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1 Introduction

In this paper we develop the theory of compound functional differential equations. This follows
in the spirit of compound ordinary differential equations and dynamical systems as developed by
J. Muldowney [6] and Q. Wang [8]. Broadly, this topic concerns tensor products and exterior products
of linear nonautonomous evolutionary systems. We also explore positivity issues connected with
compound systems for a class of linear scalar delay-differential equations (1.1) with a single delay and
a signed feedback.

Abstractly, a linear (evolutionary) process U(t,7) : X — X on a Banach space X is a collection
of bounded linear operators U(t, 7), for t > 7, for which U(r,7) = I and U(t,0)U(o,7) = U(t,7)
whenever ¢t > o > 7, with U(t, 7)z varying continuously in (¢, 7) for each fixed x. Linear processes
occur as solution maps of a wide variety of nonautonomous linear equations, including of course the
finite-dimensional case # = A(t)x of an ordinary differential equation. Our interest in a large part is

with linear processes generated by the delay-differential equation
&(t) = —a(t)z(t) — B(t)z(t — 1), (L.1)

where o : R — R and § : R — R are locally integrable functions and where generally 3(t) is of
constant sign, either positive or negative, for almost every ¢. Typically, the underlying Banach space
for a system such as (1.1) is X = C([—1,0]).

Given an abstract linear process U(t,7) as above, and given an integer m > 1, one obtains the

co-called compound processes
u(t,7)=U(t, 7)™,  W(t,1)=U(t7)"",

by taking the m-fold tensor product and m-fold wedge product, respectively, of the operator U(t, 7).
These compound processes are themselves linear processes on the tensor and wedge products X &™
and X"\ of the space X. In general, if X; for 1 < j < m are Banach spaces, then one may consider
the tensor product

Xo=X190Xo®---®Xnp,

of these spaces. For infinite dimensional spaces, there are typically many inequivalent norms for Xg
arising from the norms on the X;. For our purposes, the so-called injective cross norm is the suitable

choice for Xy, and it is used throughout this paper. In a natural way, if A; are bounded linear operators

(int1)
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on X; for 1 < j < m, one obtains a bounded linear operator Ag = A1 ® A2 ® - - ® A, on Xo. In the
case all X; = X are the same space one writes Xo = X®™, and also Ag = A¥™ if all operators A; = A
are the same. The wedge product, or exterior product X\ C X®™ is a subspace of X®™ of elements
which satisfy an anti-symmetry property in a fashion analogous to the well-known finite-dimensional
case. The subspace X"\™ is invariant for the operator A®™  and one denotes by A"™ = A®™|yrm the
restriction of this operator to this subspace.

A key point connected with tensor and wedge products of operators is the behavior of their spectra.
Suppose that the essential spectral radius p(A) of A satisfies p(A) = 0; this is the case if either A
or some power A" of A is compact, which is the case for t > 7 for the operators U(t,7) associated
to the delay equation (1.1). Then for any m > 1 the spectrum of A"™ consists of all products
A1A2 -+ Ay, where the ); are elements of the spectrum of A, and where the number of repetitions
of a given A; in this product cannot exceed the multiplicity of A\; as an element of the spectrum of
A. (For a precise statement of this result, including a formula for the multiplicity of AjAg- -\, as
an element of spec(A”™) and a description of the eigenspace, see Proposition 2.3 below, along with
Corollary 2.2.) As we point out, this fact has ramifications for the stability of periodic orbits of
nonlinear systems as it is applied to the Floquet ananalysis of the linearized system. MENTION
MULDOWNEY/WANG?

A surprising aspect of compound systems for equation (1.1) relates to positivity properties when
the feedback coefficient [(3(t) is of constant sign. A main result of this paper is Theorem 4.1, the
Positivity Theorem. This states that if (—1)"™3(¢) > 0 almost everywhere, then for any ¢ and 7 with
t > 7, the operator W (¢, 7) = U(t, 7)\"* associated to equation (1.1) is a positive operator with respect
to the appropriate cone in X = C([-1, 0])"\™.

If additionally the coefficients in (1.1) are periodic, say if a(t +v) = «(t) and 5(t +v) = B(t) hold
identically for some v > 0, and if also for the second coefficient there is a uniform positive lower bound
(=1)™B(t) > (—=1)™By > 0 for almost every ¢ and some integer m, then computable lower bounds on
the norms |A| of the Floquet multipliers (characteristic multipliers) can be obtained. More precisely,

the set of nonzero Floquet multipliers {\;}72, is a countably infinite set. If it is ordered so that
[A1] > [Ag] = [Ag] > -

with repetitions according to algebraic multiplicity, then an explicit lower bound for each |Ag| can be
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given. Further, the strict inequality

Ak > [ Akl

holds for each k for which k — m is even (that is, for a particular parity class, odd or even, for k).
For each such m, the monodromy operator U(7 + ~y, 7)\™ possesses a positive eigenvector, where here
positive is interpreted in the sense of a particular cone to be described below. MORE ABOUT
ug-POSITIVITY. kK OR m?

2 Tensor Products of Banach Spaces

In what follows we let £(X,Y") denote the space of bounded linear operators between Banach spaces X
and Y. We also denote £(X) = £(X, X). For any operator A € L(X), we let spec(A) and ess spec(A)

denote the spectrum and the essential spectrum of A, and we let
r(A) = sup{|A[ | A € spec(4)},  p(A) = sup{|A|| A € ess spec(A)},

denote the spectral radius and essential spectral radius of A, respectively.
To begin our discussion of tensor products, let X and Y be Banach spaces, and let X ® Y denote
their algebraic tensor product. Then X @Y is the vector space consisting of equivalence classes of

elements of the form

z = Zai(azi ® yi) (2.1)
i=1

with z; € X and y; € Y, and a; € C, under the equivalence relation generated by all identities of the
form

(z+2)Ry=ry+2 Qy, @ Y+y)=zy+ry,

a(z ®y) = (ax) @y =z @ (ay),
and only those identities. There are various possible (generally inequivalent) norms for X ®Y’, among
which are the so-called cross norms, namely norms for which ||z ® y|| = ||z||||y|| holds for every x and

y, and with the corresponding equation holding with the dual norms. In particular, the norm defined
by

S aié ()|,

i=1

2] = sup
(&meB

B={(&n) e X" xY"[[[£]| = [Inll = 1}, (2.2)

for z as in (2.1), where X* and Y* are the dual spaces to X and Y, is a cross norm, called the

injective cross norm. One easily checks that ||z|| is well-defined, that is, it is independent of the

(01)

(02)
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representation (2.1) of z, and that the formula (2.2) does indeed define a norm on X ®Y. Now define
X ®Y to be the Banach space which is the completion of X ®Y with respect to this norm. Throughout
this paper, we shall always take the injective cross norm when considering tensor products of Banach
spaces.

If £ and G are two other Banach spaces, and A € L(X, FE) and B € L(Y,G) are bounded linear
operators, then one defines the tensor product A® B of these operators by (A®B)(z®y) = (Ax)®(By),
and extends this by linearity first to X ®Y, and then continuously to all of X ® Y. It is easily checked

that this construction determines a unique bounded linear operator (03)
ARBe LIX®Y,E®QG), |A® B|| = |AlllB], (2.3)

with norm as indicated. One also sees that (07)
(A1 ® B1)(A2 ® B) = (A142) ® (B1B2) (2.4)

for operators defined on appropriate spaces.
If we have a direct sum decomposition X = X7 X, for X, where X1, Xo C X are closed subspaces,

then there is a direct sum decomposition (12)
XY =X10Y)®(X2®Y). (2.5)

We note that a priori there are two possible definitions for X; ® Y. Namely, X; ® Y can be defined
either (a) directly, by considering X; as a Banach space in its own right and taking the tensor product
with Y, or (b) by taking the closure in X ® Y of the subspace spanned by elements 2’ ® y with 2’ € X
and y € Y. That these two constructions yield the same result, namely isometric Banach spaces,

follows from the identity

Zs n(y:) Zs

with 2f € X; and y € Y, and B as in (2.2), which is an immediate consequence of the Hahn-Banach

sup

={(&n) € X7 x Y [||g']| = lInll = 1},
(€ meB’

= sup
(&meB

theorem. (For the norm in X; we always take the norm inherited as a subspace of X.) In a similar
fashion, f Y =Y @ Yo then X @ Y = (X ® Y1) & (X ® Y2).
The above constructions extend in the obvious way to products and sums of several Banach spaces.

In particular, if X, Y, and Z are Banach spaces, then (X ® Y) ® Z and X ® (Y ® Z) are naturally
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isometrically isomorphic. If X; are Banach spaces for 1 < j < m then one can define X1 X®---®@X,,
in a natural fashion, along with products A; ® Ay ® ---® A, of operators A; € L( X}, E;) where the
E; are Banach spaces, with the obvious generalization of (2.3). Similarly, (2.5) generalizes to the case
of multiple summands and multiple factors. We also note that for spaces X; of either finite or infinite

dimension, we have that

m
dim(X; ® X ® -+ @ X,n) = [ [ dim X,
j=1

with the convention that 0 x co = 0.

The following result will play an important role.

Theorem 2.1 (Ichinose [3, Theorem 4.3]; see also [4] and Schechter [7]). Let X; be a Banach
space and A; € L(X;) for 1 <j <m. Then

spec(A1 @ Ag @ - - @ Ap,) = { M A2+ Ay | Aj € spec(A;) for every 1 < j < m} (2.6)

for the spectrum of the tensor product.

The above theorem can be generalized to count multiplicities, at least of isolated spectral points,

as follows. ICHINOSE REFERENCES AND REMARKS.
IS THE FOLLOWING RESULT IN ICHINOSE?

Corollary 2.2. Let A; and X; for 1 < j <m be as in Theorem 2.1. Denote Ay = A1 @A2®---® A,
and take any \g € spec(Ag) with Ao # 0 for which g is an isolated point of spec(Ag). Then there are
finitely many distinct m-tuples

A XE Ny e cm, (2.7)

for 1 <k <p, such that
o= MAE Nk A% € spec(4;), (2.8)

for1 <j<mandl1l<k<p. Moreover, each such /\f is an isolated point of spec(A;). Let Gf C X,

k

denote the spectral subspace of A; corresponding to /\f, let 1/;»C = dim G],

sol Sl/f < o0, and let

p
vy = E:ufyéC ok (2.9)
k=1

(18a)
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Then the spectral subspace Go C Xg of Ay corresponding to Ay is given by
p
Go=EPGciece -G}, (2.10)
k=1

where dim Gg = vy, and where each subspace G'f ® GS ® ---®GE is invariant under Ay.

Remark. We are assuming that every possible m-tuple (2.7) satisfying (2.8) has been enumerated
and thus occurs for some k. Also, the m-tuples (2.7) are geometrically distinct points in C™, with
no repetitions for multiplicity as elements of a spectrum, that is, (A\F, A5, ... Ak ) = (/\'f/, /\15/, .. .,)\f,;)
as points in C™ if and only if ¥ = k’. But note it can still happen that for some j, there may be

repetitions among the quantities /\}, /\?, .. .,/\15, say /\f = /\;?/ and thus Gf = Gfl, even if k # k.

Remark. A sufficient condition for A\g to be an isolated point of spec(Ap), as in the statement of

Corollary 2.2, is easily given. Namely, assume that \g € spec(Ag) satisfies
~1
Aol > nax. {pjry Yrire 1,

where 7; = 1(A;) and p; = p(A;) are the spectral radii and essential spectral radii, respectively, of
these operators, and where we assume that r; > 0 for each j. To prove that Ag is an isolated point of
spec(Ap), it is enough to prove that for every representation A\g = AAa--- A, where A; € spec(4;),
that each \; is an isolated point of spec(A;). To this end, it is enough to prove that |\;| > p; for each
Jj. Thus assume that |\ | < pj, for some jo. Then as |A;| < r; for each j, it follows that

Mol = [MAz Al < (pjori)rira - T,

which is a contradiction, and thus Ag is isolated.
We remark that in our analysis of delay-differential equaions below, it is the case that p; = 0 for

each j.

Proof of Corollary 2.2. The fact that Ay is a nonzero isolated point of spec(Ay), along with (2.6)
from Theorem 2.1, implies that if A\g = AjA2-- -\, with A; € spec(A;), then each \; is an isolated
point of spec(A;). This in turn implies that there is a finite number p of such representations of Ay as
a product. Let us enumerate all such representations, as in (2.8) in the statement of the corollary.
For every j satisfying 1 < j < m, let g; be the number of distinct quantities )\f for 1 <k < p. Here

we mean numerically distinct quantities, that is, without repetitions for multiplicity as an element of

(18b)
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spec(A;). Let X; for 1 <4 < g; be a renumbering of these quantities where each occurs only once, and
so we have

(N AL AP = (N2 00
with equality as unordered sets. Let é; C X denote the spectral subspace of A; corresponding to X;

Then for each j we have a direct sum decomposition
X;=Ge(GjaGie eGP,

where ég is the spectral subspace of A; corresponding to spec(4;) \ {X;, X?, .. .,X;]»j 1.

Now consider all m-tuples ¢ = (i1, 42, .. .,9y) € Z where
T ={(i1,92,...,im) € Z™| 0 < i; < g; for every j satisfying 1 < j < m}
and for each such ¢ € 7 let
F'=G'eG2® - - 9Gm"CX10X;® - ®Xn. (2.11)

Then

X10Xo®- - X :@Fb.
€T

By construction, each subspace C~¥§ C X is invariant for the operator A;, and thus each subspace I'*
is invariant for Ag. Thus the multiplicity of Ay as a point in the spectrum of spec(Ap), namely the
dimension of the corresponding spectral subspace, equals the sum of the multiplicities of Ay as a point
in the spectrum of Ag|r. for the various I'*, where Ag|r. is the restriction of Ay to I'.
Note that not every Ap|r. need have Ay in its spectrum. In fact, there are precisely p of the
m-~tuples ¢ € Z for which
Ao € spec(Ao|r) (2.12)

holds, with these corresponding to the p different m-tuples in (2.7), (2.8). Moreover, it is the case that
ij # 0 for each i; occurring in such an m-tuple ¢, that is, the associated subspace C?;J is a spectral
subspace of A; corresponding to X;] , and not the complementary space ég The spectral subspace

Go C X of Ay corresponding to A is thus the direct sum of those I' C X satisfying (2.12). These

k

facts are direct consequences of the definition of the quantities A7, along with the re-labeling of the

/\;? as X; and the construction of the set Z. Let us denote by

L :(Zlvz%"'azm)a 1<k<p,
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those ¢ € 7 for which (2.12) holds. We may assume these m-tuples are labeled to correspond with the
m-tuples in (2.7), (2.8), namely that

NI N2 Ny = (MR AE MRy 1<k <p. (2.13)
Thus the spectral subspace of Ay for Ay is the direct sum
Go=T"oI" ¢ ---oT" (2.14)

in this notation. Then from (2.11) and using (2.13),

k

" =GleGie - 2Gr=G"eGse -Gk, (2.15)

Combining (2.14) and (2.15) gives the desired formula in (2.10) for Gp. Furthermore, as we have

defined 1/;»C = dim Gf, we obtain the formula in (2.9) for vy = dim Gy. =

Now take any Banach space X and consider the m-fold tensor product, denoted
X" =XXQ X,

with m identical factors on the right-hand side. Let S,, denote the symmetric group on m elements,
namely the set of all maps o : {1,2,...,m} — {1,2,...,m} which are one-to-one and therefore onto.

Taking any o € S,,,, we define a linear operator S, € L(X®™) as follows. Let
So(T1 @ T2+ @ Tpy) = To(1) ® Tp(2) @+ @ To(m), (2.16)

then extend S, to all of the algebraic tensor product X®™ = X ©® X ® --- ® X by linearity, and
finally extend S, to all of X®™ by continuity. One checks that S, is well-defined, and is an isometry,
1S, 2|| = ||z]| for every z € X®™. Clearly, Sy, Sy, = Syy0, and Syt = S,-1. We now define the m-fold

exterior product X”\™ to be
XN = {2 e X®M| S,z = sgn(o)z for every o € Sy, },

which is a closed subspace of X®™. Here sgn(c) = +1 is the sign of the permutation o. Equivalently,

we may define P € L(X®™) by
P = — Z sgn(o)S,, (2.17)

(17)

(20)

(cals)

(pdef)
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which is easily seen to be a projection, P2 = P. Then X" = PX®™" is the range of P, and we
generally denote

TINTI N ATy = P21 Q2@ -+ @ Tyy).

We note here, for future use, that (psig)
PS, =sgn(o)P (2.18)
for every o € S,. Let us remark also that (wdim)
dim XA = (dlmX>, (2.19)
m

where (g) denotes the binomial coefficient for 1 < a < oo and 1 < b < oo, with (g) =0if b > a and
with (obo) = 00. One easily checks (2.19), at least if dim X = n < oo, by noting that if ey, e, ..., e, € X
is a basis for X, then the set of elements e;; Aej, A---ANej, for 1 < ji < jo < -+ < jy <nis a basis
for X\,

Now denoting

AP = AR A®- - @ Ae L(X®™)

for the m-fold product of any operator A € £(X) on X, we observe that S, A®™ = A®™S, for every
o € Sy, and thus PA®™ = A®™mP, Tt follows that X\™ is an invariant subspace of X®™ for A®™,

With this, it makes sense to study the spectrum of A®™ restricted to X”\™. Let us denote
A/\m — A®m|XAm c ﬁ(X/\m)

for this operator so restricted.

Proposition 2.3. Let X be a Banach space and A € L(X). Then for every m > 1
spec(A™N™) C spec(A®™) = {A A2+ A | Aj € spec(A) for every j satisfying 1 < j <m}

for the operators AN™ € L(XN™) and A®™ € L(X®™). Suppose further that Ao € spec(A®™) is a
nonzero isolated point of spec(A®™) with spectral subspace Go C X®™. Then (21)

PGy =GognX"™ (2.20)

for the image of this space under P. Moreover, PGy # {0} if and only if Ao € spec(A"™), in which

case \g is an isolated point of spec(AN™) with PGq as its spectral subspace.
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Proof. The fact that P commutes with A®™ implies that Gq is invariant under P, which in turn

implies the equality in (2.20). The remaining claims are elementary. m

Assuming the setting of Proposition 2.3, we may use Corollary 2.2 to obtain detailed information
about the spectrum and spectral subspaces of A"™. In this case each subspace Gf C X in (2.10) is a
spectral subspace of A, and it may happen for a given k that there are repetitions among these spaces,
namely that Gf = G;?, and so /\f = /\;?,, for some j # j'. It is also the case that for every subspace
GY® G ®---® GE, occurring as a summand in (2.10), and for every permutation o € S,,, the space
obtained by permuting the factors Gf using o must also appear as a summand in (2.10). That is,

there exists k' such that

VoGl o oGk =S(GioGie - 0Gk) =G oGk, e oGk

o(m)’

Of course, it may be the case that k' = k even if o is not the identity permutation, due to repetitions
among the Gf .

The following result determines the multiplicity of a point \g in the spectrum of A"™, namely the
quantity dim(PGp) as in the statement of Proposition 2.3. Note that dim(PGg) = 0 is possible, that
is, it is possible that Ay € spec(A®™) but \g & spec(A"™).

Proposition 2.4. Let X be a Banach space and A € L(X). Fiz m > 1 and let g € spec(A®™) be a
nonzero isolated point of spec(A®™). For 1 < k < p denote

H=GtroGhie. .-Gk,

where we use the notation in the statement of Corollary 2.2. Define an equivalence relation ~ on the
set {1,2,...,p} by letting k ~ k' if and only if there exists o € S,;, such that

H" = S, H* that s, Gfl = Gfr(j) for1 <j<m.

(Equivalently, k ~ k' if and only if the two m-tuples in (2.7) corresponding to k and k' are obtained
from one another by permuting the entries.) Let EY, €2, ..., " C {1,2,...,p} denote the corresponding

equivalence classes of ~ and let
0= H (2.21)
ke&q

for each equivalence class, that is, for 1 < g <r. Then
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PGy=P Pl dim(PGo) = dim(PQ?), (2.22)
q=1 q=1

where P is as in (2.17) and Go C X®™ is the spectral subspace of \g for A®™ as in the statement of
Corollary 2.2.
Now fiz any q in the range 1 < g < r and select an index k, € £9 such that H* has the form

H =CP" @05 @@ 05", (2.23)

where for each i we have that C; = G;?* for some j, and where C; # Cy and thus C; N Cy = {0}
if i #1i'. The integers k; > 1 are thus precisely the number times that C; occurs as a factor in this
product. (We remark that for any q such k. exists, and that k. and d, and each k; and Cj, of course

depend on q.) Then
4 /dim C;
dim(PQ?) =[] ( > (2.24)

Py
i=1 v

with the convention in the above product that 0 x oo = 0.

Remark. If, in the setting of Proposition 2.4, every nonzero point of spec(A) is an isolated point
of spec(A), then the same is true for spec(A®™). In this case the nonzero points in the spectrum of

spec(AN™) are precisely those points A\ of the form
Ao = AMAg - Ay, (2.25)

where each \; € spec(A) with possible repetitions, but where the number of repetitions of each
A € spec(A) in the product (2.25) is less than or equal to the multiplicity of A (the dimension of the
spectral subspace) as an element of spec(A). This means that in the formula (2.24), one requires that

k; < dim Cj; for each 1.

Remark. Suppose, in the setting of Proposition 2.4, that every nonzero point of spec(A) is an isolated
point of simple multiplicity, that is, an element of the point spectrum of algebraic multiplicity one.
Let \; for j > 1 denote the distinct nonzero elements of spec(A). Then every nonzero Ay € spec(A"™)
has the form

Ao = AjiAjy o A

for distinct integers j; satisfying 1 < j; < ja < -++ < jm. Moreover, the multiplicity of Ay as an

element of spec(A”™) is precisely the number of possible ways of expressing Ao as such a product in

(hkap)

(dform?2)
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this fashion. One sees this easily from Proposition 2.4, in particular, upon noting that in order for the
quantity in (2.24) to be positive one must have each k; = 1, as dim C; = 1 for each i. Thus the space
H"** is a tensor product of m spectral subspaces C; corresponding to distinct points of spec(A) whose

product is Ag.

Remark. Suppose, again in the setting of Proposition 2.4, that every nonzero point of spec(A) is
isolated. Suppose further there exists r > 0 such that there are exactly m points A € spec(A) satisfying
[A| > r, and where here we count multiplicity. That is, the spectral subspace corresponding to all
elements of spec(A) with |A| > r has dimension exactly m. Denote these elements of spec(A4) by A;, for
j=1,2,...,m, listed with repetition in the case of multiplicity. Then A\g = AjA2 - -\, is an isolated
point of spec(A"™) of simple multiplicity, namely its spectral subspace has dimension +1. Further,
there exists ¢ > 0 such that every other A € spec(A"™) satisfies |\| < |\g| — ¢. Again, these facts
follow easily from Proposition 2.4, where the spaces C; are the spectral subspaces of the various A;,

with dimension equal to the multiplicity of A;, and where x; = dim C;.

Proof of Proposition 2.4. It is clear from (2.10) and from (2.21), and the fact that ~ is an

equivalence relation, that
T
Go=EP . (2.26)
qg=1
Further, it is clear using the definition of ~ that S,Q9 = Q9 for every 0 € S,;, and 1 < g < r, and so
PQY CQf (2.27)

holds. Thus (2.22) follows from (2.26) and (2.27).
Now let ¢ be fixed, along with k,, and k; and Cj, as in the statement of the proposition. For any

k € £9 there exists m € S,,, such that

SyH" = H" (2.28)
and thus from (2.18) we see that PH* = PS, H* = PH"*. Tt follows directly from this, and from the
definition (2.21) of Q9, that

PQ? = PH* (2.29)
Let us further denote II € £(Q9, H**) to be the canonical projection of Q9 onto H** associated to the

decomposition (2.21). Also define the isotropy group

U ={oecS,|S,H" = H*>}

(gom)

(pomq)

(phom)
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associated to the subspace H**. We claim that

| v

PIIP = |
ml

on 09, (2.30)

where |¥| denotes the cardinality of W. To prove (2.30), it is enough to verify that it holds on each
subspace H* C Q4 for k € £9. Fixing such k, and with 7 € S,, satisfying (2.28), take any € H* and
denote y = Srx € H*. Then using (2.18) we have that

Px = sgn(m)PSrz = sgn(m)Py = sn() Z sgn(0)Syy.

|
m.
g€Sm

Upon applying the operator II, we retain only those terms in the above sum which lie in H*, namely,

the terms for which o € W. Thus

Applying P, where we again use (2.18), now gives

)| W v
pripy — 80T ZP sgn(m | py - QP:C.
oevw e

From this we conclude (2.30), as desired. It follows directly from (2.30) that the map II is one-to-one
on the space PQ?. Thus with (2.29) we conclude that

dim(PQ?) = dim(IIPH"). (2.31)

Let us now examine the isotropy group ¥ more closely. As the spaces C; in the product (2.23) are
distinct, it follows that o € V¥ if and only if o permutes only those indices common to each given term
C’i®”i among themselves without involving other indices. More precisely, define sets K; C {1,2,...,m}

for 1 <i<d by

%
ICZ:{’I’LEZ|AI{Z'_1<’I’L§7{Z'}, %i:ZI{j, %0:0,

and so K; is the set of indices associated with the factor C* in (2.23), and each n in the range

1 < n < m belongs to exactly one K;. Define subgroups ¥; C S,,, for 1 <i < d, by

U, ={o €8, |o(n)eck;ifnek;, and o(n) =nif n € K; for some j # i},

(pap)

(dform)
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consisting of those o which permute only the indices in IC;, leaving all other indices fixed. Also define

operators

1
Pi=— > sen(0)S,,  Poy=PiPy--- Py,
v oev;

for 1 <4 < d. The one easily sees that W is precisely the set of elements of the form
0 =010%-0g (2.32)

with o; € ¥; for 1 < i < d, and that the decomposition in (2.32) is unique for each o € W. Note the
commutativity property, that o;0y = o0, if 0; € ¥; and oy € Uy with ¢ # /. One sees that operator

P? = P, is a projection on H k+ whose range is the space
CP @ - C @O R CHTT ©-- @ CF,

and using the above-mentioned commutativity, one sees that P02 = P, is also a projection on H**
whose range is the subspace

O @0y @@ C).

We claim that

[ |
np =" g on B (2.33)
m:

from which it follows directly, with the above remarks, that
NPHY =CM @ CP™ @ - @ O, (2.34)

Note that (2.34), along with (2.19) and (2.31), implies our desired result (2.24). To prove (2.33), first

observe that for every z € H* we have that

1 1
I[Pz = — Z sgn(o)I1S,z = — Z sgn(o)Syx. (2.35)
0ESM oev

Now decomposing o € ¥ as in (2.32), we have that

Z sgn(o)Syx = Z Z e Z sgn(o1) sgn(oz) - - -sgn(oq) Sy Soy - -+ So @

oev 016V, 02€Vy gq€Vy
= (ki!ka! - kg )PL Py - - - Pyx = (K1lko! - - - kq!) Py,

which with (2.35), proves the claim (2.33). With this, the proposition is proved. m

(sigi)

(pip)
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We now consider the specific case of Banach spaces
X;=0(9;) ={¢p:0; — R | is continuous}

for 1 < j < m, where each ©; is a compact Hausdorff space and where the supremum norm is taken

for C(©;). As described in [1, Chapter I, Section 4], one may regard
C(09) =C(01)®C(02)®---®C(On), ©p =01 X Oy X -+ X O, (2.36)
as follows. First, taking any ¢; € C(0;) for 1 < j < 'm, define ¢ € C(©) by
P(b1,02,....0m) = 01(61)p2(02) - - - om(Om), (2.37)

and identify p1 ® po ® - -+ ® @, with . More generally, identify any finite sum
n

D PLI®P2 @ ®pmi € C(O1)®C(O2) @+ ® C(Om)
i=1

where ¢;; € C(0;) for 1 <i<mnand 1< j<m, with ¢ € C(0g) given by

n

001,02, ..., 0m) = > 01:(61)02.:(62) - - - Om.i(Om)- (2.38)

i=1

One sees that this identification is an isometry, that is,

el = : (2.39)

n
Z‘Pl,i RP2i @ Pm;
i=1

where the norms in (2.39) are those in C(0g) and C(01) ® C(02) ® --- ® C(O,,), respectively. To
prove (2.39), first take elements £; € C'(0;)* of the dual spaces, with ||;|| =1, for 1 < j < m. Each ¢;
is given by integration with respect to a Borel measure dj;(6;) on ©; with total variation |u;|(©;) = 1.

Then with (2.38) we have, following (2.2), that

Z §1(p1,0062(p2,0) - - - Em(Pmii)

i=1

(2.40)

/@ /@/ 001,03, . .. O) dptm(O) -+ - dpin(82) dypir (01)| < o]

Upon taking the supremum over all such §;, we have that

(06)

(meas)

(measing)
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< gl (2.41)

n
Z P1i®Y2; Q@ Omi
i=1

To obtain equality in (2.41), take any point (67,65,...,6%) € ©1 x O2 X --- X O, at which the
maximum of |p(61, 60, ...,0,,)| is achieved, where without loss, by multiplying ¢ by a scalar of norm
+1, we may assume that ¢(07,605,...,0%) = ||¢|| > 0. Then letting dy;(6;) be the unit point mass
at 07,
establishes (2.39). With (2.38) and (2.39), it follows that the space C(01) ® C(02) ® --- ® C(O,)

we see that the integral expression (2.40) equals ||¢||, and thus equality holds in (2.41). This

is isometrically embedded as a subspace of C(©g). In fact this subspace is all of C(0g), that is, the
first equality in (2.36) holds. This follows directly from the fact that the set of functions ¢ of the
form (2.38) is dense in C(©g), by the Stone-Weierstrass Theorem.
Suppose further that A; € L(C(0;)) for 1 < j < m. For 1 < k < m define an operator Zk €
L(C(00)) by
Ay=1® - IQARI -1, (2.42)
where the factor Ay occurs in the k' position. Then if ¢; € C(6;) for 1 < j < m and with ¢ given

by (2.37), we have that

(Arp) (01, ..., 0m) = 01(01) . . .01 (Ok—1)[(Ar2r) (00))Pr41 (k1) - - @i (O

for every (01,...,0n) € ©Og, that is, Aj acts upon the function ¢ with the other functions ¢; for
j # k untouched. More generally, for any ¢ € C(0g) not necessarily of the product form (2.37), one
has that

(App) (01, ..., 0m) = [App(B1, ..., 061, - Osts - - ., 0m)](61) (2.43)

which is interpreted as follows. Let the points 6; € ©; for j # k be held fixed and regard
90(91, ey i1, - 79k+17 .. .,Qm) € C(@k)

as a function of one variable represented by the centered dot “-”. Apply the operator A to this
function, and then evaluate the resulting function at the point 6, € O to get the right-hand side
of (2.43). Tt follows that to calculate (Agp)(01, 02, ..., 0,,) where Ay € L(C(Og)) is the operator

AO:A1®A2®"'®Am:glgg"'gm, (244)

one successively applies the operators Ay for 1 < k < m with the variable in the k" position free,
while holding the remaining m — 1 variables fixed. Note that one may apply these operators in any

order, as the operators Zk commute with one another.

(atil)
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In the special case that all the spaces X; = X = C(0) are the same, then ©g = ©™, the m-fold
cartesian product, and so we have the identification C(©)®™ = (C(©™). Further, it is clear that
C(0©)"™ is identified with the subspace of C(©™) consisting of all anti-symmetric functions, that is,

C(@)/\m = {90 € C(@m) | (10(00'(1)7 00’(2)7 SRR ea(m)) = SgD(O')(,D(Hl, 027 SRR Hm)

(2.45)
for every (01,602, ...,0,) € O™, and every o € S;,,}.

As a practical matter, the above observations will be useful in evaluating tensor products of solution
operators of linear delay-differential equations. In such applications we shall typically work with the
exterior product space C([—1, 0])"\"™.

The following basic result from will be needed later. Although it is proved in [3], we provide a

proof for completeness.

Proposition 2.5 (Ichinose [3, Lemma 3.6]). Let X; and Y; be Banach spaces and Aj € L(X;,Y;)
for1 < j < m. Assume that each operator A; is one-to-one. Then the operator Ag = A1®A2®---® A,
18 one-to-one from X1 Xo® - X, toY10Yo® - R Yy,

Proof. Without loss it is enough to consider the case m = 2, as the case of general m can be proved
inductively by writing Ag = A, ® A,,, where A, = A1 ® Ao ® ---® A;—1. Further, if m = 2, then by
writing A1 ® Ay = (41 ® Iy, )(Ix, ® A2) where Ix, and Iy, denote the identity operators on X; and
Y5 respectively, we see that it is enough to prove that both A; ® Iy, and Ix, ® Ay are one-to-one. In
fact, it is enough to prove that the operator A; ® Y5 is one-to-one.

Therefore, denoting A = A1, X = X1, Y = Y7, and Z = Y5, let us consider an operator A €
L(X,Y) which is one-to-one. We must prove that A® I € L(X ® Z,Y ® Z) is also one-to-one, where
I denotes the identity operator on Z. Letting Z* denote the dual space of Z, for any ( € Z* define
an operator Lx(() € L(X ® Z, X) by setting

Lx(Q)(z @ 2) = ((2)x

for any x € X and z € Z, and then extending Lx(() to all of X ® Z first by linearity and then by

continuity. One easily sees that Lx({) is well-defined, with operator norm

1L (O = Ti<ll-

One also easily checks that
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Jull = sup [[Lx(Q)ul (2.46)
Cez*
lIi¢lI=1
for every u € X ® Z, which in fact follows directly from the definition (2.2) of the injective norm. We
also define the operator Ly ({) € L(Y ® Z,Y) in an analogous fashion. Finally, let us note that (x)

Ly(Q)(A®T) = ALx(() (2.47)

for every ¢ € Z, which one easily sees by showing that the operators in (2.47) agree on all elements
r®zeX®Z.

Now assume that (A x I)u = 0 for some u € X ® Z. Then from (2.47) we have for every ¢ € Z*
that ALx(¢)u = 0, and hence that Lx({)u = 0 as A is one-to-one. But then (2.46) implies that

|lu|| = 0, thus u = 0. We conclude that A ® I is one-to-one, as desired. m

3 Tensor Products of Linear Processes

Before specializing to the delay-differential equation (1.1), we begin with some general observations
about abstract linear processes. These observations not only apply to (1.1), but also to a large class
of linear nonautonomous delay-differential equations as well as to many other systems.

By a linear process (sometimes called a linear evolutionary process) U(t,7) on a Banach
space X, we mean a family of bounded linear operators U (¢, 7) € L(X), for every t,7 € R with ¢ > 7,
for which

(1) U(r,7) =1 for every T € R;
(2) U(t,o)U(o,7)=U(t,7) for every t,o,7 € R with t > ¢ > 7; and

(3) U(t,7) is strongly continuous in ¢t and 7, that is, for every x € X it is the case that U(t, 7)z

varies continuously in X as a function of ¢t and 7, for ¢t > 7.

It is easy to check, using the uniform boundedness principle, that there is a bound ||U(¢,7)|| < K in
the neighborhood of any point (tg, 79) in the domain of U(, -), where such K depends on (tg, 79).
Now fix an integer m > 1 and consider the m-fold tensor product X®™. For every k satisfying

1 < k <m, and with t and 7 as before, we may define an operator Uy (t,7) € L(X®™) by (uk)

Up(t, 1) =1®@ - IUt,1)I®---®1, (3.1)
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where the factor U(t,7) occurs in the k" place. It is easily checked that Uy(t,7) is a linear process

on X®" Also, one has from (2.4) that
Ur(t, 1)U;(t', 7') = U; (¢, ) Un(t, 7) (32)

for any real numbers t > 7 and ¢/ > 7/, with j # k in the range 1 < j, k < m. Next define the operator
U(t,7) € L(X®™) for t > T by

U(t,7) =U(t, 7)™ = Ui (t, 1) Us(t, 7) - - -Upn(t, 7), (3.3)

where it does not matter in what order the above product is taken due to the commutativity (3.2).
Again, U(t, 7) is a linear process on X®™. It is also clear that the subspace X\™ C X®™ is invariant

under U(t, 7), and we shall denote by
W(t,7)=U(t,7)"" =U(t,7)|xrm (3.4)

the restriction of this linear process to X”\™. Certainly, W (t,7) € L(X"\™) is itself a linear process
on the space X"\™.
It often happens that a linear process U(t, ) is periodic, meaning that there exists some v > 0
such that
Ult+y,7+79)=U(tT)

for every t and 7 with ¢ > 7. In this case, for each 7 € R we define
M(r) = Ulr +7.7)

the so-called monodromy operator with initial time 7, and we note that M (7 + v) = M(7). We
refer to the nonzero spectrum of M(7) as the Floquet spectrum of the linear process, and we call
the set of nonzero elements in the point spectrum of M (7) the set of Floquet multipliers. Let us
observe that the Floquet spectrum does not depend on the initial time 7, that is, spec(M (7)) \ {0} =
spec(M(7')) \ {0} for every 7,7 € R. To prove this, without loss we may take 7/ = 0 and let 7 lie in
the range 0 < 7 < . With 7 so fixed, we have that

M(0) = AB, M(1) = BA, where A=U(y,7), B=1U(r,0), (3.5)

and we must show that spec(AB) \ {0} = spec(BA) \ {0}. In fact, this is a well-known result for any
pair of operators, whose proof we sketch. Taking any A € C\ {0} satisfying \ & spec(AB), one easily

(08)

(bigu)

(bigw)

(decomp)
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checks by multiplication that the operator A\™'I +A"!B(AI — AB)~! A is the inverse of A\I — BA, and
so A & spec(BA). Thus spec(AB)\ {0} D spec(BA)\ {0}, with the opposite inclusion proved similarly.
It is also the case that the nonzero point spectra of AB and BA are the same, and so the set of
Floquet multipliers is independent of the initial time. Indeed, if A # 0 is in the point spectrum of
M(0) then ABx = Ax # 0 for some = € X. Letting y = Bz # 0, we thus have that M (7)y = BAy =
BABx = ABx = Ay # 0, and so A is in the point spectrum of M (7).
It is easily seen from (3.5) that if for some 7/ € R and some n > 1 the operator M (7')" is compact,

n+l is compact. In this case the remarks above imply that the

then for every 7 € R the operator M (7)
Floquet spectrum consists entirely of Floquet multipliers. This will indeed be the case in our studies

of delay-differential equations below.

Remark. The above observations in connection with compound (exterior product) systems have great
relevance for the stability of periodic solutions of nonlinear systems. For example, in the case of an
autonomous ODE, say

&= f(x), x € R", (3.6)

suppose that z = £(¢) is a nonconstant periodic solution of minimal period 4 > 0. Consider the
associated linearized system y = A(t)y where A(t) = f'(£(t)), with U(t, 7) the associated fundamental
solution with U(7,7) = I. Let the Floquet multipliers (the characteristic multipliers) be ordered so
that |A1| > |Ae| > -+ > |\,| with repetitions according to algebraic multiplicities and recall that
Ar = 1 for some k, the so-called trivial multiplier. Then the periodic solution £(¢) is exponentially

asymptotically stable for the nonlinear system (3.6) if and only if
)\1 =1> |)\2| (37)

Further, consider the compound linear process W (t,7) = U(t,7)"? = U(t,7) A U(t,7), which acts
on the space R™ A R"™ of dimension (Z) = %n(n — 1) and whose Floquet multipliers are precisely
the quantities ¢ = AAj for 1 <4 < j < n. Then |u| < 1 for every such p if and only if (3.7)
holds, that is, if and only if £(¢) is exponentially asymptotically stable. REFERENCES TO MUL-
DOWNEY /WANG?

The appropriate generalizations of this conclusion hold for a wide variety of infinite dimensional
systems, including a large class of retarded functional differential equations &(t) = f(x), not limited

to a single delay. (Here we follow the notation as in [2].)

(nonl)

(exst)
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4 Tensor Products of Delay-Differential Equations
Consider the linear scalar delay-differential equation (1.1) which we write here
y(t) = —a()y(t) — Byt - 1) (4.1)
using the variable y. The change of variables
v=utow. w0 =ew( [ als)ds), (12)
transforms (4.1) into the equivalent equation
z(t) = =b(t)z(t — 1), (4.3)

where

b(t) = Zg?f (3 — B(t) exp ( /t il a(s) ds>.

Note that 3(t) and b(t) have the same sign for every t.

As a standing hypothesis, throughout this section AND THE NEXT (WHERE SOME OF
THE RESULTS OF THE PRESENT SECTION ARE PROVED) we shall always assume
that a, 6: R — R and b : R — R are locally integrable functions. (Actually, it will be enough only
to assume these properties on the interval 7, 7 + 7] considered in our results.)

Generally, we shall work with the simpler equation (4.3) and interpret our results back for equa-
tion (4.1). Both equations (4.1) and (4.3) generate linear processes, which we denote by U(t,7) and

U(t, 7), respectively, on the Banach space
X =C([-1,0]),

where we keep this notation for the remainder of the paper. In particular, U(t,7) € L£(X) for any

t,7 € R with t > 7 denotes the associated solution operator on X to equation (4.3) defined as
U(t,7)p = x4.

Here x(t) satisfies (4.3) for ¢t > 7, with 2; € X defined in the usual fashion [2] by x4(0) = x(t + 0)
for 8 € [—1,0], and where we take the initial condition =z, = ¢ € X, that is, z(7 + 0) = ¢() for

0 € [—1,0]. Similarly, U(¢, 7) denotes the analogous solution operator for equation (4.1), and one sees

the relation

(cov)

(conyj)
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Ut,7) =3@)" U, 7)S(7) (4.4)

between these two processes, where X(t) € £(X) is defined to be the multiplication operator
[E()¢l(0) = ut +0)p(0),  0€[-1,0],

for any t € R. Writing t = 7 + 7, we see that if 0 <7 <1 then we have the explicit formula (m1)
(10(77"1' 9)7 for -1 <6< =,

[U(T+n,7)¢](0) = 0+
»(0) — /0 b(t+ s)p(s—1)ds, for —n <0 <0.

Now fix an integer m > 1 and recall the identification
Xom=cC([-1,0™)

of the m-fold tensor product as described above in Section 2. Generally, we shall denote the argument
of a function in X®™ by 6 = (01,60s,...,0,) € [—1,0]™. Also recall the operators Ug(t,7) in (3.1),
which for 1 < k < m are linear processes on X®™. From remarks at the end of Section 2, we have that
Uk(t, ) is simply the solution operator to equation (4.3) taken along the k' coordinate in [—1,0]™,
with the remaining m — 1 coordinates staying fixed. To see this more concretely, fix k£ and for any

6= (61,0, ...,60m) € [—1,0™ let
52 (91, .. .,Qk_1,9k+1, .. ,Qm) € [—1,0]m_1,

which is 6 with the &' coordinate removed. Then regarding 0 as a fixed parameter, consider ¢(f) as a

function of 0 alone and take this function as the initial condition for equation (4.3) at initial time 7.

Denoting the resulting solution by z(t, ) for ¢ > 7, we have that

[Uk(t, )¢l (0) = (t + Ok, 0).

If 0 < n <1 then we also have the explicit formula (11)

¢(n+ 0k, 0), for —1 <6 < —,

[Uk(T +n,7)0)(0) = B s N (4.6)
»(0,0) — /0 b(T+s)p(s—1,0)ds, for —n <6 <0,

following (4.5), where we slightly abuse notation by writing ¢(6x, 8) for ¢ ().
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Recall also the operator U(t,7) € L(X®™) as in (3.3), and its restriction W (¢, 7) € L(X"™) to
the invariant subspace X\ C X®™ ag in (3.4), which give linear processes in their respective spaces.
Concerning the space X"\, note that if ¢ € X" then the anti-symmetry property (2.45) implies that
the values of p(0) for # € [—1,0]™ are completely determined by the values for which 6 € T,,, where

T = {9: (917927---,97;1) S [—1,0]m|91 <Oy <00 < Hm} (47)

Our main interest will be positivity properties of the operator W (¢, 7) on X and to this end we
define the set
K, ={p € X" | p(f) >0 for every 0 € Tp,,}, (4.8)

which is a closed, convex cone in the space X”\™. Indeed, K,, is a so-called reproducing cone for
X\ meaning that every element of X" can be written as the difference of two element of K,,.
With respect to the cone K,, and to equation (4.3), we shall prove the following theorem, which

is one of our main results.

Theorem 4.1 (Positivity Theorem). Fiz m > 1, and let 7 € R and n > 0. Assume that
(=1)™b(t) > 0 for almost every t € [T,7 4+ n| for the coefficient function in equation (4.3). Then the
operator W (1 +n,7) € L(X™) defined in (3.4) is a positive operator with respect to the cone Ky,
n (4.8), that is, W (7T 4+ n,T) maps K, into itself.

The corresponding result for equation (4.1) holds, where one assumes that (—1)"(3(t) > 0 for
almost every t € [T, 7+ n].

The above Positivity Theorem for equation (4.3) is a straightforward consequence of the following
result, Proposition 4.2, which provides more detailed information. The Positivity Theorem for equa-
tion (4.1) then follows using the conjugacy (4.4) and the fact that X(¢)"™ and its inverse [X(t)"™]~!
are positive operators on X\ with respect to the cone K,,. MENTION RESULTS ARE NEW
EVEN FOR CONSTANT COEFFICIENTS.

In the following result and below, we denote
b(s) = b(p + s) (4.9)

for ease of notation. The superscript notation here is formally distinguished from the subscript notation

x¢(0) = z(t + 0) used earlier wherein the argument 6 was restricted to the interval § € [—1,0] and x;

(tri)

(brho)
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was regarded as an element of C([—1,0]). No restriction is imposed upon the argument s of b”(s), and

b?(+) is not viewed as an element of any particular space, but merely as a shorthand notation.

Proposition 4.2. Firm > 1, and let T € R and 0 <n < 1. Fiz any 6 = (01,04, ...,60,,) € T,, where

T, is as in (4.7), and let a be any integer satisfying
By < —1 < 01, (4.10)

where a = 0 1s allowed in case —m < 01, and a = m is allowed in case 0, < —n. Then for every
© € X" we have that

M0asa—1  (n4Om—1 X X
(W (r+ 1, 7)) (6) = (~1)2 / / DTH(t) b ()
N+6gq4+1—1 n+60m—1—1

X @o(t1, . o ytmea—1,M+01,....,0+04,0)dty—gq_1---dtq
(4.11)

77+9a+1_1 77+9a+2_1 N4+0m—1
+(_1)(a+1)m/ / . / bT—I—l(tl) .. 'bT—H(tm—a)
-1 77+9a+1_1 N+0m—_1—1

X @©(t1, .. ytmea,n+ 601, ... ,n+0,) dty—q - - - dty,
if 0 < a < m—2, where the terms 1+ 0; in the arguments of ¢ are absent if a = 0. Ifa = m —1 then

(W(r+n,7)¢](0) = ¢(n+61,...,0140n_1,0)

(4.12)

N+0m—1
+(_1)m/ b7—+1(t1)(p(t17”7+017"'a77+0m—1)dtlv
-1

while

[W(r+n,7)¢](0) = o(n+01,....0+ 0n) (4.13)
if a =m.
Remark. The integer a in the statement of Proposition 4.2 need not be unique; indeed, this is the
case if 0, = —n for some k, where either a = k — 1 or a = k could be taken. Indeed, if a is not unique

then any value permitted by the statement of the proposition may be taken. In any case, 0 < a < m

must hold.

Before proving Theorem 4.1 and Proposition 4.2, we believe it is instructive to verify them in the

(thet)

(uform)

(uformx)

(uformz)
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simplest nontrivial case of m = 2 and n = 1. First, by equation (4.6) we have that

1+61
a7+ 1,7)¢](8) = (0, 82) — /0 b(r + 8)p(s — 1,62) ds,

1465
Us(r + 1,7)¢](8) = (61.0) - /0 b(r + 8)p(61, 5 — 1) ds,

for every ¢ € X®% = C([-1,0]?), where 6 = (01,62) € [~1,0]%. We next compose these two formulas
as in (3.3), substituting the second into the first. Denoting ¢ (6) = [Ua(7 + 1, 7)¢](#), we have that (u2)

1+61
[U(r + 1,7)¢](8) = (0, 6) — /0 b(r + s)(s — 1,02) ds
1405 1401
— (0,0) - /0 b(r + 8)p(0, 5 — 1) ds — /0 b(r + s)i(s — 1,05) ds

146,
= (0,0) — / b(t+ 5)p(0,s—1)ds
" (4.14)

1+61 1+62
—/0 b(7'+s)<<,0(s—1,0)—/0 b(T—l—r)go(s—l,r—l)dr) ds
1465 1+61
= 90(0,0)—/0 b(T+ s)p(0,s — 1)ds—/0 b(t+ s)p(s—1,0)ds

1+61 1465
—I—/ / b(t+s)b(t+7r)p(s—1,7r—1)drds.
0 0

The formula occurring after the final equal sign in (4.14) simplifies in the anti-symmetric case ¢ € X"\2,
that is, where (01, 02) = —p(62, 61) holds identically. For such ¢ we have that ¢(0,0) = 0. Moreover,

we have that

1465

1465 1+61
—/ b(T+ s)p(0, s — 1)ds—/ b(t+ s)p(s—1,0)ds = / b(T+ s)p(s—1,0)ds,
0 0 1+61
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and also that

1+61 1465
/ / b(t+ s)b(t+7)p(s—1,7r—1)drds
0 0

1+61 1+61
:/ / b(t+s)b(t+7r)p(s—1,r—1)drds
0 0

1+61 1465
/ / b(t+s)b(t+7r)p(s—1,7r—1)drds
1401

1+61 1465
/ / b(t + s)b(T+71)p(s—1,r—1)drds,
1+61

where the integral taken over the square [0, 1 + 61]? vanishes on account of the anti-symmetry. With

this we obtain from (4.14) that

1465
W(r+1,7)p](0) = / b(t + s)p(s —1,0) ds

1+61
(4.15)
1+61 1465
/ / b(t +s)b(Tt+71)p(s—1,r—1)drds,
1+61
and one sees this formula coincides with (4.11), where a = 0 is taken. It follows directly from

equation (4.15) that W (7 + 1,7) is a positive operator with respect to the cone Ky provided that
(=1)™b(t) = b(t) > 0 in [r,7 4+ 1]. To see this, first let § € T, that is, —1 < 61 < 6 < 0. Then
taking ¢ € Ko, one notes for the first term in (4.15) that s — 1 < 6 < 0, thus (s — 1,0) € T5 and
so ¢(s —1,0) > 0. Similarly, for the second term in (4.15) we have that s — 1 < 6; < r — 1, thus
(s—1,r—1) €Ty and p(s— 1,7 — 1) > 0. It follows that the expression in (4.15) is nonnegative, so
W(r+1,7)p € Ks, as desired.

We end this section by describing several properties of the above linear processes. The first is a
well-known compactness property of U(T + 7, 7) and U (T +mn, 1) for n > 0. Its significance is that in
the case of a periodic process, some power of the monodromy operator is compact, and so the Floquet
spectrum consists entirely of Floquet multipliers, and these are isolated values A € C\ {0} of finite

multiplicity which can only cluster at A = 0.

Proposition 4.3. Ifn > 1 then the solution operator U(T +mn,T) for equation (4.3) is compact. More
generally, if n > % for some n > 1 then the n™ power U(t +n, 7)™ is compact. The same conclusions

hold for the solution operator ﬁ(t +n,7) for equation (4.1).

(uu2)
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Proof. For simplicity we consider only the operator U(7 + 1, 7). The operator U(7T + 1, 7) is easily
seen from (4.5) to be compact, being the sum of the rank-one operator ¢(0) and an integral operator,
and thus if n > 1 then the operator U(t +n,7) =U(t+n— 1,74+ 1)U(7 + 1, 7) is also compact. Now
suppose that 7 > 1 for some n > 1. Define a new function b(t) by setting b(t) = b(t) for 7 < t < 7+1,
and extending it periodically so that b(t + 1) = b(t) for every t € R. Let U(7 417, 7) denote the linear
process associated to equation (4.3) but with b(t) replacing b(t), where 7 € R and 77 > 0 are general
arguments. Note that U (t4+n,7) =U(m+mn, 1) for our specific 7 and 7, as these operators only involve
the range where Z(t) and b(t) agree. Also note that U(F+17+n,7+n) = U(7+7,7) for every 7 and 7,
due to the n-periodicity of b(t). From this it follows that U(r + 7, 7)" = U(r 4+ 1, 7)" = U(T 4+ nn, 7),

which is a compact operator by our earlier remarks as nnp > 1. m
The next result concerns one-to-oneness of the above linear processes.

Proposition 4.4. Assume, for some 7 € R and n > 0, that b(t) # 0 for almost every t € [1,7 + 1]
for the coefficient in equation (4.3). Let m > 1. Then the operators U(t +n,7) € L(X®™) and thus
W (T +n,7) € LIX™) are one-to-one. The corresponding results also hold for equation (4.1), where
we assume that 3(t) # 0 for almost every t € [7, 7+ n].

Proof. By Proposition 2.5 it is enough to show that U(7 4+ n,7) € L(X) is one-to-one. Also, we may
assume without loss that 0 < n < 1 due to the fact that U(¢, 7) is a linear process. Assume for such n
that U(7 +n,7)p = 0 for some ¢ € X. Then from (4.5) we have that ¢(#) = 0 for every 6 € [n—1,0]
and that )

/0 b(t+s)p(s—1)ds =0 for every 6 € [0, 7).

Differentiating the above integral shows that b(7 + s)¢(s — 1) = 0 for almost every s € [0, 7], and as
b(T + s) # 0 for almost every such s, we conclude that p(s — 1) = 0 for s € [0,7n]. Thus ¢(f) = 0 for
every § € [—1,0], and this gives the result. m

5 Positivity and Floquet Theory

In this section we describe some basic consequences of the Positivity Theorem in the context of Floquet

theory. If the coefficients in equation (4.1) are y-periodic for some « > 0, that is

a(t+y)=a),  Bt+7)=p6@1), (5.1)

(gper)
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for almost every ¢, recall the monodromy operator M (0) = U(v,0) where U(t,7) denotes the linear
process on X = C([—1, 0]) associated to equation (4.1). Assome power of ]\7(0) is compact, the Floquet
spectrum spec(]\7 (0))\ {0} consists entirely of point spectrum (Floquet multipliers), of which there are
at most countably many, and each of finite multiplicity. Our main result of this section, Theorem 5.1
below, provides additional structure to the the Floquet multipliers and their associated eigenfunctions
in the case that the feedback coefficient (5(¢) is of constant sign. These results supplement results of

Sell and one of the authors [5] which provided partial information on the multipliers.

Theorem 5.1. Consider equation (4.1) where a: R — R and 3 : R — R are locally integrable and

~v-periodic for some v > 0, and so satisfy (5.1) for almost every t. Also assume that
(=1)"B(t) = (=1)™Bo > 0

for almost every t, for some integer m and some By # 0. Then there are countably infinitely many
Floquet multipliers {\;}72,, that is, spectra of the monodromy operator. Further, if the multipliers
are labelled so that

A1l > Xa > (N3] > -+, (5.2)

with repetitions according to algebraic multiplicity, then it is the case that the strict inequality
[ Akl > [ Apta]

holds whenever k — m is even.

We shall prove Theorem 5.1 below, although we defer the proof of the Positivity Theorem (The-
orem 4.1) and also Proposition 4.2, on which the proof of Theorem 5.1 relies, to the next section.
Before presenting the proof of Theorem 5.1, we need to develop several concepts.

Suppose Y is a Banach space and K C Y is a closed, convex cone, that is, K is closed, convex
set such that if w € K then ou € K for every ¢ > 0, and such that if both v, —u € K then u = 0.
We say the cone K is total if the set {u — v |u,v € K} is dense in Y. Also, if AL(Y') then we say
the operator A is positive if it maps K into K, that is, Au € K whenever u € K, and we write
A > 0. The following basic result will be needed. PUT DISCUSSION OF CONES EARLIER
IN PAPER?

(mults)
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Proposition 5.2. Let Y be a Banach space and K CY a total cone. Suppose A, B € L(Y) satisfy
B>A>0, thatis, A>0 and B— A > 0. Then

r(A) < (B)

for the spectral radii of these operators.

Proof of Theorem 5.1. Without loss we prove the result only for the simpler equation (4.3), where

we assume that b : R — R is locally integrable, y-periodic, and enjoys the bound
(=1)™b(t) > (=1)™bg > 0

for some by # 0. The proof for the full equation (4.1) follows straightforwardly via the change of
variables (4.2) as described in the previous section.
Let U(t, 7) denote the linear process on X = C([—1,0]) associated to equation (4.3), and let Uy(t)

denote the semiflow on X associated to the autonomous linear equation

z(t) = —box(t — 1). (5.3)
We let M = M(0) = U(+, 0) denote the monodromy operator associated to equation (4.3). We denote
the characteristic multipliers of this equation, that is, the nonzero spectra of M, by {A;}72, ordered
so that (5.2) holds. In case there are only finitely many such multipliers, say ko of them, we write
A = 0 for k > k.

We observe directly from Proposition 4.2, and in particular the formulas (4.11), (4.12), and (4.13),
that U(t, 7)™ > Uy(t — 7)™ whenever t > 7, and thus

MM U(a)™

where the relation > is taken with respect to the cone K, given by (4.8). NEED TO EXPLAIN
THIS. MAY OVERLAP WITH PROOF OF POSITIVITY THEOREM 4.1 IN NEXT
SECTION. As the cone K, is total (in fact, reproducing), it follows from Proposition 5.2 that

r(MN™) = r(Uo(7)"™).

The nonzero spectrum of Upy(t) consists of the points ¢! where ¢ satisfies the characteristic equation
¢ = —boe~¢ of equation (5.3). Let the roots of the characteristic equation (of which there are countably

many, with real parts bounded above) be ordered so that

Re(i > Re(a > Re(z > -+,
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with repetitions according to multiplicity. Denote A ; = eSkY, and so Aokl = eReC7 Then
r(MY™) = [Mda-Aml, 7(Uo(7)) = [AogAo2 - Ao,

and so

|/\1/\2 - /\m| > |/\071/\072 .- '/\0,m| > 0. (5.4)

In particular, A, # 0 and so equation (4.3) possesses at least m characteristic multipliers. But m can
be replaced with any integer of the same parity, and thus can be taken arbitrarily large. It follows

that equation (4.3) possesses countably infintely many characteristic multipliers, as claimed. m

Remark. An examination of the above proof shows that a computable lower bound (albeit probably
not a sharp bound) can be found for the characteristic multipliers. We have |[Ax| < (M) for each k,
and with (5.4) this gives

Am| = (M)~ N 1 M0 2+ Aoml,

at least if m has the parity for which (—1)™b(¢t) > 0. For indices of the opposite parity, say for m — 1,
the inequality |[Ay,—1| > | Am| provides the requisite bound.

STILL NEED TO PROVE GAP BETWEEN MULTIPLIERS.

6 The Proof of the Positivity Theorem

Here we prove Proposition 4.2 for general m, and from it we will obtain Theorem 4.1, the Positivity
Theorem, for general m. Our approach follows that of the special case with m = 2 and nn = 1 above.
Namely, with 7 < 1 in Proposition 4.2, we have an explicit expression (4.6) for each Ug(7 +n,7), and
composing these expressions will provide an explicit formula for U(7+1n, 7)p, for any ¢ € X®™. Then,
assuming that ¢ € X namely that ¢ is anti-symmetric, we will observe significant cancellations in

this formula, and this will yield a much simpler formula for W (7 + n, 7).

Proof of Proposition 4.2. Fix m, 7, 1, and b(t), as in the statement of the proposition. Define
operators Zy, B, € L(X®™) for 1 <k < m by
(Zkp)(0) = P01, .-, Op—1,w(0k), Okt1, - - -, Om),
Q(0r)

(By)(0) = / b ($)(01, . . ., Op—1, S, Opgts - - -, Om) ds,

-1

(linq)
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where we denote

w(s) = min{n + s, 0}, Q(s) = max{n+s,0} — 1,
and we recall the notation (4.9). Then from (4.6) one sees that
Uk(T +n,7) = Zx — By,
and so
U(T—i—’l’},T):(Zl—Bl)(Zg—Bg)"'(Zm—Bm) (61)
by equation (3.3). Next observe the commutativity properties
ZjZk = Zij, BjBk = BkBj, ZJBk = Bij, provided j 75 k. (62)
Concerning symmetries, let us define the swap operators S, € L(X®™) for 1 < j, k < m by
ekv if i = j7
(Sixp)(0) =v(0),  Oi=1q 0; ifi=F, (6.3)
0;, ifi+# jand i #Ek.
Note that Sjx = S, , in the notation (2.16), where 0; . € Sp, is the permutation satisfying ok (j) = k
and o (k) = j, with 0 x(i) = i if i # j and i # k. We write Sj;, rather than S, for simplicity of

notation. Each S is an isometry on the space X®™, and of course Sjj = Si; = Sj_kl One easily
checks that

SjkZr = ZjSjks SjkBr = BjSjk,

SikZi = ZiSj k. S;kBi = BiSjk, (6.4)

in the last two cases provided ¢ # j and ¢ # k.
Let us note that S; U(7 +n,7) = U(7 + 1, 7)S;x by (6.2) and (6.4), and so the space X"™ of anti-
symmetric functions is invariant under the operator U(7 + 1, 7). However, also note that X" is not
in general invariant under either of the operators Zy or By.
Fix ¢ € X and let the right-hand side of (6.1) be expanded and act on . We obtain a sum of
all terms of the form

+C1Cy - - - Crpep, Cy = Z, or By, (6.5)

where the sign + is (—1)?, where i is the number of B}, appearing in the product (6.5). Now fix 6 € T},
along with the integer a satisfying (4.10) as in the statement of the proposition. Both 6 and a will

(bigu2)

(com)

(swap)

(inter)

(cprod)
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stay fixed for the remainder of this proof. Here we make two crucial observations. First, suppose that
Cy = By, for some k satisfying 1 < k < a. Note that Q(6;) = —1 and thus (Bgy)(0) = 0 for every
€ X®™ for our chosen 6. (We are not claiming that By is the zero function, however, but simply
that it vanishes at this particular #.) In particular, taking ¢ = Cj -- 'C’k_lé’kC’kH - Cpp where
the hat ~ indicates the term is omitted, and using the commutativity properties (6.2), we have that
C1Cy - - - Cpyp = By and thus

(C1Cs - - Crp)(0) = 0. (6.6)

Secondly, suppose that Cy, = Z;, and Cj, = Z, for two values ki, ko satisfying a < k1 < ko < m.
Then w(fg,) = w(fg,) = 0 and so

(Zyy Ziyp)(0) = (01, -, Ok =150, 0415 - -, Oy —1, 0, Opy g1, - - -, Or)

for every v € X®™_ If it is further the case that 1 satisfies

Sky kb = =9 (6.7)

identically as functions, then in fact (Zg, Z,%)(0) = 0. (Again, this is for our chosen 6, and there is

no claim that Zj, Zx,1 is the zero function.) Taking
¢ = Cl o 'Ckl—lé\’klc’kl—l—l o 'Ckg—lakgckg—l—l ot Cm‘;o

and recalling that ¢ € X"™, we see from the anti-symmetry of ¢ and the properties (6.4) that (6.7)
holds. Thus C1Cy - - - Cpp = Zi, Zi,%p and again (6.6) holds.

Following the above two crucial observation, we see that only a few select terms survive in the
expansion of (6.1) when applied to ¢ € X"™ and evaluated at our chosen . These are the terms as
in (6.5) for which Cy = Zj, for every k satisfying 1 < k < a, and for which also C, = Zj, for at most
one k in the range a < k < m. We conclude that for every o € X\™, we have that

[W(r +n,7)¢](0) = (—=1)"[(Tow) (6)] + (~1)"* 2_: (L) (8), (6.8)
k=1

where
Lo = Z1-ZaBay1- - Bm,

(6.9)
Fk = ZlZaBa+1Ba+k—1Za+kBa+k+1Bm,

for 1 < k < m — a. The signs (—1)™~% and (—1)™~%*! occurring in the above formulas count the

number of B; terms.

(czer)

(k1k2)

(gam)

(gammas)
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(We remark on these formulas in the extreme cases a = 0 and a = m. If a = 0 then the factors
Zy-+-Zg in (6.9) are simply absent. If a = m then the summation in (6.8) is empty, so no I'y, are
defined. Also, if a = m then 'y = Z; - - - Z,,. We leave the verification of these facts to the reader.)

We note a peculiarity of the formula (6.8), namely that the operators I'y and I'y, depend on a,
which in turn depends on 6. Thus it is not the case, in general, that the operator W (7 + 7, 7) is the
sum of the operators I'y and I'y, with the indicated signs as in (6.8). Rather, equation (6.8) is only
valid pointwise for those 6 which satisfy (4.10). We emphasize that for this reason, we work with a
fixed 8 € T,,.

Let us now evaluate the terms in (6.8). We first consider the term involving I'y, with 1 < k& < m—a.
As noted, the case a = m is vacuous. If a = m — 1, then k =1 and I'1 = Z1---Z,,_1Z,, which
immediately gives

(T19)(0) = p(n+01,...,n+ 0m-1,0), (6.10)

as we note that w(f;) = n+6; for 1 < j < m—1but w(f,,) = 0. Now let us assume that 0 < a < m—2.

We have, from the above formula (6.9) for I'y, and also from the formulas for Z; and By, that

Q0as1)  [barr)  UA6m) .
@) = [ [ e TG b )
1 1 -1 (6.11)

X oMm+601,...,0+ 04,81,y 8k-1,0, Sk+1y - - -, Sm—a) AdSm—q * - +dSk - - - ds1,

where here again (and below) the hat ~ denotes that the indicated expression is omitted, and where
we note that w(f;) = n+0; for 1 < j < a but w(fa4r) = 0. (If @ = 0, then the terms 7 + 6; in the
integral (6.11) are simply absent.) Next, by permuting the arguments of ¢ in (6.11) and using the

anti-symmetry of ¢, we see that

90(77"1'017"'a77+9a7517"'73k—17075k+17"'73m—a)

= (_1)a+k+(a+1)m(p(t1’ vttty ooy tm—a—1, M+ 01, ..., + 04, 0),
(6.12)
55, for 1<j<k-—1,
where t; =
sj41, fork<j<m—a—1

The explanation for the term (—1)“+k+(“+1)m, arising from the anti-symmetry of ¢, is as follows. Each
term s;, for 1 < j < k — 1, is moved leftward a places by means of swaps with adjacent terms 7 + 6;

for 1 <4 < a. This is a total of a(k — 1) swaps of such terms. Each term s;, for k+1 < j <m —aq,

(mal)

(perm)
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is moved leftward a + 1 places by means of swaps with adjacent terms 0 and then n + 6;. This is an
additional (a4 1)(m — a — k) swaps. The total number of swaps is thus a(k —1) + (a+1)(m —a — k),
and one sees easily that this number has the same parity as a + k + (a + 1)m.

Let us now introduce some notation which will simplify our calculations. We define a bounded

linear operator E € £(X/"™, X Nm—a—1)) by
(E¢)(t17 EERE tm—a—l) = ¢(t17 cooytm—a—1, n+ 017 Nt 00,7 0) (613)

We also define operators I;, J; € L(X®m—a=1)y by

Q(9a+i)

(I}?ﬁ)(tl, costmea—1) = / b7+1(8)¢(t1, v o1, S, i1, - tm—a—1) ds,
Q0a+i-1)
(6.14)

X Q(9a+i) 11
(J;¢)(t17 R tm—a—l) = / b (S)¢(t1, R tj—la S, tj—l—lv EERE tm—a—l) dS,
-1

where 1 <i<m —aand 1 <j <m—a—1, and where we note that Q(6,) = —1. (If a = 0, then by

convention we set 2(6y) = —1.) Observe that
. L .
JJZ» =1 —I—Ij—l—---—l—f; (6.15)

holds. With this notation, and upon inserting the formula (6.12) into (6.11), one sees that (6.11) takes
the form

(Trep)(0) = (—1)etktetm gl g2 gl ghtl . gm=a B, (6.16)

m—a—1

We remind the reader again, that # has been fixed and does not serve as the argument of the functions
Ey, IJ%, and JJ% above. Rather, these are functions of the variables (¢1,...,t,—q—1). The functions
IJ% and JJ%, in particular, are constant in the variable ¢;, as the right-hand sides in (6.14) are
independent of ¢;. Thus the right-hand side of (6.16) is formally a function of (¢1,...,tm—q—1), and
in fact is a constant function of those variables. That constant value is the value of the function 'y
evaluated at the point 6.

The operators I; and J} act on the full tensor product, and not just the wedge product. That is,

no symmetry assumption is made on the argument function ¢» € X®(™=2=1) in (6.14). Observe that

N Ky X < L Jt— TG,
SJthlj - IjSJthv SJthJj - JjSJthv

(6.17)
in both cases provided j # j; and j # js.

(iop)

(jdef)

(jform)

(asym)
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Thus if it is the case that v is anti-symmetric in ¢;, and ¢;,, meaning that Sj, ;% = —1, then IJ% and
J;ﬁb are also anti-symmetric in these variables as long as j # ji, jo.

It is easily seen that

—— i qitl i pitl L g2y, i (il pit2
Ji i =0, le'1‘];'2 ¢_JJZ'1I_;Q ¥, JJZ'1JJZ'2 ¢_J51(I;2 +I;2 ", (6.18)

in every case provided ji # j2 and S}, j,9 = —).
Indeed, the first equation in (6.18) holds as it is simply the integral over the square [—1,Q(6,4;)]? of
an anti-symmetric function of (¢;,,¢;,). The second and third equations in (6.18) follow from the first
equation because J;H = J} + I;H and J;+2 = J; + I;H + I;+2.
We now use the identities (6.18) to obtain a simplification of equation (6.16) when the function ¢

Jm—a—l Jm—a

is anti-symmetric. We begin with the rightmost pair of J-operators in (6.16), namely J;"~" %75 J7'~¢ |

and move to the left. The result is that each factor JZ-H'1 is replaced with IZ-HI, and each J! is replaced
with Iii, except for the factor J,'j“ which is replaced with I ,f + 1 ,’jH. At each stage we observe,
using (6.17), that the relevant function is anti-symmetric in the appropriate variables, as required

by (6.18). Finally noting that Ji = I}, we conclude directly that

(Trp)(8) = (1)o@t m g (I + IO - L= E. (6.19)

The reader can verify that the formula (6.19) degenerates in the extreme cases of the indices, as

follows. If m — a > 4 then

(C1p)(0) = (~1)*FHHtIm(IL 4 YIS I=a | B,

m—a—1

(Dap)(0) = (~1)* 2@ DML (I3 4 )14 - Im=e | By,

m—a—1

(Cim—a—19)(0) = (=)D IR0 I 70 + I =a 1) B,

(Trm—a)(8) = (=1)ymFetmpi2. .. [n—o 1 Eo.
If m — a = 3 then we have
(T19)(0) = (—1)ettHetm(ri 4 INIIE,
(Top)(0) = (—1)a+2Hetm (12 4 I3)Eo,

(T30)(0) = (—1)a+3+latiml 2By,

(zer2)

(iform)
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while if m — a = 2 then we have
(Trip) () = (~1)e++ el 1) By,
(T29)(8) = (~1)* P2+t By,
These formulas follow easily from (6.16) using the identities (6.18). Now define the operators
Ry =I2I3... "

m—a—1"

Ry=1I---I;- i+t ...pmee 2<k<m-a-—1,

m—a—1"

_ 7172 m—a—1
Rp—a = 112 o 'Im—a—17

Rm—a—l—l = 0.

Then (6.19) can be rewritten as
(Crep)(0) = (1) TDm(Ry Ly + Ry) Eep, (6.20)

and we see that the formula is valid for all values 1 < k < m —a with m —a > 2, including the extreme

cases above. It follows immediately that the summation in (6.8) telescopes to give

( a+1+(a+1 m Z Fk‘ﬂ RlEQD
k=1
(6.21)
Q(0a+2) Q(6m) L L
= / .. / bT+ (tl) .. 'bT+ (tm—a—l)[(ESD)(tla ceey tm—a—l)] dtm—a—l e dtl.
Q0a+1) Q(Om-1)

Upon multiplying the above formula by (—1)*" and noting that (—1)*™(—1)¢++etm — (_1ym—atl

we obtain

) m—a N+0a4+2—1 N+0m—1
)"ty (Drp) (0) = (—1)am/ / b7 (t1) - 0T (bna)
k=1 " K

411 011 (6.22)

X 4,0(751, coybm—q—1,M+ 91, .. .,1’]—|—9a,0) dtm—a—1 - 'dtl,

where the formula (6.13) for £ is used along with the fact that Q(0;) =n+60; —1fora+1<j<m.
The calculation of (I'gy)(#) is handled in a similar fashion, and in fact is slightly simpler. If a = m
then I'o = 2145 - - - Z,,,, and so

(Lop)(0) =@ +01,....,n+ Om). (6.23)

(rform)

(gammak)

(x1)

(g22)
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Let us therefore assume that 0 < a < m — 1. We have first that
Q0a+1) Q(0m) . .
Cop)®) = [ [ ) ()
-1 -1 (6.24)
X oM+01,...,n+ 04,51, ..., Sm—q) dSm—q - - - ds1,

and also, using the anti-symmetry of ¢, that

90("7"1'917 .. -a"7+9a7317 . -,Sm—a) = (_1)a(m—a)(p(sl’ co oy Sm—a, T 917 st 911)'

Introducing the operator Ey € £(X\™, X \(m=4)) given by

(Eo)(ti,ta, . tm—a) =¥ (t1, - s tm—a,n +01,...,n+0,), (6.25)

we have from (6.24) that
(Tow)(8) = (~1)* "= JLI3 - - T~ Eogp.

a
Here the operators J;, and I} are as before, except they now operate on functions of m — a variables
rather than m — a — 1 variables. Using (6.17) and (6.18) as before, we obtain

(—1)* = [(Top)(0)] = 113 - - I~ Bow

a

Qba+1) Q0m)
- / B / T () b (o) [(B0) (B, - )] b -+~ .
Q(0a) Qbm—1)

Upon multiplying the above formula by (—1)(*+D™ and noting that (—1)@+)m(—1)alm=a) — (_1)m—a

we obtain
1 77+9a+1_1 77+9a+2_1 N4+0m—1 1 1
(-1 e((Tap)(6)] = (~nerim [ T T i) )
-1 N+0a4+1—1 N+0m—1—1 (6_27)
X @o(t1, . ostmea,n+ 01, .., +04) dty—q - - -ditq,
where the formula (6.25) for Ey is used, and where we have that (6,) = —1. Adding the two

equations (6.22) and (6.27) and using (6.8) gives (4.11), as desired, at least in the case that 0 < a <
m—2. If a =m —1 then (6.22) must be replaced by (6.10) to give the desired formula (4.12). Finally,
if @ = m then the term corresponding to (6.22) is absent, while (6.27) is given by (6.23) to give (4.13),

again as desired. With this, the proposition is proved. m

We now prove the Positivity Theorem.

(q0)

(gammaz)

(x2)
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Proof of Theorem 4.1. We prove the result only for equation (4.3). The corresponding result for
the more general equation (4.1) follows directly from the conjugacy (4.4) and the positivity of the
operators L(¢)"™ and [X(¢)"™] 1.

Due to the fact that W (7 + 7, 7) is a linear process, it is enough to prove the theorem in the case
that 0 < n < 1. Taking such 7, we assume that (—1)™b(¢) > 0 almost everywhere in [7, 7 + n]. With
v € K,, C X"™ and 0 € T,, fixed, and with a as in the statement of Proposition 4.2, consider the
formulas (4.11), (4.12), and (4.13) in that result for [W (7 + n, 7)¢](#). Note that

(tl,...,tm_a_l,n—i—el,...,17—1—9a,0)GTm, (tl,...,tm_a,n—i—el,...,n—i—ea) € T,

both hold for the arguments of ¢ in these formulas, in particular because n + 6,, — 1 < 1 + 61 and
N+ 0, < 0. Therefore ¢ evaluated at these points is nonnegative. Thus if m is even, so b(t) > 0,
it is immediate from these formulas that [W (7 + 1, 7)¢](8) > 0. If m is odd, so b(t) < 0, the same
conclusion holds after noting that (—1)*™=(—1)""%"1 and (—1)(@+t)"=(—1)"=% In either case one

concludes that W (7 +n,7)p € K,,, as desired. m

7 wug-Positivity

Here we consider the question of wg-positivity of the linear process W (t,7) € L(X”\™) under the
assumption that (—1)™b(t) > 0 as in Theorem 4.1. We maintain the same notation as in the PRE-
VIOUS TWO SECTIONS, with X = C([-1,0]) and the cone K,, C X" given by (4.8), with
the set T, C [—1,0] given by (4.7), and where W(t,7) € L(X"™) is the m-fold wedge product of
the linear process associated to the delay-differential equation (4.3). Corresponding questions for the
more general equation (4.1) are also addressed via the conjugacy (4.4), as before.

Generally, if Y is a Banach space and K C Y is a closed, convex cone, then we say two elements

u,v € K\ {0} are comparable in case there exist quantities My > M; > 0 such that
Miv < u < Msv,
where < denotes the ordering with respect to K. We denote this relation by
U~ .

Clearly, ~ is an equivalence relation on K. The following definition is classical.



OCTOBER 24, 2010 39

Definition. Suppose that A € L(Y) is a positive operator with respect to a closed, convex cone
K CY in a Banach space Y, that is, Au € K whenever u € K. Let ug € K \ {0}. Then we say that
the operator A is ug-positive in case there exists an integer kg > 1 such that A*u ~ wug for every

u € K\ {0} and every k > k.

In the case of a linear process, we make a related definition which accounts for continuous rather
than discrete time, with constants M; and My which are uniform with respect to compact time-

intervals.

Definition. Suppose that U(t,7) € L(Y), for t > 7, is a linear process on a Banach space Y. Suppose
also that U(t, ) is a positive operator with respect to a closed, convex cone K C Y, for every t,7 € R
with ¢ > 7. Let ug € K\ {0}. Then we say that the process U(t, T) is ug-positive in case there exists
7o > 0 such that the following holds. Given any u € K \ {0}, and given 7 € R and 7, > 7o, then there
exist M7 > 0 and M5 > 0 such that

Miug < U(T 41, 7)u < Maug
for every n € [no, 14

For each m > 2 let us define a function
U (0) = ( 1T ;- ei)> ( I]a+6 - ej)> for 6 € Ty, (7.1)
1<i<j<m 1<i<j<m—1
and extend u,, to all of [—1,0]™ as an anti-symmetric function, so that (Syu,,)(0) = sgn(o)u,,(0) for
every o € Sy, and every 0 € [—1,0]™. Note that for m = 2 the range 1 < i < j < m — 1 of the indices
in the second factor of (7.1) is empty. In this and other such cases, here and below, we interpret such
an empty product to be equal to 41 identically. Also note that the extended function u,, is continuous
throughout [—1,0]™, that is u,, € X”\™. This holds because u,,(f#) = 0 whenever 6 € T}, is such that
0; = 041 for some j with 1 < j < m — 1. Of course the polynomial formula (7.1) is not generally
valid for 6 € [—1,0]™ \ T}y,
The following theorem is the main result of this section. It is followed by a conjecture concerning

the natural generalization of this result.

Theorem 7.1. Let m = 2 or m = 3 be fized. Assume that the coefficient function b : R — R in
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equation (4.3) is measurable and that for every compact interval [t1,t3] C R there exist My > My > 0
such that

My < (=1)™b(t) < Mo for almost every t € [t1,ts].
Then the linear process W (t,7) on X\™ is w,,-positive with respect to the cone K,,, with the above
function w,,. Moreover, we have that ng = 3 if m =2 and ng = 5 if m = 3 for the quantity ng in the
above definition of a ug-positive linear process.

The corresponding result for equation (4.1) holds, where one assumes the same condition on the

coefficient B : R — R as for b, and where the coefficient o : R — R is locally integrable.
Conjecture A. Let m > 4. Then the conclusions of Theorem 7.1 hold for this m, with ng = 2m — 1.

For our purpose here it will be sufficient to take 7 = 1 in the formula (4.11), and so we may take
a = 0 in that formula, as per the statement of Proposition 4.2. Assume that (—1)™b(¢) > 0 for almost

every t satisfying 7 < ¢ < 74 1. Then (4.11) gives

753 Om
(W(r +1,7)0)(0) = / / B () b )0ty s bty 0) by - - -ty
01 m—1

01 O
+/ / / b7'+1 b7'+1( tn— 1)|90(t0,...,tm_1) dtm—l"'dto
~1 Jo, 0,01

for every ¢ € X™ provided that § € T,,. (For convenience later, we have reindexed the vari-
ables t; in the final term of (7.2).) Note that in the case of odd m, where b(t) < 0, the identities
(=1)¥"=(—=1)""%"1 and (—1)@+t)m=(—1)"¢ are used in taking the absolute values of b(t).

(7.2)

We shall need both positive upper and lower bounds for the operator W (7+ 1, 7), which is why we
assume in Theorem 7.1 that there are uniform positive upper and lower bounds for |b(¢)| on compact

intervals. The bounds for W (7 + 1,7) will then be given by appropriate multiples of the operator

A =Ag+ Ay, where
753 Om
Ao(p / / tl,.. m 1 )dtm 1° dtl,
01 Om—1

o O
(A1p)(0 / / / o(to, .+ tm—1) dtp—1 - - - dto.
9 Gmfl

The operator A is a central object of study below. Although we prove some general results (Proposi-

(7.3)

tions 7.5 and 7.6) valid for every m > 1, our focus is ultimately on the cases m = 2 and m = 3, as in

(etalx)

(aa)
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Theorem 7.1.
We shall consider A as acting on the space C(T),) of all continuous functions ¢ : T, — R, which
is in contrast to earlier sections where we worked with the space X"\™. However, note that X"\ is

isometrically isomorphic to the subspace
X = {p € C(Tyn) | ¢(8) = 0 whenever 0; = 0, for some j satisfying 1 < j <m —1} (7.4)

of C(T,,) consisting of all restrictions ¢|7,, of functions ¢ € X" to T,, C [~1,0]™. As such, we shall
freely regard the function w,, in (7.1) to be an element of C(T},), in fact, u,, € X\™ C C(T,,). Also,
without loss, we may regard W (¢, 7) to be an operator on X/\™ rather than on X"\™, as we wish to
compare W (¢, 7) with powers of the operator A. Note that the ranges of Ay and A; on C(7},) lie in
the subspace X/'™, and so the subspace X\ C C(T;,) is invariant under these operators.

Let us also denote the positive cone in C(75,) by
C(Tn)" ={p e C(Ty) | ¢®) >0 for every § € T, }. (7.5)

The crucial part in proving Theorem 7.1 is to show that the operator A is w,,-positive with respect

to C(T,,)". Indeed, we have the following result.

Proposition 7.2. Let m > 2 and suppose it is the case that the operator A € L(C(T,,)) given above
i a Um-positive operator with respect to the cone C(Ty,)", with w, as in (7.1). Then the conclusion
of Theorem 7.1 holds, but with the value of m chosen here. Further, we have that ng = ko for the
quantities in the above definitions of ug-positive operator and ug-positive linear process, corresponding

to the operator A and to the linear process W (t, T).

Proposition 7.2 implies that in order to prove Theorem 7.1, it is sufficient to prove the following

result.

Theorem 7.3. Let m = 2 or m = 3. Then the operator A acting on C(T},) is uy,-positive with
respect to the cone C(Tp,)T, with u,, as in (7.1). Further, if ¢ € C(T,)T \ {0} then AFg ~ u,, for
every k > 3 if m = 2, and for every k > 5 if m = 3.

Remark. The fact that u,, € X/, along with the invariance of X" under A, implies that A, as

an operator on X/\™, is also u,,-positive for that space with respect to the cone C(T},)" N X/\™.

(iso)
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Conjecture B. Let m > 4. Then the conclusions of Theorem 7.3 hold for this m, but where

AFp ~ u,, for every k > 2m — 1.
It is clear from Proposition 7.2 that if Conjecture B holds, then so does Conjecture A.

Proof of Proposition 7.2. For simplicity, we prove only the conclusions of Theorem 7.1 pertaining to
equation (4.3), that is, for the linear process W (¢, 7). The corresponding conclusions for equation (4.1)
can be obtained from these using the conjugacy (4.4).
By assumption, there exists ko > 1 such that A¥@ ~ u,, for every k > kg and every ¢ € C(T),) T\
{0}. Let 7 € R and let n, > kg be given. Then there exist My > M; > 0 such that (bbnd)

My < (=1)™b(t) < Mo for almost every ¢ € [7, 7 + n,], (7.6)

as in the statement of Theorem 7.1. We shall work in the space X™ C C(T},), and we note that
C(T,)" N X[™ is a closed, convex cone in that space. First note that if ¢ € C(T},)" N X\, then
from the formulas (7.2) and (7.3), and the bounds (7.6), we have that if [0, 0 + 1] C [7, 7 + 1] then

MsAp < (M7 ' Ag+ M{"A1)p < W(o + 1,0)p < (M7 Ag + M3"Ar)p < MyAgp
where
Mz = min{ M{""' M"Y, My = max{M", M},

with < denoting the ordering in the cone C(T,,)*t N X/\™. Tt follows by iteration that if [0, 0 + k] C
[T, T+ n,] for some integer k£ > 1, then (kbnd)

MEA*O < W (o +k,0)p < MFAFp. (7.7)

Now let p € [C(T},)" N X/™]\ {0} be given; we shall keep ¢ fixed for the remainder of the proof.
Given any 7 € [ko, 1], let v = W (T +n — ko, T)p, and note that ¢ € [C(T},)" N X/ ™\ {0} where
Proposition 4.4 is used. Thus there exists ¢ = £(n) > 0 such that if we define

Y-(0) = inf [(W(T+n" — ko, 7)](0),
7' €lko,m+]N(n—en+e)
for 6 € Ty, then v_(0) > 0 for some 0 and so ¢_ € [C(T,,)" N X/™]\ {0}. Fix such ¢ and let

¢+(0) = sup [W(T + 77/ - kOv 7_)90](0)7
n'€[ko,n«]N(n—e,n+e)
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and so also ¥y € [C(Ty,)T N X/™]\ {0}. Then for any 1’ € [ko, 7« N (n — &, + ), we have that
Y- S W(T 41" — ko, T)p < ¢, (7.8)
and upon applying the positive operator W (7 + 7', 7 +n' — ko) to (7.8), one obtains
W(r+n', 740 — ko) < W(r+7', 1) < W(7 +7, 7+ 11 — ko)t
It follows, by (7.7), that
Quim < MgPA™ ) <W(r + 1, 7)p < M ARy, < Qo (7.9)

for some Q3 > )1 > 0, where the existence of ()1 and ()5 follows directly from the assumption that
A is u,,-positive, specifically, that ARy ~ wu,,.

To complete the proof of the theorem, let us denote the constants in (7.9) by @, ,, for j = 1,2 and
any 7 € [ko, nx]. We observe that the open intervals (n —e(n),n+ e(n)) for such 7 form an open cover

of [ko, 1], so we may extract a finite subcover, corresponding to points 7; for 1 < i < p. Then upon

setting Q1+ = 1Iélz'i£p{Q1’m} and Qg2 = lrél%};{ng}, we see that
Q1xtm < W(T+1',7)p < Q2 st

for every 1’ € [ko,n.]. With this, the proof is complete. m

Moving toward the proof of Theorem 7.3, we shall first obtain a pointwise upper bound for
|(A¥p)(0)] in Proposition 7.5 below, and in fact we shall obtain such for every m > 2. To this
end we define functions uf, € C(T,,) by

a@=( Me-0)( TLa+e-o) (7.10)
1<i,j<m 1<i,j<m—1
1<j—i<q Jj—izm—q

for 0 < ¢ < m — 1. Here and below we shall always assume ¢ is in this range, although we shall

sometimes impose additional restrictions on g. We assume that m > 2 and that § € T,,. Note that

all factors in the products (7.10) are nonnegative and bounded above by +1. Now define

m—1

wm(H) = 1__[ (9j+1 — Gj), @m(e) = (1 +6; — Qm_l)wm(el, R Qm), (7.11)
j=1

(ord)

(ord4)

(umq)

(wdef)
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and let polynomials vy, and vy, be defined by

uh (0) = vin(0)w,, (6), for1<g<m-—1,
uh (0) = v (0)w,, (6), for2<qg<m-—1, (7.12)

vk (0) = 1 identically.
It is easy to check that vy, and vy, are well-defined polynomials, as every factor of of w,, and w,,
occurs as a factor of the polynomial uf, for the indicated ranges of q. Note that u0 () = 1 identically,
while ul () = w,,(0), where some of the products in (7.10) are empty hence take the value +1, as

noted earlier. Also observe that u™~!(6) = u,,(#) as in (7.1).

Now let us take quantities ¢; for 0 < j < m — 1 satisfying
to € [—1, 64], t; € [9j,9j+1] for1<j<m-—1, (7.13)

as in the integrands of (7.3). The following lemma provides a crucial estimate needed for the proof of

Proposition 7.5.

Lemma 7.4. With m > 2, let 0 € T,, and let t; for 0 < j < m — 1 satisfy (7.13). Then
0 <uld (tr,... tme1,0) <0i1(0), 0 <ud (to,... tme1) <04(0), (7.14)
for 0 < q<m—2. Further,
0<um™ Lty ... tymo1,0) < 0™ 10), 0<um™ (g, ... tjme1) <m0, (7.15)

holds.

Proof. In this proof care must be taken to ensure the correct ranges of the indices ¢ and j, and it will
be helpful to note that i < j in many places.
Assume that 6 € T,,, and that (7.13) holds. We begin by observing that

Ogtj—ti§9j+1—9i§1, for1§i<j§m—1,

Ogtj—t0§1+9j+1—9m_1§1, for1<j<m-2,
(7.16)
0<—t; <1460,-06;,<1, for 1 <i<m-—1,

IN

0§1+ti—tj 1+9i+1_0j§17 for0<i<j<m-—1.

(vdef)

(tthet)

(uinq)

(uing2)

(ting)
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We first establish (7.14). Suppose that 0 < ¢ < m — 2. Then from (7.10) we have that

u?n(tl,...,tm_l,O):< H(tj—ti)>< H(—ti)>< H(1+ti—tj)>.

1<i,j<m—1 m—q<i<m—1 1<i,j<m—1
1<j—i<q Jj—izm—q

Using (7.16) we see that
M-t < ] 6—0) = [ 6 -6

1<i,j<m—1 1<i,j<m—1 1<ij<m
1<j—i<q 1<j—i<q 2<j—i<q+1

for the first product in (7.17). We also have that
[Ta+ti—-t) < JJO+62-6) = J]+6:-6)

1<i,j<m—1 1<i,j<m—1 2<d,j<m—1
Jj—izm—q Jj—izm—q Jj—izm—q—1
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(7.17)

(7.18)

(7.19)

for the third product in (7.17). Using the inequality —t; < 1461 —6; from (7.16) in the second product

in (7.17), and reindexing using j instead of ¢, we may combine this with (7.19) to obtain

( 11 (—ti)>< IJa —I—ti—tj)> < JJa+6:-9.
m—q<i<m—1 1<i,j<m—1 1<i,j<m—1
j—i>m—q j—i>m—q—1

Combining this further with (7.18), we see that with (7.17) this gives

ugn(tl,...,tm_l,())g< H(@-@g)( H(1+9i—9j)>:ugn+1(9),

1<ij<m 1<i,j<m—1
2<j—i<q+1 j—i>m—q-1

to give the first half of (7.14).
Next observe that
ittt = (T w-0)( T[a+6-1))

0<i,j<m—1 0<i,j<m—2
1<j—i<q j—i>m—q

For the first product in (7.20) we have, again using (7.16), that

Il -t < ( I 051 — ei)> ( I] a+6 - em_1)>

0<i,j<m—1 1<i,j<m—1 1<j<q
1<j—i<q 1<j—i<q
< ( 11 (@»—@))( II (1+9i—9m_1>>.
1<i,j<m 2<i<q

2<j—i<q+1

(7.20)

(7.21)

(prod0)

(first)

(third)

(prodl)

(first2)
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Note that in the second inequality of (7.21), we have used the estimate 1 + 6,41 — 6,,—1 < 1, which

holds because ¢ < m — 2, and which allows us to drop the term 1+ 6,41 — 6,,—1. Now for the second

product in (7.20) we have that (second2)
[Ta+ti-t) < JJQ+6-0) = J]Q+6-06;). (7.22)
0<i,j<m—2 0<i,j<m—2 1<i,j <m—2
j—i>m—q j—i>m—q j—izm—q—1

If ¢ > 1 then combining (7.21) and (7.22) gives

ul (to, ... tme1) < ( 11 (@-@))( [T a+6: -6 )> 29(0),

1<i,j<m 1<i,j<m—1
2<j—i<q+1 m—3>j—i>m—q—1

while if ¢ = 0 we have directly that
u?n(t(], ceey tm—l) =1= T)}n(H)

This establishes the second half of (7.14).
We now prove (7.15). This follows directly by noting that

0< um_l(tl, ce oy tm—1, 0) < um_z(tl, ey =1, 0),
0< um_l(to, .. -atm—l) < um_z(to, R tm—l)a

and then applying (7.14) for ¢ = m — 2. With this the proof is complete. m

Proposition 7.5. Let m > 2. Then we have the pointwise bounds (ubnd)
0 < (Auf)(0) < uff' (), 0< (Aum)(0) < um(0), (7.23)
for0<g<m-—2andi=0,1, for @ € T,,,. Thus for every ¢ € C(T,,) we have the pointwise bound  (b3)
[(A*0)(0)] < 25um (0) [l ]I, (7.24)

fork>m—1 and 0 € T,,.

Proof. Let ¢ = uf, in (7.3) where 0 < ¢ < m — 2. The using (7.14) in Lemma 7.4, we have for every

6 € T,, that
) Om
A(]’LLm / / ’LLq tl,.. m 1 )dtm 1° d
01 Om—1

0> Om
= / / Vi (0) dts -+ dty = win ()07 (6) = i (0).
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Similarly, if 1 < ¢ < m — 2 we have that

01 Om
Alum / / / u‘}n(to, ceey tm—l) dtm_l te dt(]
9 Gmfl

61 [0 Om

< [ [ O dt (7.25)
-1 Jb Om—1

— 1+—91 m (9)5114—1(9) <o (9)5114—1(9) — uq+1(9)
14+61 —0,,_1 m m - m m '

If ¢ = 0 we again have (7.25) except with an inequality < in place of the final equal sign, as
Wi (0) 0 (0) = Wi (60) < Wi (6) = 1y (6).

This gives the first half of (7.23). For the second half of (7.23), involving (A;u,,)(f), one argues
similarly except using (7.15) instead of (7.14), where we recall that u,, = um~!. We omit the details.

It follows that 0 < (Au&)(0) < 2ud(0) if 0 < ¢ < m — 2, while 0 < (Au™"1)(0) < 2u™1(6), for
every 0 € T,,. Thus

0 < (AFu2)(0) < 2820 (0),  ~(k) = min{k, m — 1}, (7.26)

for every k > 1. Also, as A is a positive operator with respect to the cone C(T;,)" in (7.5), we have

the pointwise bound
[(A%0)(0)] < (AFle])(8) < [(AFup,)(O)]]l¢ll (7.27)

for every ¢ € C(T},), where we recall that u® () = 1 identically. Combining (7.26) and (7.27)
gives (7.24), as desired. m

Related to the operator A is the operator B, which we define as B = By + B1, where

1 2> Om
(B(](p)(e) = —/ / um(tl,...,tm_l,O)(p(tl,...,tm_l,O) dtm_l"'dtl,
Um( 01 m—1

61 Om
(Bl(p = / / / to, . tm 1)(,0(750, .. m 1) dtm 1° dt(]
um 9 m 1

Formally, B is conjugate to A via the operator given by multiplication by w,,, and B will play a

(7.28)

significant role in proving Theorem 7.3. In particular, obtaining the required equivalence A*p ~ u,,

for large k is essentially the same as showing that B¥i) ~ 1 where ¢ = wu,,10. Concerning the

(b1)

(bformx)
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appropriate space on which B acts, we see that if ¢ € C(T},) then the function By is continuous

almost everywhere on T,,, specifically, it is continuous at each point 8 € O,,, where
Om ={0 € T}, | §; < 0j41 for every j satisfying 1 < j <m — 1}. (7.29)

However, as we shall see, By can have discontinuities in 7}, \ Oy, and thus need not belong to C(7},).
In light of the estimate (7.24), one might wish to consider B acting on the space L*°(T},) of bounded
measurable functions. However, By is not well-defined for general ¢ € L*(T,,) due to the zero entry

in the final argument of ¢ in the formula (7.28) for Byyp. However, if we define
Wy = {p € L(T},) | ¢ is continuous at every point 6 € O,, }, (7.30)

where O,, is as in (7.29), then W,,, C L*°(T,,) is a closed subspace, and one easily sees that B is well-
defined as an operator on W, with range in W,,, that is, B € £(W,,). We have have the following

result.

Proposition 7.6. Let m > 2. Then By and By in (7.28), and thus B = Bg + By, define bounded
linear operators on the space W, with | By, ||B1]| < 1 and |B| < 2. Here W,, is defined by (7.29),
(7.30) with the norm inherited from L (T,,).

Proof. The proof is very similar to the proof of Proposition 7.5, and entails using the bounds (7.15)
of Lemma 7.4 to estimate the integrals (7.28) just as before. We omit the details. m

It is natural to ask what is the minimal closed invariant subspace ¥ C W,, for the operator B

which contains C(7},). Such Y would be given by letting
Y=|JY  where Y5=C(Tn), Yup1=BY,+C(Ty,) forn>0, (7.31)
n=0

where we note that Yo C Y7, C Y, C--- CY C W,,. In the next section, as part of our efforts to prove
Theorem 7.3, we show that if m = 2 then Y = C(T3), while if m = 3 then Y = C(T3) @ V where V is

a certain two-dimensional subspace of W,.

8 wug-Positivity for m = 2 and m = 3

Let us now specialize to the cases m = 2 and m = 3, as in Theorem 7.3. We retain all the conventions

and notation of the previous section. In working toward the proof of Theorem 7.3, our analysis here
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is largely concerned with the operator B.

We first consider the case m = 2. Then us (6, 602) = 02 — 01, and so

9 01 s
(Bow)(0) = —]g t1p(t1,0) dty, (B1yp)(0) = /_1 ]g (t1 — to)w(to, t1) dty dto, (8.1)

as in (7.28). For convenience of notation, we denote the so-called average integral by

][ab f(z) dr = bia /ab f(z)dz,  with ]ia f(z) dz = f(a).

Note that for locally integrable f, the above average integral is continuous as a function of a and b for
a # b. It is also continuous where a = b provided that f is continuous at this point. It thus follows
that By and B, and thus B, are bounded linear operators on the space C(T3), and so Y = C(T3) for
the space Y in (7.31). One sees moreover that By, By, and B are positive operators on C(T%) with
respect to the cone C(T3)*. (Keep in mind that ¢; < 0 for the integrand in the formula for By.)

We have the following result.

Proposition 8.1. Let p € C(T2)" \ {0}. Then for every k > 3 there exists My > 0 such that
(B*p)(0) > My, for every 6 € Ty. Thus the operator B with m = 2 and acting on C(Ty) is ug-positive
with respect to the cone C(Ty)™, where uy(0) = 1 identically on T,.

Proof. It is clear that ug-positivity follows from the existence of the lower bounds Mj, as we clearly
have the pointwise upper bounds |(BF¢) ()| < ||BF¢p||. Also, it is sufficient to prove the existence only
of M3, as the constants My for k > 4 follow directly by induction, using the positivity of B. Indeed,
having obtained M; for 3 < j < k, we obtain a lower bound Mgy for [(B¥1)(0)| by applying B? to
the function B*2¢ € C(Ty)* \ {0}.

To show that M3 exists, it is enough, due to the continuity of B3¢, to show that if ¢ € C(T)*\ {0}
then we have strict positivity (B3¢)(#) > 0 for every 6 € Ty. To this end let

L={0€T5|0,=0}=[-1,0] x {0},

which is the upper boundary of the set 75 C R?. Then it is enough to prove that the following three
facts hold for every p € C(Ty)*.

(1) If ¢(6) > 0 for some 6 € Ty, then (By)(8) > 0 for some 6 € L;

(71)
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(2) if () > 0 for some 6 € L, then (By)(f) > 0 for every 8 € L; and
(3) if p(#) > 0 for every 8 € L, then (By)(8) > 0 for every 6 € T.

The proofs of properties (1) through (3) follow easily from the formulas (8.1). With ¢ € C(T3)",
if p(f) > 0 for some § = (01,02) € To we may assume without loss that —1 < 61 < 6 < 0.
Then (B1¢)(01,0) > 0 holds, in particular because the integrand (t; — t9)p(to, t1) in (8.1), which is
nonnegative throughout the range —1 < tg < 6; < t; < 0, is strictly positive at (tp,t1) = (01, 62).
With this, (1) is established.

Now suppose that ¢(6) > 0 for some 6 = (61,0) € L. Then (Bgp)(61,0) > 0 for every 6; satisfying
-1< 51 < 0 and 51 # 0, and (Blgo)(gl, 0) > 0 for every 51 satisfying 0, < 51 < 0 and 51 # —1. In
any case, (Bg)(6) > 0 for every 6 = (61,0) € L. This establishes (2).

Finally suppose that o(#) > 0 for every § € L. Then (Bgyp)(f) > 0 for every 6 € Ty except
9 = (0,0). However, (B1¢)(0,0) > 0 for this point. With this, (3) is established and the result is

proved. m

Let us now consider the case m = 3, so 6 = (61, 02, 603) € T5. Here
’LL3(9) = (92 — 91)(93 - 92)(93 - 91)(1 + 91 — 92)

We introduce the functions

~ —(02+03) 146,

S T A e

(8.2)

which will play a key role in our analysis. Observe that due to the ordering of the 6; in the defini-
tion (4.7) of T3, the functions vy and vy are well-defined and continuous everywhere in T3 except at
the point 8 = (—1,0,0). Further, we have the bounds 0 < vy(6;,602,03) < 2 and 0 < v4(01,69,05) <1
throughout 73 \ {(—1,0,0)}, so vy, 1 € W3, where we recall the definition of W,,, in (7.30).

After a short calculation one sees from (7.28) that

02 03
(B(](,D)(H) = f f q>0(t17 ta, 017 027 03)90(t17 ta, 0) dt2 dtlv
61 JOy

(B1¢)(0) = 11(6)(B1yp)(0), where (8.3)

" 01 02 03
(B1g)(0) :][ f ][ D1 (to, t1, t2, 01, 63)(to, t1, t2) dta dty dio,
—1Jo, Jo,

(bm3)
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for any ¢ € W3, and where the kernels &y and &, are given by (phiker)

ty — 1 to
Dy(t1,to, 01,09, 03) = t 1+t —t
o(t1,t2,01,02,603) <93_91> 1<1+91_92>( +t1 —t2),

by — 1
3 — 01

(8.4)

Dy (to, t1,t2,01,03) = (t1 — to)( >(752 —to)(1+tg — t1).

Note that we have grouped like terms in the kernels (8.4), so that each ratio in these formulas is at

most +1 in absolute value. In particular, we have that
0<ty—t; <63—0, 0< —ty <1461 — 0y,

and so (phibnd)

aslong as —1 <ty < 01 <t1 <0y <ty <63 <0. This confirms the conclusion of Proposition 7.6 in
the case m = 3, in particular that By, B1, and B define bounded linear operators on W3. However,
in contrast to the case m = 2 above, we shall see that here B is not an operator on C(73), as By is

not in general a continuous function on T3 even if ¢ is continuous there. Instead, the following result

holds.

Theorem 8.2. Let V C W3 denote the two-dimensional vector space spanned by the functions vy and

vy in (8.2), and let Coy C Cy C W3 be defined as (cv)
Cy=C(T5) a8V, Cov =Co(T3) @V, Co(T3) = {p € C(13) | p(~1,0,0) = 0}. (8.6)

Then the space Cy is invariant under the operators Bg, B1, and thus B, and moreover, the ranges of

these operators on Cy are contained in Coy . More precisely, if ¢ € Cy then (49)

(Bp)(0) = Qovo(0) + Q11 () + ¥ (6),

) . (8.7)
Q=3 [ Pa+opto0d G- [ fusop-1t0)a

-1 -1

where 1 € Co(T3). Further, we have Y = Cy for the space Y defined in (7.31).

Remark. The above theorem implies that although By need not be continuous even if ¢ is continuous,

the discontinuities of By can only be of a special form and located at the specific point (—1, 0, 0) on the
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boundary of T3. The analogous issue for m > 4, namely a description or classification of the possible
discontinuities that can arise for iterates B¥¢ where ¢ € C(T},), or more generally a characterization
of the space Y, should be relevant to the conjecture stated earlier, as well as being an interesting

question in its own right.

A number of preliminary results are needed before proving Theorem 8.2. We begin by examining
the continuity properties of By and ]~31<p in T3 for ¢ € Cy. For such g, it is clear from the form (8.4)
of the kernels ®; and from the formulas (8.2) for 1y and v; that the only possible points 6 € T3 at
which By is discontinuous are where either 65 — 8; = 0 or where 1 4 61 — 6, = 0, and that the only
possible points of discontinuity of ]~31<,0 are where 03 — #; = 0. Note that 63 — 0, = 0 for 6 € T3 if and
only if 6§ = (0., 0., 0,) for some 0, € [—1,0]. Also note that 1 4+ 6; — 0 = 0 for 6 € T3 if and only if
0 = (—1,0,0). The following lemma describes these continuity properties of Byp and ]~31<,0 at these

points.

Lemma 8.3. Let p € Cy. Then the only possible point 6 € T3 of discontinuity of Boy is 6 = (—1,0,0),
while ]~3130 s continuous throughout T3, that is, ]~31<p € C(T3). Further,

2
(Bog)(0..0..0.) - Z20:020)

. (8.8)
(B1) (0., 0., 0.) = 57[ (0, — 2(1 + 1 — 0,)0(t, 0, 0. dt.
—1

for every 6 € [—1,0].

Proof. From the remarks preceeding the statement of the lemma, all that is necessary is to prove
continuity of Bgy and ]~31<,0 at each point of the form (6., 6., 6,) in T5. We present only the proof for
By, as the proof for ]~31 is similar. With ¢ € Cy fixed, let 71 = 65 — 61 and 9 = 03 — 65, which are
nonnegative quantities for § € T},,. Making the change of variables t; = 61 +717v1 and to = 01 +v1+7272

in (8.3), we obtain

1 1
(Bop)(0) = / / Qo (61 + 1171, 01 + 71+ T2y2, 01, 01+ 71, 01+ 1+ 72)
o Jo

X @01 + 1171, 01 + 71 + T2y2, 0) dro dmy

1,1

1

:/ / (( T1)71 +7272>S(T1,72,91,71,72)90(91 iy, 01+ 1+ Ty, 0) dre dry
0 J0 7t 2

(btrip)
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where

(01 + 1171) (01 + 71 + 7272) (L4 (11 — D)y — 7272)
I—m
This formula is valid throughout 73 as long as the coordinates 6; for j = 1,2, 3 are not all equal and

S(Tlv T2, 017 1, 72) =

0 # (—1,0,0), equivalently as long as 71 + 72 > 0 and 71 # 1. Upon letting 8 = (61, 62, 03) approach
a given point (6,6, 0,) in T3 (say, along a sequence), one sees that ; and 2 approach 0, hence
S(11,72,01,71,v2) approaches 62 and (01 + 1171, 01 + 71 + 7272, 0) approaches (6, 0y, 0), uniformly
in the range of integration. The fact that

/ / (1—7'1 71-1-7'272) d’7’2d’7’1:l
Y1 + 2 2’

with an integrand which is bounded uniformly for nonnegative v; and ~s, implies that

(Bop)(0) — w

where the above equality may be taken as the defnition of (Bgy) (0,6, 6s). This gives the first

= (B(](,D)(e*, 0*7 0*)7

equation in (8.8). We omit the proof of the second equation in (8.8), which is similar. With this, the

result is proved. ®m

Remark. Although v; — 0 and «5 — 0 in the above proof, there is no assumption about the relative
rates at which these quantities converge. Consequently, the ratio ((1 —71)v1 + 7272)/(71 + 72) in the

integrand above need not have a pointwise limit in (71, 72) as v1,v2 — 0.
The next two lemmas give partial information on continuity properties of Boy near (—1,0,0).

Lemma 8.4. Let p € Cy and suppose that p(601,0,0) = 0 identically for 61 € (—1,0]. Then (Bop)(0)
is continuous at each 0 € Ts, that is, Bop € C(T3). Moreover, (Boy)(—1,0,0) = 0, and thus
Bop € Co(T3).

Proof. From Lemma 8.3, the only point at which By can fail to be continuous is § = (—1,0,0).
Now fix € satisfying 0 < & < 1. Then if § € T3\ {(—1,0,0)} is such that ; < —1+¢ < 05 and 61 # 0o,

we have from the formula (8. ) that

(Bo)(0

1+4+e€
/ ][ Do (t1,t2, 01, 02, 03)0(t1,t2,0) dta dt
92—91 0, 0y

03
Ry / ][ o (t1,t2, 01,00, 03)0(t1, t2,0) dtz dty.
2 — V1 1+e
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We have thus the bounds

1 —lte 103 —1+4+e—6 ellell
Do (ty,t9,01,04,0 t1,10.0)dto dt{| < [ ———— <
0y — 0 /01 ]gz o(t1, 2, 01, 02,63)0(t1, 2, 0) dtg di1| < ( 0y — 0 >||90||_92_91,
1 02 03
0 0 ][ @0(751,752,91,92,93)90(751,752,0) dto dt1]| < sup |<,0(7f1,7f2,0)| = 55(92),
2= 01| J 14c Jo, —I4e<t; <0y <t3<0

following from (8.5), where the above equality serves as the definition of d.(62). Note that the point
(—1,0,0) is excluded from the region over which the above supremum is taken, and so, with e fixed,
d(02) depends continuously on s near 3 = 0 and with 0.(0) = 0 from the assumptions on . Letting
6 — (—1,0,0) (say, along a sequence), we obtain

limsup [(Bow)(0)] < el
0—(—1,0,0)

from the above. As ¢ can be chosen arbitrarily small, this implies the result. m

Lemma 8.5. Let ¢ € Cy and suppose that p(61,62,0) = p(01,0,0) identically for every (61,62) € Ts
with 61 # —1. Then (nnul)

0
(Bog)(®) = Qu®) + 06, Q=5 [ £1+0p(t0.0)at (39)

-1

for some ¢ € Cy(T3).

Proof. We first claim that (pwr)
93 _1 5
][ (tg — tl)tltg(l +1t — tg) dty = 7 (tl(l + tl)(92 + 93) + R(tl, 92, 93)), (810)
02
where the polynomial R satisfies (rest)
R(t1, 03, 03) = O(t1(65 + 63)) (8.11)

near the origin in R3. Indeed, this can be readily verified by direct calculation, by expanding the

integrand in (8.10) in powers of to about the origin. We omit the details. We next observe that (nul)

1
(03 —01)(1+ 61 —62)

02
(Bop)() = 5 £ (R0 0002400+ Rit1,00,00) ) oltr, 0,00, (512)
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which follows immediately from (8.3), (8.4), and (8.10), using the assumption on . Denoting

~ 1 75
0 :7][ 21+t t1,0,0) dtq,
¢( ) 2(03 _01) o, 1( 1)‘;0( 1 ) 1
(o L " Rty 00,0 p
o) 2(03 — 1) (1 + 64 —02)]£1 R(t1,02,03)¢(t1,0,0) dty,

we have that (Bgp)(6) = vo(0)(0) + (0).

Certainly J is continuous in a neighborhood of the point (—1,0,0) in 73. Also, ¢ is continuous in
some neighborhood of (—1,0,0), in fact with ¢/(—1,0,0) = 0, in light of the estimate (8.11). Letting
V() = vo(0)[¥(0) — Q] + ¥(#) where Q = 1h(—1,0,0), we have that (8.9) holds. Also, ¢ is continuous
in some neighborhood of (—1,0,0) in 73, and 1 (—1,0,0) = 0, where the boundedness of 1 near that
point is used. Further, Byp and 1 are continuous at every point of T3\ {(—1,0,0)}, using Lemma 8.3,

so 1 is also continuous there, by (8.9). Thus ¢ € Cy(T3), as claimed. m

Proposition 8.6. Let ¢ € Cy. Then Byp has the form (8.9) where ¢ € Cy(T3), with Q as in that

formula.
Proof. With ¢ € Cy, write p(0) = @(0) + p(0) where

(61, 02,03) = @(01,02,63) — @(01,05,63), P(01,02,03) = (61, 03,03).

Then ¢ and P satisfy the conditions of Lemmas 8.4 and 8.5, respectively. Further, $(61,0,0) =
(61, 0,0) identically on (—1,0]. The result follows immediately. m

Proof of Theorem 8.2. Let ¢ € Cy. We have that (Bop)(0) = Qovo(f) + 1o(f) with Qo as
in (8.7) and where vy € Cy(T3), by Proposition 8.6. Also, by Lemma 8.3 we have that ]~31<,0 € C(T3),
and from (8.3) and (8.4) we have that (B1¢)(—1,0,0) = Q; for Q; as in (8.7). Thus upon letting
¥1(8) = 11 (0)[(B19)(8) — Q1], we have from (8.3) that (B1¢)(6) = Q111(8) + 11(6), so upon letting
U(0) = Po(0) + 11(6) we have (8.7). The fact that ¢ € Cy(T3), or equivalently, that ¢ € Cy(T3),
follows directly from the definition of v using the continuity of ]~31<,0 and the choice of 1.

To prove the final claim in the statement of the theorem, it is enough to show that every pair of
numbers Qp, @1 € R as in (8.7) can be achieved for some ¢ € C(73). However, this follows easily from
the explicit formulas (8.7) for Qp and Q1. m
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Lemma 8.7. Let ¢ € Cpy have the form

@(0) = Qovo(0) + Q11 (0) + ¥ (0)

for 0 € Ts\ {(—1,0,0)} where ¥ € Cy(T3). Assume that ©(6) > 0 for every 0 € T35\ {(—1,0,0)} and
also that Qy > 0 and Q1 > 0. Then there exists M > 0 such that

o(0) > M (8.13)

for every 0 € T3\ {(—1,0,0)}.

Proof. Denote 6y = (—1,0,0). Then for any r satisfying 0 < r < 1, let

o(r) = inf  o(6) e(r) = sup [p(0)],

|0—080|>r ’ 0<|6—60|<r
where | - | denotes the euclidean distance in R® and 6 € Ts. Since ¢ is continuous and positive
throughout T, \ {6y}, it follows that d(r) is positive and depends continuously on r. Also, since
1 is continuous in T35 and 1 (6y) = 0, we have that e(r) also depends continuously on 7, and that
}ii%z—:(r) = 0. (We note that it need not be the case that the function ¢ is nonnegative everywhere.)
Therefore,

nf o0 ot (Qua(0) +Qua(0)) - <)

0<|0—80 |<r 0<|0—00 |<r

- . —Qo(02 +03) + Q1(1 + 67)
= inf
0<|6—6|<r 146, —06s

) ~ e(r) > min{2Q0, Q1} — £(r).

By choosing r sufficiently small that £(r) < min{2Qq, @1}, one sees immediately that the desired
inequality (8.13) holds throughout T,,, \ {6} with M = min{d(r), min{2Qo, Q1} —&(r)}. m

Define the set
Cyr ={p € Cy | p(0) > 0 for every 0 € T3\ {(—1,0,0)}},
which is a closed, convex cone in Cy. The following result is the analog of Proposition 8.1 for m = 3.
Proposition 8.8. Let ¢ € C}7 \ {0}. Then for every k > 5 there exists My, > 0 such that (B*p)(6) >

My, for every 6 € T3\ {(—1,0,0)}. Thus the operator B with m = 3 and acting on Cy is ug-positive

with respect to the cone Cy, where ug(0) = 1 identically on Ts.

(79m)
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Proof. Just as in the proof of Proposition 8.1, it is sufficient here only to prove the existence of Ms.

Toward this end, let us first define the sets
Lo = T3\ {(=1,0,0)},
Ly = {0 € T3\ {(-1,0,0)} |05 = 0},
Ly = {0 € T5\{(-1,0,0)} | 2 = 3 = 0},
Lz = {(0,0,0)},
observing that L3 C Ly C L1 C Lg. Also define
Ls ={60 €T3\ {(—1,0,0)} |62 € [-0,0) and 03 = 0}
for any § > 0. We claim the following facts hold for every ¢ € C"*,'.
(1) If ©(6) > 0 for some 6 € Ly, then (Bg)(6) > 0 for some 6 € Ly;
(2) if p() > 0 for some 6 € Ly, then (By)(6) > 0 for some 6 € Lo;
(3) if () > 0 for some 6 € Ly, then there exists § > 0 such that (Be)(8) > 0 for every § € Ly;

(4) if there exists § > 0 such that ¢(6) > 0 for every 6 € Lg, then (By)(6) > 0 for every 6 € Ly \ Lo;

and
(5) if p(#) > 0 for every € L1 \ Lo, then (By)(8) > 0 for every 6 € Lo \ Lo.
Additionally, we claim the following facts hold for every ¢ € C"J} .
(3) If (6) > 0 for some 6 € Ly, then (By)(6) > 0 for 6 = (0,0, 0), that is, for 6 € Ls; and
(5) if @(#) > 0 for every 6 € Ly \ Lo, then (By)(6) > 0 for every 6 € Ly \ Ls.

If one accepts the above facts then it is immediate from (1)-(5) that if p € C}7\ {0} then (B%¢)(6) > 0
for every 6 € Lo \ Lo. (Note that if ¢ € C}7 \ {0} then ¢(#) > 0 for some § € Ly.) It is also immediate
from (1)-(4) and (5') that if ¢ € Cy; \ {0} then (B®)(#) > 0 for every 6 € Ly \ L3 and thus for every
0 € (Lo\ La) U(L2 \ Lg) = Lo \ L3 = Lo \ {(0,0,0)}. Finally, one sees that if ¢ € C}’ \ {0} then also
B?p € C}7 \ {0}, and using (1), (2), and (3) one concludes that (B%p)(#) > 0 at 6 = (0,0,0). One
therefore concludes that if ¢ € Cif \ {0}, then (B®)(6) > 0 for every 6 € Lo = T3\ {(—1,0,0)}.
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Now fixing any ¢ € Cy; \ {0}, write

(B%0)(6) = Qoro(0) + Q11 () + ¥(0)

with ¢ € Cy(T3) as per Theorem 8.2. Then

1 0 0

Q=3 [ PO+0BDE00NE Q= [ POB-L L0,
-1 -1

As B?p € C} \ {0}, one has from (1) and (2) that (B*p)(6) > 0 for some 6 € Lo, that is, for some
9 = (t,0,0) with ¢ € (—1,0]. Thus Qo > 0. Similarly, as By € C}" \ {0}, one has from (1)-(3) that
there exists 6 > 0 such that (B*p)(6) > 0 for every § € Ls, and in particular for every § = (—1,¢,0)
with t € [-§,0). Thus Q; > 0. With this, the existence of a uniform lower bound Mj5 for B3¢ follows
directly from Lemma 8.7.

There remains to establish the properties (1)—(5) and (3’) and (5’). For the most part, these follow
rather straightforwardly from the formulas (8.3), (8.4) for Bop and Bjp. Let us write (8.3) as

- 02 03 I
(B(](,D)(H) = f, f, q>0(t17 ta, 017 027 03)90(t17 ta, 0) dt2 dtlv
61 JOy
(8.14)

(Brp) (@) = () ][il]g}zf; By (to, 1, t2, B, B3)p(to, 11, £2) diz dt dto,
-1J6; Jo,
using the variable g = (51, 52, 53) We recall that the arguments of these integrals are nonnegative
throughout the range of integration, and so it is enough to prove for each of the indicated 0 in the
above claimed properties, that either (Bog)(6) > 0 or (B1p)(f) > 0. Generally, this will be done by
exhibiting a point (¢1,t2) or (tg,t1,t2) in the range of integration at which the integrand is strictly
positive. As we are taking average integrals, it will not matter if the upper and lower limits of an
integral are equal.

To prove (1), we assume that ¢(6) > 0 for some 0 = (61, 62,63) € Lo, and without loss we may

assume that

—1<60;<02<03<0 (8.15)

as o is continuous on Ly. Now letting 0 = (51,52,53) = (01,02,0) € Ly, one sees directly that
(Byp)(é) > (. In particular, the relevant integrand in (8.14) is strictly positive at the point (tg, t1,t2) =
(61, 62, 03) which lies within the range of integration, as we have from (8.4) that

03 — 02

B1(01, 0, 05, 01, 0) (01, 0, 05) = (62 — 01>( )(93 —00)(1+ 61 — 02) (01,6, 65) > 0.

(bm33)

(spaced)
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Observe that the assumptions (8.15) are used in drawing this conclusion. Additionally, v4(6) > 0 as
61 > —1. With this (1) is established.

The proof of (2) is similar. We assume that ¢(#) > 0 for some 6 = (6, 02,0) € L1, and without loss
—1 <01 <0y <03 =0. Letting = (61,0,0) € Lo, one sees that the integrand of the second integral
in (8.14) is positive at (to, t1,t2) = (61, 62,0) and also 1 (6) > 0 as before. Thus again (B1¢)(6) > 0,
and (2) is proved.

The proof of (3) is slightly different from the proofs of (1) and (2). First, assuming that ¢(6) > 0
for some 0 € Lo, we may assume that 6 = (61,0,0) where —1 < #; < 0. Further, by continuity, there
exists & > 0 such that ¢(f1,7,0) > 0 for every v € [—4,0], and where also §; < —d. Now let any
point 0 € Ls be given, that is, = (51,52,0) where —1 < #; < fy < 0 and also —§ < y < 0. Two
cases now arise. First, suppose that §; > ;. Then as in the proofs of (1) and (2), one shows that
(B1¢)(6) > 0 by noting that the point (to, t1,2) = (61, 62, 0) lies in the domain of integration and the

relevant integrand is positive there, and again that 14 (6) > 0. The fact that
0 < —6 < 6y <0, (8.16)

in particular, is used here. For the second case we assume that 6, < f1, and here we show that
(Bogo)(g) > 0. Indeed, the relevant integrand is strictly positive at (¢1,t2) = (91,52), again because
of (8.16). This establishes (3). NEED TO FINISH PROOF. =

Proof of Theorem 7.3. Given any ¢ € C(T},)" \ {0}, then by (7.24) of Proposition 7.5 we have the
upper bound A*p < 2%||¢||uy, (here the order is with respect to the cone C(T},)*) for every k > m—1,
and in particular for every k > 3 if m = 2 and for every k£ > 5 if m = 3.

To obtain a lower bound for AFy, fix ¢ € C(T},,) T\ {0} satisfying 1) < ¢ and such that the support
of the function v is contained in the set O,,. Then upon defining

¥(0)
0) =

we have that ¢ € C(T;,)"\ {0}. Moreover, we have directly from the formulas (7.3) and (7.28) defining
A and B that

for 0 € T)y,

(Ak)(0) _ (AFp)(9)
um(0) um(0)
for every k£ > 1 and for 0 € O,,. From this it follows, by Proposition 8.1 in the case m = 2, and by

(B*¢)(0) =

<

Proposition 8.8 in the case m = 3, that we have the lower bounds

(thing)
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Myunm(6) < (A%0)(6) (8.17)

for every k > 3 if m = 2 and for every k > 5 if m = 3. The bounds (8.17) are valid for # in the interior
of T,,,, and thus for every 0 € T,,, as the functions involved are continuous in 7;,.

We conclude that AF¢ ~ u,, for every k > 3 if m = 2 and for every k > 5 if m = 2, as desired. ®
Proof of Theorem 7.1. This follows directly from Proposition 7.2 and Theorem 7.3. m
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