot exist a positive integer k£ and I € 7 such that wy is a Lipschitz map
with Lipschitz constant ¢ < 1. For suppose, by way of contradiction, that such an I exists.
Condition (7y) implies that wT(E) C By, for 1 < £ < m. Because w} is a contraction, wf
has a fixed point z; € Ey for 1 < k < m; and the condition that N*;FE; = @ implies that
there must exist 1 < k < { < m with 2; # 2. Thus the contraction mapping w7 has two
distinct fixed points, a contradiction.

To illustrate the use of Theorem 6.1 and Corollary 6.1 we consider a slight variant
of the operator studied in Corollary 5.2. Let S = [0,1] and let & > 1 denote a fixed real
number. Define 4 : X := C(8) = X by

(Az)(®) = tz((1 - £)%) + 1 — )z (1 — t¥) (35)
A calculation yields

(A%)(1) = t(1 -t a((1~ 1~ ")) +t(1 - (1 - O)F)z(1 - (1 - t)*)
+(1 = ) (1 = ) 2(@) + (1 = t)thz(1 — (1 — £5)F).

Corollary 6.2 Let A : X := C([0,1]) — X be the map given by eq. (35). Then for all
k> 1 we have r(A) = 1. There exists 6, 0 < 6 <1, such that if k > 2 -6 and 0 < A < 1,
then p(Ay) < 1= r(A) and A satisfies conditions (a), (b), (c) and (d) of Theorem 5.1. If
k > 2—6, the map A has a periodic point gy € Po(S) of minimal period 2. Ifk > 1 anda €
is an eigenvalue of A and |a| =1, then o =1 or o= —1. If k > 1, 1 is an eigenvalues of A
of algebraic multiplicity one; and if —1 is an eigenvalue of A, it is of algebraic multiplicity
1. Ifk>2—4, —1 is an an eigenvalue of A.

Proof. We argue as in Corollary 5.2. If e denotes the function identically equal to one.
then A(e) = e, so r(A4) = 1. By Theorem 5.1, we will obtain that p(4,) < 1for 0-< A< 1if
we can prove that p,(1) < 1 for some m > 1 (see equations (19) and (20)). Using Remark
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5.2 and eq. (30) for m = 1 or m = 2 and A = 1, we find that it suffices to prove that
max{ko(t;k) : 0 <t <1} < 1 or max{k®oy(t;k) : 0 <t < 1} < 1, where o,(¢; k) and
oa(t; k) are as in the proof of Corollary 5.2. Thus it follows from the proof of Corollary 5.2
that there exists §, 0 < 6 < 1, such that if ¥ > 2—, then p(A4,) < 1for 0 < A < 1. Theorem
5.1 now implies that (for k > 2 — § ) A satisfies (a), (b), (c) and (d) of Theorem 5.1.

Now define Fy = {0} and E; = {1}. For any z € X, (Az)(1) = z(0) and
(Az)(0) = z(1), so one easily sees that Ey and E; satisfy condition {¢) of Theorem 6.1
with m = 2. We have already checked the other hypotheses of Theorem 6.1, so (for k > 2—46
) A has a periodic point gy € P»(S) of minimal period 2.

Ifk>2—4 and g; := A(go), then go — g; is an eigenvector of A with eigenvalue —1.
If t > 1 and o € C is an eigenvalue of A of modulus one and if v € X is a corresponding
eigenvector, we obtain from our formula for A% that

(A%u)(0) = u(0) = o?u(0) and (A%u)(1) = u(1) = o?u(1).

If u(0) # 0 or u(1) # 0, it follows that o = 1. If u(0) = 0 and u(1) = 0, we argue as in Theo-
rem 5.3 and Corollary 5.3. Let M = max{|u(t)| : t € S} and Sy = {t € [0,1] : |u(t)| = M}.
Our assumptions imply that Xy C (0,1). Because |(A%u)(t)] = |u(t)|, arguing as in Theorem
5.3 and using the formula for A% we see that if ¢ € £, then t** e . Iterating, we find that
t*** € g; and since k > 1, we obtain by letting n — co that 0 € Iy, a contradiction.

Thus we have proved that if & > 1 and u is an eigenvector of A% with eigenvalue
B €C of modulus one, then § =1 and ©(0) # 0 or u(1) # 0.

Suppose now that we have two linearly independent fixed points e and g of A2 If
hg := g — g(0)e, we must have that (1) # 0; otherwise, i will be a fixed point of A% which
vanishes at 0 and 1. By multiplying hg by a constant, we obtain a fixed point A of A? with
h(0) = 0 and A(1) = 1. If v is any fixed point of A2, there exist constants ¢ and d such that
v — ce — dh vanishes at 0 and 1. Since v — ce — dh is a fixed point of A2, it follows from
our previous remarks that v = ce + dh, so {z € X | A%(z) = z} is two dimensional. Because
A%(e) = e and e € P.(S), we know that {||4*] : k& > 1} is bounded, and our. previous
theorems imply that

{z € X|A¥z) =z} = {z € X | (I — A%Y(z) = z for some j > 0}.

If A has an eigenvalue —1, g must correspond to an eigenvalue —1, and the corollary follows
easily. If A does not have an eigenvalue —1. there cannot exist an element g as above. For
if g exists and ~1 is not an eigenvalue, one easily argues (work in the linear space spanned
by ¢ and A(g)) that A(g) = g. However, this implies that g(0) = ¢(1), which gives the
contradiction that ho(1) = 0. It follows that if —1 is not an eigenvalue of A, 1 is still an
eigenvalue of A of algebraic multiplicity one. O

As in the case of Corollary 5.2, we conjecture that if £ > 1, A has a periodic point
of minimal period 2. If k = 1, Az(t) = z(1 —t) and 1 and -1 are eigenvalues of infinite
multiplicity.

Acknowledgements. Thanks are due to the referee for a careful reading and for some
useful suggestions.
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