
Math 351
Solutions to review problems for Exam #2 November 14, 2010

#1 (a) Is x3 + x2 + x+ 1 irreducible in Z3[x]? Why or why not?

Solution: No, since x3 + x2 + x+ 1 = (x2 + 1)(x+ 1). A quick way to see this is to note
that 2 is a root, since 23 + 22 + 2 + 1 = 8 + 4 + 2 + 1 = 15 = 0 in Z3.

(b) Is x2 + 1 irreducible in Z3[x]? Is it irreducible in Z17[x]? Why or why not?

Solution: It is irreducible in Z3[x] since it has no root. Since the polynomial has degree
2 if it were reducible it would have a root. It is not irreducible in Z17[x] since 4 is a root
(because 42 + 1 = 17 = 0 in Z17).

(c) Is x4 + x2 + 1 irreducible in Z2[x]? Why or why not?

Solution: It is not irreducible since x4 + x2 + 1 = (x2 + x+ 1)2 in Z2[x]. Note that since
the polynomial has degree 4. showing that it has no root does not guarantee that it is
irreducible.

#2 Suppose F is a field and that f(x) ∈ F [x].
(a) Show that if f(x) has degree 3 and f(x) has no roots in F , then F [x]/(f(x)) is a

field.

Solution: Since f(x) has degree 3 and has no roots in F , it is irreducible (Corollary 4.18).
Then F [x]/(f(x)) is a field by Theorem 5.10.

(b) Give an example to show that the result of part (a) is not true if the degree of
f(x) is changed to 4.

Solution Let F = Z2 and let f(x) = x4 + x2 + 1. Then f(x) has no root in F . As noted
in problem #1(c), f(x) = g(x)2 where g(x) = x2 + x + 1.. Then the coset of g(x) in
F [x]/(f(x)) is nonzero, but the square of this coset in zero. Thus F [x]/(f(x)) is not an
integral domain and so is not a field.

#3 Let R be a commutative ring with identity.
(a) State the definition of a prime ideal in R

Solution: See page 154 of the text.

(b) State the definition of a maximal ideal in R

Solution: See page 156 of the text.

(c) Prove that an ideal I in R is prime if and only if R/I is an integral domain.

Solution: See Theorem 6.14.

(d) Prove that an ideal I in R is maximal if and only if R/I is a field.

Solution: See Theorem 6.15

(e) Prove that every maximal ideal in R is prime.
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Solution: See Corollary 6.16.

(f) Give an example of a ring R and an ideal I in R which is prime but not maximal.

Solution: In any integral domain which is not a field (e.g., Z or F [x] where F is a field),
the ideal (0) is prime but not maximal.

#4 Let G be a group. Prove, using only the defining axioms for groups, that:
(a) If x, y, z ∈ G and xy = xz then y = z.

Solution: Since G is a group, there is an identity element e ∈ G and an element a ∈ G
such that ax = e. Then

y = ey = (ax)y = a(xy) = a(xz) = (ax)z = ez = z.

(b) If x, y ∈ G, then (xy)−1 = y−1x−1.

Solution:
(y−1x−1)(xy) = y−1(x−1x)y = y−1ey = y−1y = e

and
(xy)(y−1x−1) = x(y(y−1)x−1 = xex−1 = xx−1 = e.

#5 Let G be a cyclic group of order 24? How many subgroups does G have?

Solution: Let G =< a > and let H be a subgroup of G. Let k be the smallest positive
integer such that ak ∈ H. Then, by Theorem 7.16 and its proof, H is the cyclic subgroup
generated by ak and k divides 24. Thus there is one subgroup for each divisor of 24. Since
the divisors of 24 are 1, 2, 3, 4, 6, 12, 24, there are 7 subgroups.

#6 Let

U = {
[

1 b
0 1

]
|b ∈ R} ⊆ GL(2,R)

and

W = {
[
a b
0 c

]
|a, b, c ∈ R, a, c 6= 0} ⊆ GL(2,R).

(a) Show that U and W are subgroups of GL(2,R).

Solution: Let
[
a b
0 c

]
and

[
a′ b′

0 c′

]
∈W . Then

[
a b
0 c

] [
a′ b′

0 c′

]
=
[
aa′ ab′ + bc′

0 cc′

]
∈W

so W is closed under products. Furthermore[
a b
0 c

] [
a−1 −a−1bc−1

0 c−1

]
=
[

1 0
0 1

]
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and so W is closed under taking inverses. Thus W is a subgroup. The same argument
with a = c = a′ = c′ = 1 shows that U is a subgroup.

(b) Is U a normal subgroup of GL(2,R)? Why or why not?

Solution: This topic will not be on the exam. (In fact, U is not normal in GL(2,R).)

(c) Is W a normal subgroup of GL(2,R)? Why or why not?

Solution This topic will not be on the exam. (In fact, W is not normal in GL(2,R).)

(d) Is U a normal subgroup of W? Why or why not?

Solution: This topic will not be on the exam. (In fact, U is normal in W .)

(e) Describe the right cosets of U in W . (There are infinitely many.)

Solution: For each pair a, c of nonzero real numbers, we have

U

[
a 0
0 c

]
= {
[
a y
0 c

]
|y ∈ R}.

Since the union of these sets is W , these are all the right cosets of U in W .

(f) What is Z(W ), the center of W .

Solution: Z(W ) = {
[
a 0
0 a

]
|0 6= a ∈ R}.

#7 (a) Does S4 contain any elements of order 6? Why or why not?

Solution: No. Any element in S4 must be either a 4-cycle (which has order 4) or a 3-cycle
(which has order 3), or a 2-cycle (which has order 2), or a product of two disjoint 2-cycles
(which has order 2), or the identity (which has order 1).

(b) Let H =< (1234) > be the cyclic subgroup of S4 generated by the 4-cycle (1234).
Find all the right cosets of H in S4.

Solution: The 6 cosets of H are:

H = {e, (1234), (13)(24), (1432)},

H(12) = {(12), (134), (1423), (243)},
H(13) = {(13), (14)(23), (24), (12)(34)},
H(14) = {(14), (234), (1243), (132)},
H(23) = {(23), (124), (1342), (143)},
H(34) = {(34), (123), (1324), (142)}.

#8 (a) Let σ ∈ S9 be the permutation given in table form by

σ =
[

1 2 3 4 5 6 7 8 9
9 4 7 3 8 5 2 6 1

]
.
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Express σ as a product of disjoint cycles.

Solution: σ = (19)(2437)(586).

(b) Let τ ∈ S9 be the following product of disjoint cycles:

τ = (14)(273)(985).

Write τ in table form.

Solution: τ =
[

1 2 3 4 5 6 7 8 9
4 7 2 1 9 6 3 5 8

]
.

(c) Are σ and τ (from the two previous parts) conjugate in S9? Why or why not?

Solution: They are not conjugate since, when expressed as products of disjoint cycles, σ
is the product of a 2-cycle, a 3-cycle, and a 4-cycle, while τ is the product of a 2-cycle and
two 3-cycles (as well as a 1-cycle).

(d) Let µ ∈ S9 be the product of cycles

µ = (146)(925)(38)(427)(6923).

Write µ as a product of disjoint cycles.

Solution: µ = (145976283).

(e) Suppose µ (from the previous part) is written as a product of k transpositions. Is
k even or odd? Why?

Solution: k must be even. Any n-cycle can be written as a product of n−1 transpositions.
Thus, using the original expression for µ, it can be written as the produce of 2+2+1+2+3 =
10 transpositions. Therefore any way of writing µ as a product of transpositions must have
an even number of factors. (You can also use the answer to (d). Since µ is a 9-cycle, it
can be written as the product of 8 transpositions.)

4


