Math 351

Solutions to review problems for Final Exam

#1 (a) Find the greatest common divisor of 182 and 507 and write it in the form a(182) + b(507) where a and b are integers.

Solution:

$$507 - 2(182) = 143,$$

$$182 - 143 = 39,$$

$$143 - 3(39) = 26,$$

$$39 - 26 = 13,$$

$$26 - 2(13) = 0.$$

Therefore (182, 507) = 13 since this is the last nonzero remainder. Furthermore,

$$13 = 39 - 26 = 39 - (143 - 3(39)) = 4(39) - 143 =$$
$$4(182 - 143) - 143 = 4(182) - 5(143) = 4(182) - 5(507 - 2(143)) =$$
$$14(182) - 5(507).$$

(b) Find the greatest common divisor of $x^4 + x^2 - 20$ and $x^4 - 4x^3 + 5x^2 - 4x + 4$ in $\mathbf{Q}[x]$.

Solution:

$$\begin{aligned} (x^4 - 4x^3 + 5x^2 - 4x + 4) - (x^4 + x^2 - 20) &= (-4x^3 + 4x^2 - 4x + 24), \\ (x^4 + x^2 - 20) - (-x/4 - 1/4)(-4x^3 + 4x^2 - 4x + 24) &= (x^2 + 5x - 14), \\ (-4x^3 + 4x^2 - 4x + 24) - (-4x + 24)(x^2 + 5x - 14) &= (-180x + 360), \\ (x^2 + 5x - 14) - (-x/180 - 7/180)(-180x + 360) &= 0. \end{aligned}$$

Therefore $(x^4 - 4x^3 + 5x^2 - 4x + 4, x^4 + x^2 - 20) = x - 2$. This is the monic polynomial which is an associate of the last nonzero remainder.

(c) Find the greatest common divisor of $x^5 + x^4 + x^3 + 1$ and $x^5 + x + 1$ in $\mathbb{Z}_2[x]$ and write it in the form $a(x)(x^5 + x^4 + x^3 + 1) + b(x)(x^5 + x + 1)$ where $a(x), b(x) \in \mathbb{Z}_2[x]$.

Solution:

$$(x^{5} + x^{4} + x^{3} + 1) + (x^{5} + x + 1) = (x^{4} + x^{3} + x),$$

$$(x^{5} + x + 1) + (x + 1)(x^{4} + x^{3} + x) = (x^{3} + x^{2} + 1),$$

$$(x^{4} + x^{3} + x) + x(x^{3} + x^{2} + 1) = 0.$$

Therefore $(x^5 + x^4 + x^3 + 1, x^5 + x + 1) = x^3 + x^2 + 1$ since this is the last nonzero remainder. Furthermore,

$$(x^{3} + x^{2} + 1) = (x^{5} + x + 1) + (x + 1)(x^{4} + x^{3} + x) =$$

December 11, 2010

$$(x^5 + x + 1) + (x + 1)((x^5 + x^4 + x^3 + 1) + (x^5 + x + 1)) = x(x^5 + x + 1) + (x + 1)(x^5 + x^4 + x^3 + 1).$$

#2 (a) Let R be a commutative ring with unit and $a \in R$. Recall that (a) denotes $\{ar | r \in R\}$. Prove that (a) is an ideal in R.

Solution: $0 = a0 \in (a)$, so $(a) \neq \emptyset$. Let $x_1, x_2 \in (a), r \in R$. Then $x_1 = as_1, x_2 = as_2$ for some $s_1, s_2 \in R$. Then $x_1 + x_2 = as_1 - as_2 = a(s_1 - s_2) \in (a), x_1r = (ax_1)r = a(s_1r) \in (a)$, and $rx_1 = x_1r \in (a)$. Thus (a) is an ideal.

(b) Let F be a field and I be an ideal in F[x]. Prove that I = (f(x)) for some $f(x) \in F[x]$.

Solution: If $I = \{0\}$, then I = (0) and the result holds. If $I \neq \{0\}$, then I contains some nonzero element and so the set $J = \{deg(g(x))|g(x) \in I, g(x) \neq 0\}$ is a nonempty set of nonnegative integers. Therefore J contains a smallest element, say m. Let $f(x) \in I$ be of degree m. Then, $(f(x)) \subseteq I$. Let $g(x) \in I$. Then, by the division algorithm,

$$g(x) = f(x)q(x) + r(x)$$

for some polynomials q(x) and r(x) with r(x) = 0 or deg(r(x)) < deg(f(x)) = m. Now

$$r(x) = g(x) - f(x)q(x) \in I.$$

If $r(x) \neq 0$, then $deg(r(x)) \in J$, contradicting the fact that m is the smallest element of J. Thus r(x) = 0 so $g(x) = f(x)q(x) \in (f(x))$. Thus $I \subseteq (f(x))$ and so I = (f(x)).

(c) Give an example of a commutative ring with unit R and an ideal I in R which is not equal to (a) for any $a \in R$.

Solution: Let $R = \mathbb{Z}[x]$ and let I be the set of all polynomials in $\mathbb{Z}[x]$ with even constant term. Then I is an ideal, $2 \in I$ and $x \in I$. If I = (a), then a divides 2 so a is a constant polynomial. Since (a) = (|a|) we may assume that a = 1 or 2. But $1 \notin I$ (since 1 is not even), so a = 2. But $x \in I$ and 2 does not divide x. This contradiction shows that I = (a) is impossible.

#3 Let R be a ring and S be a subring in R. Suppose that whenever $a, a_1, b, b_1 \in R$ satisfy $a - a_1 \in S$ and $b - b_1 \in S$ we have $ab - a_1b_1 \in S$. Prove that S is an ideal in R.

Solution: Since S is a subring, we only need to show that if $s \in S$ and $r \in R$, then $rs \in S$ and $sr \in S$. First let $a = a_1 = r, b = s, b_1 = 0$. Then $a - a_1 = 0 \in S$ and $b - b_1 = s - 0 = s \in S$. Hence $ab - a_1b_1 = rs - r0 = rs \in S$. Next let $a = s, a_1 = 0$ and $b = b_1 = r$. Then $a - a_1 = s - 0 \in S$ and $b - b_1 = r - r = 0 \in S$. Hence $ab - a_1b_1 = sr - 0 \in S$ and $b - b_1 = r - r = 0 \in S$. Hence $ab - a_1b_1 = sr - 0 \in S$ and $b - b_1 = r - r = 0 \in S$.

#4 (a) Let F be a field. Prove that the only units in F[x] are the nonzero constant polynomials.

Solution: If f(x) is a unit, then f(x)g(x) = 1 for some g(x). Then both f(x) and g(x) must be nonzero. Furthermore, we have deg(f(x)g(x)) = deg(f(x)) + deg(g(x))

for any nonzero $f(x), g(x) \in F[x]$. Since deg(1) = 0 this shows that if f(x)g(x) = 1 then deg(f(x)) = deg(g(x)) = 0. This means that f(x) and g(x) are nonzero constant polynomials.

(b) What are the units in $\mathbf{Z}[x]$? Why?

Solution: The argument in the previous part shows that any unit must be a constant polynomial, hence a nonzero integer. The only integers that are units (in \mathbf{Z}) are 1 and -1.

(c) What are the units in $\mathbf{Z} \times \mathbf{Z}$? Why?

Solution: The identity element in $\mathbf{Z} \times \mathbf{Z}$ is (1, 1). Thus if (a, b) is a unit in $\mathbf{Z} \times \mathbf{Z}$ we must have (ac, bd) = (a, b)(c, d) = (1, 1) for some $c, d \in \mathbf{Z}$. Thus a and b are units in \mathbf{Z} . Using the result of the previous part, we see that the units in $\mathbf{Z} \times \mathbf{Z}$ are (1, 1), (1, -1), (-1, 1) and (-1, -1).

#5 Let R be a ring and I be an ideal in R. Let J be a subring of R/I. Prove that there is some subring K of R such that $K \supseteq I$ and J = K/I. Then show that J is an ideal in R/I if and only if K is an ideal in R. Finally, show that if J is an ideal then (R/I)/J is isomorphic to R/K.

Solution: Let $K = \{r \in R | r + I \in J\}$. Then $0 \in K$, so $K \neq \emptyset$. If $r_1, r_2 \in K$, then $r_1 + I, r_2 + I \in J$ and so $(r_1 - r_2) + I = (r_1 + I) - (r_2 + I) \in J$ so $r_1 - r_2 \in K$. Also $r_1r_2 + I = (r_1 + I)(r_2 + I) \in J$ so $r_1r_2 \in K$. Thus K is a subring of R

Now suppose J is an ideal in R/I, $r \in K$, and $s \in R$. Then $sr + I = (s+I)(r+I) \in J$ and $rs + I = (r+I)(s+I) \in J$. Hence $sr \in K$ and $rs \in K$. Thus K is an ideal in R. On the other hand, if K is an ideal in R and $x \in J, y \in R/I$, then x = r + I for some $r \in K$ and y = s + I for some $s \in R$. Then xy = (r+I)(s+I) = rs + I. Since K is an ideal in $R, rs \in K$ and so $xy \in J$. Similarly, yx = (s+I)(r+I) = sr + I. Since K is an ideal in $R, sr \in K$ and so $yx \in J$. Thus J is an ideal in R/I.

Now define a map $\phi : R/I \to R/K$ by $\phi(r+I) = r+K$. It is easy to see that this is a surjective homomorphism with kernel J. Then the first isomorphism theorem shows that (R/I)/J is isomorphic to R/K.

#6 Let $M(\mathbf{Z})$ denote the ring of 2 by 2 matrices over \mathbf{Z} .

(a) Let W denote $\left\{ \begin{vmatrix} a & b \\ 0 & c \end{vmatrix} | a, b, c \in \mathbf{Z} \right\} \subseteq M(\mathbf{Z})$, Show that W is a subring of $M(\mathbf{Z})$.

Solution: The zero matrix is in W, so W is nonempty. Let $\begin{vmatrix} a & b \\ 0 & c \end{vmatrix}$, $\begin{vmatrix} a_1 & b_1 \\ 0 & c_1 \end{vmatrix} \in W$. Then

$$\begin{vmatrix} a & b \\ 0 & c \end{vmatrix} - \begin{vmatrix} a_1 & b_1 \\ 0 & c_1 \end{vmatrix} = \begin{vmatrix} a - a_1 & b - b_1 \\ 0 & c - c_1 \end{vmatrix} \in W$$

and

$$\begin{vmatrix} a & b \\ 0 & c \end{vmatrix} \begin{vmatrix} a_1 & b_1 \\ 0 & c_1 \end{vmatrix} = \begin{vmatrix} aa_1 & ab_1 + bc_1 \\ 0 & cc_1 \end{vmatrix} \in W.$$

Thus W is a subring.

(b) Let S denote the set of all symmetric matrices in $M(\mathbf{Z})$. Is S a subring? Why or why not?

Solution: $\begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix}$ and $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ are symmetric matrices, but their produce $\begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}$ is not symmetric.

(c) Let G denote the group of units of W. What is G?

Solution: Since

$$\begin{vmatrix} a & b \\ 0 & c \end{vmatrix} \begin{vmatrix} a_1 & b_1 \\ 0 & c_1 \end{vmatrix} = \begin{vmatrix} aa_1 & ab_1 + bc_1 \\ 0 & cc_1 \end{vmatrix} \in W$$

the matrix $\begin{vmatrix} a & b \\ 0 & c \end{vmatrix}$ can be a unit only if a and c are units in \mathbf{Z} , that is, only if a is 1 or -1and c is 1 or -1. This implies that $a^2 = c^2 = 1$. Then, for such a and c and for any $b \in \mathbf{Z}$,

$$\begin{vmatrix} a & b \\ 0 & c \end{vmatrix} \begin{vmatrix} a & -abc \\ 0 & c \end{vmatrix} = \begin{vmatrix} a^2 & -a^2bc + bc \\ 0 & c^2 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$

Thus, if $a = \pm 1, c = \pm 1, b \in \mathbf{Z}, \begin{vmatrix} a & b \\ 0 & c \end{vmatrix}$ is a unit and $\begin{vmatrix} a & b \\ 0 & c \end{vmatrix}^{-1} = \begin{vmatrix} a & -abc \\ 0 & c \end{vmatrix}.$

Therefore

$$G = \{ \begin{vmatrix} a & b \\ 0 & c \end{vmatrix} | a = \pm 1, c = \pm 1, b \in \mathbf{Z} \}.$$

(d) Let $N = \{ \begin{vmatrix} 1 & b \\ 0 & 1 \end{vmatrix} | b \in \mathbf{Z} \}$. Show that N is a normal subgroup of G. **Solution:** First of all, N is a subgroup of G since

$$\begin{vmatrix} 1 & b \\ 0 & 1 \end{vmatrix} \begin{vmatrix} 1 & b' \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & b + b' \\ 0 & 1 \end{vmatrix} \in N$$

and so $\begin{vmatrix} 1 & b \\ 0 & 1 \end{vmatrix}^{-1} = \begin{vmatrix} 1 & -b \\ 0 & 1 \end{vmatrix} \in N$. Let $g \in G$ and $n = \begin{vmatrix} 1 & b \\ 0 & 1 \end{vmatrix} \in N$. Then, by the previous part, $g = \begin{vmatrix} a & d \\ 0 & c \end{vmatrix}$ where $a^2 = c^2 = 1$ and $d \in \mathbb{Z}$ and

$$gng^{-1} = \begin{vmatrix} a & d \\ 0 & c \end{vmatrix} \begin{vmatrix} 1 & b \\ 0 & 1 \end{vmatrix} \begin{vmatrix} a & -acd \\ 0 & c \end{vmatrix} = \begin{vmatrix} a & ab+d \\ 0 & c \end{vmatrix} \begin{vmatrix} a & -adc \\ 0 & c \end{vmatrix} = \begin{vmatrix} a^2 & -a^2dc + abc + cd \\ 0 & c^2 \end{vmatrix} =$$

$$\begin{vmatrix} 1 & abc \\ 0 & 1 \end{vmatrix} \in N.$$

Thus N is a normal subgroup of G

(e) Describe G/N.

Solution: There are four cosets of N in G:

$$N = N \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix},$$
$$N \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix},$$
$$N \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix},$$
$$N \begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix}.$$

.

.

and

Hence G/N is isomorphic to the group of units of $\mathbf{Z} \times \mathbf{Z}$.

#7 (a) Find all monic irreducible polynmials of degree 3 over \mathbb{Z}_3 .

Solution: A polynomial of degree 3 over a field is irreducible if and only if it has no roots. The monic polynomial $x^3 + ax^2 + bx + c$ has root 0 if and only if c = 0, has root 1 if and only if 1 + a + b + c = 0, and has root 2 if and only if 2 + a + 2b + c = 0. When these possibilities are eliminated, the following 8 irreducible monic polynomials of degree 3 remain:

$$x^{3} + 2x^{2} + x + 1, x^{3} + 2x + 1, x^{3} + x^{2} + 2x + 1, x^{3} + 2x + 1, x^{3} + 2x^{2} + 2x + 2, x^{3} + x^{2} + x + 2, x^{3} + x^{2} + 2, x^{3} + 2x + 2.$$

(b) Find all irreducible polynmials of degree 4 over \mathbf{Z}_2 .

Solution: A polynomial of degree 4 is reducible if and only if it has a root or an irreducible factor of degree 2. Since the only irreducible polynomial of degree 2 over \mathbb{Z}_2 is $x^2 + x + 1$, a polynomial of degree 4 is reducible if and only if it has a root or is $(x^2 + x + 1)^2 = x^4 + x^2 + 1$. Now the polynomial $x^4 + ax^3 + bx^2 + cx + d$ has a root if and only if either d = 0 or a + b + c + d = 1. When these possibilities are eliminated, the following 3 irreducible monic polynomials of degree 4 remain:

$$x^{4} + x^{3} + x^{2} + x + 1, x^{4} + x^{3} + 1, x^{4} + x + 1.$$

#8 (a) Let I be a nonzero ideal in **Z**. Prove that \mathbf{Z}/I is a field if and only if it is an integral domain.

Solution: Since I is nonzero, I = (a) for some positive integer a. Then \mathbb{Z}/I is an integral domain if and only if a is prime and is a field if and only if a is prime.

(b) Let F be a field and J be a nonzero ideal in F[x]. Prove that F[x]/J is a field if and only if it is an integral domain.

Solution: Since J is nonzero, J = (f(x)) for some nonzero polynomial f(x). Then F[x]/J is an integral domain if and only if f(x) is irreducible and is a field if and only if f(x) is irreducible.

(c) Let R be a finite ring and L be an ideal in R. Prove that R/L is a field if and only if it is an integral domain.

Solution: Any field is an integral domain and any finite integral domain is a field.

(d) Give an example of a ring R and a nonzero ideal K in R such that R/K is an integral domain but not a field.

Solution: For example, $R = \mathbf{Z} \times \mathbf{Z}$ and $K = \{(0, n) | n \in \mathbf{Z}\}$.

#9 Let G be a group with identity e. Prove that:

(a) If $x^2 = e$ for all $x \in G$, then G is abelian.

Solution: Let $x, y \in G$. Then $xyxy = (xy)^2 = e$ and so x(xyxy)y = xey = xy. But $x(xyxy)y = x^2yxy^2 = eyxe = yx$.

(b) If G is abelian and finite and h is the product of all of the elements of G, then $h^2 = e$.

Solution: Suppose $G = \{g_1, ..., g_n\}$. Then $h = g_1g_2...g_n$. Now we also have $G = \{g_1^{-1}, ..., g_n^{-1}\}$ (since the map that takes each element to its inverse is a bijection). Thus $h = g_1^{-1}...g_n^{-1}$. Then $h^2 = (g_1...g_n)(g_1^{-1}...g_n^{-1})$. Since G is abelien, this product is e.

#10 Let G be a cyclic group of order 374? How many subgroups does G have?

Solution: There is one subgroup for every divisor of 374. Since $374 = 2 \times 11 \times 17$ it has 8 divisors.

#11 Find all the (right) cosets of $(2\mathbf{Z}) \times (3\mathbf{Z})$ in $\mathbf{Z} \times \mathbf{Z}$.

Solution: Any coset can be represented by a pair (a, b) where $0 \le a < 2, 0 \le b < 3$ and no two of these pairs are in the same coset. Thus, letting $M = (2\mathbf{Z}) \times (3\mathbf{Z})$ the cosets of M in $\mathbf{Z} \times \mathbf{Z}$ are:

M = M + (0,0), M + (0,1), M + (0,2), M + (1,0), M + (1,1), M + (1,2).

#12 Suppose that G is a group and H, K are normal subgroups of G with $H \cap K = \{e\}$. Prove that hk = kh for any $h \in H, k \in K$.

Solution: Let $h \in H, k \in K$. Consider the element $u = (hk)(kh)^{-1} = hkh^{-1}k^{-1}$. Since K is normal, we have that $hkh^{-1} \in K$ and so

$$u = (hkh^{-1})k \in K.$$

Also, since H is normal, we have that $kh^{-1}k^{-1} \in H$ and so

$$u = h(kh^{-1}k) \in H.$$

Thus $u \in H \cap K = \{e\}$ so $u = (hk)(kh)^{-1} = e$. Thus hk = kh.

#13 Let C(n) denote the cyclic group of order n.

(a) Find all abelian groups of order 792 and write each in the form

$$C(n_1) \oplus \ldots \oplus C(n_k)$$

where n_i divides n_{i+1} for each $i, 1 \leq i \leq k-1$.

Solution: It is easiest to do part (b) first and then rewrite each of the expressions there by using the fact that if (m, n) = 1 then $C(m) \oplus C(n)$ is isomorphic to C(mn). This gives:

C(792), $C(3) \oplus C(264),$ $C(2) \oplus C(396),$ $C(6) \oplus C(132),$ $C(2) \oplus C(2) \oplus C(198),$ $C(2) \oplus C(6) \oplus C(66).$

(b) Find all abelian groups of order 792 and write each in the form

 $C(p_1^{m_1}) \oplus ... \oplus C(p_l^{m_l})$

where $p_1, ..., p_l$ are distinct primes and $m_1, ..., m_l$ are positive intgers. Solution: Since $792 = 2^3 \times 3^2 \times 11$ we see that the (six) possibilities for the group are

$$C(2^{3}) \oplus C(3^{2}) \oplus C(11),$$

$$C(2^{3}) \oplus C(3) \oplus C(3) \oplus C(11),$$

$$C(2) \oplus C(2^{2}) \oplus C(3^{2}) \oplus C(11),$$

$$C(2) \oplus C(2^{2}) \oplus C(3) \oplus C(3) \oplus C(11),$$

$$C(2) \oplus C(2) \oplus C(2) \oplus C(3^{2}) \oplus C(11),$$

$$C(2) \oplus C(2) \oplus C(2) \oplus C(3) \oplus C(11).$$

(c) How many abelian groups of order 7! are there (up to isomorphism)? Since $7! = 2^4 \times 3^2 \times 5 \times 7$ the number of abelian groups of order 7! is the product of the number of abelian groups of order 2^4 (which is 5), the number of abelia groups of order 3^2 (which is

2), the number of abelian groups of order 5 (which is 1), and the number of abelian groups of order 7 (which is 1). Thus the number of abelian groups of order 7! is 10.

14 Show that there is no simple group of order 483.

Solution: Let G be a group of order 483. Since $483 = 3 \times 7 \times 23$, the third Sylow Theorem shows that the number of Sylow 23-subgroups is of the form 1 + k(23) and that this number divides $3 \times 7 \times 23$. Since (1 + k(23), 23) = 1 we must have that 1 + k(23) divides $3 \times 7 = 21$. Then 1 + k(23) must be less than or equal to 21. This means k = 0 and so the number of Sylow 23-subgroups is 1. But if H is a Sylow 23-subgroup, so is gHg^{-1} for any $g \in G$. Hence $H = gHg^{-1}$ for any $g \in G$. Thus H is a normal subgroup of G and so G is not simple.

#15 (a) Let $\sigma \in S_9$ be

(1248)(3269)(13756).

Express σ as a product of disjoint cycles.

Solution: (148)(26)(3759)

(b) Write σ in table form.

 Solution:

 $\begin{bmatrix}
 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 4 & 6 & 7 & 8 & 9 & 2 & 5 & 1 & 3
 \end{bmatrix}$

(c) Suppose σ (from the previous part) is written as a product of k transpositions. Is k even or odd? Why?

Solution: Any k-cycle can be written as a product of k - 1 transpositions. The original expression for σ is a product of two 4-cycles and a 5-cycle. Thus this can be written as a product of 10 transpositions. Thus if σ can be written as a product of k transpositions, k must be even.