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Abstract. We consider a broad class of linear Perron-Frobenius opera-
tors A : X — X, where X is a real Banach space of C" functions. We
prove the existence of a strictly positive C™ eigenvector v with eigen-
value r = r(A) = the spectral radius of A. We prove (see Theorem 5.5
in Section 5 of this paper) that r(A) is an algebraically simple eigen-
value and that, if o(A) denotes the spectrum of the complexification of
A, o(M\{r(A)} C {¢ € C|[¢| < r.}, where r. < r(A). Furthermore, if
u € X is any strictly positive function, (%A)k(u) — syv as k — oo,
where s, > 0 and convergence is in the norm topology on X. In ap-
plications to the computation of Hausdorff dimension, one is given a
parametrized family As, s > s«, of such operators and one wants to de-
termine the (unique) value so such that r(As,) = 1. In another paper
[13] we prove that explicit estimates on the partial derivatives of the
positive eigenvector vs of As can be obtained and that this information
can be used to give rigorous, sharp upper and lower bounds for sg.
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0. Introduction

The motivation for this paper comes from the problem of finding rigorous,
sharp estimates for the Hausdorff dimension of “invariant sets” for iterated
function systems or for graph directed iterated function systems. We refer,
for example to [8], [17], [18], [20-31], [38] and [42] for definitions, background
information and discussions of some interesting examples. In [38] a general
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construction is given which associates to a graph directed iterated function
system a family of “Perron-Frobenius” operators Ly defined naturally for s >
Sx, where s, = 0 if there are only finitely many functions in the graph directed
iterated function system and L, is defined in that case. A generalization of
the Krein-Rutman theorem is used in [38] to prove that L, has a strictly
positive, Holder continuous eigenvector v, with eigenvalue r4 > 0,75 equals
the spectral radius of L, which we denote by r(Lg), and s — 14,5 > s, is a
strictly decreasing, continuous positive function. Related results can be found
in §5 and §6 of [36]. Under natural conditions on the graph directed iterated
function system (so, in particular, the functions € in the iterated function
system must be “infinitesimal similitudes”), the Hausdorff dimension sy of
the invariant set satisfies so = inf{s > s,|r(Ls) < 1} and usually r(Ls,) = 1.
The problem thus becomes one of efficient and rigorous estimation of the
value of sg such that r(Ls,) = 1; but despite this explicit formula, high
order, rigorous approximation of sq is, in general, a nontrivial problem.

Typically, one can consider the linear maps L, as bounded linear maps
from a real Banach space X to itself; but many choices of X are possible, and
in general, o(Ls) (by which we mean the spectrum of the complexification
of Ly) depends sensitively on the choice of X, although our later theorems
will usually imply that (L) is independent of X. In certain special cases X
can be taken as a real Banach space of analytic functions (see our remarks
below) and then the map Ls : X — X is almost always compact and possibly
(see [18]) of trace class. In general, however, one cannot hope to find a real
Banach space X of analytic functions such that Ly maps X to X; and this
motivates the theme of this paper, which is to study linear Perron-Frobenius
operator or “transfer operators” in real Banach spaces of C™ functions.

Before proceeding further, it may be useful to give the reader some
motivating examples. Let J C R be a closed, bounded interval, # a finite
index set and, for b € A, let 6, : J — J be a C™ map. Assume that there
exists a constant ¢ < 1 such that, for all b € £,

sup |6, (z)] < c.
zeJ

Suppose, also, that 0;(z) # 0Vz € J and Vb € ZA. Define, for s > 0, a
bounded linear map Ly, s : Yy, := C™(J) = Y,

(Lin,sf)(x Z|9b P f(O())-

beA

Then there exists a unique, compact, nonempty set K such that K = |J 60,(K);
beB
and Theorem 5.5 below implies that there exists a unique (to within scalar

multiples) strictly positive eigenvector vs € ¥;,\{0} of L,, s with eigenvalue
7(Ly,,s) > 0. If, for example, 6, (K) N0y (K) =0 for all b,b’ € B with b # ¥/,
then sy, the Hausdorf dimension of K, equals the unique value of s for which
7(Lpm,s) = 1.
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If there exists an open neighborhood U C C of K such that each map

0y : K — K extends to an analytic map 6 : U — C, then one can find a real
Banach space Z of analytic functions and a bounded linear map A : Z — Z
such that 7(A;) = r(Lp,s). However, in general, this is not possible, and one
is forced to work with L, : Y,,, — Y,,..

Our next motivating example concerns an invariant set for a finite col-
lection of analytic maps. Let G C C be a bounded, open connected set; we
identify C with R? and (x + iy) with (z,y). Let £ be a finite index set and
for b € B let ¢ : G — G be an analytic map such that ¢,(G) C G and
(L)p(2) # 0 for all z € G and for all b € Z. Let H be a bounded, open
connected set such that ¢,(G) C H and H C G for all b € %. For each
integer m > 0, let Y;, := C™(H) denote the real Banach space of continuous
real-valued functions f : H — R which have continuous partial derivatives
of all orders less than or equal to m and all of whose partial derivatives of
order less than or equal to m extend continuously to H. For s > 0, define a
Perron-Frobenius operator L, s : Y, — Yy, by

( msf Z' |f((pb( ))

be#B

It is a consequence of Theorem 5.5 of this paper and the Caratheodory-
Reiffen-Finsler metric (see §6 of [38]) that for m > 1, L, s has a unique (to
within scalar multiples), strictly positive eigenvector v, with an algebraically
simple eigenvalue (L, s) > 0. Furthermore, if 0(L,, s) denotes the spectrum
a(ﬁm)s) of the complexification ﬁms of Ly, s, then there exits a number
Pm.s < r(Lm s) such that |z| < p,, s for all z € O’(f/mys) = 0(Lpm,s) with
2 # 1 (Lm,s)-

Several points should be made about the above result. The spectral
radius (L, s) is independent of m for m > 0, but a(f/m,s) varies with
m. The eigenvector vg is C°°, but despite the analyticity of the functions
wy : G — G, it is not in general possible to study the operator L,, s in a real
Banach space of analytic functions. There is a unique compact, nonempty
set K C H such that K = |J 60,(K); and under further assumptions, the

beB
Hausdorff dimension of K equals sy, where sg is the unique value of s for
which r(Ly, s) = 1.

If Iy := {m+nilm € Nyn € Z,i = /—1}, and if % is a subset of I, for
b € B define 0,(z) = (z%rb) In this generality one can easily find a bounded,
open connected set G and a compact set D C G such that 6,(G) C D for all
b € B.If A is a subset of N, the positive integers, Jenkinson and Pollicott [18]
have shown that Lg can be considered as a bounded linear map Lg : X — X,
where X is a real Banach space of analytic functions. Exploiting this fact
and trace class arguments they obtain, at least if || is not large, very high
order approximations to the unique value sy for which r(Ls,) = 1. However,



4 Roger D. Nussbaum

such an approach is not applicable if £ is not a subset of N; and if Z C N
but | 4] is large, the Jenkinson-Pollicott approach may not be optimal.

In ongoing joint work [13] with Professor Richard Falk we have taken
a different viewpoint. We consider a general class of parametrized Perron-
Frobenius linear operators L, : Y — Y, where Y is a Banach space of C™
real valued functions f : H — R and H is a bounded, open subset of R™.
Starting from the fact, which will be proved here, that L, has a strictly
positive C™ eigenvector vs, we prove in [13] that one can obtain explicit
bounds on certain partial derivatives of v5 and that this information can be
used to improve greatly the accuracy of estimates for r(Ls) and for sg, where
S0 is the unique value of s such that r(Ls) = 1.

We mention an example which is given in [29] and which illustrates the
power of the approach outlined above. Let 8 = {m + m"m eNnezi=
Vv—1} and for b =m +ni € #, let py(z) = 5 HG={z€C|lz—3| <3}
it is easy to show that ¢,(G) C G.

There is a naturally defined “invariant set” J C G such that J =
U @s(J). Associated to the iterated function system {(;|b € 2} there is,
beJ

for s > 1, a bounded linear operator Ly : Y := C(G) — Y, but we take
X = C?(G) and view Ly as a bonded linear map A, : X := C?(G) — X
and note that L, has a strictly positive eigenvector in X. The operator L; is
defined in this case by

(L) = P Sn(a)).
be A

If dimgy(J) denotes the Hausdorff dimension of J, it is proved in [13] that
1.854 < dimp (J) < 1.857. Mauldin and Urbanski proved in [29] that 1.2484
< dimg(J) and claimed (no details were given) that dimg(J) < 1.9. In his
2011 Rutgers University Ph.D. dissertation, Amit Priyadarshi proved that
1.787 < dimg (J).

We shall actually consider a class of “Perron-Frobenius operators” or
“transfer operators”, A, more general than those which arise in the formulas
for Hausdorff dimension. See equation (3.3) in §3 below. No simplication in
the proofs is achieved by considering the less general case; and the general
case has independent interest.

Indeed, there is a very large literature concerning “transfer operators”;
see, for example, Baladi’s book [45] and the references there. We believe that
the results in this paper may prove useful in contexts other than computa-
tion of Hausdorff dimension. We should also mention that the problem of
analyzing {s|r(Ls) = 1}, where {L;|s > 0} is a parametrized family of linear
operators, arises naturally in studying bifurcation of solutions of Fy(x) = x,
where {Fs : s > 0} is a parametrized family of nonlinear cone mappings. See
[46].

The basic goal in this paper is (a) to prove the existence of a nonnegative
C™ eigenvector vs of Ag with eigenvalue rg equal to the spectral radius of
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As, (b) to establish, under further assumptions, the existence of a strictly
positive C™ eigenvector vs and (c¢) to establish some basic facts about o (As),
the spectrum of the complexification of A,. Unlike most of the literature, e.g.
[18], we use generalizations of the Krein-Rutman theorem [22] rather than
thermodynamic formalism to study the problem.

A brief outline of this paper may be in order.

Section 1 reviews notation from [38] and proves some elementary results.

Section 2 has been included in an effort to make the paper self-contained.
The reader who is familiar with basic facts about measures of noncompact-
ness, the essential spectrum and the radius of the essential spectrum can
skip most of Section 2. Note, however, Theorem 2.1, which generalizes the
Krein-Rutman theorem and appears not to be well known.

In Section 3 the class of operators A of interest is introduced, and it
is proved in Theorem 3.6 that A has a nonnegative C™ eigenvector with
eigenvalue r equal to the spectral radius of A. Here A : X — X, where X
is a real Banach space of C™ functions as in equation (1.17). The key tool
is Lemma 3.5, which proves that p(A), the essential spectral radius of A,
satisfies p(A) < r. This implies that o(A) N {z € C||z| > p(A)} comprises
only eigenvalues and that these eigenvalues are isolated points in o(A) and
have finite algebraic multiplicity. (Here (L) denotes the spectrum of A, the
complexification of A).

In Section 4 it is proved (see Theorem 4.7) that if the assumptions in
Section 3 are strengthened, A has a strictly positive C™ eigenvector v with
eigenvalue 7.

In Section 5, under a further strengthening of hypotheses in Section 3,
it is proved in Theorem 5.5 that r is an algebraically simple eigenvalue of A
with a strictly positive C™ eigenvector v and that there exists r, < r such
that o(A)\{r} C {¢ € C|[¢| < r.}. Furthermore, for every u € X, there

exists s, € R such that klim (1A)*(u) = syv in the C™ norm topology on
—00

the Banach space X; and necessarily s, > 0 for a large subset of X.

Theorem 3.6 in Section 3, Theorem 4.7 in Section 4 and Theorem 5.5 in
Section 5 are the main results of this paper; and, as we have noted, they play
a crucial role in a sequel paper [13] which treats the rigorous approximation
of the Hausdorff dimension of certain fractal sets.

With regard to eventual applications, we have included the case of graph
directed iterated function systems. However, it must be admitted that the
graph directed case leads to a considerable increase in notational complexity,
although the underlying conceptual framework of the proof is the same as
in the ordinary iterated function system case. For this reason, we have also
included, immediately after the statements of the major theorems, corollaries
which state these same theorems in the iterated function system case. Readers
wishing to appreciate the flavor of our results may wish to start with these
corollaries.
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1. Notation, Definitions and Some Elementary Results

For the reader’s convenience, we begin by recalling some definitions and no-
tations from [38]. Throughout this paper V := {i e N: 1 < i < p} and &
will denote finite sets. In the original construction of Mauldin and Williams
[29] of a “graph-directed interated function system”, V' is the set of vertices
and & the set of edges of a directed multigraph. We shall consistently denote
by I" a given subset of V' x & and by a : I' — V a given map. For i € V, we
shall consistently denote sets I'; and &; by

L;:={(j,e) € T|a(j,e) =i} and (1.1)

& = {e € &|(i,e) €T} (1.2)

We shall usually assume
(H1.1) For all ¢ € V,T; is nonempty and &; is nonempty.
As in [38], for a positive integer 1 > 1 and ¢ € V, we define

i = {l(i1,e1), (i2,€2), ..., (tu,en)] = (ij,e5) €T for 1 < j<p
and Oé(ij+1, 6j+1) = ij (13)
for1<j<p-—1}

and

FEH) - {[(ila 61)’ (iQa 62)7 LR (i#’ 6#)] € F(“) : a(il’el) - Z} (14)

Later, we shall need close “relatives” of the sets I'™) and I‘E” ) I W is a
positive integer and k € V, we define sets T(#) and f‘;c”) by

i = {[(lﬁ,el),(k27€2)7~~7(kme#)] p o (kje) el 1<j<p
and k‘j+1 = Oé(k?j,@j) (15)
for1<j<pu-—1}

and

TP = {[(kv,e1), (hovea), o, (huye)] € TW ik = k). (L6)

If one is only interested in “iterated function systems” as opposed to
“graph-directed iterated function systems”, most of the above notational
complexity vanishes. In the iterated function system case, V = {1},T =
{1} x & and a(l,e) = 1 for all e € &. In essence, V no longer plays
any role, and one can identify T' with &. With this identification, I'*) =
{ler,ea,... e, 1 ej € & for 1 < j < p} and TW =W = T = £ 1
our later work the reader should keep this simpler case in mind: the essential
difficulties remain, but some of the notational complexities vanish.

Our work here will sometimes involve choosing a norm on R", although
the final theorems will be independent of the particular norm chosen. Recall
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that any two norms || -|| and |- | on R™ are equivalent, in the sense that there
are positive constants a and b such that

allz|| < |z| < bllz|| Va e R™

Nevertheless, it will sometimes be convenient to use norms || - || and | - |1,
where
oo = max{jai] : 1 < i <} = (@1, 22, y70) (L)
and
n
Izl = |zl z = (21,22, ..., ). (1.8)
i=1

If A= (ai;) is an n x n matrix with real entries, A defines a bounded linear
map of R” to R"™ by x — Az, where x € R™ is an n x 1 column vector. It is
known that

= : < = .. .
Al = max{[ Az ol < 1} = max D" layl  (L9)
i
and
[Alloo := max{[[ Azl : [|2]loc <1} = max Z |ai;] (1.10)

For ¢ € V,G; will always denote a bounded open subset of R" for 1 <
i <p:=1V]. As usual C(G;i) :=Y; will denote the real Banach space of
continuous maps f; : G; — R, with || fi|| := max{|fl( )| : z € G;}. We shall

always denote by Y the real Banach space H Y;, so
j=1

Y :={(f1,fa,.. -, fp) : f; € C(Gj) =Y, for 1 < j <p}. (1.11)
We shall define ||(f1, fa,..., fp)lly by

11, fas oo Sp)lly == max{| 5l : 1 < j < p}. (1.12)
We define K C Y by

K :={(f1, fo,-. -, fp) €Y|fj(z) > 0Vz € G;,1 < j < p}. (1.13)

Note that K is a “closed cone in Y, i.e., K is closed and convex in Y, A\K C K
forall A > 0 and K N (—K) = {0}, where —K :={—f: f € K}.

If Z is a real Banach and A : Z — Z is a bounded linear operator, recall
that standard functional analysis [9] tells us that 7(A), the spectral radius of
A, is given by
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r(A) = lim A" = inf (JA"]]7). (1.14)

If we define Z = {(u,v) : u,v € Z} and identify (u,v) with u+iv,i = /=1, 2
becomes a complex vector space. If we define

|(w, v)|| := max{|jucosd +vsinf| : 0 <0 < 27}. (1.15)

Z becomes a complex Banach space with norm given by (1.15). The complex
Banach space Z is called the “complexification of Z”. The map A extends to
a complex linear map A : Z — Z if we define A(u + iv) = Au+ iAv; and one
can check that [|A]| = ||A|| and ||(A)"]| = [|(A™)|| = |A™||, so r(A) = r(A). It
now follows from standard functional analysis that

r(A) = r(A) = max{|\||X € o(4)},

where (A ) ={\e (C‘)\I A is not one-one and onto Z} is the “spectrum

of A” and I is the identity operator on Z.
We shall need the following elementary lemma

Lemma 1.1. LetY and K be given by equations (1.11) and (1.13) respectively
and define u = (uq,uz,...,u,) € K by uj(x) =1 for allz € G;,1 < j < p.
Suppose that A : Y — Y is a bounded linear map such that A(K) C K. Then
r(A), the spectral radius of A satisfies r(A) = kli}n()loHAk(u)H%.

Proof. We know that r(A) = klim |A¥||%. Thus it suffices to prove that
— 00
| A%|| = || A*(u)]|. Since ||u|| = 1, we certainly have that

AR )]l < 1A% [lull = A

On the other hand, if f = (fi,f2,...,fp) € Y and ||f|| < 1,—u;(z) <
fi(x) <wuj(x) forallz € Gj,1 <j<p,sou—fe K and u+ f € K. Since
AMK) Cc K, Ab(u— f) = APu— A*f € K and AF(u+ f) = APu+ A*f € K.
If gh €Y, we write g < hif h—ge K. If —h < g and g < h, one can see
that h € K and ||g]| < ||h]. In our case, writing g = A*(f) and h = A¥(u)
we see that —h < g and g < h, so ||[A*(u)|| > ||A*(f)|. Tt follows that
A ()l = sup{JA*(H)]| = IFIF < 1} = [|AP]], so [[A*]] = [|A*(u)]]. O

For a fixed positive integer m, suppose that ¢ : G; — R is m times
continuously differentiable. More precisely, if 8 = (81, 82,...,0,) is any n-
n

tuple of nonnegative integers (a “multi-index”) with Y §; :=||5||1, we write
i=1
(D*)(x) = (D" D3? ... D) (a),

where D; := ax . We assume that 2 — (DPv)(x) is defined, continuous and
bounded on G; for all multi-indices § with ||8|l; < m. We shall say that
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Y € C™(G,) if and only if # — DPy(z) is defined, continuous and bounded
on G; and x — DPy(x) extends to a continuous function on G; for every

multi-index § with ||5]l1 < m. We shall always write X; = C™(G,). If
Y € X, we define ||¢]|x, by

IVl x, == sup{|DP(z)| : € G}, 8|y < m, B a multi-index}. (1.16)
It is known (and not hard to prove) that C™(G;) := X, is a real Banach
space.
p
For p = |V, we shall always denote by X the real Banach space [ X},
j=1
S0

For f = (f1, f2,..., fp) € X, we define

1fllx = max{[|f;llx; : 1 <j <p}. (1.18)

If A: Y — Y is a bounded linear operator, where Y is given by eq.(1.11),
it may happen that A(f) € X for all f € X, where X is given by eq.(1.17).
In this case one can define B : X — X by B(f) = A(f) for f € X, and
the closed graph theorem implies that B : X — X is a bounded linear map
of the Banach space X to X. In this situation, it is natural to ask whether
r(B) > r(A), where r(B) (respectively, r(A)) denotes the spectral radius of
B (respectively, A).

Lemma 1.2. Let assumptions and notation be as in Lemma 1.1, so A:Y =Y
is a bounded linear map and A(K) C K. Assume in addition that A(f) € X
for all f € X. Then A defines a bounded linear operator B : X — X by
B(f) = A(f) for f € X and r(B) > r(A).

Proof. As noted above, the closed graph theorem implies that B : X — X is
a bounded linear operator. Lemma 1.1 implies that

r(4) = lim [[A* ()],

where u is defined as in Lemma 1.1. Notice that |lully = |Julx = 1, while
Iflx > |l flly for all f € X. Thus we obtain

IB*]| = | B*(u) [ x > | B*(w)lly = |A"(w)lly-

It follows that
r(B) = lim |B*||* > lim ||Ak(u)\|é = r(A),
k— o0 k— oo

which completes the proof. ([l
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It will be convenient to assume that the boundaries of the bounded open
sets G; C R",1 < j < p, satisfy a mild regularity condition.

Definition 1.3. Let H be a bounded open subset of R™. We shall say that H is
“mildly regular” if there exist numbers n > 0 and M > 0 such that whenever
x,y € H and ||z — y||1 < n, there exists a Lipschitz map v : [0,1] — H with
¥(0) = z and (1) = y such that

1
/0 10/ (Olldt < Mz — 1. (1.19)

Note that elementary real variables implies that each component of ¥ in
eq.(1.19) is absolutely continuous, so 9’ (t) exists Lebesgue almost everywhere
in eq.(1.19) and

1
/0 (1)t = (1) — p(0) =y — .

Furthermore, if ¢ can always be chosen in Definition 1.3 such that |¢(t1) —
2)’1 < M|ty — to| for all t1,t9 € [0,1], then eq. (1.19) will automatically
be satisfied.

If H is a manifold with boundary and the coordinate charts are bi-
Lipschitz, one can prove that H is mildly regular. We omit the simple proof,
since usually for our examples of bounded open sets mild regularity will be
obvious. Note, however, that mild regularity excludes simple examples like
H={(z,y)|-1<z<l,-1<y< V/]z[}. With greater care we could allow
such examples but at the cost of technical complications which we prefer to
avoid.

We shall almost always assume

(H1.2) For all i € V,|V| = p, G, is a mildly regular, bounded open subset of
R™.

Lemma 1.4. Assume that H is a bounded, mildly reqular open subset of R™
and m is a positive integer. If S is a bounded subset of the Banach space
C™(H) and 8 is a multi-index with |81 < m, then {D°hlh € S} is a
bounded, equicontinuous family of functions in C(H), so {DPh|h € S} has
compact closure in C(H).

Proof. Let n and M be as in Definition 1.3; and if z,y € H and ||z —y|1 < n,
let ¢ : [0,1] — H as in Definition 1.3. If h € S and S is a multi-index with
I8l < m, we have

|DPh(y) — DPh()| |f1 4 (DR ((t))dt]
=1y 35 (s (D M) @) 0yl

where ¥(t) = (1(t),%2(t),...,¥n(t)) and for 1 < j < n,i(t) exists on
[0,1]\E, where E has Lebesgue measure 0. Since S is bounded in C™(H)
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and ||8]|l1 < m, there exists a constant C' such that for all v € H and for
1<53<n,

|<8‘szﬁh><u>| <c

so we obtain

DPh(y) ~ (DPR)(@)| <y 3 jlar
= C [} W/ ()lladt < MOl — y]).

Because u — (DPh)(u) has a continuous extension to H, the same estimate
holds for all z,y € H. This proves that {D°h|h € S} is a bounded, equicon-
tinuous set in C'(H), which completes the proof. O

2. Measures of Noncompactness, the Essential Spectrum and
Positive Linear Operators

Our purpose here is to review for the reader’s convenience concepts and basic
theorems which will play an essential role in the later sections of this paper.

If (Z,d) is a metric space with metric d and S is a bounded subset, K.
Kuratowski [23] has defined a(S), the Kuratowski measure of noncompact-
ness (or MNC) of S, by

a(S)=inf{é >0 | S = | S; for some S;
i=1

= (2.1)
with diam(S;) < 4 for 1 <i <n < oo}.
As usual, the diameter of a bounded set T' C Z is defined by
diam(T) = sup{d(z,y)|z,y € T'}. (2.2)

and, by definition, T' C (Z, d) is bounded if diam(T") < oo.
Kuratowski observed that:

(A1) if (Z,d) is a complete metric space and S C Z is bounded, a(S) = 0 if
and only if S is compact.

Property (A1) explains the terminology “measure of noncompactness”.

It is easy to verify the following properties, which are valid for general
metric spaces (Z,d):
(A2) a(S) < «(T) for all bounded sets S CT C Z
(A3) a(SU{zo}) = a(S) for all bounded sets S C Z and for all 2y € Z
(A4) a(S) = a(S) for all bounded sets S C Z.
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If (Z,||-|)) is @ normed linear space (over R or C) and S and T are bounded
subsets of Z, we shall denote by co(S) the convex hull of S, i.e., the smallest
convex set containing S, and we shall write

S+T={s+t|s€ S teT}and AS = {As|s € 5},

where A is an arbitrary scalar. If the metric d on the normed linear space Z
is given by d(z,y) = ||z — y||, G. Darbo [10] observed that the Kuratowski
MNC satisfies the following extremely useful properties:

(A45) a(co(S)) = a(S) for all bounded sets in Z
(A6) a(S+T) < a(S)+ aT) for all bounded sets S,T C Z
(A7) a(AS) = |Aa(S) for all bounded sets S C Z and all scalars .

Properties (A1) — (A7) (but particularly (A5) — (A7)) make the Kura-
towski MNC a useful tool in functional analysis and in fixed point theory,
and fixed point theory was Darbo’s original application in [10]. Note, for ex-
ample, that an application of (A1), (A4) and (A5) yields a classical theorem
of Mazur (see [32] or [9], pg.180): if S is a compact subset of a Banach space
Z, then the closure of co(S), is compact.

Although we shall not exploit it, the Kuratowski MNC also satisfies the
so-called “set-additivity property”, namely

(A8) a(SUT)=max(«(S),a(T)) for all bounded sets S, T C Z.

Property (A8) is true in general metric spaces (Z, d) and gives (A2) and (A3)
as special cases.

If (Z, ]|-]]) is a Banach space (real or complex), let Z(Z) denote the set of
all bounded subsets of Z. A map §: #(Z) — [0,00) is called a homogeneous
measure of noncompactness or homogeneous MNC in [27,28] if 3 satisfies
properties (A1) — (A7), with S replacing « in those formulas. If 5 and v are
homogeneous MNC’s on a Banach space Z, we call 8 and y equivalent if there
exist positive constants a and b such that

aB(S) < v(S) < bB(S) for all bounded S C Z. (2.4)

It is proved in [27,28] that there exist inequivalent homogeneous MNC’s on
many Banach spaces Z. We refer the reader to [1,2,3,4,26] for further infor-
mation about general measures of noncompactness.

If Z is a Banach space (over R or C) and B : Z — Z is a bounded
linear map, we define N(B) = {z € Z|B(z) = 0}, the null space of B,
and R(B) = {B(x)|r € Z}, the range of B. We also consider Z/R(B),
the vector space of equivalence classes [z], where x ~ y iff x —y € R(B).
The operator B is called “Fredholm” if dim(N(B)) < oo,dim(Z/R(B)) :=
codim(R(B)) < oo and R(B) is closed; and by definition i(B) = dim(N(B))—
codim(R(B)) is the index of the Fredholm operator B. If R(B) is closed and
either (a) dim(N(B)) < oo or (b) codim(R(B)) < oo, B is called “semi-
Fredholm”. These concepts are actually defined for closed, densely defined
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linear operators T' : D(T) C Z — Z. We refer to Kato’s book [19] for
a detailed discussion of Fredholm and semi-Fredholm operators and their
properties.

If Z is an infinite dimensional, complex Banach space and A : Z — Z
is a bounded linear operator there are several inequivalent definitions of the
so-called “essential spectrum of A”. (These definitions also apply when A :
D(A) C Z — Z is closed and densely defined, but we shall only consider
the case that A is a bounded operator.) F.E. Browder [19] defines ess(A) to
be the set of complex A such that (a) A is an accumulation point of o(A) or
(b) R(A\ — A) is not closed or (¢) |J N((AM — A)7) is not finite dimensional.

i>1
Recall that A € C is called an eigenvalue of A if N(A—A) # {0} and X is said
to be of finite algebraic multiplicity m if m = dim( |J N((A — A)?)) < oo,
j=1
so case (c¢) above amounts to saying that A is an eigenvalue of A which does
not have finite algebraic multiplicity. One can also define

ess(A) = {A € C|AI — A is not Fredholm of index 0}.

F. Wolf [44] defines ess(A) = {\ € C|AI — A is not Fredholm} and T. Kato
defines ess(A) = {\ € (C‘)\I — A is not semi-Fredholm}.

By using classical results of Gohberg and Krein [14] and theorems in [19]
concerning semi-Fredholm operators, one can prove that, if Z is an infinite
dimensional, complex Banach space, ess(A) is a nonempty subset of c(A), the
spectrum of A. Furthermore, even though the various definitions of ess(A)
are inequivalent,

p(A) :=sup{|A| : A € ess(4)}. (2.5)

gives the same number for any of the previous definitions of ess(A). The
number p(A) is called the “radius of the essential spectrum of A”. Note that
ess(A) is empty if dim(Z) < oo, and in this case we define p(A) = 0.

If X € 0(A) and |A] > p(A), it is known that AI — A is Fredholm of
index 0, A is an isolated point of 0(A4) and ) is an eigenvalue of A of finite al-
gebraic multiplicity. Thus, if p(A) < r(A) one obtains nontrivial information
concerning o(A) N {A € C|p(A) < |A| < r(A)}.

If Z is a infinite dimensional complex Banach space, A : Z — Z is a
bounded linear map and « denotes the Kuratowski MNC, it follows from
results in [33] that

p(A) = lilgisip(a(Ak(Bl)))%, (26)

where, B := {z € Z|||z|| < 1}. If 8 is a homogeneous MNC equivalent to o,
one easily obtains from (2.6) that

p(A) = limsup(B(A*(By)))*. (2.7)

k—o0
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It is proved in [28] that eq.(2.7) is valid for any homogeneous MNC f on
X, even if 8 is not equivalent to «. However, it is also proved in [28] that
various other formulas in [33] do not generalize in a straightforward manner
to homogeneous MNC’s g which are not equivalent to «. Note that equations
(2.6) and (2.7) give p(A) = 0 when Z is finite dimensional.

In our applications, Z will be a real Banach space and A : Z — Z a
bounded linear map. Recall that Z := {(u, v)|u,v € Z} is the complexifica-
tion of Z, that we identify (u,v) with u + iv,i = v/—1 and that A(u + iv) :=
Au + iAv defines a bounded, complex linear map of Z — Z. If u + iv € Z,

we define R(u +iv) = u and if § € Z we define R(S) = {R(2)|2 € S}; and if
|| - || denotes the norm on Z and | - | denotes the norm on Z
2] := sup |R(e %) (2.8)
0<6<2r

If 8 is a homogeneous MNC on Z, it is observed in [28] that one can
cleﬁne a homogeneous MNC /3 on Z by defining, for S a bounded subset of
Z

B(S) = S B(R(e™"S)). (2.9)

If o is the Kuratowski MNC on Z, it is proved in Proposition 11 of [28] that
& given by eq.(2.9) gives the Kuratowski MNC on Z. By using eq.(2.9) it is
not hard to show that

B(A™(By)) = B(A™(By)), (2.10)

where B) := {2 € Z|||3|| <1} and B; := {z € Z||z| < 1}. It follows that

p(A) = limsup(B(A™(By))) = = limsup(a(A™(B;)))=. (2.11)

m—r o0 m—r oo

We shall write p(A) := p(A) and call p(A) the essential spectral radius of A,

We also need to recall an old generalization [35] of the classical Krein-
Rutman theorem [22]. We refer the reader to [6], [26], [35], [36], [37], [40], [41]
and [43] for some of the many related results. If Z is a real Banach space,
C C Z is called a closed cone (with vertex at 0) if C' is a closed convex set,
{tz|z € C} C Cforall t > 0 and CN(—C) = {0}, where —C := {—z|z € C}.
A closed cone C induces a partial order < on Z by x <y iff y —z € C.

The cone C'is called “normal” if there exists a constant M such that
llz|| < M|ly|| whenever z,y € C and = < y. The cone C is “reproducing”
if Z ={x—ylz,y € C} and C is “total” if Z = closure{z — y|z,y € C}.
If Z is infinite dimensional, it may easily happen that C' is total but not
reproducing. If Z* is the dual Banach space of Z and C is a closed, total
cone in Z, then C* := {f € C*|0(u) > 0Vu € C} is a closed cone in Z*.

If C is a total, closed cone in a real Banach sapce Z and A : Z — Z
is bounded, compact linear map such that A(C) C C and r(A) > 0, where
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r(A) denotes the spectral radius of A, the classical Krein-Rutman theorem
(see [22]) implies that there exists u € C\{0} with

A(u) = r(A)u.

Furthermore, if C* = {0 € Z*|6(u) > 0Vu € C} and A* : Z* — Z* denotes
the Banach space adjoint of A, A*(C*) C C* and there exists § € C*\{0}
with

A*(0) = r(A)o.

Notice that because A is assumed compact with r(A) > 0,p(4) =0 < r(4),
where p(A) denotes the essential spectral radius of A.

The following theorem is proved in Corollary 2.2 of [35] and is a direct
generalization of the Krein-Rutman theorem.

Theorem 2.1. (See Corollary 2.2. in [35]). Let Z be a real Banach space and
let A:Z — Z be a bounded linear map such that p(A) < r(A), where p(A)
denotes the essential spectral radius of A (see eq.(2.11)) and r(A) denotes
the spectral radius of A. Assume that C is a closed, total cone in Z and
A(C) C C. Then there exist v € C\{0} and 8 € C*\{0} such that

A(v) = r(A)v and A*(0) = r(A)6. (2.12)

3. The Existence of C"" Nonnegative Eigenvectors

In this section we shall use the notation of Section 1, so G;,1 < j <p=|V|
will denote bounded open subsets of R™,m is a fixed positive integer and Y
and X are real Banach spaces as in equations (1.11) and (1.17) and K C Y
is a closed cone as in eq.(1.13). We shall define a bounded linear operator
A: X — X such that A(KNX) C KNX;Ais of a type sometimes called a
“Perron-Frobenius operator”. The key difficulty will be to prove that p(A) <
r(A).

For the reader’s convenience we list here hypotheses and notation which
we shall use in this section.

We continue to use the notation of Section 1.

We assume that H1.1 and H1.2 are satisfied. We shall also need the
following additional assumptions.

(H3.1)  For each (j,e) € I',bg ) € C™(G;) := X; where m > 1. For all
x € Gj,b(j7e) (z) > 0 and for all x € Gy,

Z bij.e)(x) > 0,
EEéaj

where &} is as in eq.(1.2).
If H is a bounded open subset of R™ and 6 : H — R",
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0(x) = (01(x),02(x),...,0u(x)),

we shall say that § € C™(H) if §; € C™(H) for 1 < j < n.

(H3.2) For cach (j,e) € T',0(.) : G; — R™ and 6(; .y € C"™(G;), where
m > 1. Furthermore, 6, .)(Gj) C Gu(j,e), where o : I' = V' is as in Section
1.

Assuming (H1.1), (H1.2), (H3.1) and (H3.2) we define a bounded linear

map L :Y = Y (Y as in eq.(1.11)) by L(fs, fa,.--, fn)) = (91,92, -, 9n),
where

gj(m) = ( Z b (4, e) fa(j e) ( j,e) (‘T)) (3'1)

(4,e)el’

Iff=(f1,f2--,fn) € X (X asineq.(1.17)), then L(f) € X. Since L : Y —
Y is a bounded linear operator, as previously noted, L defines a bounded
linear map A : X — X by A(f) = L(f) for f € X.

We shall need to consider the p-th iterates L#* and A* of L and A.
Following notation in Section 3 of [38], let ') and f‘g-”) be given by equations
(1.5) and (1.6). Given [(j1,e1), (j2,€2),-- -, (s eu)] € T, we shall write
J = (J1,J2, -, Ju), B = (e1,e2,...,e,); and we shall use (J, E) to denote
[(J1,e1), (J2,€2), - -+, (Ju, en)]. We have already defined b(j gy () := b(j, ;) (x)
and 0 gy (x) = 0(j, ,)(x) for p = 1,2 € G;,. Arguing inductively, if for some
p > 1 we have defined b(y gy and 0y gy for J' = (41,43, -,7,-1), E' =
(€1,€5,...,€,_1) and (J', E') € [®=1 then for j, = a(jy,—1,€,-1) and e,
such that (ju,e,) € T',J = (J',j,) and E := (E', e,), define for = € G,

bise) (%) = by 5 (2)b(j, e, (017 By (7)) (3.2)
and

001,8)(®) = 03, ) (01,5 (). (3.3)

This defines b(; ) and 0 ) inductively for all (J, E) € T®).
It is proved in Section 3 of [38] that for f € Y and z € G},

(L* =D b5 (@) faGuen 0w (@), (3.4)

where the summation in eq.(3.6) is taken over all J = (j1,J2,...,ju), E =
(e1,e2,...,e,) with (J, E) € f;“) and j = j1. Obviously, if f € X, eq.(3.4)
holds if we substitute A for L.

It remains to make a crucial assumption on the maps 6 g for (J, E) €
I'*. Assume that R™ is given the norm || - ||;. If j; denotes the first co-

ordinate of J and z € Gj,, let Df; gy(x) denote the Jacobian matrix of
0(s.5), s0 D8 g)(x) defines a linear map of (R™, || - [|1) to (R™, || - ||1). We let
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D0, )(x)|l1 denote the norm of this linear map, so using eq.(1.9) we see
that

10801,y ()lls = max Z | Peenla) (3.5)

where 0(; gy (z) = (0(1,£)1(%),01,5)2(%), - -, 0(1,5)n(2))-

We assume
(H3.3)  There exists a constant M; > 0 and a constant ¢,0 < ¢ < 1, such
that for all (J, E) € I'*, all p > 1 and all z in the domain of 0 ; ),

D6,y (@)L < Myc”, (3.6)

where || D05 gy (x)|1 is given by eq.(3.5).

Remark 3.1. We could have taken a different norm |- | on R™. Then the norm
of the linear map DO gy (x) : (R, |-]) = (R",|-]),| D0 g (x)| would not be
given by eq.(3.5). However, since all norms on finite dimensional vector spaces
are equivalent, one can prove that there is a constant Ms such that for all
p>1,all (J,E) € I* and all  in the domain of 0 gy, | D g (z)| < Mac*.

In other words, assumption (H3.3) is actually independent of the norm
on R", after modification of the constant Mj.

We begin with an elementary lemma.

Lemma 3.2. Let (Z;,| - ;),1 < j < p, be Banach spaces over the same
scalar field (R or C) and let Z = H Zi = {(fr.fo,- . fp) + f; € Z; for

1 <j<p} For f=(fi,fe-- [p) € Z define ||| = max{||f;]l; : 1 <j <
p} and note that Z is a Banach space. Define projections Q; : Z — Z; by
Qi ((fr, fa,-. - fp)) = fj for 1 < j < p. Let o denote the Kuratowski MNC
on (Z,||-|I) and let aj denote the Kuratowski MNC on (Z;,| - ;).

If S is a bounded subset of Z

a(S5) = max{a;(Q;(5)) : 1 < j < p}. (3.7)

Proof. The reader can verify that [|Q,|| = 1, so a;(Q;(S)) < a(S) for 1 <
j < p and the right hand side of eq.(3.7) is less than or equal to the left hand
side.
Conversely, let d = max a;(Q;(5)). If e >0 and 1 < j < p it follows
<j<p

from the definition of a; that @Q;(S) = U T; ;, where k; < oo and ||f; —

gill; < d+ ¢ whenever f;,9; € T;;,1 <4 § k;. Consider all p-tuples I =
(41,92, ... ,ip) with 1 < ij < kjfor 1 <j<p. For each such p-tuple I, define
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Si={f=fi.fo, - fo)|fi €Ty, 5 for 1 < j < p}.

If feSrandge Sp,||fj—gjllj <d+efor1<j<p,so|f—gll<d+e It
follows that the diameter of Sy in (Z, | -||) is less than or equal to d+¢. If .¥
denotes the finite collection of such p-tuples I, our construction shows that

s=J s,

Iey

So a(S) < d+e. Since € > 0 was aribitrary, a(S) < d and eq.(3.7) holds. O

We shall apply Lemma 3.2 to X in eq.(1.17) and X, := C™(G,),1 <
j < p. For the remainder of this section, o will denote the Kuratowski MNC
on X and «; will denote the Kuratowski MNC on X; = C™(G;). As in
Lemma 3.2, if f = (f1, fo,..., fp) € X and Q;(f) := f; € Xj, then Lemma

3.2 implies that for any bounded subset of X,

a(S) = max{a;(Q;(5)) : 1 < j < p}.

IfY and Yj := C(Gj),1 < j < p, are as in eq.(1.11), v will denote the Kura-
towski MNC on Y and v; the Kuratowski MNC on Y;. If f = (f1, fo,..., fp) €
Y, we shall abuse notation slightly and write Q;(f) = f;. If T is a bounded
subset of Y, Lemma 3.2 implies that

v(T) = max{r;(Q;(T)) : 1 < j < p}.

Lemma 3.3. Let G;,1 < j < p, be bounded,open subsets of R" and assume
that H1.2 holds. If S is a bounded set in X; := C™(G;), then

a;(8) = Wgﬁf\gmw({Dﬁf :fes)) = H;ﬂfgmvy‘({Dﬁf :fes))  (38)

where B in eq.(3.8) denotes a multi-index.

Proof. By Lemma 1.4 and Property (Al) of v; (see Section 2), if ||5]1 <
m,v;({D°f : f € S}) = 0. The remainder of the proof follows by the same
argument used in Lemma 3.1, but we provide the details for completeness. For
each multi-index 3 with ||3||; < m, define 75 : C™(G;) = X; — C(G;) =Y
by f — DPf. By definition of the norms on X; and Yj,||7s| < 1, and it
follows that

a;(S) = Hgﬂfgml/j(ﬂﬁ(s)) =d.

Select € > 0. By definition of v}, for each 8 with ||5]1 < m, there exists a
positive integer kg and sets T; g, 1 <1 < kg, with
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kg
m5(8) = J Tis
=1

and diameter (T;3) < d + ¢, where the diameter is taken in the metric
on Y. There are N multi-indices 8 wih ||5]l1 < m, N < oo; and we label
these multi-indices 8%, 82,...,87,..., B and write k; := kg,. Let .# denote
the finite collection of all N-tuples I = (i1,42,...,in), where 1 < i; < k;
for 1 < j < N.IfI € 7, define T; = {f € S|mg;(f) € T, pi}, where

I = (i1,42,...,in). One can check that
S=Jm
Ies

and that the diameter of 77 in the metric on X is less than d+-¢. Since € > 0
was arbitrary, this shows that «;(S) < d and completes the proof. O

Lemma 3.4. Assume Hypotheses (H1.1), (H1.2), (HS.1) and (H3.2).
Then we have that r(A) > r(L) > 0 and

I = max (sup (Y biymy())- (3.9)

1< < :
ISR e (J,E)er

Proof. Eq.(3.9) follows from Lemma (1.1), eq.(3.4) and the assumption in
(H3.1) that b(;e)(z) > 0 for all 2 € G;. The inequality r(A) > (L) follows
from Lemma 1.1.

To prove that r(A) > 0, it suffices to prove that r(L) > 0. (H3.1) implies
that there is a positive constant § > 0 such that, forall x € G;and 1 < j <p

> b (@) > 6.

eEs;

In the notation of Lemma 1.1, this implies that

L(u) > du,
which implies that for all 4 > 1
L (u) = 6*u,
so ||L¥|| > 6" and r(L) = M1Ln50||m||<%> > 6. O

Our next lemma provides a crucial tool for all our subsequent results.
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Lemma 3.5. Assume that hypotheses (H1.1),(H1.2) and (HS3.1)-(H3.3) are
satisfied and that L and A are given by eq.(3.1). If B is the unit ball in X, u
is a positive integer and My and ¢ are as in (H3.3), a denotes the Kuratowski
MNC on X and m is as in (H3.1),

a(A(B)) < 2(nM)™ ™| L*||. (3.10)

Proof. Fix u > 1. By Lemma 3.1 and eq.(3.4), there exists j,1 < j < p, such
that

a(A*(B)) = a;({ Z b(1,5) () fatinen) O.e) ()| f € BY),

pw)
(J,E)er;

where f = (fi, fas- .., fp):J = (j1,J2,...,ju) and E = (e1,ez,...,€,) and
J1=1J.
By Lemma 3.2, we obtain

a(A*(B)) = max v;({D( Z b(1,8)() falen) Oy ()| f € BY),

181 =m o
(J,E)eT;

where § is a multi-index. If v = (y1,72,...,7s) is & multi-index, we shall
write v < B if ; < B; for 1 < i < n, and a calculation gives for f € B that

DF (> by (@) faen) O (@)
(J,E)er(®

= Cﬂn( > (D’Yb(J,E))(x)(D,B_’yfa(ju,e“)OH(J,E))(J)))

V<BY#0 (J,E)er(*)

+ X bue) (@)D fag,.en ©00,m)(x)
(J.E)er(™

where cg ., = B!/(Y!(B —7)!).

For notational convenience, for a fixed multi-index 8 with ||8||1 = m,
we write

S = {Dﬁ( Z b(J,E)(')fa(ju,eu)(0(J7E)(')))|f € B},

(k)
(J,B)eT

T={ > s, Y. Dbup) D" faen ©0u.:)()|f € B},

Y<BA#0 (J,E)ery

and

S1={ Z b(LE)(')(DBfa(jme“) ° 9(J,E))(‘)|f € B}. (3.11)
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Lemma 1.4 implies that {D°(fa(j, c,) © 0.:)|II6] <m, (J,E) € ].:‘;L, f e B}
is bounded and equicontinuous, and it follows that T is a bounded, equicon-
tinuous family of functions in Y; = C(G;), so T has compact closure in
Y;. Property (A1) of the Kuratowski MNC implies that v;(T") = 0. Because
S C S1+ T, property (A6) implies that v;(S) < v;(S1 +T) < v;(S51); and
since S; C S, we must have that v;(S) = v;(S1).

For a fixed (J,F) € f‘é”% write u(z) = u = 05 ) (), so ux(z) =
01,6y (7). We need to evaluate Dﬁfa(jweu)(u) by repeated applications of
the chain rule. For notational convenience, write g = fu(j,.e,)- The first
application of the chain rule gives

n

S 09 0w _ O, (3.12)

= Ouy, Oxp,  Oxp,

where p1,1 < p; < n, is the smallest positive integer p such that 5, > 0.
In general, let p;,1 < p; < n, be the integers p for which 8, > 0. Assume
that py < ps < ... < py and p; is repeated with multiplicity 3;. Thus, we
shall write p; = pa = p3 if 3,, = 3. By using Lemma 1.4 one can see that in
repeated applications of the chain rule, starting with (3.12), the only terms
which will affect the value of v;(S1) are terms in which partial differentiation
has been applied to g(u) m times. Other terms will lead to sets with com-
pact closure in Yj, like the set 1" before. After m applications of the chain
rule (corresponding to |3| = m) and after only the terms in which partial
differentiation has been applied to g m times are retained, we obtain

n n n m
5 (LENE) = ¥ X Y Gt )W)
k=1 km_1=1  ki=1 me et ! (3.13)
dupy, () \ Ok, o (2) dug, (z)
(T ) ) (S )

This gives

vi(S) =vi({ Y, bum ()i (LE)(): f €BY). (3.14)

(J.B)ery)
Because f € B, we have, for the term (- &fmg 7o) (u) in eq.(3.13) the
m ‘m—1""" °1
estimate
Mg
<1. 3.15
|8ukm8ukm71 ... Ouyg, Jwl = (3.15)

By using (H3.3) and equations (3.5) and (3.6), we obtain the estimate

202 () < e (3.16)
Dpi
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for the terms %"(I) in eq.(3.13). Since there are n™™ terms in the summation
Pq

in eq.(3.13), we conclude that for all z € G;

[D(f; (J, E))(x)| < n™(Mic")™ = (nMy)™ ™. (3.17)
It follows that theset { >~ b p()®(f;(J,E))(-) : f € B} is contained
(J,E)er{™
in a ball of radius C;;(nMy)™c*™, where C; :=sup{z € G;| > big)(z)}.

(J,E)er ™
By Lemma 3.3, C; < ||L*||, so the diameter of the ball is less than or equal
to 2||L*||(nM;)™ ™ and

vi(S) = v(S1) < 2 LA (nddy) e, (3.18)
Using equations (3.18) and (3.11), we obtain eq.(3.10). O

With these preliminaries we can easily obtain a theorem which will play a
crucial role in our further work.

Theorem 3.6. Assume that hypotheses and notation are as Section 1. In ad-
dition assume that hypotheses (HS3.1) - (H3.3), which are stated at the be-
ginning of this section, are satisfied and that m is a positive integer as in
(H3.1). Let Y, K and X be as defined in equations (1.11), (1.18) and (1.17)
andlet L:Y =Y and A : X — X be the bounded linear operators defined by
eq.(3.1) at the beginning of this section. If p(A) denotes the essential spectral
radius of A,r(A) the spectral radius of A and r(L) the spectral radius of L,
we have for 0 < c <1 as in (H3.8) (see eq.(3.6)) that

p(A) < c™r(L) < r(L) =r(A). (3.19)
Furthermore, there exists v € (K N X)\{0} such that

A(v) = r(A)v.
If C is any closed, total cone in X such that A(C') C C, there exists w €
C\{0} such that A(w) = r(A)w.
Proof. Let B :={f € X|||f]l <1}. By eq.(2.11) in Section 2 we have
p(A) = limsup(a(A*(B))) .
H—>00
where a denotes the Kuratowski MNC on X. However, Lemma 3.5 implies

that

lim sup(a(A#(B)))¥ < limsup(2(ny)™c™|| L)+
J—>00 —>00

= c"r(L).
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Since Lemma 3.4 implies that (L) > 0 and (L) < r(A), p(A) < r(L) < r(A).
It is easy to check that C; := K N X is a closed, reproducing cone in X and
A(Cy) C C1, so Theorem 2.1 in Section 2 implies that there exists v € C1\{0}
with A(v) = r(A)v. Since v € K\{0} C Y, L(v) = r(A)v, which implies that
r(A) = r(L). The final statement of Theorem 3.6 follows immediately from
Theorem 2.1. (]

Remark 3.7. If A : X — X denotes the complexification of A and X the

complexification of X, the results described in Section 2 imply that p(A) =

p(A) and r(A) = r(A). In particular if A € o(A) and |A] > p(A),\ is an
isolated point in o(A) and A is an eigenvalue of finite algebraic multiplicity.
It follows that, writing r := 7(A),dim( J N((rI — A)P)) < oco.

p>1

Remark 3.8. Suppose in Theorem 3.6 we replace (H3.1) by a weakened ver-
sion: (H3.1)": for each (j,e) € I, b ) € C™(G;) := X; and by ¢y (x) > 0 for
all z € G’j.

The argument in Lemma 3.4 shows that if (HI1.1), (H1.2) and (H3.1)’
hold, then eq.(3.9) is satisfied and r(A) > r(L) > 0. If (H1.1), (H1.2), (H3.1)’,
(H3.2) and (H3.3) are satisfied, the proof of Lemma 3.5 still is valid and
proves eq.(3.10). If (H1.1), (H1.2), (H3.1)’, (H3.2) and (H3.3) are satisfied
and if, in addition r(L) > 0, the proof of Theorem 3.6 remains valid and the
conclusions of Theorem 3.6 still hold. If, however, (L) = 0, it must be true
that 7(A) = 0. For if 7(A) > 0, we would find that p(A) < r(A), which would
imply that A has an eigenvector in K N X with eigenvalue r(A) > 0. But
this would imply that L has an eigenvalue 7(A) > 0, which would contradict
r(L) =0.

Our next result is an immediate consequence of Theorem 3.6, but it
takes a simpler form because we are working in the iterated function case.

Corollary 3.9. Let G be a bounded, open, mildly reqular subset of R™. Let &
be a finite index set and m a positive integer.
In addition make the following assumptions:

(A1)  For each e € &,b. : G — R is a nonnegative function, be € C™(G)
and > be(z) >0 for allx € G.

e€es
(A2) For eache € & and for 1 < j <mn,0.: G — G and 0. ; € C™(G),
where Oc(z) = (0e,1(),0c2(x), ..., 0cn(x)).
(A8)  For each positive integer pp > 1, define &), := {w = (e1,€2,...,e,)|e; €
&1 < j < p}. Forw:= (e1,e2,...,e,) € &, define O, = 0c, - 0c, , ...0,.
Assume that there exists constants My and c, with ¢ < 1, such that or all
z €@, forallw € &, and for all p > 1,

| D6, (@)]] < Mic”.

LetY denote the Banach space C(G) and X the Banach space C™(G). Define
a bounded linear operator L : Y —Y by
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(Lf)(x) =D be(z)f(Be()) (3.20)

eeé

and define a bounded linear operator A : X — X by the same formula. If
p(A) denotes the essential spectral radius of A and r(A) (respectively, r(L))
denotes the spectral radius of A (respectively of L), then

p(A) <c™r(A) and 0 < r(A) =r(L) :=r. (3.21)

If K denotes the set of nonnegative functions in Y, there exists v € (K N
X)N\{0} with A(v) = rv; and if C is any closed, total cone in X with A(C) C
C, there exists w € C\{0} with A(w) = rw. If o(A) C C denotes the spec-
trum of the complezification A of A and if z € o(A) and |z| > p(A), then z
is an isolated point of o(A) and z is an eigenvalue of A of finite algebraic
multiplicity.

4. The Existence of C" Strictly Positive Eigenvectors

If v = (vi,v2,...,up) € KN X is the eigenvector ensured by Theorem 3.6,
we know that v # 0 and that v;(z) > 0 for all € G;. In the application
to the computation of Hausdorff dimension (see [13], [38]) we need to know
that vj(xz) > 0 for all z € Gj and for 1 < j < p. However, to obtain this
strict positivity we shall need stronger assumptions on b;.) and 6;.) for
(j,e) € T. We shall gather below several hypotheses which, together with
our earlier assumptions, are sufficient to imply the strict positivity of the
eigenvector v in Theorem 3.6. We shall always assume the hypotheses (see
(H1.1) and (H1.2)) and notation of Section 1. In addition, we list here, for
the reader’s convenience, additional hypotheses which will be used in this
Section. Recall that hypotheses (H3.1) - (H3.3) are stated at the beginning
of Section 3.

(H4.1)  For all (j,e) € I',by) € C™(G;) = X; and b(j)(z) > 0 for all
MRS Gj.

(H4.2) For 1 < j < p = |V], let G; C R"™ be bounded open sets as in
Section 1. Assume that there exists a constant M such that if 1 < j < p
and if z,y € Gj, there exists a Lipschitz map ¢ : [0,1] = G; with ¥(0) =
x,9(1l) =y and fol |’ (#)||dt < M||z — y||, where || - || is some fixed norm on
R™.

(H4.3) Assume that (H1.1), (H1.2) and (H3.2) hold. In addition, assume
that there exists an integer u > 1 and a constant £ with 0 < x < 1, such that
for1<j<p=|V| forall (JJE) € fg»“) and all z,y € G,

1005.8)(x) = 01,2 W) < Kllz—yl.
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We shall also need a condition which is directly analogous to the assumption
of irreducibility for a p x p matrix M with nonnegative entries.

(H4.4) Let notation be as in Section 1. For any pair of integers i,k € V|
assume that there exists an integer v = v(i, k) > 1 and a sequence (js, es) € T
for 1 < s <wv with a(js,es) = js+1 for 1 < s <wv,j; =i and a(j,,e,) = k.

Remark 4.1. Recall that a p x p matrix M with nonnegative entries m;; is
called “irreducible” if p = 1 or if p > 1 and for each pair of integers (i, k)
with 1 <i <pand 1 <k < p there exists a positive integer v = v(i, k) such
that the (i, k) entry of M is positive. The matrix M is called “primitive” if
there exists a positive integer v such that all entries of M" are positive.

IfV,&,T and « are as in §1 and (H1.1) is satisfied, define a nonnegative,
p x p matrix A = (a;x) by a;; > 0 if there exists e € & with (i,e) € " and
a(i,e) = k and a;; = 0 if there does not exist e € & with (i,e) € I' and
a(i,e) = k. We shall call A a “p x p nonnegative matrix associated with
(T,a, V).

The reader can verify that (H4.4) is satisfied if and only if a p x p
nonnegative matrix A associated with (T, «, V') is irreducible. The integer
v(i, k) in (H4.4) can be chosen to be independent of (i, k) if and only if A
is primitive. If A is primitive, the graph directed iterated function system is
called “strongly connected” in Definition 4.7 in [38].

Lemma 4.2. Assume that (H1.1), (H1.2) and (H4.1) hold, where as usual we
assume that m > 1 in (H4.1). Then for all (j,e) € T,z — log(b(;,e)(z)) is a
Lipschitz map from Gj to R.

Proof. By the argument used in Lemma 1.4, there is a constant M> such that
for all z,y € G with [z —yll1 < 7, [bge)(2) —bje) (Y)] < Mallz—yll:. (H4.1)
and the continuity of b(;.) on G; imply that there is a positive number &
such that b(; .y (x) > 0 for all (j,e) € I' and all z € G;. By the mean value
theorem, for all z,y € Gj with ||z —yll1 <n,] log(b(j7e)(:r)) —log(b(j,e)(y))| <
Ma(3)llx =yl _ )

If M3 is chosen so that [log(b(j.c) ()| < M3 for all G, then if z,y € G}
and ||z —yll» = n,

M

[10g(b(je) (x)) — log(b(j,e) ()] < Ms < ( ; )Mz =yl
It follows that for all x,y € Gj,
Ms M.
| 10g(b.0) () = log (b ()] < max(Z2, 52 =l

O

Note that since all norms on R™ are equivalent, under the hypotheses
of Lemma 4.1 the map z € G — log(b(; ) (x)) is Lipschitz with respect to
any norm on R”.
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An argument similar to that in Lemma 4.1 shows that for all (j,e) €
[, the map 0;.) : G; — Gqj.e) is Lipschitz. Since all norms on R" are
equivalent, this statement is mdependent of which particular norm on R" is
chosen.

Lemma 4.3. Assume that (H1.1), (H1.2) and (HS3.2) hold. Then for all (j,e) €
L, the map x € Gj — 0 ) (x) € Guje) is Lipschitz.

Proof. By assumption H3.2, there exists a constant M; such that || D6; .)(z)|[1 <
M, for all z € G;. By (H1.2), G; is mildly regular, so there exist positive
constants 1 and M as in Definition 1.3. If z,y € G; and || — y|1 <7, there
exists a Lipschitz map ¢ : [0,1] = G; with ¢(0) = z and (1) = y such that

1
| 1@ < e =yl
0

We can assume that v is written as a column vector.
We have

19G.0)@) = 0G0 @) 1 =1l fy L0 ((1)dts
< S 1DOG o) (@) [0 (2) 1 dt

< M, [y |9 (t)|lhdt < My Mz — g,

This gives the desired estimate if ||z — y|l1 < 7. If [[x — y|ly > n, the desired
estimate follows by the same sort of argument used in Lemma 4.1. O

Remark 4.4. Before proceeding further it will be useful to make a few obser-
vations about (H3.3). By (H3.3) and Remark (3.1), (H3.3) is equivalent to
the assumption that there exists M > 0 and ¢,0 < ¢ < 1, such that

1D0 5,5y (x)|| < McH
for all (J,FE) € l:‘g»“), alp>landallz € G;,1 <j<p=|V| Here ||-| is a
norm on R™ and
D0, (@) := sup{[|(DOs,p)(x))yll : y € R, |ly[| < 1}.

Choosing a different norm on R™ only changes the constant M.
If, for a given norm, there exists pg > 1 such that

1D0(s.m) ()] <k <1 (4.1)

for all (J,E) € T, all z € G; and all j with 1 < j < p = [V], define
¢ = k(o) < 1, 50 || DO, p)(x)|| < c#o. It follows by the chain rule that for all
positive integers ¢, | DO j, g (7)]| < (o) for all (J, E) € fgwo), allz € G and
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all j with 1 < j <p = |V|. With the help of Lemma 4.3 it then follows easily
that there exists a constant My such that for all (J, F) € 1:‘5.“), all p > 1, all
Jwith 1 <j<p=|V|andall z € Gy, || DO g (x)| < Mact.

Thus, assuming (H1.1), (H1.2) and (H3.2), assumption (H3.3) is equiv-
alent to the assumption that eq.(4.1) is satisfied for some positive integer pg
and some k with 0 < k < 1.

If, for a given || - || on R™, there exists a positive integer po and &, 0 <
k < 1, such that

1005,8)(x) = 01,6y W) < Kllz -yl (4.2)

for all (J,F) € f‘;“‘)), 1<j<p=|V]andall 2,y € Gj, it is easy to see that
eq.(4.1) is satisfied, so, with the aid of (H1.1), (H1.2) and (H3.2), we obtain
(H3.3).

We are interested in the converse: if we assume (H1.1), (H1.2), (H3.2)
and (H3.3), can we obtain eq.(4.2) for some pg > 1 and some x with 0 <
k < 17 This is not true, but if we strengthen (H1.2), we shall see that we can
obtain eq.(4.2) from (H1.1), (H3.2), (H3.3) and the strengthened version of
(H1.2).

Lemma 4.5. Let notation be as in Section 1 and assume that hypotheses
(H1.1), (H3.2), (H3.3) and (H4.2) are satisfied. Then there exists a positive
integer p and a constant k with 0 < k < 1, such that for 1 < j <p=1V]|,

eq.(4.2) is satisfied for all (J, E) € I_‘;-”) and all 2,y € Gj.

Proof. If z,y € G, select a Lipschitz map ¢ : [0,1] — G, such that ¢(0) =
x,9¥(1) = y and fol l¥'(t)||dt < M||x—yl|, where M is a constant as in (H4.2).

If v is a positive integer and (J, E) € fg."),

1007.2)(y) = Oy (@) = || lfol DO,y (W ()0 (t)dt]|
< Jo 1DOs, ) (W () (¥ (1))l dt.

By (H3.3) we see that there exist constants M; > 0 and ¢1,0 < ¢; < 1, such

that | D0 gy(u)|| < Mycf for all (J, E) € f‘gu),u €Gjl<j<pandv>1.
Tt follows from (H4.2) that

1
10,8 (y) = O, ()| < M1C”/ ["(@)lldt < MyMcT|ly — ).
0

Choose v := p so large that M;Mcy := k < 1 to obtain the conclusion of
Lemma 4.5. g
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The reader can check that (H4.2) remains true, but with a different M,
if the norm || - || is replaced by a different norm. Similarly, Lemma 4.5 remains
true, but with a different p and a different , if the norm in Lemma 4.5 is
replaced by a different norm.

Henceforth we shall always need to know that eq.(4.2) is satisfied, so,
rather than using Lemma 4.4, we shall directly make the assumption that
eq.(4.2) holds.

The key idea now will be to define a special subcone of the closed cone
K; N Xjin X, where K; is the set of nonnegative functions in C(G;) and
X; = C™(G}),1 < j < p = |V|. Variants of the subcone we shall consider
have already been used in [8], in Sections 5 and 6 of [36], in [38] and in Section
2.2 of [24].

If M is a positive real, H is a bounded, open, mildly regular subset of
R™ and m is a nonnegative integer, we define a closed cone K(H; M, m) C
C™(H) by

K(H; M,m) = {h € C™(H) : h(z) < hy)eap(M||z — y|)¥a,y € H} (4.3)

The definition of K (H; M, m) depends on the particular norm || - || on R™
which is used, but we do not indicate this dependence in the notation. The
reader can easily verify that if h € K(H; M, m), then h(z) > OVx € H; and
if h € K(H,M,m) is not identically zero, then h(z) > 0 for all x € H.

Lemma 4.6. Assume that H is a bounded, open, mildly reqular subset of R™,
that M > 0 and that m is a nonnegative integer. If K(H; M, m) is defined
by eq.(4.3) and m > 1, then K(H;M,m) is a closed, reproducing cone in
C™(H). If m = 0, K(H; M,0) is a closed, total cone in C(H), but it is not
reproducing.

Proof. We leave to the reader the exercise of proving that K (H; M,m) is a
closed cone in C™(H). Note also that if h € C™(H),h € K(H; M, m) if and
only if h(z) =0 for all x € H or h(z) > 0 for all € H and, for all z,y € H,

[ log(h(x)) —log(h(y))| < M|z — yl|, (4.4)

where log denotes the natural logarithm.

To prove that K(H; M, m) is reproducing in C™(H) if m > 1, observe
that if g € C™(H) and C is any positive constant, then g(z) = (g(x)+C)—C.
Since any positive constant is an element of K (H; M, m), it suffices to prove
that x — g(x) + C defines an element of K (H; M, m) for C large. Thus, it
suffices to prove that if h(z) := g(z) + C is large, eq.(4.4) is satisfied for all
r,y€ H.

Because m > 1, the argument used in Lemma 1.4 shows that there
exists a constant M, such that, for all z,y € H,

lg(z) — g(y)| < Millz —yl|.
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If N is any positive integer, we can choose C' > 0 such that C + g(z) > N
for all x € H. It follows by the mean value theorem that

[108(C + g(x)) ~ 1o8(C + g(»)] < ()lg() —gw)| < (5} le .

If N is chosen so that &t < M, it follows that the map x — C + g(z) is an
element of K(H; M, m), so K(H; M, m) is reproducing in C™(H).

It remains to consider the case m = 0. For any f € C(H) and any
e > 0, it is known that there exists h € C'(H) with |f(z) — h(z)| < €
for all € > 0. Since K(H;M,1) is reproducing in C'(H), it follows that
K(H;M,0) > K(H; M,1) is total in C(H).

If h € K(H;M,0) and h is not identically zero, h satisfies eq.(4.4) and
h(z) > 0 for all x € H. It follows that » — h(z) is Lipschitzian if h €
K(H; M,0). This implies that if f = hy — ho, where hy,hs € K(H;M,0), f
is Lipschitzian. Since not all elements of C'(H) are Lipschitzian, K (H; M, 0)
is not reproducing in C(H). O

We shall use the notation of Section 1, so for 1 < j < p = |V|,G; is

a bounded, mildly regular open subset of R",Y; = C(Gj),m is a positive
integer, X; = C"™(G;) and Y, K and X are given by equations (1.11), (1.13)
and (1.17) respectively. If M is a positive constant and m is a positive integer

as above, we shall write for 1 < j < p = |V| (compare eq.(4.3))

K;(M,m) = K(Gj; M,m). (4.5)
We define K(M,m) D X by

KM,m)={f=(f1,f2,---, fp) € X’fj € K;j(M,m) for 1 < j <p}. (4.6)
It follows from Lemma 4.6 that K (M, m) is a closed, reproducing cone in X.

Theorem 4.7. Assume that hypotheses H4.1 and H4.3 are satisfied, that X is
defined by eq.(1.17), that L:Y =Y and A : X — X are defined by eq.(3.3)
and that K(M,m) is given by eq.(4.6). Then there exists M > 0, a positive
integer p and v := (vi,v2,...,vp) € K(M,m)\{0} such that A*(K(M,m)) C
K(M,m) and A*(v) = r*v, wherer = r(A) = r(L) denotes the spectral radius
of A. There exists w := (w1, wa, ..., wpy) € (K NX)\{0} with A(w) = rw. If
(H4.4) is also satisfied, wj(z) > 0 for all x € G; and for 1 < j <p=|V]|,
and there exists M' > 0 with w € K(M',m)\{0} .

Proof. Let k,0 < k < 1, and p > 1 be as in (H4.3). By using (H4.1) and
(H4.3) and Lemmas 4.2 and 4.3, one can show that there exists a constant
My > 0 such that biy ) € K;(Mo,m) for all (J,E) € TV 1 < j < p. If
M > (M) we claim that A*(K(M,m)) C K(M,m). To see this, suppose

1-k

that f = (fi, f2,..., fp) € K(M,m). For j € V and « € G we have
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MA@ = D bum (@) faG,.en Oom (@),

P(r)
(J,E)€ET;

Because K;j(M,m) is a cone, it suffices to prove that b s g)(-) fa(j..e,) (0(1,E) () €
K;(M,m) for all (J,E) € 1:‘5-“). For z,y € G; we have

b1,E) (%) fa(,e) (O m) (7)) < W10y

where we define ¥ and Y5 by

Uy = [b,m)(y) exp(Mo([lz — yl])]
and

s = fa(h e 602 () DM 601y () — 601y ()]

If we define ®(z) for z € G;, by

O(2) := b1,5)(2) falnen) (O0E)(2))-

we conclude that

®(z) < O(y) exp(Mo + M|z — yl|).

Since we assume that M > (f\f—‘;), Mo+ kM < M, and the above calculation
shows that (A*)(K(M,m)) C K(M,m).

Since (H4.1) and (H4.3) imply the hypotheses of Theorem 3.6, r(L) =
r(A) and p(A) < ¢™r(A) < v(A), where ¢ = k(i) < 1. The formula for the
spectral radius implies that r(A*) = r(L*) = (r(A))*. Using formulas in
[33] or results from [34], one can prove that p(A*) = (p(A))*; and in any
event, eq.(2.7) implies that p(A*) < (p(A))*. Thus p(A*) < r(A*) = r(LH")
and L*(K(M,m)) C K(M,m). Since K(M,m) is a closed, total cone in X,
Theorem 2.1 implies that there exists v = (v1,v2,...,vp,) € K(M,m)\{0}
with A#(v) = r#v and r = r(A).

If we define A, : X — X by A.(f) = (2)A(f), we find that A¥(v) = v;
and if we define w = (w1, ws, ..., wpy) € X by

w= 3" (A)°(), (47)

it is easy to check that A,.(w) = w. Also, if ¢ is a positive integer, one can
check that

tpu—1
tw=>(A)*(v). (4.8)
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If w is defined by eq.(4.7) and if we assume that (H4.4) also holds, we claim
that w;(z) > 0 for all z € G; and 1 < j < p. Because v € K(M,m)\{0},
there exists k,1 < k < p, with v (z) > 0 for all x € Gj. By (H4.4), for each
j with 1 < j < p,j # k, there exists a positive integer v = v(j,k) and a
sequence (j;,e;) € T',1 < i < v, with j1 = j,a(j;,e;) = jip1 for 1 <i<v
and a(j,,e,) = k. If v = v(j, k), then for all z € G; we have

((Aif)(v))j(@“):(l)y > b (@)ag, ) (00,5 ().

Q)
(J,B)eT

By assumption, there exists (J, E) € fg'j) with a(j,,e,) = kand v (0(5,5)(x)) >
0 for all x € Gj. It follows that for all z € éj,

(A7) (v));(x) > 0.

If we take an integer ¢t > 1 such that tu — 1 > v(j, k) for all j € V\{k}, it
follows from eq.(4.8) that w;(x) > 0 for all z € G; and for all j € V.
Because w;(z) > 0 for all # € G; and w; € X, the same argument used
in Lemma 4.1 shows that  — log(w;(z)) is Lipschitz on G, which implies
that there exists M’ > M such that w; € K;(M’,m) for 1 < j <p. O

Our next result is an immediate corollary of Theorem 4.7.

Corollary 4.8. Let G be a bounded, open mildly regular subset of R™. Let & be
a finite index set and m a positive integer and for positive integers i, let &, be
as defined in Corollary 3.9. Assume hypotheses (A1) and (A2) in Corollary
(8.9) but strengthen (A1) by assuming that be(x) > 0 for all e € & and all
x € G. Assume also that there exists an integer i > 1 and Kk with kK < 1 such
that

10 (2) = b (W) < Kllz =yl

for all x,y € G and all w € Ep.

Then all conclusions of Corollary 3.9 are satisfied. In addition there
exists v € (K N X)\{0} such that A(v) = rv, where r = r(A) > 0 and
v(x) >0 for all x € G.

5. r(A) is an Algebraically Simple Eigenvalue

In this section we shall need some results concerning “ug-positivity” for “pos-
itive linear operators”. Theorem 5.1 below gives the information which we
shall need. A proof of Theorem 5.1 can be found in [20] or [21].

It is worth remarking that Theorem 5.1 can also be derived in a few
pages from the so-called Birkhoff-Hopf theorem for positive linear operators,
although we shall not give a derivation here. An exposition and generalization
of the results of Birkhoff [5] and Hopf [15] (see also Samelson [39]) can be
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found in the articles [11] and [12] and the appendix of [25], and the latter
sources give further references to the literature.

Theorem 5.1. (See [20] and [21]). Let C be a closed, reproducing cone in a
real Banach space Z. Let A : Z — Z be a bounded linear operator such that
A(C) C C and assume that there exists v € C\{0} and r > 0 with A(v) = rv.
Let < denote the partial ordering on Z induced by C, sox <y < y—x e C.
Assume (this is the ug-positivity of A) that there exists ug € C\{0} with the
following property: For every x € C\{0} there exists an integer m(z) > 1 and
positive reals a(z) and b(x) such that either (i) A™®) () = 0 or (ii) a(x)uy <
A™@) () < b(x)ug. Then 1 is algebraically simple as an eigenvalue of A; and
if ¢ € C is an eigenvalue of A where A denotes the complezification of A,
and ¢ # r, then |C| < r. If A(w) = dw for some w € C\{0}, then A = and
w is a scalar multiple of v.

Remark 5.2. If A and Z are as in Theorem 5.1, let Z denote the complexi-
fication of Z and A : Z — Z the complexification of A. Note that Theorem
5.1 only applies to eigenvalues of A. If o(A) denotes the spectrum of A, it is

a priori possible that there exists ¢ € o(A) with || = r and { # r or that

there exists ¢ € o(A) with |¢| > r. However, if C' in Theorem 5.1, is also

normal, one can prove that |¢| < r for all { € o(A).

Corollary 5.3. Let C be a closed, reproducing cone in a real Banach space
Z. Let A : Z — Z be a bounded linear operator such that A(C) C C and
let A denote the complezification of A and 0(121) the spectrum of A. Assume
that p(A) < r(A), where r(A) denotes the spectral radius of A and p(A) the
essential spectral radius of A. Assume that there exists ug € C\{0} which
satisfies the ug-positivity property in Theorem 5.1. Then there exists v €
C\{0} such that A(v) = rv,r := r(A); and r is algebraically simple as an

eigenvalue of A and r is an isolated point of o(A). There exists r1 < r such
that if ¢ € o(A)\{r} we have |¢| < r1.

Proof. By Theorem 2.1, there exists v € C\{0} with A(v) = rv and r = r(A).
By the properties of the essential spectral radius and the assumption that
p(A) < r(A), we know that for each ¢ € o(A) with [¢| > p(A), ( is an isolated
point of O'(A), ¢ is an eigenvalue of A and ¢ has finite algebraic multiplicity as
an eigenvalue of A. The conclusions of Corollary 5.3 now follow from Theorem

5.1. (]

Corollary 5.4. Let hypotheses and notation be as in Corollary 5.3 and define
B(z) = (L)A(z) for z € Z. Then for every z € Z, there exists s, € R such
that

lim B*(2) = s.v, (5.1)
k— o0
where Av = rv,r = r(A),v € C\{0} and convergence is in the norm topology
on Z. If z € C and there exist an integer N > 0 and positive reals a = a,
and b = b, such that av < AN (z) < bv, then s, > 0.
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Proof. Corollary 5.3 implies that there exists 7, < r such that |¢| < 7y for
all ¢ € o(A)\{r}, where A denotes the complexification of A. Furthermore,
r is an eigenvalue of A of algebraic multiplicity one. Under these conditions,
equation (5.1) is a standard result which can be obtained by using spectral
projections for A Ifze Canda> 0,6 > 0 and N are as in the statement
of Corollary 5.4, a’v < BNz < b'v, where a’ = r"Na and & = r~Vb. Because
B(v) = v and B(C) C C, it follows that a’v < B¥(z) < b'v for all k > N,
which implies that o’ < s, <. O

It remains to add an assumption which will allow us to verify the hy-
potheses of Corollaries 5.3 and 5.4. We shall show that the following strength-
ening of (H4.4) is sufficient. As usual, notation is as in Section 1. Note that
(H4.1) - (H4.4) are stated at the beginning of Section 4, as is Remark (4.1).

(5.1) There exists a positive integer v such that for any pair of integers
i,k € V, there exists a sequence (i;,e;) € I',1 < j < v with a(ij,e;) = 441
for 1 <j<w,iy =i and a(i,,e,) = k.

Note (see Remark 4.1) that (H5.1) is trivially true if p = |[V]| = 1; and
if p> 1, (H5.1) is true if and only if a p X p nonnegative matrix A associated
with (T', v, V') is primitive.

Theorem 5.5. Assume that hypotheses (H4.1), (H4.3) and (H5.1) are sat-
isfied, that X and A are defined by equations (1.17) and (3.3) respectively,
that o(A) := O’(A) denotes the spectrum of A, the complezification of A, and
that, for M > 0 and m > 1 as in eq.(1.17), K(M,m) is given by eq.(4.3).
If p(A),7(A) and r(L) denote, respectively, the essential spectral radius of A,
the spectral radius of A and the spectral radius of L and p and k < 1 are as
in (H4.3), we have

p(A) < kUDr(A) < r(A) =r(L) =1

There exist M' > 0 and w = (w1, w2, ..., wy) € K(M',m)\{0} such that
w;(xz) >0 forallz € Gj,1 <j<p=|V|, and

Alw) = rw.

There exists 11 < r such that if ¢ € o(A)\{r}, then [¢| < ri; and r is an
isolated point of o(A) and an eigenvalue of algebraic multiplicity 1. If u € X,
there exists a real number s, such that

lim ((E)A)k(u) = Sy W.

k—oo T

If u e K(M,m)\{0} for some M >0, then s, > 0.

Proof. The first part of Theorem 5.5, up to the existence of w, follows directly
from Theorem 3.6 and Theorem 4.7.

Let v be as in (H5.1) and let A be a p X p nonnegative matrix associated
with (T', o, V). It follows (see Remark 4.1) that all entries of A” are positive.
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(H1.1) implies that no row of A is the zero vector, so A** has all positive
entries for all integers v > v; and (H5.1) is satisfied for any 14 > v.

If w and k,0 < k < 1, are as in hypothesis (H4.3) and ¢ is a positive
integer, 0 gy is a Lipschitz map (with respect to the norm |- || in (H4.3)) on
G; with Lipschitz constant lip(0(s,p)) < &' for all (J,E) € f‘y’”, 1<j5<p.
By Lemma 4.2 there exists a constant C1 > 1 such that lip(6;.)) < C for

all (j,e) eI If tu < vy < (4 1)u, it follows that for all (J, E) € f‘gul) and
1 < 5 < p we have the estimate

lip(e(J,E)) < C{Lilﬁt.

Using this estimate, one can see that there is an integer 1o such that for all
v1 > po and all (J, E) € T,

lip(Q(J,E)) <k <1l

For po,v and k as above, take 11 > max(v, up). We already know that
there exists M’ > 0 and w = (w1, wa,...,wy) € K(M',m) with A(w) = rw
and w;(z) > 0 for all z € G;. As in the proof of Theorem 4.7, there exists a
constant My > 0 such that b(; g € K;(Mo,m) for all (J, ) € TV, 1< j <
p. If M > kM + My := M, the argument in the proof of Theorem 4.7 shows
that AY* (K (M, m)) C K(M;,m). By increasing M, we can also arrange that
My := kM + My > M’. By using (H5.1) we see that if w = (u1, ug,...,up) €
K(M,m)\{0}, then A"*(u) := y = (y1,¥2,...,Yp) satisfies y € K(M;,m)
and y;(x) > 0 for all z € G and for all j,1 < j <p.

At this point we want to apply Corollaries 5.3 and 5.4 to the operator
A" K(M,m) — K(M,m). Here w will take the place of ug in Theorem 5.1.
For w € K(M,m)\{0} and y := A" (u), we have to prove that there exist
positive constants a = a,, and b = b,, with

aw <y < bw. (5.2)

There is a subtlety, however. In the notation of Theorem 5.1, Z7 = X
and the closed, reproducing cone C' = K(M,m). Thus the partial ordering
< in eq.(5.2) is the partial ordering induced by K (M,m), and the positive
constants a and b in eq.(5.2) must satisfy bw —y € K(M,m) and y — aw €
K(M,m). The fact that A¥* (K (M, m)) C K(M;,m), where M’ < M; < M
will play a crucial role in the argument. Similar issues arise in Section 2.2 of
[24].

To prove eq.(5.2), first select positive numbers o and 7 such that o <
wj(z) < 7and o < y;(x) < 7 for all z € G;,1 < j < p. It suffices to prove
that there exists b > 0 such that y < bw. The argument that w < a~'y for
some a > 0 is completely symmetrical, with the roles of w and y reversed
and a~! taking the role of b. As a first step to proving the existence of
b, we choose b so that bo > 7, which implies that bw;(z) > y;(z) for all
z € Gj,1 < j < p. We know that bw —y € K(M,m) if and only if the map
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x — log(bw;(x) — y;(x)) := ¢;(z),x € Gj, is Lipschitzian with lip(p;) < M
for 1 < j < p. If we define ¢;(x) = log(b) + log(w;(x)) for x € G;,lip(¢;) <
M, for 1 < j < p; and we can write, for z € G},

y;(x)
bw; (z)
Thus it suffices to prove that for b large enough and 1 < j < p,lip(g;) <
M — M;. Since 1 — bﬁj(a)-) > (1 - £) for z € G, we obtain from the mean
value theorem that for x,z € G’j,

pj(@) = v;(2) + log(1 — ) = () + g;(@).

l9;(z) = g;(2)] = log(1 — 225 — log(1 — 2]
< (- ) ()1 -
Because # — log(y;(x)) and « — log(w;(x)) are Lipschitzian with Lipschitz
constant M; and because log(y; (7)) < log() and log(w;(x)) < log(r) for
zr € G, we obtain from the mean value theorem that lip(y;) < 7M; and
lip(w;) < 7M; for 1 < j < p. It follows that

|yj($)_yj(Z)"U’j(?)‘)"‘ngz)‘wj(z)_wj(z)‘

(rM)[5 + Z] e =z,

yi(z) yj(2)|
wi(z)  w;(z)

<
<

which implies that

1 1 T
li )< (——) (7M7) [— + —=].
lp(g])—(b_(T/o_))(T 1)[U+0'2]
It follows that for all b sufficiently large, lip(g;) < M — M; and bw — y €

K(M,m).

Applying Corollaries 5.3 and 5.4 to the operator A¥*, we conclude that
for 7 = r(A), there exists 71 < r such that if z € o(A**)\{r1}, then |z| < r¥*
and "1 is an eigenvalue of A** of algebraic multiplicity one. Furthermore, for
every u € X there exists a number s, € R such that

lim B*(u) = s,w, (5.3)
k—oo
where B := (-4 )A"* and s, > 0 if u € K(M,m) for some M > 0. Applying

(LA)? to eq.(5.3) for 0 < j < vy and noting that ((1)A)(w) = w, we conclude
that for every u € X,

lim ((E)A)k(u) = 5, W, (5.4)

k—oco T

and s, > 0 if u € K(M,m) for some M > 0.

Because o(A*1) = {¢"1|¢ € o(A)}, for ¢ € o(A) we must have |¢| < ry
unless ¢¥* = r**. However, if (** = r** and ¢ # r, then because p(A) < r(A), ¢
is an eigenvalue of A and Av = Cv for some v € X, the complexification of X.
It follows that A”1 (v) = r"1v and v is not a scalar multiple of w. However, this
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contradicts the fact that 7! is an eigenvalue of A¥* of algebraic multiplicity
one. Thus, if ( € o(A) and |{| =7,( =1

It remains to prove that r is an eigenvalue of A of algebraic multiplicity
one. Any eigenvector of A with eigenvalue » must be a multiple of w, for
otherwise we contradict the fact that r** is an eigenvalue of A”* of algebraic
multiplicity one. Therefore, to prove that r is an eigenvalue of A of algebraic
multiplicity one, it suffices to prove that there does not exist u € X with

ru— Au = w.

However, if such a u exists, one can see that

(DA (w) =u— (Z)w,

r r

which contradicts eq.(5.4). Thus such a u does not exist and r has algebraic
multiplicity one. O

The following result is an immediate corollary of Theorem 5.5.

Corollary 5.6. Let G be a bounded, open mildly reqular subset of R™. Let &
be a finite index set and let m be a positive integer. Assume
(B1) For eache € &,b. € C™(G) and be(z) >0 for all x € G.

(B2) Foreachee &,0.:G— G and 6, € C"(G).

(B3)  For each positive integer p, &, = {w = (e1,e2,...,e,)le; € & for
1<j<u}, and if w= (e1,e2,...,e,) € E,0,(x) := (0c, - Oc,_, ... 0c,) (7).
There exists a positive integer (1 and a constant x < 1 such that for allw € &),
and all z,y € G,

10w (2) = b ()] < Kllz —yll.

LetY = Cr(Q) and X = Cg(G) and define a bounded linear map L : Y —'Y
by

(L) (@) =D be() f(0e(x))
ec&

a bounded linear map A : X — X by A(f) = L(f) for f € X. If r(L)
(respectively, r(A)) denotes the spectral radius of L (respectively, A) and p(A)
denotes the essential spectral radius of A

p(A) < (k%)r(A) < r(A) and r(A) = r(L) :==r.

There exists v € X\{0} such that v(z) > 0¥z € G and A(v) = rv. If A
denotes the complezification of A and o(A) := o(A) denotes the spectrum of
A, there exists r1 < r such that

o(A\{r} S {z e Cllz[ <r1}
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and r is an algebraically simple eigenvalue of A. Ifu € X and u(z) > 0 for
all z € G, there exists s = s, > 0 such that

: 1 kAk —
khﬁngo(;) A" (u) = sy,

where the convergence is in the norm topology on X = CF(G).
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