Math 351
Solutions to review problems for Final Exam December 11, 2010

#1 (a) Find the greatest common divisor of 182 and 507 and write it in the form a(182) 4
b(507) where a and b are integers.

Solution:
507 — 2(182) = 143,

182 — 143 = 39,
143 — 3(39) = 26,
39 — 26 = 13,
26 — 2(13) = 0.

Therefore (182,507) = 13 since this is the last nonzero remainder. Furthermore,
13 =39 —26 =39 — (143 — 3(39)) = 4(39) — 143 =

4(182 — 143) — 143 = 4(182) — 5(143) = 4(182) — 5(507 — 2(143)) =
14(182) — 5(507).
(b) Find the greatest common divisor of z¢ + 22 — 20 and z* — 423 + 522 — 42 + 4 in
Q[z].

Solution:
(z* — 423 + 52 — 4o +4) — (z* + 2% — 20) = (—42® + 42? — 4z + 24),

(z* 4+ 22 — 20) — (—x/4 — 1/4)(—42® + 42° — 4o + 24) = (2? + bz — 14),
(—4a® + 42? — 4z + 24) — (—4x + 24)(2® + 5z — 14) = (—180z + 360),
(2 4 5 — 14) — (—2/180 — 7/180)(—180z + 360) = 0.

Therefore (z* — 423 + 522 — 4o + 4, 2* + 22 — 20) = x — 2. This is the monic polynomial
which is an associate of the last nonzero remainder.

(¢) Find the greatest common divisor of 2° + 2% 4+ 2% + 1 and 2° + z + 1 in Zy[x] and
write it in the form a(z)(z® + z* + 2® + 1) + b(z)(2® + = + 1) where a(z),b(z) € Zs[x].

Solution:
(P4t 423+ 1)+ (@ +x+1) = (2 +2° + ),

(P 4+z+D)+ @+ +28+2)= @3 +22+1),
(* + 23 +2) +a@@® +22+1)=0.

Therefore (z°+z*+23+1,25+2+1) = 23+ 22+ 1 since this is the last nonzero remainder.
Furthermore,
B2+ ) =@+ + D)+ (z+1)(2* +23+2) =
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(B 4+z+D)+@+D) (@ +2r+23+ D)+ @ +2+1)) =
z(z® + x4+ 1)+ (z+ 1) (2 +2* + 23 +1).

#2 (a) Let R be a commutative ring with unit and @ € R. Recall that (a) denotes
{ar|r € R}. Prove that (a) is an ideal in R.

Solution: 0 = a0 € (a), so (a) # (. Let 1,22 € (a),r € R. Then z; = asy,xy = asy for
some s1, 52 € R. Then z1+x9 = as1 —asy = a(s1—$2) € (a), z1r = (az1)r = a(s17) € (a),
and rz1 = 17 € (a). Thus (a) is an ideal.

(b) Let F' be a field and I be an ideal in Flx]. Prove that I = (f(x)) for some
f(z) € Flx].
Solution: If I = {0}, then I = (0) and the result holds. If I # {0}, then I contains some
nonzero element and so the set J = {deg(g(x))|g(z) € I,g(x) # 0} is a nonempty set of

nonnegative integers. Therefore J contains a smallest element, say m. Let f(z) € I be of
degree m. Then, (f(z)) C I. Let g(z) € I. Then, by the division algorithm,

) = [(x)q(z) +r(z)

(x
for some polynomials ¢(x) and r(z) with r(z) = 0 or deg(r(z)) < deg(f(x)) = m. Now

r(z) = g(z) — f(x)q(x) € I.

If r(x) # 0, then deg(r(x)) € J, contradicting the fact that m is the smallest element of
J. Thus r(z) =0 so g(z) = f(x)q(x) € (f(z)). Thus I C (f(x)) and so I = (f(z)).

(c) Give an example of a commutative ring with unit R and an ideal I in R which is
not equal to (a) for any a € R.

g\

Solution: Let R = Z[z]| and let I be the set of all polynomials in Z[z| with even constant
term. Then [ is an ideal, 2 € [ and z € I. If I = (a), then a divides 2 so a is a constant
polynomial. Since (a) = (|a|) we may assume that a = 1 or 2. But 1 ¢ I (since 1 is not
even), so a = 2. But z € I and 2 does not divide x. This contradiction shows that I = (a)
is impossible.

#3 Let R be aring and S be a subring in R. Suppose that whenever a, a1,b,b; € R satisfy
a—ay; €S and b—0b; € S we have ab— a1b; € S. Prove that S is an ideal in R.

Solution: Since S is a subring, we only need to show that if s € S and r € R, then
rs € S and sr € S. First let a = a1 = r,b = s,b4 = 0. Then a —a; = 0 € S and
b—bp =s—0=s¢€S5. Hence ab—a1by =rs—r0 =rs € S. Next let a = s,a; = 0
and b = by =r. Thena—a; =s—0¢€ Sandb—by = r—r =0 € S. Hence
ab—a1by =sr—0r =sreS.

#4 (a) Let F be a field. Prove that the only units in F[z] are the nonzero constant
polynomials.

Solution: If f(x) is a unit, then f(z)g(x) = 1 for some g(z). Then both f(z) and
g(x) must be nonzero. Furthermore, we have deg(f(x)g(x)) = deg(f(z)) + deg(g(x))
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for any nonzero f(z),g(x) € F|x]. Since deg(l) = 0 this shows that if f(x)g(z) = 1
then deg(f(x)) = deg(g(x)) = 0. This means that f(z) and g(z) are nonzero constant
polynomials.

(b) What are the units in Z[z]? Why?

Solution: The argument in the previous part shows that any unit must be a constant
polynomial, hence a nonzero integer. The only integers that are units (in Z) are 1 and —1.

(c) What are the units in Z x Z? Why?

Solution: The identity element in Z x Z is (1,1). Thus if (a,b) is a unit in Z x Z we must
have (ac,bd) = (a,b)(c,d) = (1,1) for some ¢,d € Z. Thus a and b are units in Z. Using
the result of the previous part, we see that the units in Z x Z are (1,1),(1,—1),(—1,1)
and (—1,—1).

#5 Let R be a ring and I be an ideal in R. Let J be a subring of R/I. Prove that there
is some subring K of R such that K O [ and J = K/I. Then show that J is an ideal in
R/I if and only if K is an ideal in R. Finally, show that if J is an ideal then (R/I)/J is
isomorphic to R/ K.

Solution: Let K = {r € Rlr + 1 € J}. Then 0 € K, so K # (.. If r;,ry € K, then
ri+I,ro+ 1€ Jandso (r—ro)+ 1= (1 +1)—(ro+1) € Jsors —ry € K. Also
rire+ 1= (r1+I)(ro+ 1) € J sorirg € K. Thus K is a subring of R

Now suppose J is an ideal in R/I,r € K, and s € R. Then sr+1 = (s+1)(r+1) € J
andrs+I=(r+1)(s+1)€ J. Hence sr € K and rs € K. Thus K is an ideal in R. On
the other hand, if K is an ideal in R and = € J,y € R/I, then x = r 4 I for some r € K
and y = s+ I for some s € R. Then xy = (r+ I)(s+ 1) = rs+ I. Since K is an ideal in
R,rs € K and so zy € J. Similarly, yz = (s + I)(r + 1) = sr + I. Since K is an ideal in
R,sr € K and so yz € J. Thus J is an ideal in R/I.

Now define a map ¢ : R/I — R/K by ¢(r +1) =r+ K. It is easy to see that this
is a surjective homomorphism with kernel J. Then the first isomorphism theorem shows
that (R/I)/J is isomorphic to R/K.

#6 Let M (Z) denote the ring of 2 by 2 matrices over Z.
(a) Let W denote { @ i la,b,c € Z} C M(Z), Show that W is a subring of M (Z).

0
. e . . a b a1 b1
Solution: The zero matrix is in W, so W is nonempty. Let 0 o e € W. Then
1
a b ap bi| la—ar b—b
0 ¢ 0 c| 0 c—cy €W
and
a bllar b1 |aa; aby +bcy
0 ¢||0 c| | O ccy €W

Thus W is a subring.



(b) Let S denote the set of all symmetric matrices in M(Z). Is S a subring? Why or
why not?

0
0 -1

‘ and ‘ (1) 0| are symmetric matrices, but their produce is not

0 1
-1 0

Solution: ’

symmetric.
(c) Let G denote the group of units of W. What is G7

Solution: Since
a b

0 c

aa; aby + bey
0 ce

a; by

0 o eWw

the matrix a

0
and cis 1 or —1. This implies that a? = ¢ = 1. Then, for such a and c and for any b € Z,

can be a unit only if a and ¢ are units in Z, that is, only if @ is 1 or —1

a blla —abc| |a® —a%bc+bc| |1 0
0 ¢c[|0 ¢ | |0 c? |01
Thus, if a = £1,c = £1,b € Z, ‘8 is a unit and
a bl |a —abc
0 c 0 c
Therefore
a={|0 ’lla=+lc==+1bez).

(d) Let N = {’é Zl) ’ |b € Z}. Show that N is a normal subgroup of G.

Solution: First of all, NV is a subgroup of G since

1 b1 V| |1 o410
‘0 1H0 1 _‘o 1| &N
~1
d Lo —1_b€NLt GGd—leNThe by the previous
and so | o =lo 1 . Let g andn =1, . n, by previou
part,g:‘g g‘wherea2202:1andd€Zand
na-1 — | @ di|1l bl|la —acd| _
I =10 ello 1|0 ¢
a ab+d||la —adc| |a* —a?*dc+abc+cd|
0 c 0 c | |0 c? -




1 abe
3o
Thus N is a normal subgroup of G
(e) Describe G/N.
Solution: There are four cosets of N in G:
1 0
-
1 0
v 4
-1 0
!
and
-1 0
N‘ o ‘

Hence G/N is isomorphic to the group of units of Z x Z.
#7 (a) Find all monic irreducible polynmials of degree 3 over Zs.

Solution: A polynomial of degree 3 over a field is irreducible if and only if it has no roots.
The monic polynomial 22 + az? + bz + ¢ has root 0 if and only if ¢ = 0, has root 1 if
and only if 1 +a 4+ b+ ¢ = 0, and has root 2 if and only if 2+ a 4+ 2b + ¢ = 0. When
these possibilities are eliminated, the following 8 irreducible monic polynomials of degree
3 remain:

x3+2x2+m+1,x3—|—2m+1,x3+m2+2x—|—1,w3+2x—|—1,

224202 42+ 2. 3+ 2+ +2, 28+ 22 4+ 2,23+ 20 + 2.

(b) Find all irreducible polynmials of degree 4 over Zs.

Solution: A polynomial of degree 4 is reducible if and only if it has a root or an irreducible
factor of degree 2. Since the only irreducible polynomial of degree 2 over Zs is 22 +z+1, a
polynomial of degree 4 is reducible if and only if it has a root or is (x24+2+1)? = 2*+ 22 +1.
Now the polynomial z* + ax® + bx? + cx + d has a root if and only if either d = 0 or
a+b+c+d = 1. When these possibilities are eliminated, the following 3 irreducible monic
polynomials of degree 4 remain:

:1:4+3:3—I—a:2+:1:—|—1,x4+x3+1,x4+x—|—1.

#8 (a) Let I be a nonzero ideal in Z. Prove that Z/I is a field if and only if it is an
integral domain.

Solution: Since I is nonzero, I = (a) for some positive integer a. Then Z/I is an integral
domain if and only if a is prime and is a field if and only if a is prime.
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(b) Let F be a field and J be a nonzero ideal in F|x]. Prove that F[z]/J is a field if
and only if it is an integral domain.

Solution: Since J is nonzero, J = (f(z)) for some nonzero polynomial f(z). Then F[z]/J
is an integral domain if and only if f(z) is irreducible and is a field if and only if f(z) is
irreducible.

(c) Let R be a finite ring and L be an ideal in R. Prove that R/L is a field if and
only if it is an integral domain.

Solution: Any field is an integral domain and any finite integral domain is a field.

(d) Give an example of a ring R and a nonzero ideal K in R such that R/K is an
integral domain but not a field.

Solution: For example, R =7 x Z and K = {(0,n)|n € Z}.

#9 Let G be a group with identity e. Prove that:
(a) If 22 = e for all € G, then G is abelian.

Solution: Let 2,y € G. Then zyzry = (zy)? = e and so z(zryzy)y = wey = zy. But
r(zyry)y = 22yxy? = eyze = yx.

(b) If G is abelian and finite and h is the product of all of the elements of G, then
h? =e.

Solution: Suppose G = {g1,....,9n}. Then h = g193...9n. Now we also have G =
{97 L g1} (since the map that takes each element to its inverse is a bijection). Thus
h=g;t...g- Then h? = (g1...9n) (97 ... 1). Since G is abelien, this product is e.

#10 Let G be a cyclic group of order 3747 How many subgroups does G have?

Solution: There is one subgroup for every divisor of 374. Since 374 = 2 x 11 x 17 it has
8 divisors.

#11 Find all the (right) cosets of (2Z) x (3Z) in Z x Z.

Solution: Any coset can be represented by a pair (a,b) where 0 < a < 2,0 < b < 3 and
no two of these pairs are in the same coset. Thus , letting M = (2Z) x (3Z) the cosets of
M in Z x Z are:

M = M + (0,0), M + (0,1), M + (0,2), M + (1,0), M + (1,1), M + (1,2).

#12 Suppose that G is a group and H, K are normal subgroups of G with H N K = {e}.
Prove that hk = kh for any h € H, k € K.

Solution: Let h € H,k € K. Consider the element u = (hk)(kh)™! = hkh~1k~!. Since K
is normal, we have that hkh~! € K and so

u= (hkh Yk € K.
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Also, since H is normal, we have that kh='k~! € H and so
= h(kh™'k) € H.

Thus uw € HN K = {e} so u = (hk)(kh)~! = e. Thus hk = kh.

#13 Let C(n) denote the cyclic group of order n.
(a) Find all abelian groups of order 792 and write each in the form

C(ny)@...® C(nyg)

where n; divides n;y; for each 7,1 <i <k —1.

Solution: It is easiest to do part (b) first and then rewrite each of the expressions there
by using the fact that if (m,n) = 1 then C(m) @ C(n) is isomorphic to C(mn). This gives:

C(792),

(b) Find all abelian groups of order 792 and write each in the form
Cpi")®...eCp™)

where pq, ..., p; are distinct primes and my, ..., m; are positive intgers.

Solution: Since 792 = 23 x 32 x 11 we see that the (six) possibilities for the group are
C(2%) @ C(3%) @ C(11),

C(2*) e C(3) e C(3) & C(11),
C(2) @ C(2%) & C(3*) @ C(11),
C(2)e C(2*) @ C(3) @ C(3) @ C(11),
C(2)eC(2) @ C(2) & C(3%) @ C(11),
C2)elC2)aC2)aC3)®C(3)dC(11).
(c) How many abelian groups of order 7! are there (up to isomorphism)? Since 7! =

24 x 32 x 5 x 7 the number of abelian groups of order 7! is the product of the number of
abelian groups of order 24 (which is 5), the number of abelia groups of order 3% (which is
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2), the number of abelian groups of order 5 (which is 1), and the number of abelian groups
of order 7 (which is 1). Thus the number of abelian groups of order 7! is 10.

# 14 Show that there is no simple group of order 483.

Solution: Let G be a group of order 483. Since 483 = 3 x 7 x 23, the third Sylow Theorem
shows that the number of Sylow 23-subgroups is of the form 1 + k(23) and that this
number divides 3 x 7 x 23. Since (1 + £(23),23) = 1 we must have that 1 + £(23) divides
3 x 7 =21. Then 1+ k(23) must be less than or equal to 21. This means k£ = 0 and so
the number of Sylow 23-subgroups is 1. But if H is a Sylow 23-subgroup, so is gHg~! for
any g € G. Hence H = gHg~ ! for any g € G. Thus H is a normal subgroup of G and so
G is not simple.

#15 (a) Let 0 € Sg be
(1248)(3269)(13756).

Express o as a product of disjoint cycles.
Solution: (148)(26)(3759)
(b) Write ¢ in table form.

Solution: |1 2 3 4567 89
14 6 7 8 9 2 5 1 3
(c) Suppose o (from the previous part) is written as a product of k transpositions. Is

k even or odd? Why?

Solution: Any k-cycle can be written as a product of £ — 1 transpositions. The original
expression for ¢ is a product of two 4-cycles and a 5-cycle. Thus this can be written as a
product of 10 transpositions. Thus if o can be written as a product of k transpositions, k
must be even.



