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Abstract

Let K be a closed cone with nonempty interior in a Banach space X. Suppose that f : intK → intK is
order-preserving and homogeneous of degree one. Let q :K → [0,∞) be a continuous, homogeneous of
degree one map such that q(x) > 0 for all x ∈ K \ {0}. Let T (x) = f (x)/q(f (x)). We give conditions on
the cone K and the map f which imply that there is a convex subset of ∂K which contains the omega limit
set ω(x;T ) for every x ∈ intK . We show that these conditions are satisfied by reproduction–decimation
operators. We also prove that ω(x;T ) ⊂ ∂K for a class of operator-valued means.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be a bounded, open convex set in a finite-dimensional Banach space X and let d denote
Hilbert’s projective metric on D. (See Section 2 for a definition of d .) Let f :D → D be a
nonexpansive map in the metric d (so d(f (x), f (y)) � d(x, y) for all x, y ∈ D) and assume that
f has no fixed points in D. In this situation, A.F. Beardon [4] has proved the following theorem,
which is the starting point for this paper.
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Theorem 1.1. (Beardon [4].) Assume, in addition, that D is strictly convex (so ∂D contains no
line segments). Then there exists a z ∈ ∂D such that limk→∞ f k(x) = z for all x ∈ D.

In Theorem 1.1 and elsewhere in this paper, f k will always denote the composition of f

with itself k times. Note that Theorem 1.1 is a direct analogue of the classical Denjoy–Wolff
theorem for analytic maps of the unit disc in C into itself. If D need not be strictly convex, one
must consider ω(x;f ), the omega limit set of x under f , the collection of limit points of the
sequence 〈f k(x) | k � 1〉. A result of Nussbaum [16] proves that ω(x;f ) ⊂ ∂D, and Karlsson
and Noskov [8] have proved

Theorem 1.2. (Karlsson and Noskov [8].) For every x ∈ D, there exists z ∈ ω(x;f ) ⊂ ∂D such
that (1 − t)z + ty ∈ ∂D for all y ∈ ω(x;f ) and 0 � t � 1.

The Karlsson–Noskov result is very far from optimal, but it can be used to derive Beardon’s
theorem. Infinite-dimensional generalizations of Theorem 1.2 are given in [19].

If K is a closed cone with nonempty interior intK in a Banach space X, one can define
(see Section 2) Hilbert’s projective metric d on intK . It is well known that if f : intK → intK
is homogeneous of degree one and order-preserving with respect to K , it is nonexpansive in
the projective metric d . If q :K → [0,∞) is a continuous function which is homogeneous of
degree one and strictly positive on K \ {0}, one can define Σ = {x ∈ intK | q(x) = 1} and define
T : Σ → Σ by T (x) = f (x)/q(f (x)). The map T is also nonexpansive with respect to d and f

has an eigenvector in intK if and only if T has a fixed point in Σ . Many problems in analysis and
applications, e.g., DAD-theorems [12] and diffusions on fractals [10], are related to the question
of whether f has an eigenvector in intK . However, even if X is finite-dimensional, this question
may be very difficult: see [16] and [17] for some problematic classes of examples (e.g., M−)
when X = R

n and K = R
n+.

If T has a fixed point x∗ in Σ , X is finite-dimensional, and K is polyhedral, ω(x;T ) is well
understood; it is known (see [18]) that for each x ∈ Σ , ω(x;T ) is a periodic orbit of T and often
(see [16]) equals {x∗}. Compare, also, results in [1]. Note that if X is finite-dimensional, we can
take q ∈ X∗; Σ is then convex and corresponds to D in Theorems 1.1 and 1.2.

If T has no fixed points in Σ , what can be said about ω(x;T )? In almost all applications in
analysis, Σ is not strictly convex, Theorem 1.1 is not applicable and Theorem 1.2 is somewhat
weak. Motivated by these deficiencies, Lins [11] has proved the following.

Theorem 1.3. (Lins [11].) Let K be a polyhedral cone with nonempty interior in a finite-
dimensional Banach space X. Let q ∈ X∗ be such that q(x) > 0 for all x ∈ K \ {0} and define
Σ = {x ∈ intK | q(x) = 1}. Assume that T :Σ → Σ is nonexpansive with respect to Hilbert’s
projective metric d and T has no fixed points in Σ . Then there exists a closed convex set
U ⊂ clΣ \ Σ such that ω(x;T ) ⊂ U for all x ∈ Σ .

Lins also shows that if K = R
n+, ω(x;T ) may comprise an entire face of clΣ \ Σ .

Prior to Lins’ theorem, Nussbaum and Karlsson independently conjectured that Theorem 1.3
is true without the assumption that K is polyhedral. As of this writing this conjecture remains
open. However a resolution is important, for there are problems in analysis where the cone K is
neither polyhedral nor strictly convex.

Here we give a generalization of Theorem 1.3 to include some classes of cones which are
neither polyhedral nor strictly convex. Our motivation comes from so-called reproduction–
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decimation operators, which arise in the theory of fractal diffusion [10]. General reproduction–
decimation operators are order-preserving, homogeneous of degree one maps Λ : intKV →
intKV , where KV is neither polyhedral nor strictly convex; and it is not in general known when
these maps have eigenvectors in intKV (see [13–15,24]). We should emphasize that our results
apply to a broad class of order-preserving, homogeneous of degree one maps and there are prop-
erties of reproduction–decimation operators (see Remark 4.3) which may not apply to these
general maps.

A rough outline of this paper may be in order. In Section 2 we give some definitions and
present Theorem 2.1, which generalizes Theorem 1.3 and is our basic abstract result. In Section 3,
we discuss cones of positive semi-definite forms and discrete Dirichlet forms and show that the
geometric hypotheses of Theorem 2.1 are satisfied in this case. In Section 4 we define a gen-
eral class of reproduction–decimation operators and apply Theorem 2.1 to obtain Theorem 4.1,
which is the Karlsson–Nussbaum conjecture for reproduction–decimation operators. Section 5
uses related ideas to establish Denjoy–Wolff results for maps which arise in the theory of op-
erator means (see [20] and references there). Some of the results in Section 5 are proved in the
infinite-dimensional case, which in general poses substantial technical complications (see [19]).
For the most part these complications are absent here.

2. Preliminaries

Let X be a Banach space. For any set U ⊂ X, we will use the notation coU to denote the
convex hull of U and clU to denote the closure of U in the norm topology on X. We will also
use the notation coU to denote cl(coU). A closed cone is a convex set K ⊂ X such that λK ⊆ K

for all λ � 0 and K ∩ (−K) = {0}. We let intK denote the interior of K . The closed cone K

induces a partial ordering �K on X as follows: for any x, y ∈ X, x �K y if y − x ∈ K . If there
are positive constants α and β such that

αx �K y �K βx (1)

then we say that x and y are comparable and we write x ∼K y. The relationship ∼K defines an
equivalence relation on K and the equivalence classes of the cone K under ∼K are called the
parts of K . Observe that for any points x, y ∈ intK , x ∼K y, thus the interior of K is a part.

When it is clear which cone K we refer to, we write � and ∼ instead of �K and ∼K . Follow-
ing the notation of [16] we define the Hilbert projective metric for points x ∼ y as

d(x, y) = log

(
M(y/x)

m(y/x)

)
(2)

where M(y/x) = inf{β > 0 | y � βx} and m(y/x) = sup{α > 0 | αx � y}. Note that d(sx, ty) =
d(x, y) for s > 0, t > 0, so d does not distinguish rays in K . If x, y ∈ K \ {0} and x and y are
not comparable, then we will define d(x, y) = ∞.

If D is a bounded open convex set in a Banach space X, K = {(t, tx) | t � 0, x ∈ clD} is a
closed cone in R×X with interior {(t, tx) | t > 0, x ∈ D}. If we identify D with {(1, x) | x ∈ D},
d gives a metric on D. In this case, Hilbert’s projective metric on D is often described using an
equivalent definition in terms of cross-ratios. See [7,8,16] for further details.

For any Banach space X, we let X∗ denote the dual space. If K ⊂ X is a closed cone, we let
K∗ = {ϕ ∈ X∗ | ϕ(x) � 0 for all x ∈ K}. If X is finite-dimensional and K has nonempty interior,
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then K∗ is a closed cone in X∗ which we call the dual cone of K . Using the dual cone we
may give an alternative formula for the Hilbert projective metric distance between two points
x, y ∈ intK :

d(x, y) = sup
χ,ψ∈K∗\{0}

log

(
χ(x)ψ(y)

χ(y)ψ(x)

)
. (3)

A polyhedral cone is a closed cone K in a finite-dimensional Banach space X for which there
is a finite collection of linear functionals θ1, . . . , θN ∈ X∗ such that K = {x ∈ X | θi(x) � 0, 1 �
i � N}. Note that if K is a polyhedral cone and intK �= ∅, then K∗ is also a polyhedral cone.
Suppose that K is a closed cone with nonempty interior in a Banach space X. Let U be a subset
of X, let Y be a Banach space and let K1 be a closed cone in Y . We say that a map f :U → Y

is order-preserving with respect to K and K1 if f (x) �K1 f (y) whenever x �K y. If K and K1
are obvious, then we shall say that f is order-preserving. A map f :U → Y is a homogeneous of
degree one if f (λx) = λf (x) for all x ∈ U and λ > 0.

Let d denote the Hilbert projective metric on intK and suppose that f : intK → intK is
homogeneous of degree one and order-preserving. It is an immediate consequence of Eqs. (1)
and (2) that f is nonexpansive with respect to d , that is d(f (x), f (y)) � d(x, y) for all x, y ∈
intK . Let q :K → R be a continuous, homogeneous of degree one map with q(x) > 0 for all
x ∈ K \ {0}. We define Σ = {x ∈ intK | q(x) = 1}. For any x ∈ Σ , let T (x) = f (x)/q(f (x)),
so that T :Σ → Σ . Note that d is a metric when restricted to Σ and the map T is nonexpansive
with respect to d .

For a map T :Σ → Σ which is nonexpansive with respect to d , we define the omega limit set
of x under T to be:

ω(x;T ) =
⋂
n�1

cl

( ⋃
k�n

T k(x)

)
(4)

where cl denotes the closure in the norm topology. If the Banach space X is finite-dimensional,
then clΣ is compact. This implies that ω(x;T ) is nonempty (of course, suitable compactness
conditions on f will also give this result). If T has a fixed point x∗ ∈ Σ , it immediately follows
that for any x ∈ Σ the iterates T k(x) are contained in the closed set B = {y ∈ Σ | d(x∗, y) �
d(x∗, x)}, so ω(x;T ) is contained in B . If Σ does not contain a fixed point then a result of
Nussbaum ([16, Theorem 4.2], also [19, Corollary 3.16]) proves that ω(x;T ) ⊂ clΣ \ Σ .

A horofunction h :Σ → R is a function of the form

h(y) = lim
k→∞

(
d
(
y, xk

) − d
(
x0, xk

))
(5)

where 〈xk | k � 0〉 is a sequence in Σ such that xk → clΣ \ Σ and such that the limit defining h

converges for all y ∈ Σ . A horoball is a sublevel set of a horofunction, that is, a set of the form
HR = {y ∈ Σ | h(y) < R} where h is a horofunction. See [9] for more details about horofunctions
and horoballs in the Hilbert geometry.

Suppose that K1 ⊂ K2 are closed cones with nonempty interiors in a Banach space X. Let
K∗

1 and K∗
2 denote the dual cones of K1 and K2, respectively. Note that K∗

2 ⊂ K∗
1 . The fol-

lowing lemma gives conditions under which the Hilbert projective metric on intK2 restricted to
intK2 ∩ K1 is almost equivalent to the projective metric of a polyhedral cone.
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Lemma 2.1. Let K1 ⊂ K2 be closed cones with nonempty interiors in a finite-dimensional
Banach space X. Let d2(·,·) denote Hilbert’s projective metric induced by K2. If there is a poly-
hedral cone Kp such that K1 ⊂ Kp ⊂ K2 and such that every element of K∗

p is comparable to
an element of K∗

2 in the partial ordering induced by K∗
1 , then there is a constant c � 0 such that

the Hilbert metric distance with respect to Kp , denoted dp(·,·), satisfies

d2(x, y) � dp(x, y) � d2(x, y) + c (6)

for all x, y ∈ K1 ∩ intK2.

Proof. Since K1 ⊂ Kp ⊂ K2 it follows immediately that d2(x, y) � dp(x, y) for all x, y ∈ K1 ∩
intK2. Since Kp is polyhedral, there is a finite collection {θi}i∈I ⊂ K∗

p \ {0} such that

dp(x, y) = max
i,j∈I

log

(
θi(x)θj (y)

θi(y)θj (x)

)

whenever x and y are comparable in the partial ordering induced by Kp . For each i ∈ I there is a
ϕi ∈ K∗

2 such that θi is comparable to ϕi in the partial ordering induced by K∗
1 . This means that

there is an εi > 0 such that εiϕi(x) � θi(x) � ε−1
i ϕi(x) for all x ∈ K1. Letting ε = mini∈I εi we

see that for each i, j ∈ I ,

log

(
θi(x)θj (y)

θi(y)θj (x)

)
� log

(
ε−2ϕi(x)ϕj (y)

ε2ϕi(y)ϕj (x)

)
= log

(
ϕi(x)ϕj (y)

ϕi(y)ϕj (x)

)
+ log

(
1

ε4

)

� d2(x, y) + log

(
1

ε4

)

since

d2(x, y) = sup
χ,ψ∈K2∗\{0}

log

(
χ(x)ψ(y)

χ(y)ψ(x)

)

and ϕi,ϕj ∈ K∗
2 . �

The following lemma is not difficult, and the proof can be found in several papers. See for
example [11].

Lemma 2.2. Let Kp be a closed polyhedral cone with nonempty interior in a finite-dimensional
Banach space X. Let q ∈ X∗ satisfy q(x) > 0 for all x ∈ Kp \ {0} and let Σp = {x ∈ intKp |
q(x) = 1}. Let dp denote the Hilbert metric on Σp . Then there is an isometric embedding Φ from
(Σp,dp) into a subset of a finite-dimensional Banach space (Y,‖ · ‖).

Suppose that Y is a finite-dimensional Banach space with norm ‖ · ‖. Let B∗ = {ϕ ∈ Y ∗ |
ϕ(x) � 1 ∀x ∈ Y with ‖x‖ � 1}. The following lemma appears in [11]. We include it here for the
reader’s convenience.

Lemma 2.3. Let y ∈ Y be an element with ‖y‖ = 1. Let 0 < λ < 1. For any R > r > 0 and any
z ∈ Y with ‖z‖ � R, if ‖z − Ry‖ � λR, then ‖z − ry‖ � R − (1 − λ)r .
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Proof. Suppose that ‖z − ry‖ > R − (1 − λ)r . By the Hahn–Banach theorem there is some
ϕ ∈ B∗ such that ‖z − ry‖ = ϕ(z − ry) > R − (1 − λ)r . Then, ϕ(z) − ϕ(ry) > R − (1 − λ)r so
ϕ(ry) < ϕ(z) − R + (1 − λ)r . Since ϕ(z) � ‖z‖ � R it follows that ϕ(ry) < (1 − λ)r and hence
ϕ(y) < (1 − λ). By scaling, (R − r)ϕ(y) = ϕ(Ry − ry) < (1 − λ)(R − r). So

ϕ(z − Ry) = ϕ(z − ry) − ϕ(Ry − ry) > R − (1 − λ)r − (1 − λ)(R − r) = λR.

Since ‖z − Ry‖ � ϕ(z − Ry) > λR, we have a contradiction. �
Theorem 2.1. Let K1 ⊂ K2 be closed cones with nonempty interiors in a finite-dimensional Ba-
nach space X. Suppose that f : intK2 → intK2 is order-preserving (in the partial ordering from
K2) and homogeneous of degree one. Suppose also that for some x0 ∈ K1 ∩ intK2, f k(x0) ∈ K1
for all k ∈ N. Let q ∈ X∗ be a linear functional such that q(x) > 0 for all x ∈ K2 \ {0}. Define
Σ = {x ∈ intK2 | q(x) = 1} and T (x) = f (x)/q(f (x)) for x ∈ Σ . If T has no fixed point in Σ

and there is a polyhedral cone Kp , K1 ⊂ Kp ⊂ K2, satisfying Eq. (6) for all x, y ∈ K1 ∩ intK2,
then there is a convex subset U ⊂ ∂K2 ∩ clΣ such that ω(x;T ) ⊂ U for all x ∈ Σ .

Remark 2.1. The conclusion of Theorem 2.1 only depends on having a map T :Σ → Σ such
that: (1) T is nonexpansive with respect to d2, (2) T has no fixed points in Σ and (3) there exists
x0 ∈ Σ ∩ K1 such that T k(x0) ∈ Σ ∩ K1 for all k � 0.

Remark 2.2. Suppose that T :Σ → Σ is nonexpansive with respect to d2 and T (Σ ∩ K1) ⊂
Σ ∩ K1. Then T k(x0) ∈ Σ ∩ K1 for all k � 0 and x0 ∈ Σ ∩ K1. Also, if T has no fixed points
in Σ ∩ K1, then T has no fixed points in Σ . After all, suppose that x∗ ∈ Σ is a fixed point of T .
Let BR(x∗) = {x ∈ Σ | d2(x, x∗) � R}. It is known that BR(x∗) is convex (see [16, Lemma 4.1]).
By choosing R large enough, we obtain a nonempty, closed, bounded, convex set K1 ∩ BR(x∗).
Since T is nonexpansive with respect to d2, T (K1 ∩ BR(x∗)) ⊂ K1 ∩ BR(x∗). Therefore, by the
Brouwer fixed point theorem, T has a fixed point in K1 ∩ BR(x∗).

Proof of Theorem 2.1. Let xk = T k(x0) for k � 1. Since limk→∞ d2(x
0, xk) = ∞, and

d2(x
0, xk) � dp(x0, xk) we may choose a subsequence of integers ki so that

dp

(
x0, xki

)
> dp

(
x0, xm

)
for all m < ki. (7)

We claim that there is a refinement of ki such that

dp

(
xki , xkj −m

)
� dp

(
x0, xkj

) − 1

4
dp

(
x0, xki

)
(8)

whenever ki and m are fixed and kj is sufficiently large. Assume this claim for now.
Since Σ is locally compact, the Ascoli–Arzela theorem implies that by replacing kj with a

further subsequence of itself we may assume the horofunction h defined below exists for all
y ∈ Σ :

h(y) = lim
j→∞d2

(
y, xkj

) − d2
(
x0, xkj

)
.

By the d2-nonexpansiveness of T and Eq. (6), we observe that
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h
(
xki+m

) = lim
j→∞d2

(
xki+m,xkj

) − d2
(
x0, xkj

)
� lim inf

j→∞ d2
(
xki , xkj −m

) − d2
(
x0, xkj

)
� lim inf

j→∞ dp

(
xki , xkj −m

) − dp

(
x0, xkj

) + c.

Now, by Eq. (8), dp(xki , xkj −m) � dp(xkj , x0) − 1
4dp(xki , x0) for j sufficiently large. Therefore

we obtain

h
(
xki+m

)
� −1

4
dp

(
xki , x

) + c.

This implies that limm→∞ h(xm) = −∞.
For any constant M � 0 let HM denote the horoball HM = {y ∈ Σ | h(y) � −M}. Since

Hilbert metric balls are convex (see e.g., [16, Lemma 4.1]), it follows that each HM is convex.
Let clHM denote the norm closure of HM in X. Since h(xm) → −∞ it follows that ω(x0;T ) ⊂
clHM for all M � 0. Since h(y) is finite for all y ∈ Σ , we must have

⋂
M�0 clHM ⊂ clΣ \ Σ .

Thus ω(x0;T ) ⊂ ⋂
M�0 clHM which is a convex subset of clΣ \ Σ = ∂K2 ∩ clΣ .

We now consider the case where x ∈ intK2 but x �= x0. Observe that for any x ∈ Σ ,
d2(T

k(x), T k(x0)) � d2(x, x0) for all k > 0. Thus, h(T k(x)) � h(T k(x0)) + d2(x, x0), ∀k > 0.
Therefore limk→∞ h(T k(x)) = −∞ for all x ∈ Σ , and thus ω(x;T ) ⊂ ⋂

m�0 clHm for all
x ∈ Σ .

It remains to prove Eq. (8). By Lemma 2.2 there is an isometric embedding Φ from (Kp ∩
Σ,dp) into a subset of a finite-dimensional normed space (Y,‖ · ‖). For each xk let x̂k = Φ(xk).
We may assume without loss of generality that Φ(x0) = 0. Therefore, d(x0, xk) = ‖x̂k‖ for all
k > 0. Since xkj is assumed to satisfy Eq. (7), ‖x̂kj ‖ > ‖x̂m‖ for all m < kj .

Since the unit ball in Y is compact, there is a point ȳ ∈ Y with ‖ȳ‖ = 1 which is an accumu-
lation point of the sequence x̂ki /‖x̂ki ‖, i � 1. By replacing ki with a refinement we may assume
that ∥∥∥∥ x̂ki

‖x̂ki ‖ − ȳ

∥∥∥∥ � 2−i for all i � 1.

Thus,

∥∥x̂ki − (∥∥x̂ki
∥∥ȳ

)∥∥ � 2−i
∥∥x̂ki

∥∥, ∀i � 1.

For each i � 1 we denote ‖x̂ki ‖ȳ by yi . Then the equation above becomes:

∥∥x̂ki − yi
∥∥ � 2−i

∥∥x̂ki
∥∥, ∀i � 1. (9)

Fix some i � 1. Note that ‖x̂kj −m‖ < ‖x̂kj ‖ by Eq. (7). Also

∥∥x̂kj −m − yj
∥∥ �

∥∥x̂kj −m − x̂kj
∥∥ + ∥∥x̂kj − yj

∥∥
� d2

(
xkj −m,xkj

) + c + 2−j
∥∥x̂kj

∥∥ � md2
(
x0, T

(
x0)) + c + 2−j

∥∥x̂kj
∥∥
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by the nonexpansiveness of T under the metric d2. Note that

cm = md2
(
x0, T

(
x0)) + c

is a constant which depends only on m. Thus

∥∥x̂kj −m − yj
∥∥ � cm + 2−j

∥∥x̂kj
∥∥. (10)

Eq. (10) implies that for j large enough ‖x̂kj −m − yj‖ � 1
4‖x̂kj ‖ = 1

4‖yj‖. Using Lemma 2.3
with λ = 1

4 , r = ‖x̂ki ‖, R = ‖x̂kj ‖, y = ȳ and z = x̂kj −m we obtain

∥∥x̂kj −m − yi
∥∥ �

∥∥x̂kj
∥∥ − 3

4

∥∥x̂ki
∥∥. (11)

Hence,

dp

(
xki , xkj −m

) = ∥∥x̂ki − x̂kj −m
∥∥ �

∥∥x̂ki − yi
∥∥ + ∥∥yi − x̂kj −m

∥∥
� 2−i

∥∥x̂ki
∥∥ + ∥∥x̂kj

∥∥ − 3

4

∥∥x̂ki
∥∥

by Eqs. (9) and (11). Thus, for i � 1 and j large enough,

dp

(
xki , xkj −m

)
�

∥∥x̂kj
∥∥ − 1

4

∥∥x̂ki
∥∥ = dp

(
x0, xkj

) − 1

4
dp

(
x0, xki

)
which proves Eq. (8). �
3. Positive semi-definite forms and discrete Dirichlet forms

A class of nonlinear order-preserving homogeneous of degree one maps appears in the study
of diffusion on fractals. These “reproduction–decimation operators” are defined on the interior
of a certain cone of positive semi-definite forms. In this section we will introduce this cone of
positive semi-definite forms, as well as the cone of discrete Dirichlet forms. In the following
section we will define a general class of reproduction–decimation operators and show how the
results of the previous chapter allow us to establish a Denjoy–Wolff type result for these operators
even though the cone of positive semi-definite forms is neither polyhedral nor strictly convex.

Let S be a finite set. If we think of S as a measure space with the counting measure, then
L2(S) is a finite-dimensional Hilbert space consisting of the functions x :S → R. The inner
product on L2(S) is 〈x, y〉 = ∑

i∈S x(i)y(i). On L2(S) we have a standard basis consisting
of the functions ei , i ∈ S, where ei(j) = δij , the Kronecker delta. We let 1S be the function
1S(i) = 1 for all i ∈ S. For x, y ∈ L2(S) we let x ∧ y denote the minimum of x and y in L2(S),
that is, (x ∧ y)(i) = min{x(i), y(i)}.

We are interested in the set XS of quadratic forms E :L2(S) → R given by an expression of
the form

E(x) = 1

2

∑
cij

(
x(i) − x(j)

)2 (12)

i �=j∈S
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where each cij ∈ R and cji = cij for all i �= j . The set XS is a finite-dimensional vector space
with dimension equal to n(n − 1)/2 where n = cardS. We can therefore assume that XS is
a Banach space. Note that the constants cij are uniquely determined for each E ∈ XS by the
formula cij = ϕij (E) where

ϕij (E) = 1

4

(
E(ei − ej ) − E(ei + ej )

)
. (13)

Recall that a quadratic form E ∈ XS is positive semi-definite if E(x) � 0 for all x ∈ L2(S). In
the space XS we let KS denote the cone of positive semi-definite forms, that is

KS = {
E ∈ XS

∣∣ E(x) � 0 ∀x ∈ L2(S)
}
.

A discrete Dirichlet form is a quadratic form E ∈ XS such that E(x ∧ 1S) � E(x) for all x ∈
L2(S). It is known (see [10]) that any E given by Eq. (12) is a discrete Dirichlet form if and
only if cij � 0 for every i �= j . From this characterization we see that the set of discrete Dirichlet
forms is a closed cone in XS which we denote DS . Furthermore,

DS = {
E ∈ XS

∣∣ ϕij (E) � 0 ∀i, j ∈ S with i �= j
}

where each ϕij is given by Eq. (13). Since there are only finitely many ϕij and each one is a
linear functional on XS , we see that DS is a polyhedral cone. It is also clear that DS ⊂ KS .

Both KS and DS have nonempty interior in XS . Let 〈1S〉⊥ denote the subspace {x ∈ L2(S) |
〈x,1S〉 = 0}. It is a straightforward exercise, which we leave to the reader, to prove that

intKS = {
E ∈ KS

∣∣ ∃c > 0 with E(x) � c〈x, x〉 ∀x ∈ 〈1S〉⊥}
,

intDS = {
E ∈ DS

∣∣ ϕij (E) > 0 for all i, j ∈ S with i �= j
}
. (14)

The class of operators we are interested in is defined on DS ∩ intKS . We would like to use
Theorem 2.1 to establish a Denjoy–Wolff type theorem for this class of maps. In order to do this,
we must first prove the following proposition.

Proposition 3.1. If S is a finite set with cardS � 3, and DS and KS are defined as above, then
there is a closed polyhedral cone Cp ⊂ XS such that DS ⊂ Cp ⊂ KS and every element in C∗

p is
comparable to an element of K∗

S in the partial ordering induced by D∗
S .

In order to prove this proposition, we need to consider the dual cones of DS and KS . One can
easily show that

D∗
S =

{ ∑
i �=j∈S

rij ϕij

∣∣∣ rij � 0, rij = rji for all i �= j

}
(15)

where ϕij is the linear functional on XS given by Eq. (13). Finding a nice characterization of K∗
S

takes a little more work. In what follows, for any x ∈ L2(S), let |x| denote the “variation norm”
of x, that is,

|x| = max
∣∣x(i) − x(j)

∣∣.

i,j∈S
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Although | · | is not norm on L2(S), it is a norm on the subspace 〈1S〉⊥. We recall that
a sufficient set for a closed cone K in a Banach space X is a subset U ⊂ K∗ such that
K = {x ∈ X | ϕ(x) � 0 ∀ϕ ∈ U}.

Lemma 3.1. Let n = cardS. The dual cone of KS is

K∗
S =

{
n(n−1)/2+1∑

k=1

tkx̂k

∣∣∣ tk � 0, xk ∈ 〈1S〉⊥ with |xk| = 1

}

where, for any x ∈ L2(S), x̂ ∈ X∗
S is the linear functional such that x̂(E) = E(x) for E ∈ XS .

Proof. Since E(x + λ1S) = E(x) for all E ∈ XS and λ ∈ R, it follows that E is positive semi-
definite if and only if E(x) � 0 for all x ∈ 〈1S〉⊥ with |x| = 1. Thus the set of linear functionals
{x̂: x ∈ 〈1S〉⊥, |x| = 1} is a sufficient set for KS . Therefore,

K∗
S = cl

{
N∑

k=1

tkx̂k

∣∣∣ N > 0, tk � 0, xk ∈ 〈1S〉⊥ with |xk| = 1

}
.

We will now show that the set {∑N
k=1 tkx̂k | N > 0, tk � 0, |xk| = 1} is closed. Observe that the

set {x ∈ 〈1S〉⊥: |x| = 1} is compact. We leave it to the reader to verify that the map x �→ x̂

is continuous, and this implies that {x̂: x ∈ 〈1S〉⊥, |x| = 1} is compact. An application of
Carathéodory’s theorem proves that co{x̂: x ∈ 〈1S〉⊥, |x| = 1} is compact [23, Theorem 17.2].
Observe that if E ∈ intKS and |x| = 1, then x̂(E) > 0. This implies that 0 /∈ co{x̂: x ∈
〈1S〉⊥, |x| = 1}.

Since co{x̂: x ∈ 〈1S〉⊥, |x| = 1} is compact and does not contain zero, the set

⋃
λ�0

λ
(
co

{
x̂: x ∈ 〈1S〉⊥, |x| = 1

})

is closed. To see this, suppose that θk is a sequence in co{x̂: x ∈ 〈1S〉⊥, |x| = 1} and bk � 0 is
a sequence of real numbers such that bkθk → ζ . Then, since co{x̂: x ∈ 〈1S〉⊥, |x| = 1} is com-
pact, a subsequence θki

converges to some θ∞ ∈ co{x̂: x ∈ 〈1S〉⊥, |x| = 1}. Since θ∞ �= 0, the
corresponding subsequence bki

must also converge to some b∞ � 0 as i → ∞. Then ζ = b∞θ∞,
so ζ ∈ ⋃

λ�0 λ(co{x̂: x ∈ 〈1S〉⊥, |x| = 1}), and therefore
⋃

λ�0 λ(co{x̂: x ∈ 〈1S〉⊥, |x| = 1}) is
closed. Now observe that

⋃
λ�0

λ
(
co

{
x̂: x ∈ 〈1S〉⊥, |x| = 1

})

=
{

N∑
k=1

tkx̂k

∣∣∣ N > 0, tk � 0, xk ∈ L2(S) with |xk| = 1

}
,

and by Carathéodory’s theorem for convex sets (see [23, Theorem 17.1]) we may assume that
N = dimX∗ + 1 = n(n − 1)/2 + 1. �
S
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Since DS ⊂ KS it follows that K∗
S ⊂ D∗

S . Also note that D∗
S is a polyhedral cone, since DS

is polyhedral. Let ϕ ∈ D∗
S . By Eq. (15), ϕ ∈ D∗

S has the form ϕ = ∑
i �=j∈S sij ϕij where each

sij = sji and sij � 0. Let I = I (ϕ) be the set of pairs (i, j) ∈ S × S such that sij = 0. Then the
part of the cone D∗

S containing ϕ is the set

UI =
{ ∑

i �=j∈S

rij ϕij

∣∣∣ rij = 0 for (i, j) ∈ I, rij > 0 otherwise

}
. (16)

For a collection of pairs I ⊂ S × S with the property that (i, j) ∈ I implies (j, i) ∈ I , we
will say that two elements i, j ∈ S are I -connected if there is a path ik ∈ S, k = 1, . . . , p, such
that i1 = i, ip = j and (ik, ik+1) ∈ I for 1 � k < p. Note that I -connectedness is an equivalence
relation on S.

Lemma 3.2. Suppose UI is a part of D∗
S given by Eq. (16) and every I -connected pair i, j ∈ S

satisfies (i, j) ∈ I . Then UI ∩ K∗
S �= ∅.

Proof. For any x ∈ L2(S),

x̂(E) = E(x) = 1

2

∑
i �=j∈S

ϕij (E)
(
x(i) − x(j)

)2
,

or

x̂ = 1

2

∑
i �=j∈S

(
x(i) − x(j)

)2
ϕij .

Therefore, x̂ ∈ UI if and only if x(i) = x(j) exactly when (i, j) ∈ I .
By assumption, every I -connected pair i, j ∈ S satisfies (i, j) ∈ I . Furthermore, we know that

I -connectedness is an equivalence relation. Therefore, S can be partitioned into the equivalence
classes under this relation, and we see that i, j ∈ S will be contained in the same equivalence
class if and only if (i, j) ∈ I . We may now construct an x ∈ L2(S) such that x(i) = x(j) if and
only if (i, j) ∈ I . Then x̂ ∈ UI , and it is clear that x̂ is also in K∗

S . �
Lemma 3.3. If UI is a part of D∗

S given by Eq. (16) and UI ∩ K∗
S = ∅, then there is an E ∈ XS

such that θ(E) � 0 for all θ ∈ K∗
S but ϕ(E) < 0 for all ϕ ∈ UI .

Proof. By Lemma 3.2, if UI ∩ K∗
S = ∅, then there is an I -connected pair i, j ∈ S such that

(i, j) /∈ I . Let J be the set of pairs (i, j) ∈ S × S such that i �= j and i, j are I -connected. We
see immediately that, J �= I .

Let E be given by Eq. (12) with cij = 0 if (i, j) /∈ J , cij = −1 if (i, j) ∈ J \I and for (i, j) ∈ I

let cij = M where M > 0 is a large constant which we will specify later. Then for any x ∈ L2(S),

x̂(E) = 1

2

∑
i �=j∈S

cij

(
x(i) − x(j)

)2

= 1

2

∑
M

(
x(i) − x(j)

)2 − 1

2

∑ (
x(i) − x(j)

)2
.

(i,j)∈I (i,j)∈J\I
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Choose (p, q) ∈ I such that (x(p) − x(q))2 = max(i,j)∈I (x(i) − x(j))2. Note that for any pair
(i, j) ∈ J , there is a path ik ∈ S, k = 1, . . . ,N , i1 = i, iN = j , and (ik, ik+1) ∈ I for all 1 �
k < N . Furthermore, we may choose N to be less than or equal to n = cardS. Therefore, for all
(i, j) ∈ J ,

(
x(i) − x(j)

)2 = ∣∣x(i) − x(j)
∣∣2

�
(∣∣x(i1) − x(i2)

∣∣ + ∣∣x(i2) − x(i3)
∣∣ + · · · + ∣∣x(iN−1) − x(iN )

∣∣)2
,

�
(
n
∣∣x(p) − x(q)

∣∣)2 = n2(x(p) − x(q)
)2

.

By letting M > card(J \ I )n2 we can see that

x̂(E) = 1

2

∑
(i,j)∈I

M
(
x(i) − x(j)

)2 − 1

2

∑
(i,j)∈J\I

(
x(i) − x(j)

)2

� 1

2
card(J \ I )n2(x(p) − x(q)

)2 − 1

2

∑
(i,j)∈J\I

(
x(i) − x(j)

)2

� 1

2
card(J \ I )n2(x(p) − x(q)

)2 − 1

2
card(J \ I ) max

(i,j)∈J

(
x(i) − x(j)

)2 � 0.

Since the constant M did not depend on x, it follows that x̂(E) � 0 for all x ∈ L2(S). Therefore,
by Lemma 3.1, θ(E) � 0 for all θ ∈ K∗

S .
It remains to show that ϕ(E) < 0 for all ϕ ∈ UI . However, if ϕ ∈ UI then ϕ = ∑

i �=j∈S rijϕij

with rij � 0 for all pairs i �= j ∈ S, and rij = 0 if and only if (i, j) ∈ I . Therefore

ϕ(E) =
∑

(i,j)∈J\I
−rij < 0. �

Proof of Proposition 3.1. We will construct a polyhedral cone C∗
p such that K∗

S ⊂ C∗
p ⊂ D∗

S and
such that every element ϕ ∈ C∗

p is comparable to an element θ ∈ K∗
S under the partial ordering

induced by D∗
S .

To construct C∗
p , we will intersect the polyhedral cone D∗

S with finitely many closed half-
spaces of the form HE = {θ ∈ X∗

S | θ(E) � 0} where E ∈ XS . This will ensure that C∗
p is also

polyhedral. For any part UI of D∗
S , if UI ∩ K∗

S = ∅, then Lemma 3.3 implies that there is an
E ∈ XS such that ϕ(E) < 0 for all ϕ ∈ UI while θ(E) � 0 for all θ ∈ K∗

S . Therefore, there
is a closed half-space HE such that HE contains K∗

S but is disjoint from UI . Since D∗
S is a

polyhedral cone, it only has finitely many parts and therefore, by intersecting the cone D∗
S with

finitely many half-spaces HE we may obtain a polyhedral cone C∗
p such that K∗

S ⊂ C∗
p ⊂ D∗

S ,
and every element of C∗

p lies in a part UI of D∗
S such that UI ∩ K∗

S �= ∅. Thus every element of
C∗

p is comparable to an element of K∗
S in the partial ordering of D∗

S . �
4. Denjoy–Wolff theorems for reproduction–decimation operators

One motivation for this paper arises from so-called “reproduction–decimation operators.”
Such operators arise in the study of diffusion on fractals: see [10, Chapter 3]. Here we shall
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describe a general class of reproduction–decimation operators and show that our general Denjoy–
Wolff theorem is applicable. Our operators will be defined on the interior of an appropriate cone,
and will be order-preserving and homogeneous of degree one. If one knows that a given opera-
tor has an eigenvector in the interior of the cone, our Denjoy–Wolff theorem is irrelevant. The
point is that proving a given reproduction–decimation operator has such an eigenvector may be
a difficult problem, and there are examples where no such eigenvector exists (see [6] and [24,
pp. 650, 651]).

Let V and W be finite sets with V ⊂ W . We view V and W as measure spaces with the
counting measure, so we can form the real Hilbert spaces L2(V ) and L2(W). Since V and W

will be fixed, we shall write H = L2(W). We define an orthogonal projection P :H → H by
(Px)(i) = x(i) for i ∈ V and (Px)(i) = 0 for i ∈ W \ V . It is easy to see that H1 := P(H) and
L2(V ) are naturally isometric as Hilbert spaces by the map x ∈ H1 goes to x|V . We shall write
Q = I − P , where I denotes the identity operator on H ; and H2 := Q(H) is naturally isometric
to L2(W \ V ) and H2 = H⊥

1 .
For S = V or S = W , we will continue use the definitions of the previous sections for XS ,

KS , and DS . The following lemma is an easy consequence of Eq. (14) and the fact that cij =
ϕij (E) � 0 for i �= j when E ∈ DS .

Lemma 4.1. (See [10, Chapter 3].) If E ∈ DS is given by Eq. (12), then E ∈ DS ∩ intKS if and
only if whenever i ∈ S and j ∈ S with i �= j , there exist i0 = i, i1, . . . , ip = j in S with ik−1 �= ik
for 1 � k � p and cik−1ik > 0 for 1 � k � p.

We now need to define a general reproduction operator, which will be a linear map from XV

to XW . For 1 � k � N let ψk :V → W be a map. Define Ψk :L2(W) → L2(V ) by (Ψkx)(i) =
x(ψk(i)). Note that

Ψk(1W) = 1V and Ψk(x ∧ 1W) = Ψk(x) ∧ 1V ∀x ∈ L2(W). (17)

If ηk , 1 � k � N , are given positive reals, we define a reproduction operator R :XV → XW by

R(E) =
N∑

k=1

ηkE ◦ Ψk. (18)

Reproduction operators satisfy the following properties.

Proposition 4.1. If R :XV → XW is defined by Eq. (18), then:

(a) R is linear.
(b) R(KV ) ⊂ KW .
(c) R(DV ) ⊂ DW .
(d) If E1,E2 ∈ XV satisfy E1 �KV

E2, then R(E1) �KW
R(E2).

Proof. Both (a) and (b) follow immediately from Eq. (18). If E ∈ DV and x ∈ L2(W), we obtain
from Eqs. (17) and (18) that

R(E)(x ∧ 1W) � R(E)(x).
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Therefore R(E) ∈ DW , which proves (c). From (a) and (b) it follows that if E1 �KV
E2, then

R(E2 − E1) ∈ KW so R(E1) �KW
R(E2). �

Definition 4.1. For ψk :V → W , 1 � k � N , we shall say that {ψk | 1 � k � N} satisfies
condition I if, for all j, j ′ ∈ W , there exist k0, k1, . . . , kp with j ∈ ψk0(V ), j ′ ∈ ψkp(V ) and
ψks (V ) ∩ ψks−1(V ) �= ∅ for 1 � s � p.

Note that condition I is satisfied by reproduction operators corresponding to fractals satisfying
certain connectivity conditions. See [10, Section 1.6], for more details.

Lemma 4.2. If {ψk | 1 � k � N} satisfies condition I, ηk > 0 for 1 � k � N , and R is defined by
Eq. (18), then

R(intKV ) ⊂ intKW. (19)

Proof. By Eq. (12), it suffices to prove that if x ∈ L2(W), E ∈ intKV and R(E)(x) = 0, then
x = λ1W for some λ ∈ R. However,

R(E)(x) =
N∑

k=1

ηkE
(
Ψk(x)

)
,

so if R(E)(x) = 0, E(Ψk(x)) = 0 for 1 � k � N . Because E ∈ intKV , it follows that there exists
λk ∈ R with

Ψk(x) = x ◦ ψk = λk1k for 1 � k � N.

It follows that x(i) = λk for all i ∈ ϕk(V ),1 � k � N . If j, j ′ ∈ W , select k0, k1, . . . , kp as in the
definition of condition I. It follows that λks = λks+1 for 0 � s < p, so λk0 = x(j) = λkp = x(j ′),
and x is a scalar multiple of 1W . �

It remains to define the “decimation operator” Φ : intKW → intKV . This operator is some-
times called the “trace operator” or (see [2]) the “shorted operator.” If x ∈ L2(V ), we identify
x with an element of H1 ⊂ L2(W) by defining x(i) = 0 for i ∈ W \ V . Then the decimation
operator Φ :KW → KW is defined by

Φ(E)(x) = inf
{
E(x + y)

∣∣ y ∈ H2
}
. (20)

Note that Φ(E) can also be considered a map of H → H with Φ(E)(H) ⊂ H1 and
Φ(E)(H2) = {0}. Althought the map Φ is defined on KW , it may not be continuous on KW ,
see the remarks after Corollary 3 to Theorem 1 in [2]. Corollary 1 to Theorem 1 of [2] implies
that if E1,E2 ∈ KW and E1 �KW

E2, then Φ(E1) �KV
Φ(E2). In fact, by [2, Theorem 4], Φ is

superadditive (that is, Φ(E1 + E2) �KV
Φ(E1) + Φ(E2) for all E1,E2 ∈ KW ). It is clear that

Φ(λE) = λΦ(E) for λ > 0 and E ∈ intKW . If E ∈ intKW , then by Eq. (14) there is a constant
c > 0 such that E(z) � c〈z, z〉 for all z ∈ L2(W). Thus, for x ∈ H1,

Φ(E)(x) = inf
{
E(x + y)

∣∣ y ∈ H2
}

� inf
{
c〈x + y, x + y〉 ∣∣ y ∈ H2

}
� c〈x, x〉.

This implies that Φ(E) ∈ intKV for all E ∈ intKW .
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Using Eq. (20) we can show that Φ(DW ∩ intKW) ⊂ DV ∩ intKV . If x ∈ L2(V ), E ∈ DW ∩
intKW and we identify L2(V ) with H1 as above, Eq. (20) gives Φ(E)(x∧1V ) = inf{E(x∧1W +
y) | y ∈ H2}. Because y ∧ 1W ∈ H2 for y ∈ H2 and because (x + y) ∧ 1W = x ∧ 1W + y ∧ 1W ,
we see that

inf
{
E(x ∧ 1W + y)

∣∣ y ∈ H2
}

� inf
{
E(x ∧ 1W + y ∧ 1W)

∣∣ y ∈ H2
}

= inf
{
E

(
(x + y) ∧ 1W

) ∣∣ y ∈ H2
}

� inf
{
E(x + y)

∣∣ y ∈ H2
} = Φ(E)(x).

This proves that Φ(DW ∩ intKW) ⊂ DV ∩ intKV . We collect these results in the following
proposition.

Proposition 4.2. If Φ :KW → KV is defined by Eq. (20), then

(a) Φ(intKW) ⊂ intKV .
(b) Φ is homogeneous of degree one.
(c) If E1,E2 ∈ intKW satisfy E1 �KW

E2, then Φ(E1) �KV
Φ(E2).

(d) Φ(DW ∩ intKW) ⊂ DV ∩ intKV .

A reproduction–decimation operator is a map Λ :KV → KV given by Λ = Φ ◦ R where
Φ is a decimation operator and R is a reproduction operator. If R is defined by Eq. (18) and
{ψk | 1 � k � N} satisfies condition I, then Λ(intKV ) ⊂ intKV . If condition I is not satisfied,
then Λ = Φ ◦ R is still defined as a map from KV to KV , but it may not map intKV into
itself. Furthermore, Λ may not be continuous on all of KV , but it will be continuous on DV

(see [5, Theorem 7.2]). Note that Λ is also referred to as a “renormalization” operator by some
authors [22,24].

By using Theorem 2.1 and Proposition 3.1 we immediately obtain the following result.

Theorem 4.1. Assume that cardV � 3 and that f : intKV → intKV is order-preserving (in the
partial ordering from KV ), homogeneous of degree one, and satisfies f (DV ∩ intKV ) ⊂ DV . Let
q ∈ X∗

V be a linear functional such that q(E) > 0 all E ∈ KV \ {0}. Define Σ := {E ∈ intKV |
q(E) = 1} and T (E) := f (E)/q(f (E)) for E ∈ Σ , and assume that T has no fixed points in Σ .
Then there is a convex set U ⊂ ∂KV ∩ clΣ such that ω(E;T ) ⊂ U for all E ∈ Σ .

Remark 4.1. For any two elements E1,E2 ∈ Σ , elementary arguments (see [19]) imply that
any element Ē1 ∈ ω(E1;T ) is comparable in the partial ordering on KV to some element Ē2 ∈
ω(E2;T ) and vice-versa.

Remark 4.2. Theorem 7.2 of [5] implies that f |DV ∩intKV
has a continuous extension f̃ :DV →

DV , and a standard argument using the fixed point index then shows that f̃ has an eigenvector
E ∈ DV with a corresponding eigenvalue λ > 0. This does not show that there is an eigenvector
in DV ∩ intKV , and Theorem 4.1 applies to the case where such an eigenvector fails to exist.

We can apply Theorem 4.1 to reproduction–decimation operators.
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Corollary 4.1. Let notation be as above, and let R and Φ be as defined in Eqs. (18) and
(20). Assume (see Definition 4.1) that {ψk | 1 � k � N} satisfies condition I. Let q be a lin-
ear functional which is positive on KV \ {0} and define Σ = {E ∈ intKV | q(E) = 1}. For
E ∈ intKV , define Λ(E) = Φ(R(E)) and T (E) = Λ(E)/q(Λ(E)). Then Λ(intKV ) ⊂ intKV ,
Λ(DV ∩ intKV ) ⊂ DV ∩ intKV , Λ is homogeneous of degree one and Λ is order-preserving in
the partial ordering from KV . If E ∈ Σ , let ω(E;T ) denote the omega limit set of E under the
map T . If T has no fixed points in Σ (or equivalently, Λ has no eigenvectors in intKV ), then we
have

co

( ⋃
E∈Σ

ω(E;T )

)
⊂ ∂KV ∩ clΣ.

Furthermore, for E1,E2 ∈ Σ , every element of ω(E1;T ) is comparable to an element of
ω(E2;T ) in the partial ordering from KV .

Proof. Under the given assumption we have proved that R(intKV ) ⊂ intKW and R(DV ∩
intKV ) ⊂ DW ∩ intKW in Proposition 4.1 and Lemma 4.2. Because R is linear it follows that
R is order-preserving as a map from KV to KW and homogeneous of degree one. We have
also seen that Φ : intKW → intKV is order-preserving and homogeneous of degree one and that
Φ(DW ∩ intKW) ⊂ DV ∩ intKV . It follows that Λ satisfies the conditions of Theorem 4.1, so
Corollary 4.1 follows from Theorem 4.1 and from the remarks immediately following Theo-
rem 4.1. �
Remark 4.3. In Corollary 4.1 we only use the fact that Λ is order-preserving, homogeneous
of degree one and Λ(DV ∩ intKV ) ⊂ DV ∩ intKV . We do not use any other special properties
of reproduction–decimation operators. Some interesting results that only apply to reproduction–
decimation operators are known. Peirone has shown [21, Theorem 4.22] that if a reproduction–
decimation operator Λ has an eigenvector Ē ∈ intKV then for all E ∈ intKV , the omega limit
set ω(E;T ) is a single point in intKV , and that point is an eigenvector of Λ. In [21], Peirone
also gives conditions which imply that there is a unique eigenvector in the interior (up to multi-
plication by a scalar). In [24, Lemma 5.13] and the comments which immediately follow, Sabot
shows that if a reproduction–decimation operator has two linearly independent eigenvectors in
DV ∩ intKV , then the set of eigenvectors in DV ∩ intKV is unbounded in the Hilbert metric on
intKV . We would like to thank Roberto Peirone for bringing these results to our attention.

We can say more about the omega limit sets of normalized reproduction–decimation operators
in the special case when cardV = 3. In this case, the set Σ = {E ∈ intKV | q(E) = 1} is strictly
convex. After all, if E1 and E2 are distinct elements of clΣ \Σ , then there are nonzero elements
x1, x2 ∈ 〈1V 〉⊥ such that E1(x1) = 0, E2(x2) = 0. Since q(E1) = q(E2) = 1 and E1 �= E2, it
follows that E1 is not a scalar multiple of E2 and therefore x1 is not a scalar multiple of x2. This
implies that E1(x2) > 0, otherwise E1 = 0 which cannot be the case since q(E1) = 1. Similarly,
E2(x1) > 0. We see from this that λE1 + (1 − λ)E2 ∈ Σ for 0 < λ < 1. Therefore Σ is strictly
convex.

We can now apply the Denjoy–Wolff type theorem established by Beardon (see [3], and also
[7]) for Hilbert metric nonexpansive maps on strictly convex domains to conclude that there ex-
ists Ē ∈ ∂KV such that T k(E) → Ē as k → ∞, for all E ∈ Σ . This is a stronger result than
we are able to prove when n > 3. Moreover, since T (Σ ∩ DV ) ⊂ Σ ∩ DV , it follows that
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Ē ∈ Σ ∩ DV . If we assume that V = {1,2,3}, an easy argument then implies that Ē is one
of the following three discrete Dirichlet forms:

(a) E1(x) = β(x(2) − x(3))2,
(b) E2(x) = β(x(1) − x(3))2 or
(c) E3 = β(x(1) − x(2))2

where β is determined by the condition that q(B) = 1. Note that Peirone has studied the case
when cardV = 3 in [22], and this observation is crucial in that paper, although Peirone estab-
lishes it by a different method.

5. Denjoy–Wolff theorems for operator-valued maps

In this section we consider another setting, possibly infinite-dimensional, in which the ideas
exploited in Theorem 2.1 are useful. Our motivation comes from the kinds of operator-valued
maps which arise in the study of operator-valued means: see [20] and references in [20]. It seems
natural to begin more generally, however.

Let K be a closed cone with nonempty interior intK in a Banach space X. For a fixed integer
m � 2, let Km = ∏m

i=1 K = K × K × · · · × K denote the Cartesian product of K with itself m

times and let Y = ∏m
i=1 X = X × X × · · · × X denote the Cartesian product of X with itself m

times. Elements of Y are ordered m-tuples (A1,A2, . . . ,Am), with Ai ∈ X for 1 � i � m, and Y

is a Banach space with norm

∥∥(A1,A2, . . . ,Am)
∥∥ =

m∑
i=1

‖Ai‖.

Km is a closed cone with interior intKm = ∏m
i=1 intK . We assume that f : intKm → intKm is

an order-preserving map (in the partial ordering induced by Km) and that f is homogeneous of
degree one. We also assume that q :Km \ {0} → (0,∞) is a continuous map which is homoge-
neous of degree one, and we shall write Σ = {x ∈ intKm | q(x) = 1}. If we take q(x) = ‖x‖,
Σ is bounded in norm; but in infinite dimensions there may not exist a linear q for which Σ is
bounded in norm.

We shall maintain the above notation in this section, and if the above assumptions on f , q ,
and Σ are met, we shall say that hypothesis 4.1 (or H4.1) is satisfied.

As usual R
m+ = {x = (x1, x2, . . . , xm) ∈ R

m | xi � 0 for 1 � i � m} and int Rm+ denotes the
interior of R

m+. If α ∈ R
m+ and

∑m
i=1 αi = 1, we shall call α a probability vector.

Under the assumptions of H4.1, we shall define T :Σ → Σ by

T (x) = f (x)

q(f (x))
. (21)

Our crucial hypothesis is that f leaves invariant a certain finite-dimensional cone. We shall say
that H4.2 is satisfied if H4.1 is satisfied and there exists E = (E1,E2, . . . ,Em) ∈ intKm such
that for all x = (x1, . . . , xm) ∈ intRm+ there exists y = (y1, . . . , ym) ∈ int Rm+ with

f (x1E1, x2E2, . . . , xmEm) = (y1E1, y2E2, . . . , ymEm). (22)
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We now describe an important special case in which H4.1 is satisfied. Let H be a real Hilbert
space and denote by L(H) the Banach space of linear maps B :H → H . Let X ⊂ L(H) denote
the Banach space of self-adjoint linear maps A ∈ L(H). Recall that A ∈ X is called positive
semi-definite if 〈Ah,h〉 � 0 for all h ∈ H and A ∈ X is called positive definite if there exists
c > 0 such that 〈Ah,h〉 � c〈h,h〉 for all h ∈ H . We define

K = {A ∈ X | A is positive semi-definite}, (23)

and we note that K is a closed cone in X and that

intK = {A ∈ X | A is positive definite}. (24)

For a fixed integer m � 2, Y = ∏m
i=1 X and Km = ∏m

i=1 K are defined as before, so elements
of intKm are ordered m-tuples A = (A1,A2, . . . ,Am), where Ai ∈ X is positive definite for
1 � i � m. To define an order-preserving, homogeneous of degree one map f : intKm → intKm,
for each α ∈ R

m+ \ {0} and A = (A1,A2, . . . ,Am) ∈ intKm, let

Mα(A) =
(

m∑
i=1

αiA
−1
i

)−1

. (25)

It is well known that A �→ A−1 is an order-reversing map of intK into intK , so A �→ Mα(A) is
an order-preserving map of intKm into intK ; and it is clear that A �→ Mα(A) is homogeneous
of degree one. More generally if Ui :H → H is an orthogonal map (so U∗

i Ui = UiU
∗
i = I ) for

1 � i � m, and we write U = (U1,U2, . . . ,Um), define

Mα,U (A) =
(

m∑
i=1

αiU
∗
i A−1

i Ui

)−1

, (26)

and note that A �→ Mα,U (A) is an order-preserving map from intKm to intK .
For each k, 1 � k � m, let Γk be a finite, nonempty set of ordered pairs (α,U), where α ∈

R
m+ \ {0} and U = (U1,U2, . . . ,Um) is an ordered m-tuple of orthogonal operators Uj :H → H .

Define fk : intKm → intK by

fk(A) =
∑

(α,U)∈Γk

Mα,U (A) (27)

where A = (A1,A2, . . . ,Am) ∈ intKm, and define f : intKm → intKm by

f (A) = (
f1(A),f2(A), . . . , fm(A)

)
. (28)

If I denotes the identity operator on H and if we take E = (I, I, . . . , I ) in the statement of
H4.2, we see that f satisfies H4.2. We also note that, in general, if f : intKm → intKm and
g : intKm → intKm both satisfy H4.2 for the same E, then g ◦ f satisfies H4.2 for that E. If Γ ′

k

is a finite subset of R
m+ \ {0} for 1 � k � m, and fk : intKm → intK is defined by

fk(A) =
∑
α∈Γ ′

Mα(A) (29)
k
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and f is defined by Eq. (29), then we can take E = (E1,E1, . . . ,E1) for any E1 ∈ intK and f

will satisfy H4.2 for this E.
We now return to the more general setting of H4.1. Recall that a closed cone C in a Banach

space X is called finite-dimensional if the linear span of C is a finite-dimensional linear subspace
of X. If C is a closed, finite-dimensional cone in a Banach space X, it is a standard conse-
quence of the Hahn–Banach theorem that there exists a continuous linear functional θ ∈ X∗ with
θ(A) > 0 for all A ∈ C \ {0}. If, in the context of H4.1, we take E = (E1,E2, . . . ,Em) ∈ intKm,
we can define a finite-dimensional closed cone CE ⊂ Km by

CE = {
(x1E1, x2E2, . . . , xmEm)

∣∣ x = (x1, x2, . . . , xm) ∈ R
m+
}
. (30)

The reader can verify that A = (x1E1, x2E2, . . . , xmEm) is contained in intKm ∩ CE if and
only if x = (x1, x2, . . . , xm) ∈ int Rm+. One can also verify that if A = (x1E1, x2E2, . . . , xmEm) ∈
intKm ∩ CE and B = (y1E1, y2E2, . . . , ymEm) ∈ intKm ∩ CE , then

dCE
(A,B) = dKm(A,B) = d(x, y). (31)

Here dCE
(respectively, dKm ) denotes Hilbert’s projective metric in CE (respectively, Km), and

d denotes Hilbert’s projective metric on R
m+. The linear map

L : (x1, x2, . . . , xm) → (x1E1, x2E2, . . . , xmEm)

gives a linear isomorphism between R
m+ and CE , so CE is a polyhedral cone.

Lemma 5.1. Assume H4.2 and for every x = (x1, . . . , xm) ∈ int Rm+, let y = (y1, . . . , ym) = g(x)

be given by Eq. (22). Then g : intRm+ → int Rm+ is order-preserving (in the partial ordering in-
duced by R

m+) and homogeneous of degree one. If k � 1, E = (E1,E2, . . . ,Em) is as in Eq. (22)
and z = (z1, z2, . . . , zm) = gk(x), we also have

f k(x1E1, x2E2, . . . , xmEm) = (z1E1, z2E2, . . . , zmEm). (32)

Proof. For any u,v ∈ intRm+, one can easily verify that

(u1E1, . . . , umEm) � (v1E1, . . . , vmEm)

in the partial ordering on Km if and only if u � v in the partial ordering on R
m+. Since we assume

that f is order-preserving it follows that g is order-preserving. The final statement of Lemma 5.1
follows easily by induction. �
Proposition 5.1. Let C be a closed cone with nonempty interior in a Banach space X. Let
q :C → [0,∞) be a continuous map which is homogeneous of degree one and satisfies q(x) > 0
for all x ∈ C \ {0}. Define Σ = {x ∈ intC | q(x) = 1} and let T :Σ → Σ be a map which is
nonexpansive with respect the Hilbert’s projective metric d on C. Let D ⊂ C be a closed finite-
dimensional cone such that Σ ∩ D is nonempty and T (Σ ∩ D) ⊂ Σ ∩ D. Then T has a fixed
point in Σ if and only if T has a fixed point in Σ ∩ D.
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Proof. Since Σ ∩ D is nonempty, the closed cone C1 = C ∩ span{D} (where span{D} denotes
the linear span of D) is nonempty. If dC1 denotes Hilbert’s projective metric on C1, and dC

denote Hilbert’s projective metric on C, then for any x, y ∈ intC ∩ C1, dC1(x, y) = dC(x, y).
This follows from the definition of Hilbert’s projective metric, since for x, y ∈ span{D} and
β > α > 0, αx �C1 y �C1 βx if and only if αx �C y �C βx.

Since C1 is finite-dimensional, there exists a linear functional θ ∈ X∗ such that θ(x) > 0 for
all x ∈ C1 \ {0}. Let S = {x ∈ intC ∩ C1 | θ(x) = 1}. For any x ∈ S ∩ D, define the map T̂ (x) by

T̂ (x) = T (x/q(x))

θ(T (x/q(x)))
.

Suppose that z ∈ Σ is a fixed point of T . Let y ∈ S ∩ D, define R = d(y, z) and let Γ = {x ∈
S ∩ D | d(x, y) � R}. Since {x ∈ intC | d(x, z) � R} is convex (see Lemma 4.1 in [16]), it
follows that Γ is convex. Suppose that x ∈ Γ . Then clearly, T̂ (x) ∈ S ∩ D, and furthermore,

dC1

(
T̂ (x), z

) = dC1

(
T

(
x/q(x)

)
, z

)
� dC1

(
x/q(x), z

) = dC1(x, z) � R.

Therefore T̂ (Γ ) ⊂ Γ . We claim that Γ is compact. It is clear that Γ is closed in Hilbert’s pro-
jective metric as a subset of S. Since C1 is a finite-dimensional cone, it is well known that the
metric space (S, dC1) is proper, that is every closed bounded subset of (S, dC1) is compact. Thus
Γ is compact. Since T̂ : Γ → Γ is nonexpansive with respect to dC1 , it is continuous, and we
may apply the Brouwer fixed point theorem to conclude that T̂ has a fixed point ẑ ∈ Γ . This
concludes the proof, since ẑ/q(ẑ) ∈ Σ ∩ D is a fixed point of T . �
Remark 5.1. In our particular application, we will not need Proposition 5.1, but we believe that
Proposition 5.1 has independent interest and may prove useful in more general settings.

If H4.1 holds and A ∈ Σ , recall that ω(A;T ), the omega limit set of A under T , is given
by Eq. (4). If cl(

⋃
k�1 T k(A)) is compact, ω(A;T ) is compact and nonempty; but in general

ω(A;T ) may be empty.
In the following, recall that a closed cone C in a Banach space X is normal if there exists a

constant M such that whenever A,B ∈ C and A � B it follows that ‖A‖ � M‖B‖.

Theorem 5.1. Assume H4.2, let CE be given by Eq. (30) and assume that T |Σ∩CE
has no fixed

points. Assume that the cone Km in H4.2 is normal and that there exists a constant M1 such that
for all A,B ∈ Km with A � B we have

q(A) � M1q(B). (33)

Then there exists a nonempty, proper subset J ⊂ {1,2, . . . ,m} with the following property: if
A ∈ Σ and ε > 0, there exists a constant n = n(ε,A) such that for all B = (B1, . . . ,Bm) ∈
co(

⋃
k�n T k(A)) we have ‖Bj‖ < ε for all j ∈ J . In particular, if B ∈ ⋂

n�1 co(
⋃

k�n T k(A)),

then Bj = 0 for all j ∈ J . If we replace the assumptions that Km is normal and that Eq. (33)
holds by the assumption that for every A ∈ Σ , cl(

⋃
k�n T k(A)) is compact, then the conclusions

of Theorem 5.1 still hold.
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Proof. By using Theorem 2.2 in [11] directly or by using Theorem 2.1 with K1 = K2 = Kp ,
we see that co(ω(E;T )) ⊂ ∂CE . It follows that there exists a nonempty, proper subset J ⊂
{1,2, . . . ,m} such that for every B = (B1,B2, . . . ,Bm) ∈ co(ω(E;T )), Bj = 0 for all i ∈ J .

If A ∈ Σ , there exist α > 0 and β > 0 with αE � A and A � βE. Because f is order-
preserving it follows that αf k(E) � f k(A) and f k(A) � βf k(E) for all k � 1. We now assume
that Eq. (33) holds, so q(f k(A)) � βM1q(f k(E)) and αM−1

1 q(f k(E)) � q(f k(A)). Because
cl(

⋃
k�n T k(E)) is compact for each n � 1 and ω(E;T ) = ⋂

n�1(cl(
⋃

k�n T k(E))), point set
topology implies that for every open neighborhood U of ω(E;T ), there exists an integer n(U) �
1 such that cl(

⋃
k�n T k(E)) ⊂ U for all n � (U). It follows that for every ε > 0, there exists

an integer n(ε) such that if B = T k(E) = (B1, . . . ,Bm) and k � n(ε), then ‖Bj‖ � ε for all
j ∈ J . Furthermore, if B ∈ co(

⋃
k�n T k(E)) and n � n(ε), then ‖Bj‖ � ε for all j ∈ J . If

B = (B1, . . . ,Bm) ∈ ⋃
k�n T k(A) and n � n(ε), we conclude that

B = T k(A) = f k(A)

q(f k(E))

q(f k(E))

q(f k(A))
� βT k(E)

(
M1

α

)
.

Because we assume that Km (or, equivalently, K) is normal, we conclude that for all j ∈ J ,
‖Bj‖ � (

β
α
)M1Mε, where M is the constant in the definition of normality. It follows that for

n � n(ε) and for all B = (B1, . . . ,Bm) ∈ co(
⋃

k�n T k(A)), ‖Bj‖ � (
β
α
)M1Mε for j ∈ J . This

proves the first part of Theorem 5.1.
Now suppose that Km may not be normal and that Eq. (33) may fail, but that cl({T k(A) |

k � 1}) is compact for some A ∈ Σ . We first claim that

sup

{
q(f k(E))

q(f k(A))
: k � 1

}
� ∞.

If not, there exists a sequence ki → ∞ with q(f ki (A))/q(f ki (E)) → 0. By taking a further
subsequence, we can assume also that T ki (A) → η and T ki (E) → ζ where η and ζ are nonzero
elements of Km. However, we have that

αT ki (E) � T ki (A)

(
q(f ki (A))

q(f ki (E))

)
,

and letting i → ∞ we conclude that −αζ ∈ Km, which contradicts the definition of a cone. Thus
there is a constant γ such that q(f k(E))/q(f k(A)) � γ for all k � 1, and that implies that

T k(A) � βT k(E)

(
q(f k(E))

q(f k(A))

)
� βγ T k(E). (34)

Let (T k(A))j denote the j th component of T k(A) for 1 � j � m. We claim that for each ε > 0,
there exists N(ε) with ‖(T k(A))j‖ � ε for all j ∈ J and for all k � N(ε). If not, there exist
j ∈ J and a sequence ki → ∞ such that ‖(T ki (A))j‖ � ε for all i. By taking a subsequence,
we can assume that (T ki (A))j → ηj as i → ∞, where ηj ∈ K , and ‖ηj‖ � ε. On the other
hand, we already know that (T ki (E))j → 0, so taking limits in Eq. (34), we find that −ηj ∈ K ,
a contradiction. This completes the proof. �

Theorem 5.1 is directly applicable to the case of operator-valued means.
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Corollary 5.1. Let H be a real Hilbert space, let X denote the Banach space of bounded, self-
adjoint linear maps B :H → H and let K denote the cone of positive semi-definite operators
in X. For a given integer m � 2, let Km = ∏m

i=1 K and let F : intKm → intKm denote the
composition of a finite number of maps of the form given by Eqs. (27) and (28). Assume that F

has no eigenvectors in CE ∩ intKm, where CE = {(x1I, x2I, . . . , xmI) | x = (x1, x2, . . . , xm) ∈
R

m+}. For A = (A1, . . . ,Am) ∈ Km, define q(A) = ‖A‖ = ∑m
i=1 ‖Ai‖, define Σ = {A ∈ intKm |

q(A) = 1} and define T : Σ → Σ by T (A) = F(A)/q(F (A)). Then there exists a nonempty,
proper subset J of {1,2, . . . ,m} with the following property: if A ∈ Σ and ε > 0, there exists an
integer n = n(ε,A) such that for all B = (B1,B2, . . . ,Bm) ∈ co(

⋃
k�n T k(A)), ‖Bj‖ < ε for all

j ∈ J .
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