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A b d .  In studies of an infinite chain of atoms, each atom connected by a 'spring' to 
its nearest neighbours and the whole chain lying in a periodic potential field, several 
authors have been led to study the nonlinear operator 

(F.x) (s)  = minlo(s, I )  + x ( r ) ]  

and a finite dimensional version TA : E?"+ W" of a given by 

(Here D(S, I )  is a given function and A is a given n x n matrix). The operator TA also 
arises in questions from operations research. If T = TA has a fired point in R", it is of 
interest to ask about convergence properties of iterates T* of T .  We shall prove that 
t h e r e i s a s e t S z { j !  l G j 4 n )  such that C:,,!~nandsuchthatifp=Icm(S!. theleast 
common multiple of the integers in S, then Iimk-- Tkn(x) = &) exists for everyx E R". 
Furthermore, for each x E W" there exists k, such that T*(x) = E(x)  for all k 3 k,. If 
T(0)  = 0, we shall provide explicit formulas forp in terms of simple properties of A. Our 
results are best possible and prove a sharpened version of a conjecture which was made 
by R B Griffiths in response to a question by this author. 

AMS classification scheme numbers: 47H09,47H10,58Fo8,26A18 
PACS number: 0520 

Introduction 

Before proving our theorems it may be worthwhile to discuss further some of the 
iiioiivaiicjii for xiidyiiig the opeiat~:~ 1% aixj TA define2 in the abstiact. Firs:, One 
should note that our methods of proof and theorems are equally valid if "in' in the 
definition of F. and TA is replaced by "ax': 

(&)(s) = max[a(s, t )  + x ( t ) l  

t Partially supported by NSF DMS 89-03018. 
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1224 R D Nussbaum 

and 
( F , ( X ) ) ~  = max[a, + xi]. 

i 

A motivation for studying FA arises from a problem in 'machine scheduling': see 
[6, chapter 11. Imagine n machines in a factory. The machines are interconnected 
and engage in repetitive tasks or 'cycles'. If machine i completes its rth cycle at 
time x;, then it begins its ( r  + 1)th cycle at a time x:", where 

..,+I ~ I .  
X i  - llldh (U;, +,X3. 

i 

This equation might represent the fact that machine i cannot start its next cycle until 
receiving output from all or some of the remaining machines. In this interpretation 
aij may represent the time needed to take the output of machine j to machine i after 
cycle r and a, may represent a necessary cooling period for machine i. Given some 

behaviour of x;, 16 i s n ,  as r - m .  But this is equivalent to understanding 
(F,)'(x"), which is exactly the problem addressed in this paper. 

We should remark that in practice one may want to allow a ,  = -m for certain i 
and j in the definition of FA, but this case can also be handled by the techniques of 
this paper. 

The connection of maps like TA and F. to statistical mechanics arises in the study 
of so-called Frenkel-Kontorova models. We refer to [4,11] and especially the 
survey article [U] for details. Here we must restrict ourselves to a few comments. 
The map F. is the object of interest in statistical mechanics, but F. has been studied 
by using TA as a finite-dimensional approximation. In studying F. or TA, so-called 
'additive eigenvectors' play a crucial role. A vector x E R" (respectively x E C ([0, 4) 

(TA(x))i = I  +x i  l s i s n  
Assuming that a(s, f) is continuous, it is known [3] that TA and F. have additive 
eigenvectors. In [8] Floria and Griffiths present a numerical procedure for finding an 
eigenvector of TA but present no proof of convergence (see [S, p 5661). A corollary 
of our approach (see proposition 1.1 and remark 1.1) is a proof of convergence for 
the Floria-Griffiths method. We should remark that, because F. is compact for a 
continuous, our techniques can also be used to prove convergence of the analogous 
procedure for F.. 

As is discussed in section 3.3 of [27], one is led to study iterates of F. in 
considering the ground-state problem for a finite number N of atoms in a periodic 
potential field V(u) ,  U E R. If RN(u)  denotes the 'minimal enthalpy' of a chain of N 
atoms at positions ulr  U * ,  . . . , uN, with the constraint that u N = u ,  then R,(u)= 
V ( u )  and for a suitably defined function a(s, f), RN(u)  = (F;-'(V))(u).  

Finally, we should remark that the maps TA provide examples which shed some 
light on recent nonlinear ergodic theorems [l, 2,16,17,20,21,23]. A theorem of 
Akcoglu and Krengel [I] asserts that if f:R"+ R" is non-expansive with respect to 
the 1, norm and f has a fixed point, then for any x E R" there exists some minimal 
positive integer p x  = p  such that Iimk-- f * P ( x )  = E and f'(5) = 5. It is known that 
the same theorem is true for any polyhedral norm on R" (for example, the sup 
norm) and that pI  G N for all x E R", where N can be chosen to depend only on the 
polyhedral norm and n. The sup norm is known to play a central role, and it is 
conjectured in [I71 that N = 2" for the sup norm. The maps TA are non-expansive 

. . .  I :--- ..o ,/:/.. ~iuirai xaii-uy LIIIICIS .zi, 1 - 1  -,E, ii is iiiipoiiaiii io uiideniaii: ihe ioiig-iime 

is BE ndditivc CigeEvcctor of T, (r.,sp.c!ive!y E )  if the.. eris!. I E Ira s?lrh thi?! 
(respectively (F .x ) (s )  = I + x(s), 0 6 s 6 1). 
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with respect to the sup norm, and theorem 2.2 and remark 2.5 show that in fact, for 
this particular class of non-expansive maps, much sharper upper bounds on px than 
2" can be given. 

1. Basic fads about TA 

If A is an n X n matrix with real entries ai,, we define a map TA : R" + R" by 
(TA(x)); = the ith component of TA(x)  

= min[aji+xjJ. 
1MjM" 

If x and y are vectors in R", x A Y  = z E W" is defined by 

z, = x i  A y ,  = mi@,, y;). (1.2) 

%(x A Y )  = (TA(x))  (TA(Y) )  for all x ,  y E R". (1.3) 

It is a straightforward exercise to verify that 

We shall write x < y  for x ,  y E R" if y; - x i  3 0 for 1 6  i < n ,  and we shall say that a 
map H :  D c R" + R" is 'order-preserving on D' if, for all x ,  y E D such that x S y ,  it 
is true that H ( x )  s H ( y ) .  Equation (1.3) implies that TA is order-preserving on R". 

We shall always denote by U E W" the vector such that U; = 1 for 1 < i S n .  In this 
notation it is easy to show that for all x E R" and all real numbers c 

TA(X + cu) = TA@) + cu. (1.4) 

Because TA is order-preserving and satisfies (1.4), one can prove directly or use a 
theorem from [5] to conclude that TA is non-expansive with respect to the sup norm, 
i.e., 

I ITA(x)-  T A ( Y ) l l - s  b - Y I 1 -  for all x ,  y E R" (1.5) 

IlZlloD = SUP IZjI. 
where 

I 

If TA has a k e d  point, it follows directly from (1.5) and theorem 1 in [17] that for 
every x E R" there exists an integer p x  = p  such that 

lim T;P(x) exists. 
k-00 

See also [l, 2,16,20,21,23,24] for related results. 
It is a special case of theorems 1 and 2 in [17] that 

P x  <2"y(n) 
where 

In [20] this estimate on px is greatly sharpened by exploiting (1.3), but the methods 
of [20] cannot, in general, give best possible bounds for the numbers p x  associated 
with TA. 
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Work of Chou and Duffin [3] (see also [7]) indicates exactly when the map T, 
has a fixed point. Given an n x n matrix, define A = A(A) by 

A=inf - a , , + ,  I k a l ,  1 < m , < n  for l s i s k  andmk+,=ml I (1.6) 

Then TA has a fixed point in R" if and only if A(A) = 0. In general, there exists 
U E R "  and A E R such that 

T,(u) = Au + U (1.7) 
and the number A in (1.7) necessarily equals A(A). 

These results and corresponding results for the operator F, mentioned in the 
abstract can also be obtained (after a change of variables y ,  = e*,, 1 s i  < n )  from 
classical theorems concerning eigenvectors in the interiors of cones for nonlinear 
operators. 

Notice that if U satisfies (1.7), then U + cu =U' also satisfies (1.7), so by choosing 
c appropriately we can arrange, for any fixed y, that (1.7) has a solution U with 
uk = y for some given k, 1 < k < n. It follows that if we define W, = {x E R" I x k  = y }  
and G :  Wy-+ W, by 

G ( x )  = TA@) - (&(x))k U + Yu (1.8) 
then G has a fixed point U ,  where U satisfies (1.7) and uk = y. 

Define a seminorm p(x) for x E R" by 

p(x) = max xi - min xi (1.9) 
1sisn Isis" 

and note that the restriction of p to WO gives a norm on WO and that p(x + cu) =p(x )  
for all c E R and all x E R" . 

Lemma 1.1. If G and p are defined by equations (1.8) and (1.9) respectively, then 
for all x, y ER", 

p(G(x)-  G ( y ) ) < p ( x - y ) .  (1.10) 

(1.11) 

(1.12) 

Proof. For x and y in R", define a = inf& - yi )  and p = supi(xi - yi) and note that 

y < x  - a u s y + ( / ¶  - a)u. 

au < T A ( X )  - TA(Y) e pu. 

We obtain from (1.11) and (1.4) and the fact that TA is order-preserving that 

Equation (1.12) implies that 
p ( W -  T , ( y ) ) < B - a = p ( x - y ) .  (1.13) 

Because p(z + cu) = p ( r )  for all z E R "  and c E R, we conclude that 
P ( G ( ~ ) - G ( Y ) ) = P ( T A ( ~ ) -  T A ( Y ) ) < P ( ~ - Y ) .  U 

Our next proposition gives an iterative procedure for finding a solution U of 
(1.7). This procedure is similar to one given in [8] (see [8, p 566, equation (1.7)]), 
hut Floria and Griffiths were unable to prove convergence of their iterative scheme. 
In proposition 1.1 and remark 1.1 below we prove convergence of both our iterative 
scheme and the Floria-Griffiths scheme. 
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Proposition 1.1. Let A be a given n X n matrix, y a given real number, k an integer 
with 1 k s n  and W, = {x E W" I xk = y ) .  Let G :  W,+ W, be defined by ( l .S) ,  and 
for a fixed h, O <  h < 1. define Gh(x) by 

G h ( x ) = ( l - h ) x + h G ( x ) .  (1.14) 

If G: denotes the mth iterate of Gh, then for any x E W,, ( a )  Gr (x)  converges to a 
fixed point U of G and (b )  U satisfies (1.7) for A = A,. 

Proof. Define a homeomorphism q: WO+ W, by q ( y )  = y  + yu. A calculation 
shows that 

(P-'GhCp)(Y) = (1 - h)Y + h [ T ( Y )  - (T,(Y))kUI 

which corresponds to the map Gh for y = 0. Thus in proving convergence of C:(x) 
to U with G(u)  = U ,  it suffices to  assume y = 0. 

Consider WO= W with the norm given by p ( x )  as in (1.9). According to lemma 
1.1, G is non-expansive with respect to this norm, and we have remarked that G has 
a fixed point in W .  It follows from a result of Ishikawa [13] that (a )  holds. The 
defining equation for G gives 

TA(U) = LYU + U 
for some a, and by the uniqueness of A in (1.7), a = A. 

x E w, = ( x  E R" Ix*  = y ) ,  

0 

Remark 1.1. Taking h = $ and y E R, we consider iterates of H = Gin, starting with 

H ( x )  = :x + $T,(x) - $(T,(x))*u + $yu. 

In [8, equation (17)], Floria and Griffiths consider the map T:R"-t R" defined by 

r(x) = $x ++TA@) + (min xi)u - t(min(xi + (TA(x))i))u 
i i 

so 

min(rx)i =minxi. 
i i 

We can easily check that 

r(x + CU) = r(x) + cu 

r(x) = H ( X )  + e(x)u, 

e@) = t(T,(x))* + min(xi) - 1 min(xi + ( T ( x ) ) ) )  - ?y. 

and H ( x  + cu) = S(x )  + :cu 

for all x E R", c E R .  Also we have that 

where 

i i 

Using these equations we can easily prove by induction on m that for all x E W" 

(1.15) 
j=0 

If x E W,, proposition 1.1 implies that H"(x) E W, and Iim,,,-- H"(x) = U E W,, 
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where v satisfies (1.7). However, we know 

min(rm(x))i = min xi = min(Hm(x))i + CY,,, (1.16) 

and (1.16) implies that CY,,, converges, so rm(x) converges, and the Floria-Griffiths 
iterative scheme converges for any x E W". This argument also proves that 

i i 

Since O(u) = 0 for all solutions U of (1.7) and Hi@)+ U, this fact is plausible hut not 
immediately obvious. 

If A is an n X n matrix and A and v are as in equation (1.7), define S(x) = x + v 
(so J yx) = x  - U) for x E W" and define n x n matrices and C by b, = aii + U, - vi 
and cii = b, - A. A calculation gives 

(S-'TAS)(x) - AU E N ( x )  = T&) - AU = Tc(x) (1.17) 
and 

min cii = 0 for 1 < i < n .  (1.18) 
I<j'" 

I "-1, \ 

If N is defined by (1.17), one can easily see that 

Nm(x) = (S-'TTS)(x) - mAu = TF(x) 

TZ(y) = T;(y - U) + mhu + U. 
or 

(1.19) 
Tb I-ll-...- A!--+ t- A:.-n..-m :.---+-- -< T i+ c..Rirnc tr. ALm.s- itn-o+nr nf T ..,ham 
11 ,",,"W~ Llllll I" UlucUDu L L c L a L c j D  "L ' A  .I U U Y l r r D  L" ".OC"II L L r L m I I Y  "I 'C, n..Clr 

C satisfies (1,18), so T,(O) = 0. We shall use this observation in the next section. 
If U is a one-one map of ( j  I 1 S j S n }  into itself (a permutation), we can 

associate with a a linear map P = P, : W" --f R" by P&) = y, where yi = xo-yi). If we 
consider elements of R" as column vectors and as usual let ei denote the vector with 
1 in row i and zero elsewhere, P,(ei) = e,(i) and Po, considered as an n X n matrix (a 
L.n-..+-+ir.- --*AV\ h-r 0 in  r n l ~ n m n  i lf A ir =n n Y n mitrir 2nd R = (h . . )  is yc ,I., ",P,.".I U L Y L L L " , ,  ..a., L 0 ( j )  1.. -"."...I. ,. .. I" ..*. .* -.,. ......-- I..- I \",,, 
defined by bij = a,(i)v(j), B = Pi'AP,. Also we have that 

( T A P ~ X ) ~  = min(aii + x,-yiJ = min(aio(k) k + x k )  I yi 

(pi'TAPo*)i = Y , ( ~ )  = mp(a,(j)o(k) + x k )  = (TP-lA+)i. 

i 
so 

Thus, if P is a permutation matrix, we have 

P-'TAP = Tp-nA,, (1.20) 

which we shall need later. 

[7]) that 

where 

If A and B are n x n matrices, it is a simple calculation to see (or use results in 

TSTA = T8.A (1.21) 

B * A = C  and cik = min(b, +ajk) (1.22) 
i 
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Because of equations (1.19) and (1.18) we will be working with non-negative 
matrices A,  and it will he useful to associate with each such matrix another 
non-negative matrix B .  

Definition 1.1. Let A be an n X n matrix with a, P 0 for all i and j .  Say that an n x n 
matrix B is 'associated with A' or that 'A and E are associated' if aB > 0 implies that 
be = 0 and aji = 0 implies that b, > 0. 

Equivaieniiy, non-negative n x n matrices A and E are associated ift a,b, = 0 
and aij + 6, > 0 for all i and j .  By using this second characterization, it is easy to see 
that if A and B are associated and P is a permutation matrix then P-'AP and 
P-'EP are associated. 

Lemma 1.2. Suppose that A and E are n x n non-negative matrices and that C is a 
mainx assoi.iapd with A and 3 is wiih 
B * A  (see (1.22)). If (TA)"= TF and F has entries hi, then f j = O  if and only if 
c$" > 0, where c$') is the entry in row i ,  column j of C". 

Proof. If E = E * A ,  we have 

Wiih 0". Then GC is 

ejk = min(b, + ajk) 
i 

so e, = 0 if and only if there exists j such that b, = 0 and a, = 0. However this 
happens if and only if there exists j such that d,  > 0 and cjk > 0, and (since all entries 
of D and C are non-negative), this is equivalent to 

C dipcp, > 0. 
P 

This shows ejk = 0 if and only if the i, k entry of DC is positive, so DC and E * A  are 
associated. 

By repeatedly using (1.21) and the first part of this lemma we see that F is 
0 associated with C", which proves the second part of the lemma. 

2. Convergence of T y ( x )  as k-m:  the optimal p 

Before discussing TA we shall have to consider a closely related family of mappings. 
We begin with a simple, general lemma, which actually holds for C(S) ,  S a  compact, 
Hausdorff space, not just for R". 

Lemma 2 1 .  Suppose that f :R"+R" and g:R"-R" are non-expansive with 
respect to the sup norm. Then h = f  ~g (so h ( x ) = f ( x ) ~ g ( x ) )  is non-expansive 
with respect to the sup norm. Iff and g are order-preserving, h is order-preserving. 

Proof. We leave the second part of the lemma to the reader. To prove the first part, 
suppose that x,  y ER" and 1l.x - y l l  = d .  For a fixed i ,  define f;(n) =a;, f ; ( y )  = b;, 
gi(x) = ai and gi(y) = 6;. We know that 

la; - bil s d  and la; - p;l S d 

and we have to prove that laj A a; - @; A bil S d.  
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By symmetry in the roles of f and g, we can assume that ai A ai = a;. If 
b; A /3; = b;, we have 

la; A a;-/3; A b;J = la; - bjl s d  

and we are done. Thus we can assume ,3; A b; = Pi. Then we have 

/3; < b, s ai + d and @; 3 CY; - d 3 a; - d ,  
so 

16; - u;l = lai A a; - ,3; A bil < d. 0 

We introduce a slight generalization of the maps TA. Suppose that c E W" and A 
is an n x n real matrix and f : R" --f R" is defined by 

(f(x)); = min (c;, ail + x j )  = c; A min(a, + x j ) .  (2.1) 
I.;i'" i 

Definition 2.1. We will say that fsatisfies H2.1 if there exist c E R" and an n x n real 
matrix A such that a;, 3 0 for all i, j and such that f ( x )  is given by (2.1). 

Definilion 2.2. We will say that f satisfies H2.2 iff satisfies H2.1 and a, > 0 for i s j. 

Lemma 2 2 .  I f f  and g satisfy H2.1, h ( x )  =g(f(x)) satisfies H2.1, and i f f  and g 
satisfy H2.2, h satisfies H2.2. Iff satisfies H2.1, thenfis  non-expansive with respect 
to the sup norm and f has a fixed point. Furthermore, for each x E W", there exists 
an integer p =px such that limk-Jkp(x) exists. 

Proof. Iff and g satisfy H2.1 we have 

y, = ( f ( ~ ) ) ~  = min(c,, aik + x k )  
k 

where aii 3 0 for all i and j and 

M y ) ) ;  = min(4, hi + Y,). 
i 

It follows that 

( g ( f ( ~ ) ) ~  = (h (x ) ) ,  = min(d,, b, + min(c,, aik + x k ) )  
i k 

= min min(dj, cj + b,, aik + b ,  + x k )  

= min(d;, min(c, + bjj), xk + m.in(b, + a j k ) )  

j k  

k i I 

If we define 6; = minj(ci + b;,), y j  = d j  A @; and 6ik = min,(b, +ajk) ,  the i, k entry of 
B * A ,  then 

(gCf(x)); = min(yj, &k + x J  
k 

and the matrix associated with h is B *A. The formula for 6, shows 
A and B have only non-negative entries. Thus h satisfies H2.1. 

t h a t b j , + a i k > O f o r l < j < n a n d  k z i .  I f j s k w e h a v e  

2 0, because 

> 0 for k 2 i, or, equivalently Iff and g satisfy H2.2, we have to show that 

bjj + ajk 3 ajk > 0 
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a n d i f j > k > i , w e h a v e  

b, +aik > b, > 0. 

This proves h satisfies H2.2. (This result also follows immediately from lemma 1.2). 
I f f  is as defined before, let &) = c ER", where ci is as in the definition o f f .  

Then we have f = TA A q. We already know that TA is non-expansive with respect to 
the sup norm and q obviously is, so lemma 2.1 implies that f is non-expansive. 
Similarly, lemma 2.1 implies that f is order-preserving. 

To prove that f h a s  a fixed point, suppose, that f a n d  c are as above and define 

K = min ci. 
i 

By definition we have that f(x) S c for all x E R". On the other hand, if KU c x  S c, 
we have 

( f ( ~ ) ) ~  = min(c,, a, + x i )  * min(r, aii + K )  2 K 
i i 

where we haved used the fact a, 2 0 for all i ,  j .  If D = { x  I KU S x  S c } ,  D is a 
compact, convex set andf(D)  cD, so fhas  a fixed point in D .  

Given that f is non-expansive and f has a fixed point, the final assertion of the 
0 

For our later discussion of the map TA, we shall need a theorem conceming 
maps f which satisfy H2.2 (see definition 2.2). Since no more work is involved, we 
shall actually prove a result about a more general class of maps. 

We are indebted to Xianwen Xie for the following proof, which simplifies an 
earlier argument of this author. 

Theorem 2.1. Let Q be a compact subset of R and a : Q X Q + R a continuous map 
such that a(s, f) 2 0 for all s, f E Q and a(s, t )  > 0 for all s, f E Q such that s c t. Let 
c : Q + R  be a continuous map. If X =  C(Q) ,  the Banach space of continuous 
real-valued functions in the sup norm, define a map F : X +  X by 

lemma follows immediately from theorem 1 in [17]. 

(Fx) ( s )  = c(s) A min[a(s, f) + x ( f ) ] .  

Then F has a unique fixed point 5 in X and for every x EX, 

=Q 

lim F*(x)  = 5. 
k-- 

In particular (the case Q = {j E 72 I 1 S j S m}), i f f  : R"-+ R" satisfies H2.2, then f 
has a unique fixed point 5 E R" and 

lim f " ( x )  = 5 for all x ER". 
k-m 

ProoJ Essentially the same argument used in [3] shows that F takes hounded sets to 
precompact sets, so F i s  a compact map. If maps 4 :X+X, j = 1,2, are defined by 

and (&(x)) (s)  = min[a(s, f) + x ( t ) ]  
tee 

(FI(X))(.) = 4 s )  
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F, is obviously order-preserving and non-expansive in the sup norm, and the same 
arguments used in section 1 show that & is order-preserving and non-expansive in 
the sup norm. The proof of lemma 2.1 now shows that F = Fl A l$ is non-expansive 
in the sup norm and order preserving. 

Let K = minSeQc(s). If F ( x )  =x, we claim that 

K<X(S)GC(S) for s E Q .  (2.2) 
Since (Fx)(s) G c(s) for all x EX, it suffices to prove x ( s )  3 K. Suppose not, so that 
K' = min,.Qx(s) < K and let so = min{s E Q I x ( s )  = K ' } .  Then we have 

x(so) = K' = c(so) A min[a(s,, t )  + x( t ) ]  
=Q 

= min,.&(s0, t )  + x ( t ) ] .  (2.3) 

However x ( t )  > K' if t < so and a(so, 1 )  > 0 if t so, so the right-hand side of (2.3) is 
strictly greater than K', a contradiction. 

If J = { x  E X  I K =z x ( s )  S c(s) for all s} ,  it is clear that F ( J )  CJ, so F ( K u )  3 KU 
(where U denotes the function u(s) = 1 for s E Q) and F(c) < c. Because F is 
compact and order-preserving, it follows that x, = F"(Ku) is an increasing sequence 
of functions in X and {x" I n 2 0) is precompact. Thus 

exists and F(3)  = & lim F"(Ku) = x  
n-m 

A similar argument shows that 

lim F"(c) = f a x  exists and F(2)  =i. 
"-OD 

Suppose that we can prove that i = x = 5. Then if x is any fixed point of F ,  
~u < x  < c and 

F n ( K U ) S F n ( X )  =XSFF"(C) 

which, after taking limits, implies that x = 5. 

suppose not, so LY = Ili - xll> 0 and obtain a contradiction. If sj E Q is such that 
Thus, to prove uniqueness of the fixed point of F, it suffices to prove x = i. We 

i ( S j )  - x(s,) = (Y 

we know that ~ ( s , )  < c(sj). For if x(sj)  = c(sj), we have c(sj) =x(sj)  < i ( s j )  and 
a(sj) = c(sj) A min,[a(sj, t) +. t ( t ) ]  S c(sj), a contradiction. Thus we obtain that 

x(sj) = min[a(sj, t )  + x ( t ) ]  
=Q 

, Select s,,, E Q such that 

X ( S j )  = (I(Sj' S j + l )  +&(.,+I) 

X ( S j )  s U(.,. S j+1 )  +x(sj+1). 

n=a(sj)-;X(Sj)= I l i -x l l  <2(s j+l ) -x(s j+ l )=za  

Of course we also have 

If strict inequality held in (2.5) we would find that 



Convergence of iferntes of a nonlinear operator 

a contradiction. Thus equality holds in (2.5) and 

(Y=f(s,+,) -x(s/*l) = i ( s , )  -&,). 

(Y = f(Sk) - &*) and ab*) = a s k ,  $*+I) +x(s*+J. 
By virtue of (2.6) we see that sk E Q can be defined for all k 20 and 

By a;?p:yiing (2.4) repeatcd!y ?e see that 

and since is bounded and a@,, 3 0 we conclude that 

Select a positive number 6 such that a(s, t) 3 6 if s, I f Q and s < t .  It follows that 
a(sj, si+,) 2 6 if si+, >si, so (2.7) implies that there exists an integer N such that 
s,+, < s, for all j a N. It follows that lim,,s, = s exists. Using (2.4) and the 
..-..*:n..i+.. Af .. ....,I " ...- &..A 
WL',".U"J "I * 'U," U W l  ,.,,U 

a(s) = ds. s) + ds) 
which contradicts the fact that ~ ( s ,  s) > 0. 

can assume that x % c. If x a KU (where K = min, c(s)), we obtain that 
It remains to prove that Iimi+ F'(x) = 5 for all x EX.  By replacing x by Fx, we 

F"(wu) C F"(x) G F"(c) 

which implies the desired result. Thus assume that 

minx(s) = K' < K 
=P 

However, one can easily see that F(K'u)  ~ K ' u ,  so F'(K'u) is an increasing sequence 
of continuous functions. Since F ~ ( K ' u )  is bounded above, { F ~ ( K ' u ) :  j 2 0) is 
precompact Iirn,,F'(~'u) exists and equals the unique fixed point 5 of F .  We 
conclude that 

F ~ ( K ' u )  s F i ( x )  G Fi(c) f o r i 3 1  

so P ( x )  also converges to 5. 0 

An examination of the proof of theorem 2.1 shows that the fact that Q is a subset 
of BB plays a limited role. It suffices that Q be a compact metric space, that Q he 
totally ordered by an orderings G f and that the ordering be continuous, i.e., s,-+s, 
f, + f and s. < 1. for all n implies s S 1. 

Theorem 2.1 will play an important role in proving our main result, theorem 2.2. 
To proceed further we need to recall some basic facts about non-negative 

irreducible matrices. In order to keep this paper as self-contained as possible, we 
state the basic definitions and sketch some proofs. 

If A = (as) is an n x n non-negative matrix (so au Z 0 for all i and j ) ,  A is called 
'irreducible' if, for each pair of integers i and j such that i # j and 1 si, j c n, there 
is a positive integer m = m(i, j), such that a',"', the entry in row i and column j of 
Am, is positive. Notice that in this definition, the 1 x 1 zero matrix (0) is irreducible. 
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Equivalently, an n X n non-negative matrix A is irreducible if n = 1 of if n > 1 and 
there does not exist a permutation matrix P such that 

P - ' A P = [ D  B O  cl 
where B and D are square matrices (see [lo, 15,221). 

normal torm', i.e., there is a permutation matrix P such that 
If B is an n X n non-negative matrix, then B can be written in 'Perron-Frobenius 

where Bii, 1 G i G s, is a square, irreducible matrix. 
If B is an m X m non-negative, irreducible matrix and B is not the zero matrix, 

there is a positive integer d = d ( B )  S m and an integer k ,  such that all elements on the 
main diagonal of B" are positive for all k t k,. This fact is a special case of a more 
general classical theorem: see, for example, theorem 4.8 on p 153 in [lo]. Because 
this result is fairly easy and because it plays a central role in our proof of theorem 
2.2, we sketch a proof. 

If S is a finite set of positive integers, Icm(S) and gcd(S) denote the least 
common multiple of the elements of S and the greatest wmmon divisor of the 
elements of S.  If S is a (possibly infinite) set of positive integers we define 

.wW) - .  = lim gcd(S.1 where S. = { j  E S ! j 6 n ) .  
n-- 

If S is a set of positive integers which is closed under addition (a, /3 E S implies 
a + /3 E S) and d = gcd(S), it is an easy exercise to prove (see the appendix in [lo]) 
that there exists an integer k, such that kd E S for all k P k,. 

If B is an m x m, non-negative, irreducible matrix, B 2. (0), and 1 s j s m, let 
S;= { r  3 1 ! bp)> 01 (b$) is the j .  j entry of E') and dj = gcd(S,). It is not hard to 
prove that the least element of S, is less than or  equal to m, so d -  6 m. It is also true 
that S, is closed under addition: if b t )  > 0 and b$) > 0, then b,!'+') z bj;)b$) > 0. It 
follows that there exists an integer ko such that kd, E Si for all integers k 3 k, and for 
1 G j G m. We claim that d, = d, for i + j .  For notational convenience put d = d; and 
d' = d,. We know (by irreducibility of E )  that there exist positive integers s and t 
such that b$) > 0 and bj!) > 0. Thus for all k 2 k ,  we have 

b),k'+*+') > bj;)bj!d)bl;" > 0. 

It follows that, for k t ko, ( k  + l ) d  + s + t is an integer multiple of d' and kd + s + t 
is an integer multiple of d ' ,  so d is an integer multiple of d ' .  This implies d P d ' ,  and 
by a symmetric argument we get d' t d and, finally, d = d' .  

Definition 23. If B is an m x m non-negative irreducible matrix, define d ( B )  = 1 if 
m = 1 and, for m > 1 and 1 s i  G m, d(B) = gcd({r I b!? > 0)). 

Our remarks above show that d ( B )  = d 6 m, that d ( B )  is independent of i in 
definition 2.3 and that, if B is not the zero matrix, there is an integer k,  such that all 
the entries on the main diagonal of Bkd are positive for k t k,. 
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If B is an n x n non-negative matrix with Perron-Frobenius normal form given 
by (2.8) we define an integer B(B) by 

B(B)=lcm({d(B,) I l < i s s } ) .  (2.9) 
If 6 = B(B) it follows that there exists an integer k, such that for k 3 kn, 

L 
and B P  has a positive main diagonal unless Bjj = (0). If E ,  is an mi x mi matrix, we 
have d(B,) <mi and Cf=l mi = n, so @ ( E )  = Icm(S), where C j E S  j S n. 

We can now prove our main result, which establishes a sharpened version of a 
conjecture made by R B Griffiths [12]. 

Theorem 22. Let A = (a,) be an n x n matrix such that minj(ojj) = 0 for 1 S i  6 n 
and let TA:R"-.R" be defined as in (11), so TA(0) =O.  Let B be a non-negative 
matrix which is associated with A (see definition 1.1) and let p = O(B)  be given by 
definition 2.3 and (2.9). Then for every x E R", hmk+ Tkp(x)  = c ( x )  exists and 

= 5. 
Notice that p = Icm(S), where S c { j I 1 j S n }  and CjGs j S n .  

Proof of theorem 22. Select a permutation matrix P such that P-'BP is in 
Perron-Frobenius normal form (see (2.8)). By the remarks in  section 1, we know 
that 

(P-'TAP)* = P-'T:P = T* P- 'AP 

so for purposes of proving theorem 2.2, we can replace A by P-'AP. We also 
know that P-'BP is associated with P-'AP. Thus we may as well assume from the 
beginning that Pis the identity and B satisfies (2.8) with P = I. Ler E = (bt j ) .  By our 
previous remarks, there is an integer k, and a set of integers J c { j I 1 S j S n) such 

kG and j J .  Of course J 
corresponds to those matrices E,, which are identically zero. 

Because TA(0) = 0 and TA is non-expansive in the sup norm, theorem 1 in [17] 
implies that for each x E R" there exists some minimal positive integer q (depending 
on x )  such that 1imk-- T y ( x )  = 5, T$(E) = 5 and T i ( 5 )  # 5 for 0 =z j < q. It follows 
that it suffices to prove that if 5 is such a periodic point for TA, TpA(5) = 5 for 

If we write (T,)" = TAM, we known (section 1) that B" is associated with A,. If 

!hZ? bf '  = 0 for s!! k and a!! j E J and h$' > 0 for a!! k 

= e p ) .  

m = kp and k 2 k,, we conclude that 
(TY(E))i s 5. f o r i e J  (2.11) 

because bjp) > 0 for i J ,  k 2 kw 
However, if k = koq. T y ( e )  = 5 and Ty+"p(E) = TpA(E), so (2.11) gives 

( X ( E ) ) i  S 5i for i 1. (2.12) 

Because TY(e)  = q is also a periodic point of TA for any k 2 0, the same argument 
gives, for all i $ I ,  

(2.13) (TPA(TY(5))); = (TY"'P(5)); s ( T m 9 ) i  
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for all positive integers k .  If (T5(E)) i<Ei for some i e J ,  then by using (2.13) 
repeatedly we find that 

")i < Ei for all integers k > 1. (2.14) 
for k = k,q, and we conclude 

V % E ) ) i  = 2 for all i J .  (2.15) 
For notational convenience, defin'e T5 = Tc and E(*'= T5p(E) = T:(E). We know 

that Bp is associated with C, so b$J" = 0 for i E J and j 3 i and cii > 0 for i E J and 
j i. We know that 51" = 5, for all k 3 0 and all i 4 J. Thus we can write, for i E J, 

111 ie ,  

Equation (2.14) contradicts the fact that TY(E)  = 
that 

E$*+U = (Tc(E'*'))i = min(cij + 5,) A min(c, + E?). 

If we define mi by 

mi = min(cii + ti) 

E!*+') = mi A min(cij + Ey)) 
i f l  

for i E J. 
,el 

(2.16) 

Let p denote the number of elements in J (if p = 0 we are done) and identify R' 
with the ZER" such that zi=O for i e J .  Define a map G:R'+R'by (G(z))~=O 
for i 4 J and 

(2.17) 

Because cii>0 for all i, j E J  and c,>O for i E J  and all jai, G satisfies the 
conditions of theorem 2.1. Thus, for any z E R', limk-- Gk(z )  = 5 exists, where 
5 ER' is the unique fixed point of G. On the other hand, if z is chosen so z, = 5, for 
all j E J, (2.16) and (2.17) imply that 

E!*'= for all i E J. (2.18) 

(G(z) ) ,  = mi A min(cii + 2,) for i E J. 
j E I  

If k = mq we conclude from (2.18) that 

.(2.19) 

Therefore we have z = t and G'(z) = G*(5) for all k 3 1, so (2.18) implies that 
T%E) = E .  0 

Remark 21. If the matrix B in theorem 2.2 is irreducible and d = d(E)  (see 
definition 2.3), so d < n, then Iimk-- T5d(x) exists for every x E R". 

Remark 22. Suppose that A is an n x n non-negative matrix and that there exists a 
permutation U of M = ( j  I l s j s n )  such that a,=O if and only if j =  a(i). If 
6 = inf{aij I aii > 0) and x E R" is such that 0 < x i  < 6 for 1 < i S n ,  then TA@) = y 
where yi = x-(~). Thus T:(x) = P*(x) ,  where P is the permutation matrix cor- 
responding to U-'. By choosing the permutation U appropriately, the number p in 
theorem 2.2 can be taken equal to Icm(S), for any set S c ( j  I 1 < j S n }  such that 
C i e s j < n .  This observation has also been made by Griffiths [12]. 

The case of a general matrix A follows trivially from theorem 2.2. 
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Theorem 23. Let A be an n x n matrix, let A be given by (1.6) and U be a solution 
of (1.7). Let C be the n X n matrix given by cii = a, + uj - ui - A  and p = e ( D )  (as in 
(2.9)), where D is a non-negative matrix associated with C . Then for every x E R", 

lim(Tp(x) - kpAu) 
k-= 

exists 

Proof. This follows immediately from theorem 2.2 and (1.19). 0 

Remark 2.3. If B is an n x n non-negative matrix, the computation of O ( B )  in (2.9) 
seems to require putting B into Perron-Frobenius normal form, but this is not the 
case. For each i, 1 < i c n,  let S, = { r  a 1 I 6;;) > 0) and let J = {i I Si is empty}. If 
i e J, let d, = gcd(Si). We leave to the reader the argument that B(B)  = Icm({di I i 4 
J}). Because Si is closed under addition, there exists ko such that for 8 = B(B)  and 
for all k 3 ko, 

bif" > 0 for all i 4 J. 
From this characterization of 8 ( B )  we easily see that if E , ,  E ,  and B,  - B ,  are 

Our final result shows that the convergence of iterates T p ( x )  in theorem 2.3 
non-negative n x n matrices, then @(E,)  divides B(B,).  

actually stabilizes after only finitely many steps for any given x. 

Theorem 2 4 .  Let A be an n X n matrix such that A(A) = O  (see (1.6)), so TA has a 
k e d  point. Let p be defined as in theorem 2.3. Then for each f E R", there exists an 
integer k(X) such that TY(.?) = 5 for all k 3 k ( Z )  and T',(E) = 5. 

Proof. Let C be a matrix such that T', = T,. We know that for any f E R", 
Iimk-= T3.t) = E ,  where Tc(E) = 5. If we define S(x) = x + E ,  we have that 

S-' T,S = TD where d,  = cii + 5, - 5, 
and TD(0) = 0. We also know that 

If we define 7 = X - 5, it suffices to prove that there exists an integer k ( f )  such that 

TLG) = 0 for all k a k(2).  

Define 6 t 0 by 

2 6 = min{dji I dii > 0). 

Let U =  { y  E R" I IyJ < 6 for 1 Si e n } .  Because TD(cu) = cu for all c E R  and 
because TD is order-preserving, we have TD(u) c U. If we define Si = { j I dji = 0), 
one can see that 

 MY)^ = min (yi) = (H(y))i f o r y E U  
jGS1 

because d,  + y, > 6 for y E U and j 4 Si. 
Select k,  so that z = T2(j) E U. The above remarks show that 

(T;(Z))~ = (H"' (Z) )~  = min (2,) 
jeS(i .*) 

(2.20) 
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where S( i ,  m )  is a non-empty subset of { j  I 1 S J  S n} depending on i and m. There 
are only finitely many vectors of the form given by the right-hand side of (2.20), so 
there must be integers 1 5  k < m such that 

T g ( r )  = T*,(r). 

It follows that for every integer (Y > 1, 

T i Y k ' + I C  (2) = T:(2). (2.21) 

T*,(z) = 0. 0 

Since the left-hand side of (2.21) approaches 0 as (~ - - tm ,  

Remark 2 4 .  It may be helpful to  discuss the form which theorem 2.4 takes for the 
example in remark 2.2. If notation is as in remark 2.2 and p denotes the order of the 
permutation U ,  our results imply that TS = T,, where C is an n x n non-negative 
matrix such that cij > 0 for i # j and cii = 0. We shall only need the fact that cii = 0. 
Theorem 2.4 implies that for any x E W", there exists k,  such that T!+) = 5 for all 
k 2 k, and Tc(5) = 5. However, more can be said. If x E W", let xi = T&). Let 
K, = (i I xi = min,x,} and, for i E K , ,  let xi = p , .  If xi denotes the ith component of 
xi,  one can show that x { = x i  for j 2 1  and ~ E K , .  Define K,= { i  B K , : x t =  
min,,,, xi}  and for i E K,, let x: = p 2 .  Then one can see that p, > p, and x{ = x: for 
j 2 2 and i E K 2 .  In general, proceed inductively: if K ,  and pi  have been defined for 
l s i e m ,  write r,=U:lKi and, if r , , , # { i l l s i s n } ,  define K,+,={i$ 
r,:g = min,,,mx:) and pmtl =x:  for i E K,,,,,. One can prove that x: = x: for 
j 2 m + 1 and i E K,+, and that p,+ ,  p , .  It follows from these remarks that if 
x E W" and m is the smallest integer such that r,,, = {i I 1 G i S n), then m n and 
T&) = 5 for all j 3 m - 1. In particular T&(x) = T',+'(x) for all j > n - 1. A similar 
observation, using very different notation and techniques, seems to  appear in 
chapter 27 of [7]. 

If one has further information about the matrix A ,  one can obtain sharper 
conclusions. For example, suppose that a,=d,>O for l S j S n  and j#u(i ) .  If 
x ER" and p1 = minixi and TA(x) = y .  it is not hard to see that p ,  S y i  S pI + d, for 
l s j ~ n  and miniyj=p,. If we define Y = { y E I W n : p l S ~ ~ p l + d , f o r  l S j S n ,  
minjy, = g,), it follows that TA(Y) c Y. If y E Y, one can see that TA(y) = P(y), 
where P i s  as in remark 2.2. It follows that 

TC(TA(x)) = TA(x) 

and one concludes that T',' = TL for all j > 1 in this case. 

Remark 25. Elementary algebra tells us that the number p in theorem 2.2 is simply 
the order of some element U of the permutation group S, on n letters. If G ( n )  
denotes the maximal order of an element U of S,, a classical result of Landau (see 
[25] for references) asserts that 

log G ( n )  - 
Much more recently, Massias [26] has obtained effective bounds and proved that 

log G(n)  s (1.053 1 3 .  . .) for n 2 1 
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with equality occurring at n = 1319766. In [17, p 5251 it is conjectured that if 
f :R"+R" is non-expansive with respect to 11.11-, then the period p of a periodic 
point x off  always satisfies p s 2", and in general such an upper bound, if true, is 
hest possible. Our results here show that for our particular class of maps f (so 
f = TA), much sharper results are true. 

Acknowledgments 

I would like to thank Robert Griffiths for informing me about his conjecture. 
Thanks are also due to John Mallet-Paret for some helpful early discussions about 
the questions treated here. 

References 

[l] Akcoglu M A  and Krengel U 1987 Nonlinear models of diffusion an a finite space Prob. Theor. Rei. 
Fie/& 76 411-20 

[2] Blokhuis A and Wilbrink H A 1991 Alternative proof of Nussbaum's theorem on the size of a 
regular polygon in W" with the /,metric Dircrere Compur. Geom. in press 

13) Chou W and Duffin R 1 1987 An additive eigenvalue problem of physics related to linear 
programming Adu. Appl. Marh. 8 486-98 

[4] Chou W and Griffiths R B 1986 Ground states of one-dimensional systems using effective potentials 
Phys. Rev. B 34 6219-34 

151 Crandall M G and Tartar L 1980 Some relations between non-expansive and order preserving 
mappings Proc. Am. Moth Soc. 78 385-90 

[6] Cuninghame-Green R 1962 Describing industrial processes with interference and approximating 
their steady-state behaviour Op. Res Qunrl. 13 95-100 

171 Cuninehame-Green R 1979 Minimax Aleebra L ~ c I u ~ ~  Norer in Economics and Math. Svs tem voI . .  0 I I~ 

1M (Berlin: Springer) 
181 Flaria L M and Griffiths R B 1989 Numerical orocedure far solvine a minimization eieenvalue . .  " I 

problem Numerirche Math 55 565-74 

functions by univariate ones Numerirche Marh 39 65-84 
[lo] Graham A 1987 Non-negoriue Manices and Applicable Topics in Linear Algebra (New York: Ellis 

H o nu o o d ) 
[ll] Griffiths R B and Chou W 1986 Effective potentials, a new approach and new results for 

one-dimensional systems with competing length scales Phys. Rev. Lett. 56 1929-31 
1121 Griffiths R B 1990 Personal letter to R D Nussbaum, May 15, 1990 
1131 lshikawa S 1976 Fixed mints and iteration of a non-exoansive maooine in a Banach mace Proc. Am. 

[9] Golitschek M V 1982 Optimal cycles in doubly weighted graphs and approximation of biv&ate 

. .  .. " 
Marh. Soc. 59 65-71 

1141 Kam R M 1978 A characterization of the minimum cycle mean in a dieraoh, Dircrere Moth. 23 . .  _ .  
309: 11 

1151 Minc H 1988 Non-neaoriue Manices (New York: Wiley) . .  - 
1161 Miriureuicr M Rigid icts in !mite Jimcnrionil /,-space, prrpnnt 
1171 Nusbdum R D IYN Omcga limit wt. of non-expansive m q x  finitenew and urdinaliiy e\timxps 

[I81 Nusrhaum R D 1YR8 Hilhert'r pruptivc metric And itcrated ncmltncar mjps M t m  Am Marh Soc. 

llYl Nusrhaum U D 19x9 Ildhrrt'r projective metric and iterated nonlinear maps, I I  Mrm Am Moth. 

1201 Nurrbaum R D E,timates of the pcriod uf periodic points for  non-cxpanwc opcratorr lrrarll.  

121 I Srhatrow M IYXX Pmudr of non-rxpmwe operator, on Iimtc /,-,pace\ Eur. I .  Combtnuioncr 9 

[ZZl Sencia E I Y X I  Non.nrgurwe M n m w  and Murkuu Chum (New York: Spnnger) 

D t f  in:. Eq. 3 523-41 

391 

Sur. 401 

Mdth in prcsr 

73-81 



1240 R D Nussbaum 

[U] Sine R 1990 A nonlinear Perron-Frohenius theorem Proc. Am. Moth. Soc. 109 331-6 
[U] Weller D 1987 Hilbert's metric, part metric and self-mappings of a cone PhD Dissertarion University 

(U] Miller W 1987 The maximum order of an element of a finite symmetric group Am. Moth. Monthly 94 

1261 Massias J-P 1984 Majoration explicite de I'arde maximum d'un element du groupe symetrique Ann. 

1271 Griffiths R B 1991 Frenkel-Kontorova models of COmmensuTate-inMmmenSurate phase transitions 

of Bremen 

497-506 

FOC. Sci. Toulouse VI 269-81 

Fwdomenrnl Problems in Statistical Mechanics vol VII, ed H van Beijeren in press 


