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ABSTRACT

Let K" = {xeR":x, > 0 for I <i< n} and suppose that f: K" —— K" is nonexpansive with respect to
the /,-norm and f{0) = 0. It is known that for every xe K" there exists a periodic point £ = ¢, e K" (so
f?(&) = & for some minimal positive integer p = p.) and f*(x) approaches { //(¢):0 < j < p} as k approaches
infinity. What can be said about P*(n), the set of positive integers p for which there exists a map f'as above
and a periodic point £€ K" of f of minimal period p? If f'is linear (so that f'is a nonnegative, column
stochastic matrix) and e K" is a periodic point of f of minimal period p, then, by using the
Perron—Frobenius theory of nonnegative matrices, one can prove that p is the least common multiple of
a set S of positive integers the sum of which equals n. Thus the paper considers a nonlinear generalization
of Perron—Frobenius theory. It lays the groundwork for a precise description of the set P*(n). The idea of
admissible arrays on n symbols is introduced, and these arrays are used to define, for each positive integer
n, a set of positive integers Q(n) determined solely by arithmetical and combinatorial constraints. The paper
also defines by induction a natural sequence of sets P(n), and it is proved that P(n) = P*(n) = Q(n). The
computation of Q(n) is highly nontrivial in general, but in a sequel to the paper Q(n) and P(n) are explicitly
computed for 1 < n < 50, and it is proved that P(n) = P*(n) = Q(n) for n < 50, although in general P(n)
# Q(n). A further sequel to the paper (with Sjoerd Verduyn Lunel) proves that P*(n) = Q(n) for all n. The
results in the paper generalize earlier work by Nussbaum and Scheutzow and place it in a coherent
framework.

1. Admissible arrays, periodic points and lower semi-lattices

If D is a subset of R", a map f: D —— R" is called nonexpansive with respect to the
/,-norm or ¢/ -nonexpansive if, for all x, ye D, one has

1A=y < x=plss
where
HZHI = Z |Zv| and z= (21’229 ’Zn)'
i=1
If D « R"is closed and f: D —— D is /,-nonexpansive and there exists # € D such that
sup{|l f7(n)|l,:j = 1} < oo, then results of Akcoglu and Krengel [1] imply that, for
every xe D, there exists a positive integer p, = p and a point &, = € D with

limf7(x) =< and f7(&) =¢. (1.1)
j—o0

Here f* denotes the composition of f with itself k times. Related results for
‘polyhedral norms’ have been obtained by D. Weller [16], R. D. Nussbaum [8], R.
Sine [15], R. N. Lyons and R. D. Nussbaum [5], P. Martus [6] and S.-K. Lo [4].

In general, if D is a topological space and g: D — D is a map, then we say that &
e D is a periodic point of g of minimal period p if g?(¢) = & and g/(¢) # & for 0 <
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< p. If £ has minimal period p and g"(¢) = ¢, then it is well known that p|m. As is
suggested by equations (1.1), the periodic points of an Z,-nonexpansive map f:D <
R"—— D play a central role in the understanding of the dynamics of the discrete
dynamical system x — f*(x), k = 0.

For general sets D = R", very little is known about the possible periods of periodic
points of /,-nonexpansive maps f: D — D. This is related to the fact that f may not
have an extension F:R" —— R" which is /,-nonexpansive (see [17]). However, if

K"={xeR":x,=20for 1 <i<nj, (1.2)

f:K"—— K" is /,-nonexpansive and f{0) = 0, then Akcoglu and Krengel [1] have
proved that the minimal period p of any periodic point of f satisfies p < n!, and
Scheutzow [13] has shown that p <lecm(1,2,...,n), where lem (1,2, ...,n) denotes the
least common multiple of the integers 1,2,...,n. In [9, 11], Nussbaum established
various other constraints on possible periods p, defined a function ¢(n) with p < ¢(n),
computed ¢(n) for n < 32, and proved that ¢(n) is a best possible upper bound for p
for n < 32.

Our goal in this section is to introduce the idea of an admissible array on n
symbols, and to use admissible arrays to give generalizations of the constraints on the
minimal period p which were obtained in [9]. First, we need to introduce some
notation and recall some further results from the literature. If K" is given by
expression (1.2), K" induces a partial ordering on R" by

x<y ifandonlyifx, <y, forl <i<n,

where x; and y, denote the coordinates of x and y, respectively. We write x < y if x
< yand x # y, and we write x <€ y if x; < y, for | < i< n. We use the notation x %
vy to mean that it is false that x < y, and we say that xe R” and y € R" are incomparable
or not comparable if x £ y and y & x. A map f: D = R"—— R" is order-preserving if
Sx) < f(y) for all x,yeD with x < y. If f,(x) denotes the i-coordinate of f{x), then
fis called integral-preserving if

0 = X

forall xe D. If D = K" or D = R", and f: D —— D is integral-preserving, then results
of Crandall and Tartar [3] imply that f is order-preserving if and only if f is
nonexpansive with respect to the /,-norm.

DermNiTION 1.1, Let u=(1,1,...,1)eR". If f: K"—— K", we write fe Z (n) if
and only if the following hold:
(1) f(Au) = Au for all 1 > 0.
(i) The map f'is order-preserving.
(iii) The map f'is integral-preserving.

DeriNITION 1.2, If f: K" —— K", we write fe¥(n) if and only if the following
hold:

(i) f(0) = 0.

(i) The map f is nonexpansive with respect to the /,-norm.

The results of Crandall and Tartar [3] imply that & (n) = 4(n). Note that both
Z (n) and % (n) are closed under composition of functions.
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DEFINITION 1.3, If pis a positive integer, we write p € P(n) if and only if there exist
feZ (n) and a periodic point £ e K" of f of minimal period p. We write pe P*(n) if and
only if there exist fe %(n) and a periodic point € K" of f of minimal period p.

Because # (n) = %(n), we know that 13(11) < P*(n). If S, denotes the symmetric
group on n symbols and ¢ is a permutation in S,, then ¢ induces a linear map ¢:R"
— R", 0| K"e % (n), and it is easy to see that & = (1,2,...,n) is a periodic point of
minimal period p equal to the order of ¢ in the finite group S,,. Thus P(n) contains the
set of all orders of elements of S,. However, as Theorem 1.1 shows, P(n) is, in general,
larger than the set of orders of elements of S,. In Theorem 1.1 and throughout this
paper, lem () denotes the least common multiple of a set of integers S, and ged (S)
denotes the greatest common divisor of S.

THEOREM 1.1[9, Section3].  Ifp, € Is(nl) andp,e {S(n2), thenlem (p,, p,) € 13(n1 +n,).
If p,e P(m) for 1 <i<r, then rlem(py,p,,...,p,) € P(rm).

By using Theorem 1.1, and recalling that 2 P(3) and 3 € P(3), we see that 12 =
21em(2, 3) € P(6), but every element of S has order p < 6.

We leave to the reader the verification of the fact that P*(1) = {1}, that P*(n) <
P*(n+1) for n = 1, and that, if pe P*(n) and d|p, then de P*(n). By using Theorem
1.1 and the fact that P(1) = {1}, one can also see that ﬁ(n) <« P(n+1)foralln > 1and
that, if peﬁ(n) and d|p, then de ﬁ(n). (To see that if pe P*(n) (respectively P(n)) and
p = dm for positive integers d and m, then de P*(n) (respectively P(n)), note that, if
fe%9(n) (respectively Z(n)) and f7(&) = ¢, then f™ = ge%(n) (respectively F (n))
and g"(¢) = <).

DerINITION 1.4. We define inductively, for each n > 1, a collection of positive
integers P(n) by P(1) = {1} and, for n > 1, pe P(n) if and only if one of the following
holds:

(1) p =lem(p,,p,), where p, € P(n,), p, € P(n,) and n, and n, are positive integers
with n = n, +n,.

(i1)) n =rm for integers r > 1 and m > 1 and p = rlem(p,, p,, ..., p,), Where p, e
Pm)for1 <i<r.

By using Definition 1.4(i) with n, = n—1 and n, = 1, we see that P(n—1) < P(n),
and property (ii) with r = n shows that ne P(n), so {1,2,...,n} = P(n). In [12], the sets
P(n) have been computed explicitly for n < 50. By using Theorem 1.1, we also see that

P(n) = P(n) = P*(n)

so P(n) provides a ‘lower bound’ for P(n) and P*(n).
We now use results in [9, 13] to obtain an ‘upper bound’ for P*(n). If x, ye R", we
define x Ay and x V y in the standard way:

xAy=zeR" and xVvy=weR",

where z, = min{x,, y,} and w;, = max{x,, y,} for | <i<n. If < R", then Vis called a
lower semilattice if x A yeV whenever xe V and ye V. We call V a lattice if xAyeV
and xV ye V whenever xe J and ye V. We always denote the cardinality of a set V'
by |V].
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A finite lower semilattice (respectively finite lattice) is a lower semilattice
(respectively lattice) with finite cardinality. If 4 = R”, then there is a minimal (in the
sense of set inclusion) lower semilattice J" > 4 and a minimal lattice ¥ > 4. We call
V the lower semilattice generated by A, and Y the lattice generated by 4. If | 4| < oo,
then it follows that |V| < oo and |Y| < co. If V' is a lower semilattice, then a map #4:
V—— Vs called a lower semilattice homomorphism of V if

hxAy)=h(x)Ah(y) forallx,yeV.

If Y is a lattice, then a map h:Y—— Y is a lattice homomorphism if i(x A y) =
h(x) A h(y) and h(x Vv y) = h(x) v h(y) for all x,ye Y. If W < R" is a lower semilattice
(respectively lattice), h: W—— W is a semilattice (respectively lattice) homomorphism
of Wand & e Wis a periodic point of minimal period p of 4, then let V" denote the finite
lower semilattice (respectively lattice) generated by A = {/(¢):0 <j < p}. It then
follows that A(V) < V and hP(x) = x for all xe V. In particular, /#|V is a lower
semilattice homomorphism (respectively lattice homomorphism), /| V' is one—one
and onto V, and (h| V)™ = h*™'| V is also a semilattice (respectively lattice) homo-
morphism of V.

The relevance of these ideas to our situation is indicated by the following
theorems.

THeOREM 1.2 [13].  Suppose that fe % (n) (see Definition 1.2) and that (€ K" is a
periodic point of f of minimal period p. Let A = {f(£):0 < j < p} and let V denote the
finite lower semilattice generated by A. Then (V) < V, g:=f|V is a lower semilattice
homomorphism of V, f?(x) = x for all xeV, and g* = f*"|V is a lower semilattice
homomorphism of V.

In Theorem 1.3, recall that a norm |- || on R" is called strictly monotonic if | x|
< |yl whenever 0 < x < y. The / -norms are strictly monotonic for 1 < p < oo; the
/., norm is not strictly monotonic

THeoreM 1.3 [10, Proposition 2.1]. Suppose that f:K"—— K" is an order-
preserving map with f(0) =0 and that f is nonexpansive with respect to a strictly
monotonic norm ||| (so | f(x)—fAn| < | x—y| for all x,ye K"). Assume that £ e K"
is a periodic point of f of period p, let A ={f(¢):0 <j < p}, and define L to be the
lattice generated by A. It then follows that (L) < L, f| L is a lattice homomorphism,
f?(x)=x for all xe L, and (f| L) = f*'| L is a lattice homomorphism.

DeriNiTION 1.5, If /1D < R*—— R”, we write fe #(n) (respectively fe _#(n)) if
and only if D is a lower semilattice (respectively lattice), f(D) = D, and f'is a lower
semilattice homomorphism (respectively lattice homomorphism) of D.

DEFINITION 1.6, If p is a positive integer, we write p € 0*(n) (respectively p € O(n))
if and only if there exist fe # (n) (respectively fe _#(n)) and a periodic point & of f of
minimal period p.

Obviously, O(n) = Q*(n), and Theorem 1.2 implies that P*(n) = Q*(n). Theorem
1.3 implies that P(n) = O(n).

We need to recall some further definitions concerning lower semilattices and
lattices. If W is a lower semilattice in R” and 4 < W, then A is said to be bounded
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above in W (respectively bounded below in W) if there exists be W with b > a for all
ae A (respectively b < a for all aeA); b is called an upper bound for A in W
(respectively lower bound for A in W). If W is a finite lower semilattice in R”, then any
nonempty set 4 = W is bounded below in W. Furthermore, there exists a lower
bound f for 4 in W such that b < fif b is any other lower bound for 4 in W. Clearly,
such a f is unique, and we write

p = inf ,(4).
If 4 is bounded above in W, we define B={be W|b > a for all ae A} and define
sup ,(A4) = inf ;,(B).

If W is finite lower semilattice and g: W —— W is a one—one map, then elementary
group theory implies that g” is the identity on W for some positive integer p. If, in
addition, g is a lower semilattice homomorphism, then g and g™! = g?~! preserve the
partial ordering on W, and using these facts one can see that, for any set S = W which
is bounded above in W,

g(sup (S)) = sup ,,(g(S))- (1.3)

In particular, if S={xXeW:1<j<m} and if X¥’e W is a periodic point of g of
minimal period p;, then it follows from equation (1.3) that x = sup ,(S) is a periodic
point of g of period ¢ = lem (p,, ps, ..., p,,) (although ¢ need not be the minimal period
of x).

If W < R" is a finite lower semilattice and x € W, then we define /,,(x), the height
of x in W, by

h,(x) = sup{k = 0:there exist y°, y%, ...,y e W with y* = x
and 7 <y for 0 <j < k}. (1.4)

If there does not exist ue W with u < x, we define 4,,(x) = 0. One can easily see that
there is a unique element x € W with h,,(x) = 0 (the minimal element of W). If xe W,
then we define S, = {ue W|u < x}, and we say that x is irreducible in W if S, is empty
or if

x> z=sup ,(S,). (1.5)

If x is irreducible in W, S, is nonempty and z :=sup ,,(S,), then we define 7,,(x) by
Lp(x) = {ilx; > z,}. (1.6)

If x is the minimal element of W, then we define [,(x)={i:1<i<n}. By
mathematical induction on the height of points e I, one can prove that, for all £
eWw,

¢ =sup {x|xeW,x < ¢ and x is irreducible in W}, (1.7)

LemMa 1.1 (compare [13]). Let V be a finite lower semilattice in R" and let f:
V ——V be a one—one map which is a lower semilattice homomorphism. If y € V and f(y)
# y, then y and f7(y) are incomparable and h,(y) = h,(f'(y)), where h,(-) is given by
equation (1.4). If y is irreducible in V, then f'(y) is irreducible in V. If ne V and (e V
and n and { are incomparable and n and { are irreducible in V, then it follows that

Lmnl,()=J. (1.8)

If y is irreducible in V and y is a periodic point of minimal period p, then 1 < p < n.
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Proof. To prove that y and f7(y) are incomparable under the given assumption,
it suffices to prove that 4,(y) = h,(f’(y)). However, we have already observed that f
and /™! are lower semilattice homomorphisms, so fand /! are order-preserving maps
of ¥ and f7 and /7 are order-preserving. The equality of 4,(y) and h,(f’(y)) now
follows directly from equation (1.4).

If y is irreducible and /,(y) = 0, then /,(f’(y)) = 0. However, this implies that y
and f7(y) both equal the unique minimal element of V, contrary to the assumption
that y # f7(y). Thus we can assume that /2,(y) > 0 and S, # & and S}, # &, where

S, ={xeV:ix <z}
Because f7 and /7 are order-preserving, we see that

1S, = Sy
so equation (1.3) and the irreducibility of y imply that

sup (Syiy) = f'(sup (S,)) < (),

which is precisely the assertion that f7(y) is irreducible in V.
If # and { are as in the statement of Lemma 1.1, but equation (1.8) is false, select
iel,(n)nI,({). Because # and { are incomparable, we have

nAl{<n and npAl</{.
By the definition of ‘irreducible’, we have

Ay =m AL <m and A<,

which gives a contradiction.

If y is irreducible in V" and has minimal period p, our previous remarks imply that
the points f7(y),0 < j < p, are irreducible in ¥ and are incomparable. Equation (1.8)
implies that I,,(f/(y)) is disjoint from I,(f*(y)) for 0 <j < k < p. Since I,(f/(y)) is a
nonempty subset of {i:1 < i< n} for 0 <j < p, we conclude that p < n. O

Our next proposition is a technical result which plays an important role in our
construction of admissible arrays.

PrOPOSITION 1.1.  Let W be a lower semilattice in R" and let g: W — W be a lower
semilattice homomorphism. Assume that &€ W is a periodic point of g of minimal period
p. Let V denote the lower semilattice generated by {g'(¢):j = 0} and let g| V = f, so f'is
a lower semilattice automorphism of V onto V and f?(x) = x for all xe V. Then there
exist elements y'e V for 1 < i< m, with the following properties:

() y<&forl <i<<m.
(ii) The element y' is an irreducible element of V and a periodic point of f with
minimal period p,, 1 < p, < n.

(ii)) p =lem(py,ps.ps, - Pw)-

@iv) h,(») < h, (™) for 1 <i<m, where h,(*) is the height function given by
equation (1.4).

(v) For 1 <i<j<m, the sets {f*(y"):k = 0} and {f*()’):k = 0} are disjoint.

(vi) For 1 <i<j< m, the elements y' and y' are not comparable.

Proof. By using equation (1.7) we see that there are irreducible elements z/, 1 <
i< u, in V with
E=sup {1 <i<u. (1.9)
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We can assume that x is minimal in the sense that no collection of irreducible elements
with fewer than u elements will satisfy equation (1.9). If z. denotes the k-coordinate
of Z, then it follows from (1.9) and the minimality of u that for each i, 1 < i < u, there
exists j, 1 <j < n, such that

zp>sup{zf: 1 <k <p, k#i. (1.10)
By relabelling, we can assume that
h(z) < h, (") 1<i<up. (1.11)

Expression (1.10) implies that 4 < n and that z* and z/ are not comparable for 1 <
i <j< u. We have assumed that z’ is irreducible, so if ¢, denotes the minimal period
of Z/, then Lemma 1.1 implies that 1 < ¢’ < n. Because f?(x) = x for all xeV, we
know that ¢;|p for 1 <i< g, and, if ¢ =lem(q,,9,,...,q,), then g|p. On the other
hand, we know that

SUE) =[sup izl <i<p) =sup A1)l <i<p=¢
so f%¢) = ¢ and p|q. It follows that

lem(qy,...,9,) = p. (1.12)

We have verified all the properties listed in Proposition 1.1 except for property (v).
Define y' =z If y' = z°® for 1 < i<k, where o(i) < a(i+1) for 1 <i<k, then
define y**! = z°**Y_where o(k+ 1) = s is the first index s with g(k) < s < u such that
the orbit {/*(»**™):v = 0} is disjoint from the orbits { /*(y"):v = 0} for 1 <i< k. Ifno
index s = o(k+ 1) exists, then we stop with the elements )’, 1 < i < k. The elements
v, 1 <i<m< pu, constructed in this way clearly satisfy properties (i) and (ii) of
Proposition 1.1. By construction, )’ is a periodic point of f of period p, = ¢,,.
Expressions (1.10) and (1.11) remain true for y’, 1 < i < m, so properties (iv) and (vi)
of Proposition 1.1 are satisfied. Our construction insures that property (v) is satisfied.
Moreover, if we note that whenever {/”(z"):v = 0} and { /*(z’):v > 0} have nonempty
intersection then ¢, = ¢;, we see that

lem ({p;:1 <i<my) =lem({g:l <i<u)=p

so property (iii) remains true. O

Proposition 1.2 provides the motivation for the definition of admissible arrays
which is given later.

PROPOSITION 1.2.  Let W, g, V and f be as in Proposition 1.1. Assume that y', 1 <
i < m, are elements of 'V with the following properties:
(i) The element y' is an irreducible element of V for 1 < i< m.
(i) A, (¥ < h,(y™) for 1 < i< m, where h,() is the height function of equation
(1.4).
(iii) For 1 <i<j<m, the sets {f*(y"):k = 0} and {f*('):k = 0} are disjoint.
(iv) For 1 <i<j< m, the elements y' and y' are not comparable.

Let p, denote the minimal period of y' as a periodic point of f. For 0 <j < p,
select a, e I(f'(y")) and define a; for general je Z by making the map j— a,; periodic
of period p,. Define £ = {ieZ:1 < i < n}, a set with n elements. Then the semi-infinite
array a;, 1 <i<m,jeZ, has the following properties:

ijo
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(@) azeXforl <i<m,jel, anda; # a, for0 <j<k<p,and1 <i<m. The
map j—— ay; is periodic of minimal period p,, with 1 < p, < n.

d) Ifl<m <my,<..<m,, <misany increasing sequence of (r+ 1) integers
between 1 and m, and if
(1.13)

a, . =dad
m;s; myqt;

for 1 <i<r, then

i(tf—si) #0 mod(p), (1.14)

where p = ged ({p,,:1 <i<r+1}), that is, the greatest common divisor of {p,, :1 <1
<r+1).

Proof. Lemma 1.1 implies that 1 <p, <n and that I,(f'(y")) n I, (f*()") is
empty for 0 < j < k < p,. This gives property (a) of the numbers a,,.

Next suppose that equation (1.13) is satisfied. If p = ged (p,, . P> -5 P, )> then
elementary number theory implies that there are integers 4,, A,, ..., 4,,, with

r+1

=1

Assume, by way of contradiction, that for s, and ¢, as in equation (1.13),

i(ti—si) = 0 (mod p). (1.16)

Equations (1.15) and (1.16) imply that there are integers B,, B,, ..., B,., with

r+1

i(tf,—sz-) =Y. Bip,, (1.17)

i=1

By assumption (i), we know that f*(y™):=n and f"(y™+):={ are irreducible
elements of V, and # # { because of assumption (iii). By (1.13), /,,(#) and [,,({) have
nonempty intersection, so Lemma 1.1 implies that # and { are comparable. However,
we see from assumption (ii) that

hy (1) < hy(0)

n<d (1.18)

m

so we conclude that

Because f~% is order-preserving on ¥ and f~Bi#m(y™) = y™i we deduce from
expression (1.18) that

Y < flmSDE P y(piisa), (1.19)

If we apply expression (1.19) repeatedly and recall that f7 is order-preserving on V for
all integers j, then we obtain

r

Yy, vi= Y (=)= ), Bz‘pmg

i=1 i=1
Because f*(y™r) = y™r+1, where u = — B, P, » W€ conclude that
r r+1
yml <fv+,u(ym,+1)’ V +'u = Z ([7, _Si) — Z Bipmi =0. (1 20)

i=1 i=1
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Expression (1.20) implies that y™ < y™+, which contradicts assumption (iv). O

We now wish to define an admissible array on n symbols as a semi-infinite
collection of numbers (a,;) which satisfies properties (a) and (b) of Proposition 1.2. It
is convenient to give a slightly more general definition.

DEerINITION 1.7.  Suppose that (L, <) is a finite, totally ordered set and that X is
a finite set with n elements. let Z denote the integers, and for each ie L suppose that
¢, Z — X is a map. We shall say that {¢,:Z - X|ieL} is an admissible array on n
symbols if the maps ¢, satisfy the following conditions:

(i) For each ie L, the map ¢,:Z—— X is periodic of minimal period p,, where

1 < p;, < n. Furthermore, for 1 <j < k < p, we have ¢,(j) # ¢,(k).

@) If my <m, < ... <m,, is any increasing sequence of (r+ 1) elements of L
and if

¢mi(si) = ¢miﬂ(ti) 1 < l < r’ (121)
then it follows that
Z (t;—s) £ 0 mod(p), (1.22)
i-1

Where p = ng (pml’pmz’ A ’pmr+1)'

Note that the concept of an admissible array on n symbols depends on the
ordering < on L. Usually, L is a finite subset of the integers with the usual ordering.
In fact, suppose that (L, <) is a finite, totally ordered set, X is a set with n elements
and {¢,:Z - X|ie L} is an admissible array on n symbols. Let (L,, <,) be a totally
ordered set with |L| = |L,| and let X, be a set with |Z,| = |Z|. Suppose that ¢:L, - L
is an order-preserving, one—one map (such a map always exists) and 0:X - X, is a
one—one map. For i€ L,, define ¢,:Z > %,, by

$:()) = 0 ().

The reader can check that {¢,:Z — Z,:i€ L,} is also an admissible array on n symbols.
By this observation, if |L| =m, and {¢,:Z > X|ie L} is an admissible array on n
symbols, then we can assume, if we wish, that L = {je Z:1 < j < m} with the usual
ordering and £ = {jeZ:1 <j < n}.

If {¢,:Z ->X|ieL} is an admissible array on n symbols and L, = L with the
ordering inherited from L, then we call {¢,:Z——X|ieL,} a subarray of
{¢,:Z——X|ieL}. One can check that {¢),:Z——Z|ie L} is an admissible array on
n symbols.

If the p,, ie L, are as in Definition 1.7, then we are interested in the possible
numbers lem ({p,|ie L}) which can arise from different admissible arrays on n
symbols.

DEerINITION 1.8.  Suppose that {g,| 1 < i < m} = Sis a set of positive integers with
l<g,<nforl<i<mand g, #q, for 1 <i<j<m. We shall say that Sis array-
admissible for n if there exist a totally ordered set (L, <) with |L| = m, an admissible
array on n symbols {¢,:Z——X|ie L} such that ¢, has minimal period p,, and a
one-one map o of {ieZ:1 < i< mj} onto L such that g, =p,_,.

DEerFINITION 1.9.  Q(n) = {lem(S): S is array-admissible for #}.
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REMARK 1.1. Let 0(n) denote the number of primes r < n. In computing Q(n), it
suffices to consider sets .S which are array-admissible for n and which satisfy |.S| <
O(n). In order to see this, suppose that ge Q(n) and let {¢p,:Z——Z|ie L} be an
admissible array on n symbols such that ¢, is periodic of period p, < n and ¢ = lcm
({p;lie L}) and p, # p, for i # j. If / is a prime factor of g, then we know that 1 < n.
If t = 1(4) is the largest integer such that 2’| ¢, then there exists i = i(A) e L such that
2| pygy- 1f we define L, = {i(A)| A is a prime factor of ¢}, then we know that |L | < 0(n),
{¢;:Z—X2|ieL,}, is an admissible array on n symbols and ¢ = lem ({p,|ie L,}).

We have defined the sets P(17) and P*(n) (Definition 1.3), P(n) (Definition 1.4) O(n)
and O*(n) (Definition 1.6) and Q(n) (Definition 1.9). Theorem 1.4 summarizes what
we have proved about these sets.

THEOREM 1.4.  For every positive integer n we have Q(n) < Q*(n) and
P(n) = P(n) = P*(n) = Q*(n) = O(n). (1.23)

Proof. By using Theorem 1.1 and Theorem 1.2, we see that it only remains to
prove that Q*(n) = Q(n). If pe Q*(n), then there exist a finite lower semilattice V" and
a lower semilattice automorphism f: '—— J/ which has a periodic point ¢ of minimal
period p. Furthermore, as in Proposition 1.1, there are irreducible elements y'e V, 1
< i < m, which satisfy properties (i)—(vi) in Proposition 1.1, and we can assume that
V is generated by {f/(¢)|j=0}. Define L={ieZ:1<i<m} with the natural
ordering and X = {jeZ:1 <j<n} and select a,€l,(f(y") as in Proposition 1.2.
Proposition 1.2 implies that if 0,: Z —— X is defined by 0,()) = a,;, so that 0, is periodic
of period p, with 1 < p, < n, then {#,:Z—— X |ie L} is an admissible array. Property
(iii) in Proposition 1.1 implies that

p=lem({p;:1 <i<m)). (1.24)

By possibly taking a subarray, we can also assume that p, # p, for 1 <i <j < mand
that equation (1.24) remains true. Thus we see that pe Q(n) and Q*(n) < Q(n). [

ReEMARK 1.2. If fe%(n), the point £€ K" is a periodic point of £, and L is the
lattice generated by 4 = {f(£):je Z}, then it is not necessarily true that f{(L) = L or
that f| L is a lattice homomorphism. Nevertheless, the first author has shown in
separate work that P*(n) < O(n).

Theorem 1.4 raises many natural questions. Basically, one can ask whether any of
the inclusions in Theorem 1.4 can be replaced by equalities, and if not, to what extent
various sets differ.

QUESTION 1.1. Is it true that P(n) = P*(n) foralln>=1?

QUESTION 1.2.  Is it true that P(n) = Q(n) for all n = 1 or that P*(n) = Q(n) for all
n=1?

QUESTION 1.3.  Is it true that P(n) = Q*(n) for alln = 1 or that P*(n) = Q*(n) for
alln>=1?

QUESTION 1.4. Is it true that P(n) = Q(n) for all n = 1 or that P*(n) = Q(n) for all
nx=1?
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QUESTION 1.5. Is it true that P(n) = P(n) for all n > 1?

Note added in proof. Since this paper was submitted in May 1995, several of these
questions have been answered. It is proved in [18] that Q*(n) = O(n) = O(n) =
P* (n) for all n > 1, and it is proved in [12] that P(n) = P(n) = Q(n) for 1 < n < 50,
but that P(78) # Q(78).

2. Properties of admissible arrays
If, for a given n, one can prove that P(n) = Q(n), then Theorem 1.4 implies that

P(n) = P(n) = P¥(n) = O(n) = Q*(n) = Q(n).

In subsequent work, the first author and Sjoerd Verduyn Lunel [12] have taken this
approach and proved that P(n) = Q(n) for n < 50. The difficulty in proving such a
result is that the definition of Q(n) is indirect and clumsy to work with. In the
remainder of this paper we establish further theorems about admissible arrays and
about sets S which are array-admissible for n. These theorems, together with other
ideas developed in [12], have allowed it to be proved that P(n) = Q(n) for 1 <n < 50
and have also yielded further progress on questions raised in Section 1.

THEOREM 2.1. Let L ={ieZ:1< < m+1} with the usual ordering and let X
denote a set with n elements. Assume that 0 Z—-%| ie L} is an admissible array on n
symbols If B, = {9 ()):jeZ}, then assume that B,NB,,, # & for 1 <i<m and write

|B | (so that 0 is periodic with mznzmalperzodp) Letr, > 1andr, > 1 be integers,
and define r = r,r,. Assume that, for 1 <i<m+2,

ged (Pivs P 7. 2.1

(We use the convention that p, =1 and p,,., = 1 in expression (2.1)). Assume also that
there exists an integer k, | <k <m+1, such that

ged (P, Py and  ged (Pyys Pp) |1y (2.2)

Then it follows that
m+1=|L<rr,—r,+1. (2.3)

Proof. Because B, N B,,, # J, there exist integers s, and 7, with
éi(sz‘) = éz‘+1(li) l<i<m.

Define 6, = 5,—t, and note that expression (2.1) and the definition of an admissible
array imply that

Y 0,20(modr) 1<Ai<v<m. (2.4)

Note that we can associate to any admissible array on n symbols{0,: Z — X |ie L}
a reversed array on n symbols by reversing the ordering on L. Specifically, if < denotes
the ordering on L, define a new ordering <’ on L by a <’b if and only if b < a. If
L’ denotes the set L with the new ordering <’, itis clear that{0,:Z ——X|ie L'} is also
an admissible array on n symbols, which we call the reversed array. If k is as in the
statement of Theorem 2.1, we see that, possibly by replacing the original array with
the reversed array, we can assume without loss of generality that k > 1. (Here we also
note that Theorem 2.1 is obviously true if m = 0, so we can assume that m > 0).

By virtue of the above remarks we shall assume that k> 1 and m > 0. For
1 < 4 < m, we define integers 7, by

=20 (2.5)
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We claim that, for l <v<mand v#k—1,
Ny Z 1, (mod r,). (2.6)
To prove equation (2.6), first note that for 1 <v <k—1 we have
k-1
’7\ = Z 51"
i=v+1
Our assumptions imply that
8ed (D1 Prszs > P | 1 (2.7)
so the definition of admissible arrays and expression (2.7) imply that
Neor—1, Z0 (modr)) 1<v<k—1.

If k—1 < v <m, we have

My = Zé (2.8)

Our assumptions imply that

ged (Pys Prsrs -+ L) | 11 2.9)

s0, by using the definition of an admissible array and expression (2.9), we conclude
that
n,—1_, Z0 (modr,) k—1<v<m

Thus we have established equation (2.6).
Define k, = k—1 and let = be the natural map of Z onto Z/(r) which takes an
integer j to its equivalence class mod r. Define I' = Z by

={n;:1 l<ml¢k1}u{77). +jr:0 < Jj <yl

By using equations (2.4) and (2.6), we see that I' has m—1+r, elements and that
7| is one—one. We further claim that n(y) # 0 for yeI'. If n(y) = 0 for some T,
then either (i) #, = 0(modr) for some i # k,, or (ii) N, HJr = 0(modr) for some
J» 0 <j <r,. In the first case, we find that 5, = 0 (mod r), which contradicts equation
(2.4). In the second case, we see that

e, =0 (modr,).
We deduce that

k-1
v =Y, 0,=0 (modr,). (2.10)
i=1
However, we know that
ng (p1’ o th,) | rl'

Thus equation (2.10) is impossible, so we have proved that z(y) # 0 for yel.
It follows that 7 is a one—one map of T into (Z/(r)—{0}), a set with r — 1 elements.
We conclude that
IN=m-—1+r,<r—1

and Theorem 2.1 is proved.

Theorem 2.2 is a straightforward consequence of Theorem 2.1, but it is often
easier to apply.
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THEOREM 2.2.  Suppose that (L, <) is a finite, totally ordered set, that ¥ is a set
with n elements, and that {¢,:Z — X |i€ L} is an admissible array on n symbols. Let p,
denote the minimal period of ¢, (so that 1 < p, < n), and assume that p, # p; for all
ije L with i #j. Let S ={p;|i€ L}, and, for each p,€ S, define B, =X by

B, =ip(NljeL}. (2.11)
Then the following conditions are satisfied:

(A1) |B,|=p for all peS and B,nNB,= & for all p,qeS such that p # q and
(B1) There does not exist a set R = S with the following properties:

(a) |R| =r+1, where r > 1, and ged (p, q) | r for all p,qe R with p # q.

(b) B,nB,# & for all p,qeR.
(C1) There does not exist a set R = S with the following properties:

@) |R|=r,r,—r,+2, where r, > 1 and r, = 1 are integers.

(b) If r=r,r,, then gcd(p,q)|r for all p,qe R with p # q.

(c) There exists pe R with ged (p,p)|r, for all pe R—{p}.

(d) B,nB,# & for all p,qeR.

Proof. The fact that |B,| = p for all pe S'is part of the definition of an admissible
array. If i,je Land i <jand B, N B, # (&, then there exist integers s and ¢ with ¢,(s)
= ¢,(1). By the definition of an admissible array, we obtain

1—s#0 (modp) p:=ged(p,p).

This equation is impossible if p = 1, so, if ged (p;, p;) = 1 for i # j, then it must be that
B, n Bpj = (. This proves condition (A1l).

Note that condition (B1) is a special case of condition (C1) with r, =1 and r =
r, 7, = r, in condition (C1). Thus it suffices to prove condition (C1). Assume, by way
of contradiction, that a set R as in condition (C1) exists. Let L, = {ie L:p,€ R}, and
define |L,|=m+1. If L={ieZ|1 <i<m+1}, then let a:]i—»L1 be a one—one,
order-preserving map. Define 0, = ® ) SO that {0,:Z > |ie L} is an admissible array
on n symbols. Define B, by

B,=10()\jez} =B,
Condition (C1) insures that
BnB #g forallijeL.

If we define p, = |B|| = P, then condition (C1) implies that expression (2.1) is
satisfied. If ke L is selected so that j, = p (where p is as in condition (C1)), then
condition (C1) implies that expressions (2.2) are satisfied. It follows that all the
hypotheses of Theorem 2.1 are satisfied, so

|R| = |L,| = |l:| =m+1<rr—r+l
However, we assumed that |R| = r, r,—r,+2, a contradiction.
Given a set Sc{jeZ|1 <j<n}, we want to find verifiable conditions which

insure that S is not array-admissible for n. We now show how Theorem 2.1 and
Theorem 2.2 can be applied to obtain such conditions.

DEerINITION 2.1. A set S < {1,2,...,n} satisfies condition A for the integer n if S
does not contain a subset Q such that the following hold:
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(1) ged(a,p) =1 for all a, fe Q with o # f.
(i) Y o> n.

COROLLARY 2.1.  Assume that S <{1,2,...,n} is array-admissible for n. Then S
satisfies condition A for the integer n.

Proof. By definition, there exists a finite, totally ordered set (L, <), a set £ with
n elements, and an admissible array on n symbols {¢,:Z ——X|ie L} such that ¢, is
periodic of minimal period p, and S = {p,:ie L}. Assume, by way of contradiction,
that S contains a set Q as in Definition 2.1. If B, is defined by equation (2.11), then
Theorem 2.2(A1) implies that |B,| = p and B, n B = forall p,ge Q with p # ¢. It

follows that
UB,=X|B

PEQ DPEQ

p| = N

This is a contradiction, because | ) v B, = Z and [Z| = n.

In order to state our next results, we need to define certain covering properties of
collections of finite sets. As usual, if X is a set, then 2* denotes the collection of all
subsets of Z.

DEerFINITION 2.2, Suppose that n and r are positive integers with r+ 1 < n, the set
Y is a set with n elements, S < {jeZ:1 <j<mn}isaset with |S|=r+1,and S, < S
is a set with |S,| < r+1. Suppose that I':S — 2% is a map such that

IC(p)l=p (2.12)

forall pe S. We say that I has the (n,r; S,) covering property if there exists a set 7' with
I T)=r+1,S,cTc S and

I'(p)nT(q)# & forallp,qeT.

We say that S has the absolute (n,r;S,) covering property if, whenever X is a set with
n elements and I': S — 2% is a map which satisfies equation (2.12), then T has the
(n,r;S,) covering property. If S, is empty, we talk about the (n,r) covering property
rather than the (n,r; (J) covering property.

We shall not study here the general question of when a set S = {jeZ:1 <j< n}
has the absolute (n,r;S,) covering property. Proposition 2.1 gives an example of a
sufficient condition for the absolute (n, r) covering property.

PROPOSITION 2.1.  Suppose that S={p,:1 <i<m} is a collection of positive
integers p, with 1 <p,<n for 1 <i<m and p,# p, for 1 <i<j<m. Let r be a
positive integer and assume that

m

d.p; > rn. (2.13)

i=1
Let X be a set with n elements and let T': S — 2* be a map such that |T'(p)| = p for all
pES. Then there exist r+ 1 integers 1 < i, <i, <...<i.,, <m(sothatr+1 < m)with

r+1

NTp,) # 2. (2.14)
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In particular, S satisfies the absolute (n,r) covering property.

Proof. Let y, denote the characteristic function of I'(p,), so that y,(x) =1 if xe
I'(p,) and y,(x) = 0 if x¢I'(p,). Assume that Proposition 2.1 is false. Then, for every
xeX, we have

Z Xi(x) <
i=1
It follows that

Sr= Y Y=Y Yaw<m,

i=1 weX reX i=1

and this contradicts expression (2.13).

We can now give another useful condition on sets of integers S < {jeZ:1 <j <

n}.

DErFINITION 2.3. A set S < {jeZ:1 < j < n} satisfies condition C" for n if S does
not contain disjoint subsets Q and R with the following properties:
(1) ged(a,p) =1 for all xeQ and fe QU R with o # f5.
(i) There are integers r, > 1 and r, > 1 such that ged (o, f) |7, r =1, r,, for all
o, fe R with a # f.
(iii) There exists y, € R such that ged (o, y,)|r, for all xe R, o # p,.
(iv) The subset R has the absolute (n*,r, r,—r,+ 1;{y,}) covering property, where

n*=n—) .00

We allow Q or R to be empty in Definition 2.3. If R is empty, conditions (ii) and
(ii1) are vacuous, and we interpret condition (iv) as meaning that

n<)y o

oaeQ

Thus condition C” gives condition A (Definition 2.1) by taking R = ¢§. We have
preferred to state condition A separately, however.

If Q is empty, condition (i) in Definition 2.3, is vacuous, and we interpret n* =
n in condition (iv).

Condition C” may seem unnatural, but we see below that if a set S < {jeZ:1 <
Jj < n} does contain subsets Q and R as in Definition 2.3, then S'is not array-admissible
for n. Furthermore, we see that condition C” implies a number of simpler conditions
which insure that S is not array-admissible for n.

COROLLARY 2.2. Assume that S < {jeZ:1 <j<n} is array-admissible for n.
Then S satisfies condition C" for n (see Definition 2.3).

Proof. Assume, by way of contradiction, that there exist disjoint subsets Q and
R of S as in Definition 2.3. Because S is array-admissible for n, there exists an
admissible array {¢, : Z —— X | i€ L} such that |Z| = n, ¢, is periodic of minimal period
p; forieL, the set S ={p,:ie L}, and p, # p, for i # j. For each p,e S, we let B, < X

be given by
B, =ipj):jeZ;

so |B,| = p,. We define B, = (J4eo B,- By using Theorem 2.2(A1) we see that |B,| =
Y09 and B,n B, = F for all pe R. If we define £, = Z— B,, it follows that [Z,| =
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n* and B, = X, for all pe R. We define m = r, r,—r,+ 1. Because R has the absolute
(n*,m;{y,}) covering property, there exists a subset R, = R such that |R,| =m+1, y,
eR, and B, N B, # & for all p,qe R,. However, the existence of R, contradicts
Theorem 2.2(Cl).

Definition 2.4 gives a condition which is essentially a special case of condition C”
but which is adequate for many applications.

DErFINITION 2.4, A subset S < {1,2,...,n} satisfies condition B’ for n if S does not
contain disjoint subsets Q and R which satisfy the following properties:
(1) ged(a,p) =1 for all ke Q and fe QU R with o # f5.
(i1) There exists an integer r > 1 such that ged (e, §) | r for all o, fe R with a # f5.
(iii) R has the absolute (n*,r) covering property, where n* =n—3 ..

If Q is empty, then Definition 2.4(i) is vacuous and n* = n. If R is empty, property
(ii) is vacuous and we interpret property (iii) as meaning that n < ), a.

COROLLARY 2.3. Assume that S < {jeZ:1 <j<n} is array-admissible for n.
Then S satisfies condition B’ for n (see Definition 2.4).

Proof. Assume, by way of contradiction, that there exist disjoint subsets Q and
R of S as in Definition 2.4. The proof now proceeds exactly as in the proof of
Corollary 2.2, except that, at the last stage, Theorem 2.2(B1) is contradicted. The
details are left to the reader.

If S is an array-admissible set of integers, then we have derived constraints on S
by using facts about admissible arrays. In [9], admissible arrays were never defined.
However, various ad hoc constraints on sets of integers were obtained. We show that
all of the constraints obtained in [9] are special cases of conditions A, B” and C’.
Condition A itself has already been introduced in [9], but we need to recall other
definitions from [9]. We request the reader’s indulgence for a collection of complicated
definitions.

DEFINITION 2.5 (compare [9]). A set Sc{jeZ:1 <j<n} is said to satisfy
condition B for n if S does not contain disjoint subsets Q and R with the following
properties:

(1) ged(a,p) =1 for all ke Q and fe QU R with o # f5.

(i) The subset R has r+ 1 elements, r > 1, and gcd (o, ) | r for all a, fe R with
o #p.

(iii) For all o,fe R with o # B, a+f > n*=n—3 7.

Our condition B is a slight generalization of [9, condition B].

DEFINITION 2.6 (compare [9, p. 362]). We say that S < {jeZ:1 < j < n} satisfies
condition C for n if there do not exist disjoint subsets Q and R of S which satisfy the
following:

(1) ged(a,p) =1 for all ke Q and fe QU R with o # f5.

(ii)) There are integers r, > 1 and r, > 1 such that ged (a, ) |r, r = r, 1, for all

o, fe R with a # .
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(iii) There exists y, € R such that ged (o, y,)|r, for all e R with a # y,.
(iv) [Rl = rry—ry+2and a4+ f > n*=n—) ,q for all o, fe R with o # f5.

Condition C in Definition 2.6 is a direct generalization of [9, condition C, p. 362].
In [9] it is assumed that r, =r, = p.
For the reader’s convenience, we also recall [9, condition D].

DErFINITION 2.7[9]. Aset S < {jeZ:1 < j < n} satisfies condition D for nif S does
not contain a set R with the following properties:
(1) |R|=m+r—1, where m > 2 and r > 2, and ged (p, q)|r for all p,ge R with
P #q.
(i1) There exist disjoint subsets R, and R, of R with R, U R, = R, |R,| = m and
IRyl =r—1, ) cp p >n, and p+q > n for all pe R and g€ R,.

At the risk of straining the reader’s patience, we give a final definition which is in
the same spirit.

DEerFINITION 2.8. Suppose that S < {jeZ:1 <j<n}. We say that S satisfies
condition E for n if S does not contain disjoint subsets Q and R with the following
properties:

(1) ged(a,p) =1 for all ke Q and feQ U R with o # f5.
(i1) There is an integer r > 1 such that ged (e, f) | r for all a, fe R with o # f5.
(i) Y pepf > rn*, where n*=n—3%  _,o.

The motivation for Definitions 2.3-2.8 is provided by Theorem 2.3.

THEOREM 2.3.  Assume that S < {jeZ:1 < j < n} is array-admissible for n. Then
S satisfies conditions A, B’, C’, B, C, D and E for n.

Proof. We have already proved that S satisfies conditions A, B’ and C’
(Corollaries 2.1-2.3). To prove that S satisfies condition B, it suffices to prove that if
S does not satisfy condition B, then it does not satisfy condition B". Thus assume that
S does not satisfy condition B, and let Q and R be as in Definition 2.5. To show that
S does not satisfy condition B’, it suffices to prove that R has the absolute (n*,r)
covering property. Thus let X, be a set with n* elements and let ': R——2* be a
map such that [I'(«)] = o for all ae R. We assume that o+ f > n* for all o, f€ R with
o # B, so we must have I'(x) N I'(f) # &, and we are done.

In order to prove that S satisfies condition C, it suffices to prove that if it does not
satisfy condition C, then it does not satisfy condition C’. Thus assume that S does not
satisfy condition C, and let Q and R be as in Definition 2.6. Comparison with
Definition 2.3 shows that we obtain a contradiction if we prove that R has the
absolute (n*,r, r,—r,+1;{y,}) covering property. Using Definition 2.6(iv), select a
set R, = R such that |R,| =r,r,—r,+2 and y,e R,. Let X, be a set with n* elements
and let I': R — 2% be any map such that |T'()| = o for all € R. It is assumed that o+ 8
> n* for all o, fe R, o # f3, so necessarily I'(x) N T'(f) # & for all a,feR,. This
proves that R has the absolute (n*,r, r,—r,+1;{y,}) covering property.

In order to prove that S satisfies condition D, it suffices to prove that if S does not
satisfy condition D, then it does not satisfy condition B". Thus assume that S does not
satisfy condition D, and let R, R,, R,, m and r be as in Definition 2.7. Take Q to be



ADMISSIBLE ARRAYS AND A GENERALIZATION OF PERRON—FROBENIUS THEORY 543

the empty set. Referring to Definition 2.4, we see that to obtain a contradiction it
suffices to prove that R has the absolute (n, r) covering property. Let  be a set with
n elements and, for each ae R, let I'(«) = £ be a set with a elements. Because we
assume that

Y o> n,

R,

there exist o, o, € R, with o, # o, and I'(a;) N ['(«r,) # . Because oo+ > n for all o
€ R and fe R, with a # f, we have I'(0) N T'(f) # & for all such o and f. If S =
{or;, 0, UR,, then S has r+1 elements and I'(x) NI'(f) # & for all a,feS. This
shows that R has the absolute (n, r) covering property.

It remains to prove that S satisfies condition E. We argue by contradiction and
suppose that S does not satisfy condition E, so that there exist disjoint subsets Q and
R of S as in Definition 2.8. We know that S satisfies condition B’, and, comparing
Definition 2.8 and Definition 2.4, we see that, in order to obtain a contradiction, it
suffices to prove that R has the absolute (n*,r) covering property. However,
Proposition 2.1 implies that R has the absolute (n*, r) covering property.

REMARK 2.1. Theorems 2.1-2.3 play an important role in [12], where, among
other results, it is proved that P(n) = Q(n) for 1 < n < 50. The sets P(n) are relatively
easy to determine (with the aid of a computer), and we know that P(n) = Q(n) for all
n. If S {jeZ|1 <j< n}, then we need only check whether S is array-admissible for
nwhen lecm (S) ¢ P(n), and Theorems 2.1-2.3 provide a way of showing that most such
sets are not array-admissible.

TaBLE 1. Factorization of largest element of Q(n) for n < 50.

n Largest element of Q(n) n Largest element of Q(n)

2 2 26 24-3-5-13

3 3 27 24.32.5.7

4 22 28 2%-3-5-7-11

5 2-3 29 2%-3-5-7-11

6 223 30 2%-3-5-7-11

7 223 31 24.3-5-7-11

8 283 32 2%-3-5-7-11

9 2%-3 33 2°-3-5-7-11

10 2%-3-5 34 2%-3-5-7-11

11 2%-3-5 35 2°-3-5-7-11

12 2%-3-5 36 24-3%2.5-7-11

13 2%-3-5 37 24.32.5-7-11

14 2%-3-7 38 24-32.5-7-11

15 2%-32-5 39 2°-3-5-7-17

16 24-3-7 40 25-3%-5-7-13

17 2%-3-5-7 41 2°-3%-5-7-13

18 2%-3-5-7 42 2%-3%:5-7-11-13

19 2%-3-5-7 43 2%-3%-5-7-11-13

20 24-3-5-7 44 24-3-5-7-11-13

21 24.3-57 45 2°-3-5-7-11-13

22 24-3-5-7 46 2%-3-5-7-11-13

23 24.3-57 47 2°-3-5-7-11-13

24 24-3-5-11 48 24-32.5-7-11-13

25 24:3-5-11 49 24.32-5-7-11-13
50 24-32.5-7-11-13
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REMARK 2.2. In [9] and elsewhere, the first author has computed the largest
element of P*(n) by hand for n < 32. As already noted, a computer-assisted
calculation of Q(n) for n < 50 has been obtained in [12]. For the reader’s interest, we
provide Table 1, which shows the factorization of the largest element of Q(n) for n
< 50. We refer the reader to [12] for further details of the computation of Q(n) and
the theorems which facilitate the computation.
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