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Abstract. In studies of an infinite chain of atoms, each atom connected by a ‘spring’ to
its nearest neighbours and the whole chain lying in a periodic potential field, several
authors have been led to study the nonlinear operator

{Fx)(s) = min[a(s, 1) + x(£}]
i
and a finite dimensionai version T, : R¥— R” of a F, given by
(Ta(x)) = mji“[ﬂxy +xl.

(Here a(s, 1) is a given function and 4 is a given » % n matrix). The operator T, also
arises in questions from operations research. If T = T, has a fixed point in R”, it is of
interest to ask about convergence properties of iterates T* of T. We shall prove that
thereisaset S {J | 1=j<n} such that X, ¢ j =< n and such that if p = icm($), the least
common multiple of the integers in §, then lim,_,, T*°(x} = E(x) exists for every x ¢ R".
Furthermore, for each x € R” there exists k, such that T%(x) = 5(x) for all k = k. If
T{0) = 0, we shall provide explicit formulas for p in terms of simple properties of A. Our
results are best possible and prove a sharpened version of a conjecture which was made
by R B Griffiths in response to a question by this author.

AMS classification scheme numbers: 47H09, 47H10, 58F08, 26A18
PACS number: 0520

Introduction

Before proving our theorems it may be worthwhile to discuss further some of the

mbtermtince Fon sbradiloe tha Aeeaen r E P Y e | tha aloten~t

MOLvauon 101 Suaying the Operaisis iy aiid ;A defined in the abstract. rii‘St, one
should note that our methods of proof and theorems are equally valid if ‘min” in the
definition of F, and T} is replaced by ‘max’;

(Fx)(s) = max{a(s, 0) + (1)

t Partially supported by NSF DMS 89-03018.
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and
(Ta(x)): = maxfa; + x;].

A motivation for studying T, arises from a problem in ‘machine scheduling’: see
[6, chapter 1]. Imagine » machines in a factory. The machines are interconnected
and engage in repetitive tasks or ‘cycles’. If machine i completes its rth cycle at
time x7, then it begins its (r + 1)th cycle at a time x!*!, where

x;*! = max (a; + x}).
i
This equation might represent the fact that machine { cannot start its next cycle until
receiving output from all or some of the remaining machines. In this interpretation
a; may represent the time needed to take the output of machine j to machine i after
cycle r and a; may represent a necessary cooling period for machine {. Given some
initial start-up times ) Isis<n, it is ii‘l‘l‘pﬁi't&ﬁt to understand the long-time
behaviour of x], 1<i<n, as r—o. But this is equivalent to understanding
(T,) (x°), which is exactly the problem addressed in this paper.

We should remark that in practice one may want to allow a,; = — for certain i
and j in the definition of T,, but this case can also be handled by the techniques of
this paper.

The connection of maps like 7, and F, to statistical mechanics arises in the study
of so-called Frenkel-Kontorova models. We refer to [4,11] and especially the
survey article [27] for details. Here we must restrict ourselves to a few comments,
The map F, is the object of interest in statistical mechanics, but F, has been studied
by using T, as a finite-dimensional approximation. In studying F, or T,, so-called
‘additive eigenvectors’ play a crucial role. A vector x € R" (respectively x € C ([0, 1])

15 an additive ptgprnmr-tnr nf T (rpepprhvplu F\ if there exists A e R such that

(Ti(x));=A+x; 1<i=sn (respectively (Fx)s)=A+x(5), 05 <1).

Assuming that a(s, t) is continuous, it is known [3] that T, and F, have additive
eigenvectors. In [8] Floria and Griffiths present a numerical procedure for finding an
eigenvector of 7, but present no proof of convergence (see [8, p 566]). A corollary
of our approach (see proposition 1.1 and remark 1.1) is a proof of convergence for
the Floria—Griffiths method. We should remark that, because F, is compact for a
continuous, our techniques can also be used to prove convergence of the analogous
procedure for F,.

As is discussed in section 3.3 of [27], one is led to study iterates of F, in
considering the ground-state probiem for a finite number N of atoms in a periodic
potential field V(«), u € R. If Ry(1) denotes the ‘minimal enthalpy’ of a chain of N
atoms at positions u,, 43, . .., 4y, with the constraint that uy =u, then R,(u)=
V(u) and for a suitably defined function a(s, ), Ry(#) = (FZ'(V)(u).

Finally, we should remark that the maps 7, provide examples which shed some
light on recent nonlinear ergodic theorems [1, 2, 16, 17,20, 21, 23]. A theorem of
Akcoglu and Krengel [1] asserts that if f:R"—> R" is non-expansive with respect to
the /; norm and f has a fixed point, then for any x € R" there exists some minimal
positive integer p, = p such that lim,_... f*(x) =& and fP(£) = &. It is known that
the same theorem is true for any polyhedral norm on R” (for example, the sup
norm) and that p, < N for all x e R”, where N can be chosen to depend only on the
polyhedral norm and n. The sup norm is known to play a central role, and it is
conjectured in {17] that N =2" for the sup norm. The maps 7, are non-expansive
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with respect to the sup norm, and theorem 2.2 and remark 2.5 show that in fact, for
this particular class of non-expansive maps, much sharper upper bounds on p, than
2" can be given.

1. Basic facts about T,

If A is an n X n matrix with real entries a;, we define a map T, :R"— R" by
(T4(x)); = the ith component of T,(x)

= min {g; + x;}. (1.1)

1=j=n
If x and y are vectors in R”, x A y =2z € R" is defined by

z;=x; Ay, =min(x;, y;). (1.2)
It is a straightforward exercise to verify that

Ta(x A y) = (Tu(x)) A (Tu(y)) for all x, y e R™. (1.3}
We shall write x <y forx, ye R"if y, —x; =0 for 1<i < n, and we shall say that a
map H:D cR"— R" is ‘order-preserving on D’ if, for all x, y € D such that x <y, it
is true that H{x) < H(y). Equation (1.3) implies that T, is order-preserving cn R".

We shall always denote by u € R" the vector such that &, =1 for 1<i<n. In this
notation it is easy to show that for all x € R" and all real numbers ¢

Talx + cu) = Ty(x) + cu. (1.4)

Because T, is order-preserving and satisfies (1.4), one can prove directly or use a
theorem from [5] to conclude that T, is non-expansive with respect to the sup norm,
ie.,

1Ta(x) = TaP)ll= = lIx — ¥l for all x, y e R" (1.5)
where

1zl = sup |z;].
}

If T, has a fixed point, it follows directly from (1.5) and theorem 1 in {17] that for
every x € R” there exists an integer p, = p such that

lim T%(x) exists.
kk—ro0
See also [1, 2, 16, 20, 21, 23, 24] for related results.
It is a special case of theorems 1 and 2 in [17] that

P <2"v(n)
where
y(n)=n! (L)n
In(2)
In [20] this estimate on p, is greatly sharpened by exploiting (1.3), but the methods
of [20] cannot, in general, give best possible bounds for the numbers p, associated
With TA.
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Work of Chou and Duffin [3] (see also [7]) indicates exactly when the map T,
has a fixed point. Given an n X n matrix, define A = A(A) by

“mf{( ) Z Coom..

Then T, has a fixed point in R" if and only if A{(A)=0. In general, there exists
v e R" and A € R such that

T(v)=Au+v (1.7

and the number A in (1.7) necessarily equals A(A).

These results and corresponding results for the operator F, mentioned in the
abstract can also be obtained (after a change of variables y,=e*, 1<i<n) from
classical theorems concerning eigenvectors in the interiors of cones for nonlinear
operators.

Notice that if v satisfies (1.7), then v + cu = v’ also satisfies (1.7), so by choosing
¢ appropriately we can arrange, for any fixed y, that (1.7) has a solution v with
v, = y for some given k, 1<k < n. It follows that if we define W, = {x e R” | x, = y}
and G: W, — W, by

G(x) = Ta(x) — (Talx)) 1 + yu (1.8)

then G has a fixed point v, where v satisfies (1.7) and v, = y.
Define a seminorm p(x) for x e R” by

k=l 1l=sm=snforl=si=sk andmk+,=m1} (1.6)

P = max x = min 19)

and note that the restriction of p to W, gives a norm on W, and that p(x + cu) = p(x)
for all ceR and all x e R".

Lemma 1.1. If G and p are defined by equations {1.8) and (1.9) respectively, then
forallx, yeR",

p(Gx) - G(y)<plx—y). (1.10)

Proof. For x and y in R", define o = inf{x; — y;) and B = sup{x; — y;) and note that

ysx—ausy+(f—au (1.11)
We obtain from (1.11) and (1.4} and the fact that T, is order-preserving that

au = Ty(x)— TLu(y) =< fu (1.12)
Equation (1.12) implies that

(L) - Ta(y))<b-a=plx—y). (1.13)
Because p(z + cu) = p(z) for all z € R" and ¢ € R, we conclude that

p(G(x) — G(y)) = p(Tu(x) - Tu(y)) s p(x ~ y). O

QOur next proposnlon gives an iterative procedure for finding a solution v of
(1.7). This procedure is similar to one given in [8] (see [8, p 566, equation (1. 7,
but Floria and Griffiths were unable to prove convergence of their iterative scheme.
In proposition 1.1 and remark 1.1 below we prove convergence of both our iterative
scheme and the Floria—Griffiths scheme.
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Proposition 1.1. Let A be a given n X n matrix, y a given real number, k an integer
with 1<k snand W, = {x e R" | x, = v}. Let G : W, — W, be defined by (1.8), and
for a fixed h, 0<h <1, define G,(x) by

Guix}=(1—-h)x + hG(x). (1.14)
If G} denotes the mth iterate of G, then for any x € W,, (a) G}'(x) converges to a
fixed point v of G and (b) v satisfies (1.7) for A=21,.

Proof. Define a homeomorphism ¢: W,— W, by @(y)=y+ yu. A calculation
shows that

(@7 Gup)(y) = (1 = h)y + A[T.(y) — (Ta(y))eut]

which corresponds to the map G, for ¥ = 0. Thus in proving convergence of G7(x)
to v with G(v) = v, it suffices to assume y =0.

Consider Wy, =W with the norm given by p(x) as in (1.9). According to lemma
1.1, G is non-expansive with respect to this norm, and we have remarked that G has
a fixed point in W. It follows from a result of Ishikawa [13] that (a) holds. The
defining equation for G gives

T,(v)=o0u+v

for some &, and by the uniqueness of A in (1.7), a = A. O

Remark 1.1. Taking h =% and y € R, we consider iterates of H = G, starting with
xeW,={xeR"|x. =7},

H(x) = 3x + 3T, (x) — 2 Tu(x))até + 2yu.

In [8, equation (17)], Floria and Griffiths consider the map I':R"— R" defined by
L(x)=3x +1T:(x) + (m_in X )u — %(mjn(x,- + (Ta(x)):))u

$0
min(['x); = min x;.

We can easily check that
[(x +cu)=T{(x)+cu and H(x +cu)=S(x)+ 4cu
for all x e R", c € R. Also we have that
Ti(x)=H(x)+ 8(x)u,
where
6(x) = J2‘(1;(-‘:))1: + m_iﬂ(xi) -3 mi“(xi +(Tu(x))) — 3.
Using these equations we can easily prove by induction on m that for all x e R"

I'"(x)= H”'(x)+"§__:1 O(H (x))u = H™(x) + a,u. (1.15)

If xeW,, proposition 1.1 implies that H™(x) e W, and lim,, .. H"(x)=veW,,
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where v satisfies (1.7). However, we know

min(I'™(x}); = min x; = min(H™(x)); + &, (1.16)

and (1.16) implies that «,, converges, so I'"(x) converges, and the Floria—Griffiths
iterative scheme converges for any x € R”, This argument also proves that

l

11Tl

| & £ SN . - PR
TXj)= &,, CXISis.

1
—o0

-
I
p=

5

Since @(v) = 0 for all solutions v of (1.7) and H/(x)— v, this fact is plausible but not
immediately obvious.

If A is an n X matrix and A and v are as in equation (1.7), define S{x}=x+v
{so 37'{(x) =x — v) for x € R" and define n X n matrices & and C by b; =a; + v; — v;
and ¢; = b; — A. A calculation gives

4 (57T, 8)(x) — Au = N(x) = Ta(x) — Au = T(x) (1.17)
an
min ¢; =0 for l=si=n (1.18)
1=j=n

If N is defined by (1.17), one can easily sec that

N (x)=(S7'T38)(x) — mAu = TZ(x)
or
TZ()=THy —v)+miu+v (1.19)

It follows that to discuss iterates o
C satisfies (1.18), so T(0) = 0. We shall use this observatlon in the next section.

If o is a one-one map of {j|1=<j<n} into itself (a permutation), we can
associate with o a linear map P = P,:R"— R" by P,(x) =y, where y; = x,-1;. If we
consider elements of R” as column vectors and as usual let ¢; denote the vector with
1in row i and zero elsewhere, P,(e;) = e,(;, and P,, considered as an n X n matrix (a

‘permutation matrix), has e, in column j. If A is an 7 X n matrix and B = (b;) is

defined by b; = a0, B = P;'AP,. Also we have that

=y

(TaPox); = min{a; + x5-15)) = mkin(ﬂra(k) +x )=y
!

(P T Pox)i = Yoy = mjn(ao(i)o(k) +x) = (Tp-14p% )

Thus, if P is a permutation matrix, we have
P-ITAP= TP"AP’ (1.20)

which we shall need later.
If A and B are n X n matrices, it is a simple calculation to see (or use results in
[7]) that

TBTA = TB-A (121)
where

BxA=C and i = min(by + ay) (1.22)
I
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Because of equations (1.19) and (1.18) we will be working with non-negative
matrices A, and it will be useful to associate with each such matrix another
non-negative matrix B.

Definition 1.1. Let A be an n X n matrix with a,; =0 for all i and j. Say that an n Xn
matrix B is ‘associated with A’ or that ‘A and B are associated’ if a; > 0 implies that
b; =0 and a; = 0 implies that b; > 0.

Equivalently, non-negative n X n matrices A and B are associated iff a;b; =0
and a; + b; >0 for all i and j. By using this second characterization, it is easy to see
that if A and B are associated and P is a permutation matrix then P~'AP and
P~'BP are associated.

Lemma 1.2. Suppose that A and B are n X n non-negative matrices and that Cis a

PR g . [ PR G - Ph R 2 S R o N ey g J5 [———

matrix associated with A and D is associated with B. Then DC is associaied with
B=*A (see (1.22)). If (T,)" =T and F has entries f;, then f; =0 if and only if
ci™ >0, where ¢{™ is the entry in row i, column j of C™.

Proof. If E=B+* A, we have

Cip = min(b,‘, + a]-k)
I

50 ¢y =0 if and only if there exists j such that b;=0 and a; =0. However this
happens if and only if there exists j such that d; >0 and c;. >0, and (since all entries
of D and C are non-negative}, this is equivalent to

2 d,-pcpk > 0.
I4

This shows ¢, =0 if and only if the i, k entry of DC is positive, so DC and B * A are
assoctated.

By repeatedly using (1.21) and the first part of this lemma we see that F is
associated with C™, which proves the second part of the lemma. O

2. Convergence of T%"(x) as k— »: the optimal p

Before discussing 7, we shall have to consider a closely related family of mappings.
We begin with a simple, general lemma, which actually holds for C(S), S a compact,
Hausdorff space, not just for R™.

Lemma 2.1. Suppose that f:R™—R™ and g:R™—R™ are non-cxpansive with
respect to the sup norm. Then A=f A g (so h(x)=f(x) A g(x)) is non-expansive
with respect to the sup norm. If f and g are order-preserving, h is order-preserving.

Proof. We leave the second part of the lemma to the reader. To prove the first part,
suppose that x, y e R™ and jjx — y|| =d. For a fixed i, define f(x)=aq, fi(y)=5,
8{x)= &, and g;(y) = ;. We know that

la; — bl =d and la; — Bil =d

and we have to prove that |a; A a, — B A by <d.
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By symmetry in the roles of f and g, we can assume that a, A o;=g;. If
b; A B, = b;, we have
la; Aai—B; Abi|=la,— b|=d
and we are done. Thus we can assume §; A b; = ;. Then we have

B.<b<a+d and Bza-d=a-d,
50

|ﬁ,’_a,'|=|ﬂ’,'f\a,<—ﬁil\bi|-<~d. a
We introduce a slight generalization of the maps T,. Suppose that c € R* and A
is an n X n real matrix and f:R"— R" is defined by

(F(x)) = 1[2;21,. (cha; +x)=c A mjin(a,-j +x;). (2.1)

Definition 2. 1. We will say that f satisfies H2.1 if there exist c € R" and an n X n real
matrix A such that a; =0 for all i, j and such that f(x) is given by (2.1).

Definition 2.2. We will say that f satisfies H2.2 if f satisfies H2.1 and a; > 0 for i <.

Lemma 2.2 If f and g satisfy H2.1, h{x) =g(f(x)) satisfies H2.1, and if f and g
satisfy H2.2, h satisties H2.2. If f satisfies H2.1, then f is non-expansive with respect
to the sup norm and f has a fixed point. Furthermore, for each x € R”, there exists
an integer p = p, such that lim,_,.. f**(x) exists.

Proof. If f and g satisfy H2.1 we have
Yy =(f(x));= mgn(cj, a4 + Xi)
where a; =0 for all i and j and

gyN:i= m’_in(d,-, by +¥;)-
It follows that

(g(f(x)): = (h(x)); = mjin(d,-, b + min(c,-, @i + X))
= m}m mkin(d,-, ¢; + by, di + by +x,)
= mkin(d,-, mjin(c,- +b;), x + mjin(b,-j + ).
if we define B; = min(c; + by), v; =d: A B; and 8y = mingb; + a;.), the i, k entry of
B=xA, then
(g(f(x):i= miﬂ(}’i: Suc +x4)

and the matrix associated with & is B * A. The formula for 8, shows §, = 0, because
A and B have only non-negative entries. Thus h satisfies H2.1.

If f and g satisfy H2.2, we have to show that 8, >0 for k =i, or, equivalently
that b, +a, >0for 1<sj=<nand k=i. If j <k we have

by+ay=ay,>0
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and if j> k =i, we have
b,-j + a]-k = b,-j- >0,

This proves h satisfies H2.2. (This result also follows immediately from lemma 1.2).
If f is as defined before, let @(x) =c e R", where ¢; is as in the definition of f.
Then we have f = T, A . We already know that T, is non-expansive with respect to
the sup norm and ¢ obviously is, so lemma 2.1 implies that f is non-expansive.
Similarly, lemma 2.1 implies that f is order-preserving.
To prove that f has a fixed point, suppose, that f and ¢ are as above and define

K = min c;.
i

By definition we have that f(x) < c for all x € R". On the other hand, if xu sx=<c,
we have

(f(x)); = min(c;, a; + x;) = min(x, a; + K) = K

where we haved used the fact 4,0 for all i,j. If D={x | ru<sx<c), Disa
compact, convex set and f(D) < D, so f has a fixed point in D.

Given that f is non-expansive and f has a fixed point, the final assertion of the
lemma follows immediately from theorem 1 in [17]. a

For our later discussion of the map T,, we shall need a theorem concerning
maps f which satisfy H2.2 (see definition 2.2). Since no more work is involved, we
shall actually prove a result about a more general class of maps.

We are indebted to Xianwen Xie for the following proof, which simplifies an
earlier argument of this author.

Theorem 2.1. Let () be a compact subset of R and a: ¢ X 0— R a continuous map
such that a(s, )= 0 for all 5, r € Q and a(s, t) >0 for all 5, t € Q such that s <¢. Let
c:Q— R be a continuous map. If X = C(Q), the Banach space of continuous
real-valued functions in the sup norm, define a map F: X — X by

(Fx)(s) =c(s) A mi(l;[a(s, )+ x(2)].

Then F has a unique fixed point £ in X and for every x € X,

lim F¥(x) =&

k—r
In particular (the case Q ={jeZ|1<j<=sm}), if f:R™— R™ satisfies H2.2, then f
has a unique fixed point £ € R™ and

lim f*(x)=§& for all x e R™.
k—s0

Proof. Essentially the same argument used in {3] shows that F takes bounded sets to
precompact sets, so F is a compact map. If maps F: X — X, j =1, 2, are defined by

(FR(x))(s) =c(s) and (F(x))(s) = fll:iél[ﬂ(s, 1) +x(1)]
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F, is obviously order-preserving and non-expansive in the sup norm, and the same
arguments used in section 1 show that E is order-preserving and non-expansive in
the sup norm. The proof of lemma 2.1 now shows that F = F| A F, is non-expansive
in the sup norm and order preserving.

Let k¥ = min,oc(s). If F(x)=x, we claim that

k=x(s)=c(s) forse(. (2.2)

Since (Fx)(s) =< c(s) for all x € X, it suffices to prove x(s) = k. Suppose not, so that
k' =min,cpx(s) < k and let so=min{s € Q | x(s) = x'}. Then we have

x(s9) = k" = c(sp) A micgl[a(so, 1)+ x(0)]

= minteQ[a(SOJ r) + X(t)]. (23)

However x(f) > k' if t <<s, and a(s,, t) > 0 if ¢ = s5,, so the right-hand side of (2.3) is
strictly greater than &', a contradiction.

If J={x € X | k <x(s)<c(s) for all s}, it is clear that F(J) =J, so F(xu)= ku
(where u denotes the function u(s)=1 for s€ Q) and F(c)<c. Because F is
compact and order-preserving, it follows that x,, = F"(xu) is an increasing sequence
of functions in X and {x, | n =0} is precompact. Thus

lim F*(xu)=x exists and F(x)=zx.

n—so

A similar argument shows that

lim F'(c)=x=x exists and F(X) =%

n—w

Suppose that we can prove that ¥=x =& Then if x is any fixed point of F,
Ku<sx<cand

Fi(xu)<F"(x)=x<F"(c)

which, after taking limits, implies that x = &.
Thus, to prove uniqueness of the fixed point of F, it suffices to prove x =% We
suppose not, so & = ||¥ — x|| >0 and obtain a contradiction. If 5; € Q is such that

X(s) —x(s)=a

we know that x(s;) <c(s;). For if x(s;)=c(s;), we have c(s;) =x(s;) <x(s;) and
£(s;) = c(s;) A min[a(s;, t) + X(£)] = c(s;), a contradiction. Thus we obtain that

x(s) = minfa(s;, 1) + ()

Select s;,, € Q such that

x(5;) = als;, 81} + x(551) (2.4)
Of course we also have
2(s;) < a(s), 5141) + £(5;41)- (2.5)

If strict inequality held in (2.5) we would find that

o= f(sj) _-.’.C(si) = ||¥ —x|| <f(sj+1) - -E(Sj+1) =a
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a contradiction. Thus equality holds in (2.5) and

@ = X(8541) — x(8;01) = E(s7) — 5(5)). (2.6}
By virtue of (2.6) we sce that s, € O can be defined for all k=0 and

& = E(s5) — x(s) and X(5:) = 3(Sk, Siea1) + 2 (Brcsr)-
By applying (2.4) repeatedly we sce that

x(so) = i‘é a(s;, S;1) + X(Su 1)

and since x(5,.1) is bounded and a(s;, 5,.,) = 0 we conclude that

zoa(si, Sj+1)<m. (2-7)
j=

Select a positive number & such that als, )= 5 if 5, r& Q and g =<t {t follows that
afs;, 5,41) = 6 if 5., =5;, so (2.7) implies that there exists an integer N such that
Sj+1<3; for all j=N. It follows that lim,.s5; =5 exists. Using (2.4) and the

soantinnitey AfF v nad 4 wwe fin
Wl“-l““ll}' WL A GLIV YV llllu

x(s)=afls, s) +x(5)

which contradicts the fact that a(s, s} > 0.
It remains to prove that lim;_.. F'(x) = & for all x € X. By replacing x by Fx, we
can assume that x <c. If x = xu (where x = min, c(s)), we obtain that

F'(xu) < F*(x) = F"(c)
which implies the desired result. Thus assume that

minx(s) =k’ < k.
se)

However, one can easily see that F(x'u) = k'u, so F/(x'u) is an increasing sequence
of continuous functions. Since F/(x’u) is bounded above, {F/(x'u):j=0} is
precompact lim;_.. F/(x’u) exists and equals the unique fixed point & of F. We
conclude that

Fl(x'uw) < F(x)= F(c) forj=1

so F(x) also converges to £. O

An examination of the proof of theorem 2.1 shows that the fact that © is a subset
of R plays a limited role. It suffices that Q) be a compact metric space, that  be
totally ardered by an ordering s <t and that the ordering be continuous, i.e., 5, —s,
t,—>t and 5, <t, for all n implies s =1,

Theorem 2.1 will play an important role in proving our main result, theorem 2.2,

To proceed further we neced to recall some basic facts about non-negative
irreducible matrices. In order to keep this paper as self-contained as possible, we
state the basic definitions and sketch some proofs.

If A=(a;) is an n X n non-negative matrix (so a; =0 for all j and j), A is called
‘irreducible” if, for each pair of integers i and j such that /1 #/ and 1=/, j<n, there
is a positive integer m = m(j, j), such that a{™, the entry in row i and column Jof
A”™, is positive. Notice that in this definition, the 1% 1 zero matrix (D) is irreducible.
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Equivalently, an n X n non-negative matrix 4 is irreducible if n =1 of if n>1 and
there does not exist a permutation matrix P such that

BO]

P_IAP=[
D C

where B and D are square matrices (see [10, 15, 22]).
If B is an n X n non-negative matrix, then B can be written in ‘Perron—Frobenius
normal form’, i.e., there is a permutation matrix P such that

By

- B, B 0

plpp=| " TE (2.8)
B, B,

where B;, 1<<i=3s, is a square, irreducible matrix.

If B is an m X m non-negative, irreducible matrix and B is not the zero matrix,
there is a positive integer d = d(B) < m and an integer k, such that all elements on the
main diagonal of B*? are positive for all k = k,. This fact is a special case of a more
general classical theorem: see, for example, theorem 4.8 on p 153 in [10]. Because
this result is fairly easy and because it plays a central role in our proof of theorem
2.2, we sketch a proof. ]

If §$is a finite set of positive integers, lem($) and ged(S) denote the least
common multiple of the elements of § and the greatest common divisor of the
elements of §. If S is a (possibly infinite) set of positive integers we define

ged(S) = lim ged(S,) where S, = {jeS|j=<n).
If S is a set of positive integers which is closed under addition («, § € 5 implies
a+ Bes) and d = ged(S), it is an easy exercise to prove (see the appendix in [10])
that there exists an integer &, such that kd € § for all £ =k,

If B is an m X m, non-negative, irreducible matrix, B # (0}, and 1<j=m, let
S;={r=1|b >0} (by is the j, j entry of B") and d, = ged(S$;). It is not hard to
prove that the least element of §; is less than or equal to m, so d; <m. It is also true
that §; is closed under addition: if >0 and 6§’ >0, then b};’*” =Y >0 It
follows that there exists an integer k, such that kd; € S, for all integers k = k, and for
1<j<m. We claim that d; = d; for i #. For notational convenience put d =d; and
d' =d;. We know (by irreducibility of B) that there exist positive integers 5 and ¢
such that b§? >0 and 5% > 0. Thus for all k =k, we have -

bifa+s 0 = pPBYEDBY > 0.

It follows that, for k = kg, (k + 1)d + s + ¢ is an integer muitiple of " and kd +5 +¢
is an integer multiple of d', so d is an integer multiple of d'. This implies d = d’', and
by a symmetric argument we get d' =>d and, finally, d =d".

Definition 2.3. If B is an m X m non-negative irreducible matrix, define d(B)=1 if
m =1 and, for m>1and 1 <i<m, d(B)=ged({r | b >0}).

Our remarks above show that d(B)=d=m, that d(B) is independent of i in
definition 2.3 and that, if B is not the zero matrix, there is an integer k, such that all
the entries on the main diagonal of B*? are positive for k = k.
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If B is an n X n non-negative matrix with Perron—Frobenius normal form given
by (2.8) we define an integer 8(B) by

6(B)=lcm({d(B;) | l=<i=<s}). (2.9)
If & = 8(B) it follows that there exists an integer k, such that for k= k,,
B}
) L oo R%? ]
(P7'BPY<*=P7'B*P = . - R ) (2.10)
) Bks

and B%® has a positive main diagonal unless B; = (0). If B;; is an m; X m; matrix, we
have d(B;)<m; and ¥i_, m; = n, so 8(B) =lcm(S), where ¥;sj=n.

We can now prove our main result, which establishes a sharpened version of a
conjecture made by R B Griffiths [12].

Theorem 2.2. Let A=(a;) be an n X n matrix such that minfa;)=0 for 1<i<n
and let 7,:R*"— R" be defined as in (11), so T,(0) =0. Let B be a non-negative
matrix which is associated with A (see definition 1.1) and let p = 9(B) be given by
definition 2.3 and (2.9). Then for every x € R", lim_... T*"(x) = §(x) exists and
r°(§) =&

Notice that p =lem(S), where S < {j | 1<j<n} and ¥, sj<n.

Proof of theorem 2.2. Select a permutation matrix P such that P7'BP is in
Perron—Frobenius normal form {(see (2.8)). By the remarks in section 1, we know
that

(P7'T,P) = P'TXP = T,

so for purposes of proving theorem 2.2, we can replace A by PT'AP. We also
know that P~'BP is associated with P~'AP, Thus we may as well assume from the
beginning that P is the identity and B satisfies (2.8) with P =1. Let B =(b;). By our
previous remarks, there is an integer k, and a set of integers J = {j | 1 <j <n} such
that b =0 for all k and all j €J and b >0 for all k =k, and j ¢J. Of course J
corresponds to those matrices B;; which are identically zero.

Because T,(0) =0 and T, is non-expansive in the sup norm, theorem 1 in [17]
implies that for each x € R” there exists some minimal positive integer ¢ (depending
on x) such that lim;_... T5(x) = §, T%(&)} =& and T%,(&)# & for 0<j <gq. It follows
that it suffices to prove that if & is such a periodic point for T,, T4%(&)= & for
p = 8(B).

If we write (T,)" = T, we known (section 1) that B™ is associated with A,,. If
m =kp and k = ko, we conclude that

(THE) <&  forigl 2.11)

because b >0 for i ¢ J, k = k.
However, if k = kog, T'P(E) =& and TEVP(&) = TH(E), so (2.11) gives

(TAE)i <& forigl. (2.12)

Because T(&) = n is also a periodic point of T for any k = 0, the same argument
gives, for alli ¢ J,

(TA(TZ(E)N): = (TL7(E) < (TF () (2.13)
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for all positive integers k. If (T4(5)), <& for some i¢J, then by using (2.13)
repeatedly we find that

(TH(&)i< & for all integers k = 1. (2.14)
Equation (2.14) contradicts the fact that T%(&) = & for k = koqg, and we conclude
that

(TA(8): =& for all i¢J. (2.15)

For notational convenience, define T% = T and €% = T%(E) = T(E). We know
that B” is associated with C, so b{f’=0 for ieJ and j=i and ¢;>0 for i €J and
j=1i. We know that £% =&, for all k >0 and all i ¢ J. Thus we can write, for i € J,

EFTY = (T(EW)): = IT_Li}l(Cif +E) A “.‘i}‘(cf;' + &)
} JE

If we define a; by
a; = min(c; + &)
el

EFD = oy A min(c; + ) foriel. (2.16)
jet

Let p denote the number of elements in J (if 4 = 0 we are done) and identify R*
with the z € R” such that z; =0 for i ¢ J. Define a map G:R*—R* by (G(z));=0
fori¢Jand

(G(2)): = &; A min(c; + 2;) foriel 217
jef

Because c; =0 for all i, jeJ and ¢;>0 for ieJ and all j=i, G satisfies the
conditions of theorem 2.1. Thus, for any z € R¥, lim,_,., G*(z) = { exists, where
£ € R*is the unique fixed point of G. On the other hand, if z is chosen so z; = §; for
all j €J, (2.16) and (2.17) imply that

g = (G*(2)), for all i e J. (2.18)
If k = mq we conclude from (2.18) that

§M=E = lim (G™(2))i = §. (2.19)

Therefore we have z = and G*(z) = G*({) for all k=1, so (2.18) implies that
Ta(E)=&. 0

Remark 2.1, If the matrix B in theorem 2.2 is irreducible and d =d(B) (see
definition 2.3), so d < n, then lim,_,., T%%(x) exists for every x € R".

Remark 2.2. Suppose that A is an n X n non-negative matrix and that there exists a
permutation o of M={j|1<j=<n} such that a;=0 if and only if j=o(i). If
6 = inf{ay ] a;>0} and x e R" is such that 0<x; <6 for 1<i<n, then T,(x)=y
where y; =x,;. Thus T%(x)=P*(x), where P is the permutation matrix cor-
responding to o~'. By choosing the permutation ¢ appropriately, the number p in
theorem 2.2 can be taken equal to lem(S), for any set S  {j| 1<j=<n} such that
Ljesj <n. This observation has also been made by Griffiths [12].
The case of a general matrix A follows trivially from theorem 2.2.
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Theorem 2.3. Let A be an n X n matrix, let A be given by (1.6) and v be a solution

of (1.7). Let C be the n X n matrix given by ¢; =a, +v;— v, — A and p = 8(D) (as in

(2.9)), where D is a non-negative matrix associated with C . Then for every x € R",
‘Eim (T%(x) — kphu)

exists

Proof. This follows immediately from theorem 2.2 and (1.19). O

Remark 2.3. If B is an n X n non-negative matrix, the computation of 8(B) in (2.9)
seems to require putting B into Perron—Frobenius normal form, but this is not the
case. For each i, 1<i=<n, let §;={r=1| by >0} and let J = {i | S, is empty}. If
i ¢J, let d; = ged(S;). We leave to the reader the argument that 6(B) = lem({d; | i ¢
J}). Because §; is closed under addition, there exists &, such that for @ = 8(B) and
for all k =k,

b >0 for all i ¢ J.

From this characterization of 6(B) we easily see that if B, B, and B, — B, are
non-negative n X n matrices, then 8(B,) divides 8(B)).

Our final result shows that the convergence of iterates T*f(x) in theorem 2.3
actually stabilizes after only finitely many steps for any given x.

Theorem 2.4. Let A be an n X n matrix such that A(A) =0 (see (1.6)), so T, has a
fixed point. Let p be defined as in theorem 2.3. Then for each ¥ € R”, there exists an
integer k() such that T*?(x) = £ for all k = k() and T5(§)=E.

Proof. Let C be a matrix such that 745 =T.. We know that for any xeR",

limy_,., TE(X) = &, where T.(&) = E. If we define S(x) = x + &, we have that .
ST S =Tp where dy=c, + &~ §

and T, (0) = 0. We also know that
’21_1-130 TH{x— &)= P_r.rl ST'T¥E) =0.

If we define 7 = % — &, it suffices to prove that there exists an integer k(¥) such that
T5(F)=0 for all k = k(x).

Define 6 >0 by

2 6 =min{d; | d;>0}.

Let U={yeR"||yl<6 for 1=<i=<n). Because Tp(cu)=cu for all ceR and
because T}, is order-preserving, we have Tp(u)< U. If we define ;= {j | d; =0},
one can see that

(Tn(y):i= IJT;I (y)=(H(y) foryeU

because d;+y,>dforyeUandj¢Ss,.
Select kg so that z = T(y) € U. The above remarks show that

(T5(2))i =(H™(2)): = }_ET(E"L)(Z;-) (2.20)
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where S(i, m) is a non-empty subset of {j | 1=<j <n} depending on i and m. There
are only finitely many vectors of the form given by the right-hand side of (2.20), so
there must be integers 1=k < m such that

5(z) = T'p(2).

It follows that for every integer a > 1,

T?‘_)(m—k)+k(z) — TkD(Z) (221)
Since the left-hand side of (2.21) approaches 0 as o— o,
T%(z)=0. O

Remark 2.4. It may be helpful to discuss the form which theorem 2.4 takes for the
example in remark 2.2. If notation is as in remark 2.2 and p denotes the order of the
permutation o, our results imply that T4 = T, where C is an n X n non-negative
matrix such that ¢; > 0 for i #j and ¢; =0. We shall only need the fact that c; = 0.
Theorem 2.4 implies that for any x € R”, there exists k, such that T%(x) = & for all
k=k, and To(E)=E. However, more can be said. If x e R", let x/ = T/(x). Let
Ki={i |x,- =nmin, x,} and, for i € K, let x;, = u,. If x} denotes the ith component of
x', one can show that x{=x; for j=1 and i€ K,. Define K,={i¢K,:x}=
min,.x, x;} and for i € K,, let x} = u,. Then one can see that p, =y, and x}=x} for
j=2 and i € K,. In general, proceed inductively: if K; and u; have been defined for
I<sism, wrte T, =2 K; and, if T,,#{i|1<si<n}, define K, ={i¢
[ X =mingr, x7} and g =x7 for i € K,,,,. One can prove that x{=x7" for
jzm+1 and ie X, and that p,,,, = u,,. It follows from these remarks that if
xeR" and m is the smallest integer such that T, = {i | l<i=<n), then m=<n and
Ti(x) = & for all j=m — 1. In particular T{x) = 7%+'(x) for all j =n — 1. A similar
observation, using very different notation and techniques, seems to appear in
chapter 27 of [7].

If one has further information about the matrix A, one can obtain sharper
conclusions. For example, suppose that a;=d,>0 for 1<j=<n and j#o(i). If
x € R”* and g, =min,x; and T,(x) =y, it is not hard to see that y,<y; < pu, + d; for
1=j=n and min;y; = p,. If we define Y={yeR":u;<y<p,+d; for 1sj=<n,
min; y; = .}, it follows that T,(Y)c Y. If ye Y, one can see that T,(y)=P(y),
where P is as in remark 2.2. It follows that

Te(Talx)) = Ty(x)

and one concludes that Ti+! = T for all j = 1 in this case.

Remark 2.5. Elementary algebra tells us that the number p in theorem 2.2 is simply
the order of some element ¢ of the permutation group S, on a letters. If G(n)
denotes the maximal order of an element o of S, a classical result of Landau (see
[25] for references) asserts that

log G{n)~Vnlogn
Much more recently, Massias [26] has obtained effective bounds and proved that

log G{n)=(1.05313...) Vnlogn forn=1
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with equality occurring at n =1319766. In [17, p 525] it is conjectured that if
f:R"—R" is non-expansive with respect to ||-||.., then the period p of a periodic
point x of f always satisfies p <2", and in general such an upper bound, if true, is
best possible. Our results here show that for our particular class of maps f (50
f =T,), much sharper results are true.
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