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Introduction
The free associative algebra on {x1, ..., xn} over a field F , denoted

F < x1, ..., xn >, has a universal quotient ring F (< x1, ..., xn >) called
the free skew field on {x1, ..., xn} over F (cf. [C1, C2]). The symmet-
ric group on n letters, Sn, acts on F < x1, ..., xn > and hence on
F (< x1, ..., xn >) . Gelfand and Retakh [GR1 - GR3] have constructed,
using quasideterminants, an important set of elements {y1, ..., yn} con-
tained in F (< x1, ..., xn >) . They define, for k > 1, the Vandermonde
quasideterminant

V (x1, ..., xk) =

∣∣∣∣∣∣∣∣

xk−1
1 ... xk−1

k

...
x1 ... xk
1 ... 1

∣∣∣∣∣∣∣∣
1k

.

They then define y1 = x1, yk = V (x1, ..., xk)xk(V (x1, ..., xk))−1 for
k > 1, and

Λi,j =
∑

j≥l1>...>li≥1

yl1 ...yli

for 1 ≤ i ≤ j ≤ n. Gelfand and Retakh prove [GR3] that, for 1 ≤
i ≤ n, Λi,n is Sn-invariant. They also conjecture that any Sn-invariant
polynomial in {y1, ..., yn} is, in fact, a polynomial in {Λ1,n, ...,Λn,n}.

1991 Mathematics Subject Classification. 16W30; 15A15; 05E05.
Key words and phrases. quasideterminants, noncommutative algebra, symmetric

functions.

Typeset by AMS-TEX

1



2 ROBERT LEE WILSON

This is in contrast to the fact [BC] that the algebra of Sn-invariant
elements in F < x1, ..., xn > is not finitely generated. The present
paper is devoted to proving the Gelfand-Retakh conjecture.

We begin, in Section 1, by recalling an important universal property
of F (< x1, ..., xn >) and by proving some technical results about certain
division rings, in particular, the left quotient rings of the universal en-
veloping algebras of certain finite-dimensional Lie algebras. In Section
2 we use these results to prove that certain subsets of F (< x1, ..., xn >) are
algebraically independent. In Section 3 we characterize the Sn-invariant
elements in any associative algebra A with an Sn-action and appropriate
independence properties. Finally, in Section 4 we combine the results of
Sections 2 and 3 to obtain the proof of the Gelfand-Retakh conjecture
(Theorem 4.1).

The author is grateful to I. Gelfand and V. Retakh for introducing
him to this theory and for many stimulating conversations.

1. Preliminaries

§1.1 The universal property of the free field F (< x1, ..., xn >)

The free associative algebra, F < x1, ..., xn >, on the set {x1, ..., xn}
is a free ideal ring, i.e., every left (respectively, right) ideal is a left
(respectively, right) F < x1, ..., xn >-module of unique rank. Conse-
quently, F < x1, ..., xn > has a universal field of fractions, denoted
F (< x1, ..., xn >) and called the free skew field over F on {x1., , , .xn} (cf.
[C1, C2]).

This means that there is a homomorphism

µ : F < x1, ..., xn >−→ F (< x1, ..., xn >),

and that if D is any division ring and

α : F < x1, ..., xn >−→ D

is a homomorphism, then there is a subring A of F (< x1, ..., xn >) con-
taining F < x1, ..., xn > and a homomorphism

β : A −→ D

such that α = βµ and that if a ∈ A and β(a) 6= 0, then a−1 ∈ A.



INVARIANT POLYNOMIALS IN THE FREE SKEW FIELD 3

Note that the symmetric group Sn acts on F < x1, ..., xn > by per-
muting subscripts and so Sn acts on F (< x1, ..., xn >).

§1.2 Abelian valuations

Let A be an associative algebra over F . Recall (e.g., [C2, p. 83]) that
a valuation on A is a function

‖.‖ : A→ Z ∪ {−∞}

such that

(1.2.1) if a ∈ A, then ‖a‖ = −∞ if and only if a = 0;

(1.2.2) if a ∈ A and 0 6= r ∈ F then ‖ra‖ = ‖a‖;
(1.2.3) if a, b ∈ A, then ‖a+ b‖ ≤ max{‖a‖, ‖b‖}; and

(1.2.4) if a, b ∈ A, then ‖ab‖ = ‖a‖+ ‖b‖.

Definition. Let A be an associative algebra over F and ‖.‖ be a
valuation on A. We say that ‖.‖ is an abelian valuation if it satisfies:

(1.2.5) if a, b ∈ A, a, b 6= 0, then ‖[a, b]‖ < ‖a‖+ ‖b‖.

Note that, in view of (1.2.4), if A has a valuation, then A must be a
domain, i.e., A can have no nonzero zero divisors. It is easy to see that
if ‖.‖ is a valuation

Ai = {a ∈ A|‖a‖ ≤ i}

for all i ∈ Z, then

... ⊆ A−1 ⊆ A0 ⊆ A1 ⊆ ... ⊆ A

is an increasing filtration of the associative algebra A. In this case
(1.2.5) holds if and only if the associative graded algebra of A, grA is
abelian.

Recall that a domain A is a left Ore domain if whenever 0 6= a, b ∈ A,
there exist 0 6= c, d ∈ A such that ca = db. Recall also that a left Ore
domain A may be imbedded in a left ring of quotients D, that is, there
is a division ring D ⊇ A such that every element of D has the form a−1b
where a, b ∈ A, a 6= 0.
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Lemma 1.1. Let A be a left Ore domain and let ‖.‖ be a valuation
on A. Let D be a left ring of quotients of A. Then ‖.‖ has a unique
extension to a valuation on D, again denoted ‖.‖, and

(1.2.6) ‖a−1b‖ = ‖b‖ − ‖a‖

for all a, b ∈ A, a 6= 0. Furthermore, if ‖.‖ is an abelian valuation on A,
then its extension is an abelian valuation on D.

Proof Suppose ‖.‖ extends to a valuation on D. Then, by (1.2.4),
for a, b ∈ A, a 6= 0 we have ‖b‖ = ‖a(a−1b)‖ = ‖a‖ + ‖a−1b‖, and so
‖a−1b‖ = ‖b‖ − ‖a‖.

Now let u ∈ D and suppose u = a−1b = c−1d, where a, b, c, d ∈
A, a, c 6= 0. Then there exist e, f ∈ A such that 0 6= g = ea = fc. Thus,
by (1.2.4), ‖g‖ = ‖e‖ + ‖a‖ = ‖f‖ + ‖c‖. Furthermore, a−1 = g−1e
and c−1 = g−1f . Consequently a−1b = g−1eb = c−1d = g−1fd and
so eb = fd. Therefore ‖e‖ + ‖b‖ = ‖f‖ + ‖d‖ and hence ‖b‖ − ‖a‖ =
(‖b‖+‖e‖)− (‖e‖+‖a‖) = (‖d‖+‖f‖)− (‖f‖+‖c‖) = ‖d‖−‖c‖. Thus
we may extend ‖.‖ from A to D by setting

‖a−1b‖ = ‖b‖ − ‖a‖

for a, b ∈ A, a 6= 0.
We next show that ‖.‖ satisfies conditions (1.2.1) - (1.2.4) on D.
Suppose u ∈ D,u = a−1b, a, b ∈ A, a 6= 0. Then ‖u‖ = ‖b‖ − ‖a‖,

and so ‖u‖ = −∞ if and only if ‖b‖ = −∞. But ‖b‖ = −∞ if and only
if b = 0, and u = 0 if and only if b = 0. Hence (1.2.1) holds for D.
Also, if 0 6= r ∈ F , then ‖ru‖ = ‖r(a−1b)‖ = ‖a−1(rb)‖ = ‖rb‖ − ‖a‖ =
‖b‖ − ‖a‖ = ‖u‖. Thus (1.2.2) holds for D.

Now let u, v ∈ D,u = a−1b, v = c−1d, a, b, c, d ∈ A, 0 6= a, c. Then
there exist 0 6= e, f, g ∈ A such that g = ea = fc. By (1.2.4) for A
this gives ‖g‖ = ‖e‖ + ‖a‖ = ‖f‖ + ‖c‖. Furthermore, a−1 = g−1e and
c−1 = g−1f . Thus u+v = a−1b+ c−1d = g−1(eb+fd). Then ‖u+v‖ =
‖eb+ fd‖− ‖g‖ and, by (1.2.3) for A, this is ≤ max{‖eb‖, ‖fd‖}− ‖g‖.
By (1.2.4) for A, this is equal to

max{‖e‖+‖b‖, ‖f‖+‖d‖}−‖g‖ = max{‖e‖−‖g‖+‖b‖, ‖f‖−‖g‖+‖d‖}

= max{‖b‖ − ‖a‖, ‖d‖ − ‖c‖} = max{‖u‖, ‖v‖}.
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Thus (1.2.3) holds for D.
To prove (1.2.4) for D note that if u = 0 or v = 0, then (1.2.4)

holds for u and v. Hence we may assume u, v 6= 0, and so a, b 6=
0. Then there exist 0 6= r, s, t ∈ A such that t = rb = sc. Then
we have ‖s‖ − ‖r‖ = ‖b‖ − ‖c‖. Now b = r−1t and c = s−1t. Thus
uv = a−1bc−1d = a−1r−1sd, and so ‖uv‖ = −‖a‖ − ‖r‖ + ‖s‖ + ‖d‖ =
‖b‖ − ‖a‖+ ‖d‖ − ‖c‖ = ‖u‖+ ‖v‖.

Finally, assume that ‖.‖ satisfies (1.2.5) for A. To prove (1.2.5) for
D note that

[u, v] = [a−1b, c−1d]

= [a−1, c−1]bd+ a−1[b, c−1]d+ c−1[a−1, d]b+ c−1a−1[b, d].

Then since

[b, c−1] = −c−1[b, c]c−1,

[a−1, d] = −a−1[a, d]a−1

and

[a−1, c−1] = c−1a−1[a, c]a−1c−1

the result follows from (1.2.4) and (1.2.5) for A and (1.2.2) and (1.2.3)
for D.

§1.3 A filtration of U(L)

Given a filtration of a Lie algebra L, we will define a corresponding
filtration of the universal enveloping algebra U(L) and prove several
properties of this filtration.

Let

... ⊆ Ai ⊆ Ai+1 ⊆ ... ⊆ A−1 ⊆ A0 = A

be a filtration of the (not necessarily associative) algebra A. Recall that
grA, the associated graded algebra, is defined by setting

(grA)[i] = Ai/Ai−1

for i ≤ 0, setting

grA =
∑

i≤0

(grA)[i]
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and defining a bilinear product on grA by

(a+Ai−1)(b+Aj−1) = ab+Ai+j−1

for i, j ≤ 0, a ∈ Ai, b ∈ Aj . Note that if A is a Lie algebra (respec-
tively, an associative algebra), then grA is a Lie algebra (respectively,
an associative algebra).

Now let

(1.3.1) ... ⊆ Li ⊆ Li+1 ⊆ ... ⊆ L−1 ⊆ L0 = L

be a filtration of the Lie algebra L satisfying

(1.3.2) ∩iLi = (0),

and let U(L) denote the universal enveloping algebra of L. For i ≤ 0,
let

(1.3.3) U(L)i =
∑

Li1Li2 ...Lit

where the sum is taken over all t ≥ 0, i1, ..., it ≤ 0, i1 + ... + it = i.
Clearly

(1.3.4) ... ⊆ U(L)i ⊆ U(L)i+1 ⊆ ... ⊆ U(L)−1 ⊆ U(L)0 = U(L)

is a filtration of U(L).
Define a function

v : L→ Z ∪ {−∞}
by

(1.3.5) v(a) = inf{i|a ∈ Li}.

By (1.3.2) we have that v(a) = −∞ if and only if a = 0.
Let B be a basis of the Lie algebra L. We say that B is compatible

with the filtration (1.3.1) if B ∩ Li is a basis for Li for every i ≤ 0. If
B is a compatible ordered basis of L define, for i ≤ 0, j ≥ 0, P (B)i,j =
{b1...bt|0 ≤ t ≤ j, b1, ..., bt ∈ B, b1 ≤ ... ≤ bt, v(b1) + ... + v(bt) ≤ i}
and P (B)i = ∪∞j=0P (B)i,j . Note that, by the Poincaré-Birkhoff-Witt
Theorem, P (B)0 is a basis for U(L).



INVARIANT POLYNOMIALS IN THE FREE SKEW FIELD 7

Lemma 1.2. Let L be a Lie algebra with filtration (1.3.1). Let B be
a compatible ordered basis of L. Then, for i ≤ 0, P (B)i is a basis for
U(L)i.

Proof. P (B)i is linearly independent since it is a subset of the basis
P (B)0 of U(L). It is contained in U(L)i by (1.3.3). Thus it is sufficient
to show that P (B)i spans U(L)i. Now it is immediate from (1.3.3) that

{c1...cs|s ≥ 0, c1, ..., cs ∈ B, v(c1) + ...+ v(cs) ≤ i}

spans U(L)i. Thus it is sufficient to show that if s ≥ 0, c1, ..., cs ∈
B, and v(c1) + ... + v(cs) = i, then c1...cs is in the span of P (B)i,s.
This is vacuously true for s = 0, 1. Assume the result holds for s − 1.
Then c1...cs = (c1...cs−1)cs and, applying the induction assumption to
c1...cs−1, we may assume that c1 ≤ ... ≤ cs−1. If cs−1 ≤ cs we are done,
so we may assume that there is some j, 1 ≤ j ≤ s− 1 so that cl ≤ cs if
and only if l < j. Then

c1...cs = c1...cj−1cscjcj+1...cs−1 +
s−1∑

l=j

c1...cl−1[cl, cs]cl+1...cs−1.

The first summand is in P (B)i,s (by the choice of j). Since (1.3.1) is a
filtration of the Lie algebra L, we have that [cl, cs] is a linear combination
of elements b ∈ B with v(b) ≤ v(cl) + v(cs). The induction assumption
then shows that for each l, j ≤ l ≤ s − 1, c1...cl−1[cl, cs]cl+1...cs−1 is a
linear combination of elements of P (B)i,s−1 ⊆ P (B)i,s. This completes
the proof of the lemma.

Corollary 1.3. Let L be a Lie algebra with filtration (1.3.1) satisfying
(1.3.2). Assume that there is a compatible basis of L. Then Li =
L ∩ U(L)i for all i and ∩iU(L)i = (0).

Note that, in view of Corollary 1.3, we may extend the function v
defined in (1.3.5) to U(L) by setting

(1.3.6) v(u) = inf{i|u ∈ U(L)i}

for all u ∈ U(L).
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Corollary 1.4. Let L be a Lie algebra with filtration (1.3.1) satisfying
(1.3.2). Assume that there is a compatible basis of L. Then U(grL) ∼=
grU(L).

Proof. The linear map φ : grL → grU(L) defined by φ(a + Li−1) =
a+U(L)i−1 for i ≤ 0, a ∈ Li is a Lie homomorphism. Hence it extends
to a homomorphism of associative algebras

φ : U(grL)→ grU(L).

Let B be an ordered basis for L which is compatible with (1.3.1).
For b ∈ B, let b′ = b + Lv(b)−1 ∈ (grL)v(b) and b” = b + U(L)v(b)−1 ∈
(grU(L))v(b)−1. Then {b′|b ∈ B} is an ordered basis for grL, and so
{b′1...b′t|t ≥ 0, b1, ..., bt ∈ B, b1 ≤ ... ≤ bt} is a basis for U(grL). Clearly
φ(b + Lv(b)−1) = b” for each b ∈ B and so φ(b′1...b

′
t) = b′′1 ...b

′′
t . By

Lemma 1.1, {b′′1 ...b′′t |t ≥ 0, b1, ..., bt ∈ B, b1 ≤ ... ≤ bt} is a basis for
grU(L). Thus φ is an isomorphism.

Now let L =
∑
k≤0 L[k] be a graded Lie algebra over F and U(L)

be its universial enveloping algebra. For k ≤ 0, we define U(L)[k] to
be the span of all products a1...at where t ≥ 0, ai ∈ L[si] for 1 ≤ i ≤ t

and
∑t
i=1 si = k. This gives U(L) =

∑
k≤0 U(L)[k] the structure of a

graded associative algebra.
Now assume L =

∑
k<0 L[k] and define a filtration of L by

(1.3.7) Li =
∑

i−1≤k<0

L[k]

for i ≤ 0. This is not the most natural way to define a filtration of
L; setting Li =

∑
i≤k<0 L[k] defines a filtration which is more closely

related to the graded algebra L (in the sense that its associated graded
algebra is isomorphic to L). However, as the following lemma shows, the
definition (1.3.7) has properties which make it useful for our purposes.

Note that there exist bases compatible with (1.3.7). Indeed, if Bk is
a basis of L[k] for each k ≤ 0, then the basis B = ∪kBk is compatible
with (1.3.7).

Lemma 1.5. Let L =
∑
k≤0 L[k] be a graded Lie algebra. Define a

filtration by (1.3.6) and a function v on U(L) by (1.3.6). Then v is an
abelian valuation.
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Proof. It is immedate from (1.3.7) that grL is abelian. Corollary
1.3 then shows that grU(L) is isomorphic to a polynomial algebra and
hence is an integral domain. It is then immediate that v is an abelian
valuation.

Let L be a finite-dimensional graded Lie algebra. It is well-known
(cf. [J]) that U(L), the universal enveloping algebra of L, is a left Ore
domain. Let Q(L) denote the left ring of quotients of U(L). Thus Q(L)
is a division ring which contains U(L) and every element of Q(L) is of
the form a−1b where a, b ∈ U(L) and a 6= 0.

Corollary 1.6. Let L be a finite-dimensional graded Lie algebra. Then
Q(L) has an abelian valuation satisfying (1.2.6) and (1.3.2).

Proof. This is immediate from Lemmas 1.1 and 1.5.

Lemma 1.7. Let L =
∑
i<0 L[i] and M =

∑
i<0M[i] be graded Lie

algebras. Let φ : L −→ M be a surjective homorphism of graded Lie
algebras and let Φ : U(L) −→ U(M) be the unique homomorphism
extending φ. Suppose ker φ ⊆ Lk. Then if u ∈ U(L) and ‖u‖ > k, we
have ‖Φ(u)‖ = ‖u‖.

Proof. Ker Φ is the ideal of U(L) generated by ker φ. Then, since
ker φ ⊆ Lk ⊆ U(L)k and each U(L)i is an ideal in U(L), we have
ker Φ ⊆ U(L)k.

Clearly ‖Φ(u)‖ ≥ ‖u‖. If ‖Φ(u)‖ > ‖u‖ then, setting i = ‖u‖, we
have u ∈ U(L)i, u 6∈ U(L)i−1,Φ(u) ∈ U(M)i−1. Since φ (and hence Φ)
is surjective, there exists u′ ∈ U(L)i−1 so that Φ(u′) = Φ(u). Hence
u − u′ ∈ ker Φ ⊆ U(L)k. Thus u ∈ u′ + U(L)k ⊆ U(L)i−1 + U(L)k ⊆
U(L)i−1, a contradiction.

Let L = S ⊕ I have filtration (1.3.1) where I is an ideal of L, S is a
subalgebra of L and Li = S ∩Li + I ∩Li for all i. Then L, S and I are
all filtered Lie algebras, and so U(L)i, U(S)i and U(I)i are all defined
and the following relations among these filtrations are obvious.

Lemma 1.8. Let L = S ⊕ I have filtration (1.3.1) where I is an ideal
of L, S is a subalgebra of L and Li = S ∩ Li + I ∩ Li for all i.

(a) U(I)iSj ⊆ SjU(I)i + U(I)i+j;

(b) U(I)iU(S)j ⊆
∑
k≤0 U(S)j−kU(I)i+k;

(c) U(L)i =
∑
i≤j≤0 U(S)jU(I)i−j;
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(d) U(I)i = U(I) ∩ U(L)i.

§1.4 The free Lie algebra F(n)

Let F(n) denote the free Lie algebra on {x1, ..., xn}. For k ≥ 0 define
M(n)[k] to be the set of all products

(ad xi1)(ad xi2)...(ad xik−1
)xik , 1 ≤ i1, ..., ik ≤ n,

and define F(n)[−k] to be the span of M(n)[k]. Then

(1.4.1) F(n) =
∑

k<0

F(n)[k]

is a graded Lie algebra.
Now assume n ≥ 2 and, for k ≥ 0, define M(n)<k> to be the span

of all products

(ad xi1)(ad xi2)...(ad xil−1
)xil , 1 ≤ i1, ..., il ≤ n,

where
l∑

j=1

δ2,ij = k

and define F(n)<k> to be the span of M(n)<k>. Then

(1.4.2) F(n) =
∑

k≥0

F(n)<k>

is a graded Lie algebra.
Let I(n) denote the ideal of F(n) generated by {x2, ..., xn}. Then

F(n) = Fx1 + I(n)

and so
U(F(n)) =

∑

i≥0

xi1U(I(n))

is a vector space grading. Define S(n){j} =
∑

0≤i≤j x
i
1U(I(n)). Then

S(n){j1}S(n){j2} ⊆ S(n){j1+j2} and U(I(n)) = S(n){0} ⊂ S(n){1} ⊂ ...
is an increasing filtration of the associative algebra U(F(n)).
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For i ≤ 0, j ≥ 0 define G(i, j) = U(F(n))i−1 + U(F(n))i ∩ S(n){j}.
Note that G(i1, j1) ⊆ G(i2, j2) when i1 < i2 or when i1 = i2 and j1 ≤ j2.

As in Section 1.3, the grading (1.4.1) of F(n) gives a grading of
U(F(n))

(1.4.3) U(F(n)) =
∑

k≤0

U(F(n))[k]

and the grading (1.4.2) of F(n) gives a grading of U(F(n))

(1.4.4) U(F(n)) =
∑

k≤0

U(F(n))<k>.

By the results of Section 1.3 there is an abelian valuation, denoted
‖.‖, on U(F(n)) corresponding to the grading (1.4.1).

Now let A be a domain with an abelian valuation which we again
denote by ‖a‖.
Lemma 1.9. Let f ∈ U(F(n)) ∼= F < x1, ..., xn >, u1, ..., un, v1, ..., vn ∈
A, and ‖ui‖ ≤ 0, ‖vi‖ < 0 for all i. Then

(1.4.5) ‖f(u1, ..., un)‖ ≤ ‖f‖

and

(1.4.6) ‖f(u1, ..., un)− f(u1 + v1, ..., un + vn)‖ ≤ ‖f‖ − 1.

Proof. Note that, for each i, ‖ui + vi‖ ≤ max{‖ui‖, ‖vi‖} = 0.
We first prove two special cases of the lemma.

(1) The lemma holds if f ∈M(n)[k].

Proof of (1). In this case

f = (ad xi1)(ad xi2)...(ad xik−1
)xik

for some 1 ≤ i1, ..., ik ≤ n. If k > 1, let

f ′ = (ad xi2)...(ad xik−1
)xik .
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Then ‖f‖ = −k + 1 and ‖f ′‖ = −k + 2.
We will proceed by induction on k. If k = 1, then f(u1, ..., un) = ui

for some i and so, by hypothesis, ‖f(u1, ..., un)‖ = ‖ui‖ ≤ 0 and

‖f(u1, ..., un)− f(u1 + v1, ..., un + vn)‖ = ‖ui − (ui + vi)‖ = ‖vi‖ < 0.

Thus, for k = 1, (1.4.5) and (1.4.6) hold.
Now assume that k > 1 and that the result holds for all g ∈M(n)[l],

l < k. Then, in particular, the result holds for f ′, and so ‖f ′(u1, ..., un)‖
≤ ‖f ′‖ = −k + 2 and ‖f ′(u1, ..., un) − f ′(u1 + v1, ..., un + vn)‖
≤ ‖f ′‖ − 1 = −k + 1. Moreover, since ‖ui + vi‖ ≤ 0 for all i, we
also have ‖f ′(u1 + v1, ..., un + vn)‖ ≤ ‖f ′‖ = −k + 2. Then, by (1.2.5),

‖f(u1, ..., un)‖ = ‖[ui1 , f ′(u1, ..., un)]‖ ≤ ‖ui1‖+ ‖f ′(u1, ..., un)‖ − 1

≤ ‖f ′(u1, ..., un)‖ − 1 ≤ −k + 2− 1 = −k + 1 = ‖f‖.
Furthermore,

‖f(u1, ..., un)− f(u1 + v1, ..., un + vn)‖

= ‖[u1, f(u1, ..., un)]− [u1 + v1, f
′(u1 + v1, ..., un + vn)]‖ =

‖[u1, f
′(u1, ..., un)−f ′(u1+v1, ..., un+vn)]−[v1, f

′(u1+v1, ..., un+vn)]‖.
As ‖[u1, f

′(u1, ..., un)−f ′(u1+v1, ..., un+vn)]‖ ≤ ‖u1‖+‖f ′(u1, ..., un)−
f ′(u1 + v1, ..., un + vn)‖ − 1 ≤ −k and ‖[v1, f

′(u1 + v1, ..., un + vn)]‖
≤ ‖v1‖+ ‖f ′(u1 + v1, ..., un + vn)‖ − 1 ≤ −k, we have

‖f(u1, ..., un)− f(u1 + v1, ..., un + vn)‖ ≤ −k = ‖f‖ − 1.

Thus, by induction on k, (1.4.5) and (1.4.6) hold whenever f ∈M(n)[k].

(2) The lemma holds if f = f1...fl, fi ∈M(n)[ki], k1 + ...+ kl = k.

Proof of (2). If l > 1, set f ′ = f2...fl. We have ‖f‖ = −k + l and
‖f ′‖ = −k + l + k1 − 1.

We will proceed by induction of l. If l = 1, then (1.4.5) and (1.4.6)
hold by case (1). Assume l > 1 and that the result holds for all
g = g1...gt where t < l and each gi ∈ M(n)[si] for some si. Then,
in particular, the result holds for f ′, and so ‖f ′(u1, ..., un)‖ ≤ ‖f ′‖ and

‖f ′(u1, ..., un)− f ′(u1 + v1, ..., un + vn)‖ ≤ ‖f ′‖ − 1.
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Then, by (1.2.4), ‖f(u1, ..., un)‖ = ‖f1(u1, ..., un)f ′(u1, ..., un)‖
= ‖f1(u1, ..., un)‖ + ‖f ′(u1, ..., un)‖ ≤ ‖f1‖ + ‖f ′‖ = ‖f‖. Further-
more, f(u1, ..., un) − f(u1 + v1, ..., un + vn) = (f1(u1, ..., un) − f1(u1 +
v1, ..., un + vn))(f ′(u1 + v1, ..., un + vn)) +(f1(u1, ..., un)(f ′(u1, ..., un)−
f ′(u1 + v1, ..., un + vn)). Thus ‖f(u1, ..., un) − f(u1 + v1, ..., un + vn)‖
≤ max{‖f1(u1, ..., un)−f1(u1+v1, ..., un+vn)‖‖f ′(u1+v1, ..., un+vn)‖,
‖f1(u1, ..., un)‖‖f ′(u1, ..., un)−f ′(u1 +v1, ..., un+vn)‖} ≤ max{(‖f1‖−
1)+‖f ′‖, ‖f1‖+‖f ′‖−1} ≤ ‖f1‖+‖f ′‖−1 = ‖f‖−1. Thus, by induction
on l, the lemma holds in case (2).

Finally, let f be an arbitrary element of U(F(n)) and let ‖f‖ = k.
Thus f ∈ U(F(n))k and so f is a linear combination of elements of the
form treated in case (2). The conclusion of the lemma then follows from
(1.2.2), (1.2.3) and case (2).

§1.5 The Division Ring Qk(n)
Let A be an associative algebra and t ∈ A. As usual, define lt : A −→

A by lt(u) = tu, rt : A −→ A by rt(u) = ut and ad(t) : A −→ A by
ad(t) = lt − rt.
Lemma 1.10. Let A be an associative algebra and let t ∈ A be an
invertible element such that ad(t) is locally nilpotent. Let s ∈ Z. Then

(i) (rt)
s = (lt)

s
∑∞
j=0(−1)j

(
s
j

)
(lt)

s−j(ad(t))j ;

(ii) ad(ts) =
∑∞
j=1(−1)j+1

(
s
j

)
(lt)

s−j(ad(t))j .

Proof. We have rt = lt−ad(t) = lt(1−(lt)
−1(ad(t))). Since (lt)

−1(ad(t))
is locally nilpotent, (i) follows. Furthermore, ad(ts) = (lt)

s−(rt)
s. Then

substituting the expression for (rt)
s from (i) gives (ii).

Let L be a Lie algebra. Recall that the sequence of ideals L1 ⊇
L2 ⊇ ... (the lower central series) is defined inductively by L1 = L and
Li+1 = [Li, L] for i ≥ 1. Note that F(n)k =

∑
j≤−k F(n)[j].

Define
FN k(n) = F(n)/F(n)k.

This is the free nilpotent Lie algebra of degree k on {x1, ..., xn}. Let
αk : F(n) −→ FN k(n) denote the quotient map. This extends to a
homomorphism, which we again denote αk from F < x1, ..., xn >=
U(F(n)) to U(FN k(n)). Since ker αk = F(n)k =

∑
j≤−k F(n)[j] is a

graded ideal in F(n), we see that FNk(n) has the structure of a graded
Lie algebra.
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Note that FN k(n) is finite-dimensional. Thus U(FN k(n)) has a left
ring of quotients which we denote by Qk(n). By Corollary 1.6, Qk(n)
has an abelian valuation, denoted ‖.‖, satisfying (1.2.6) and (1.3.2).
Note that αk : F < x1, ..., xn >−→ Qk(n).

Write ti = αk(xi) for 1 ≤ i ≤ n, and let Rk(n) denote the sub-
algebra of Qk(n) generated by t1, ..., tn and t−1

1 . Let IN k(n) denote
αk(I(n)). Clearly IN k(n) is the ideal of FN k(n) generated by t2, ..., tn,
FN k(n) = Ft1 + IN k(n), and

(1.5.1) U(FN k(n)) =
∑

i≥0

ti1U(IN k(n))

is a vector space direct sum. Since the sum in (1.5.1) is direct, so is

(1.5.2)
∑

i∈Z

ti1U(IN k(n)) = Rk(n)

Let Sk(n){j} =
∑
i∈Z,i≤j t

i
1U(IN k(n)). Then, by Corollary 1.8(ii), we

have
Sk(n){j1}Sk(n){j2} ⊆ Sk(n){j1+j2}.

Thus ... ⊂ Sk(n){j} ⊂ Sk(n){j+1} ⊂ ... is a filtration of Rk(n) with

∩j∈ZSk(n){j} = (0)

and
∪j∈ZSk(n){j} = Rk(n).

For i ≤ 0, j ∈ Z, define

Gk(i, j) = Rk(n)i−1 +Rk(n)i ∩ Sk(n){j}.

Note that Gk(i1, j1) ⊆ Gk(i2, j2) when i1 < i2 or when i1 = i2 and
j1 ≤ j2.
Lemma 1.11. (i) [tj11 , Gk(i2, j2)] ⊆ Gk(i2 − 1, j1 + j2 − 1);

(ii) G(i1, j1)G(i2, j2) ⊆ G(i1 + i2, j1 + j2);
(iii) Gk(i1, j1)Gk(i2, j2) ⊆ Gk(i1 + i2, j1 + j2);
(iv) [G(i1, j1), G(i2, j2)] ⊆ G(i1 + i2 − 1, j1 + j2).
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(v) [Gk(i1, j1), Gk(i2, j2)] ⊆ Gk(i1 + i2 − 1, j1 + j2).

Proof. Clearly (ad t1)Gk(i, j) ⊆ G(i−1, j). Hence, by Lemma 1.10(ii),

(ad ts1)G(i, j) ⊆
∞∑

l=1

ts−l1 (ad t1)lG(i, j)

⊆ ts−1
1 G(i− 1, j) +Rk(n)i−2 ⊆ G(i− 1, j + s− 1),

proving (i).
Since U(F(n))pU(F(n))q ⊆ U(F(n))p+q and S(n){j1}S(n){j2} ⊆

S(n){j1+j2} we have (ii). Similarly, since Rk(n)pRk(n)q ⊆ Rk(n)p+q
and Sk(n){j1}Sk(n){j2} ⊆ Sk(n){j1+j2} we have (iii).

As [U(F(n))p, U(F(n))q] ⊆ U(F(n))p+q−1 and [S(n){j1}, S(n){j2}] ⊆
S(n){j1+j2} we have (iv) Similarly, since [Rk(n)p, Rk(n)q] ⊆ Rk(n)p+q−1

and [Sk(n){j1}, Sk(n){j2}] ⊆ Sk(n){j1+j2} we have (v).

Lemma 1.12. Let f(x1, ..., xn) ∈ U(F(n))<k> ∩G(i, j). Then

(1.5.3) tk1f(t1, t2t
−1
1 , t3, ..., tn)− f(t1, ..., tn) ∈ Gk(i, j − 1).

Proof. Let X(k, i, j) denote the set of all f(x1, ..., xn) ∈ U(F(n))<k>∩
G(i, j) such that (1.5.3) holds. Note that if f(x1, ..., xn) ∈ X(k, i, j),

then f(t1, ..., tn) ∈ Gk(i, j) so tk1f(t1, t2t
−1
1 , t3, ..., tn) ∈ Gk(i, j), and

f(t1, t2t
−1
1 , t3, ..., tn) ∈ Gk(i, j − k).

Clearly each X(k, i, j) is a subspace of U(F(n)). Furthermore, 1 ∈
X(0, 0, 0), x1 ∈ X(0, 0, 1), x2 ∈ X(1, 0, 0) and xj ∈ X(0, 0, 0) if j > 2.

Now let f(x1, ..., xn) ∈ X(k1, i1, j1) and g(x1, ..., xn) ∈ X(k2, i2, j2).
Then

f(x1, ..., xn)g(x1, ..., xn) ∈ U(F(n))<k1>U(F(n))<k2>∩G(i1, j1)G(i2, j2)

By Lemma 1.11(ii) this is contained in U(F(n))<k1+k2>∩G(i1 + i2, j1 +
j2). Furthermore,

tk1+k2
1 f(t1, t2t

−1
1 , t3, ..., tn)g(t1, t2t

−1
1 , t3, ..., tn)− f(t1, ..., tn)g(t1, ..., tn)

= tk1
1 [tk2

1 , f(t1, t2t
−1
1 , t3, ..., tn)]g(t1, t2t

−1
1 , t3, ..., tn)

+(tk1
1 f(t1, t2t

−1
1 , t3, ..., tn))(tk2

1 g(t1, t2t
−1
1 , t3, ..., tn))
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−f(t1, ..., tn)g(t1, ..., tn)

= tk1
1 [tk2

1 , f(t1, t2t
−1
1 , t3, ..., tn)]g(t1, t2t

−1
1 , t3, ..., tn)

−tk1
1 (f(t1, t2t

−1
1 , t3, ..., tn)− f(t1, ..., tn))(tk2

1 g(t1, t2t
−1
1 , t3, ..., tn))

+f(t1, ..., tn)(tk2
1 g(t1, t2t

−1
1 , t3, ..., tn)− g(t1, ..., tn)).

By Lemma 1.11, the first summand is contained in

Gk(0, k1)Gk(i1 − 1, j1 − k1 + k2 − 1)Gk(i2, j2 − k2)

⊆ Gk(i1 + i2 − 1, j1 + j2 − 1).

The second summand is contained in Gk(i1, j1− 1)Gk(i2, j2) ⊆ Gk(i1 +
i2, j1+j2−1) and the third summand is contained inGk(i1, j1)Gk(i2, j2−
1) ⊆ Gk(i1 + i2, j1 + j2 − 1). Thus X(k1, i1, j1)X(k2, i2, j2) ⊆ X(k1 +
k2, i1 + i2, j1 + j2).

Similarly

[f(x1, ..., xn), g(x1, ..., xn)] ∈ U(F(n))<k1+k2> ∩ [G(i1, j1), G(i2, j2)].

By Lemma 1.11(ii) this is contained in U(F(n))<k1+k2> ∩ G(i1 + i2 −
1, j1 + j2). Furthermore,

tk1+k2
1 [f(t1, t2t

−1
1 , t3, ..., tn), g(t1, t2t

−1
1 , t3, ..., tn)]

−[f(t1, ..., tn), g(t1, ..., tn)]

= −tk1
1 [f(t1, t2t

−1
1 , t3, ..., tn), tk2

1 ]g(t1, t2t
−1
1 , t3, ..., tn)

−tk2
1 [tk1

1 , g(t1, t2t
−1
1 , t3, ..., tn)]f(t1, t2t

−1
1 , t3, ..., tn)

+[tk1
1 f(t1, t2t

−1
1 , t3, ..., tn), tk2

1 g(t1, t2t
−1
1 , t3, ..., tn)]

−[f(t1, ..., tn), g(t1, ..., tn)]

= −tk1
1 [f(t1, t2t

−1
1 , t3, ..., tn), tk2

1 ]g(t1, t2t
−1
1 , t3, ..., tn)

−tk2
1 [tk1

1 , g(t1, t2t
−1
1 , t3, ..., tn)]f(t1, t2t

−1
1 , t3, ..., tn)

+[tk1
1 f(t1, t2t

−1
1 , t3, ..., tn)− f(t1, ..., tn), tk2

1 g(t1, t2t
−1
1 , t3, ..., tn)]

+[f(t1, ..., tn), tk2
1 g(t1, t2t

−1
1 , t3, ..., tn)− g(t1, ..., tn)].
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Lemma 1.11 shows that the first summand is in

Gk(0, k1)[Gk(i1, j1 − k1), tk2
1 ]Gk(i2, j2 − k2)

⊆ Gk(0, k1)Gk(i1 − 1, j1 − k1 + k2 − 1)Gk(i2, j2 − k2)

⊆ Gk(i1 + i2 − 1, j1 + j2 − 1),

and similarly, the second summand is also in Gk(i1 + i2−1, j1 + j2−1).
The third summand is in [Gk(i1, j1−1), Gk(i2, j2)] ⊆ Gk(i1 +i2−1, j1 +
j2− 1), and similarly the fourth summand is also in Gk(i1 + i2− 1, j1 +
j2−1). Thus [X(k1, i1, j1), X(k2, i2, j2)] ⊆ X(k1 +k2, i1 +i2−1, j1 +j2).

It is then immediate, by induction on s, that

(ad xls)(ad xls−1)...(ad xl2)xl1 ∈ X(l, s− 1, 0)

whenever l =
∑s
p=1 δ2,lp and s ≥ 2. Thus every element of M(n)<l>

belongs to X(l, p, 0) for some p ≤ 0 or to X(l, 0, 1). Now U(F(n))<l> ∩
G(i, j) is spanned by products b1...bq where bi ∈M(n)<li> and l1 + ...+
lq = l. But such a product belongs to X(lk, i, j) (by Lemma 1.11), and
so the lemma is proved.

Lemma 1.13. (i) G(i, j) =
∑
l>j x

l
1U(I(n))i−1+

∑
0≤l≤j x

l
1U(I(n))i;

(ii) Gk(i, j) =
∑
l>j t

l
1U(IN k(n))i−1 +

∑
l≤j t

l
1U(IN k(n))i.

Proof. Since F(n) = Fx1 + I(n), we have

U(F(n))p =
∑

q

U(Fx1)qU(I(n))p−q.

But U(Fx1)q = (0) if q < 0, so U(F(n))p = U(Fx1)0U(I(n))p =∑∞
l=0 x

l
1U(I(n))p. This gives (i) and (ii) is similar.

Corollary 1.14. Let f ∈ U(F(n)) and αk(f) ∈ Gk(i, j) where k > |i|.
Then f ∈ G(i, j).

Proof. We have f =
∑∞
l=0 x

l
1fl where fl ∈ U(I(n)). Since αk(f) =∑∞

l=0 t
l
1(αk(fl)) ∈ Gk(i, j), the lemma shows that αk(fl) ∈ U(IN (n))i

for 0 ≤ l ≤ j and αk(fl) ∈ U(IN (n))i−1 for l > j. Then Lemma 1.7
implies fl ∈ U(I(n))i for 0 ≤ l ≤ j and fl ∈ U(I(n))i−1 for l > j, so
that f ∈ G(i, j).



18 ROBERT LEE WILSON

Lemma 1.15. Let A be an Ore domain with an abelian valuation ‖.‖.
Suppose u, v ∈ A, ‖u‖ = 0, ‖v‖ < 0. Then ‖(u+ v)−1 − u−1‖ < 0.

Proof: There exist r, s, p ∈ A such that p = r(u + v) = su 6= 0. Then
(u+ v)−1 = p−1r, u−1 = p−1s and (u+ v)−1 − u−1 = p−1(r − s). Since
‖u‖ = ‖u + v‖ = 0 we have, ‖p‖ = ‖r‖ = ‖s‖. Also r(u + v) = su so
(r − s)u = −rv, and hence ‖r − s‖ = ‖r‖ + ‖v‖ − ‖u‖ < ‖r‖. Thus
‖(u+ v)−1 − u−1‖ = ‖p−1(r − s)‖ = ‖r − s‖ − ‖p‖ < ‖r‖ − ‖r‖ = 0.

§1.6 Quasideterminants

We begin by recalling (from [GR3]) the definition of the quasideter-
minants of an n by n matrix A = (aij), i ∈ I, j ∈ J with entries in a
ring R. For n = 1, we set |A|ij = aij .

For n > 1, and α ∈ I, β ∈ J we denote by Aαβ , the matrix of order
n− 1 constructed by deleting the row with the index α and the column
with the index β in the matrix A. Suppose that, for p ∈ I, q ∈ J , the
expressions |Apq|−1

ij , i ∈ I, j ∈ J, i 6= p, j 6= q, are defined. Set

|A|pq = apq −
∑

apj |Apq|−1
ij aiq.

Here the sum is taken over all i ∈ I r {p}, j ∈ J r {q}. The expression
|A|pq, if it is defined, is called the quasideterminant of indices p and q
of the matrix A.

By the well-known nonvanishing of Vandermonde determinants over
commutative domains, the Vandermonde quasideterminants that occur
in the definition of the elements y1, ..., yn exist in Q2(n), hence in Qk(N)
for all k > 1 and also in F (< x1, ..., xn >).

2. Independence results

We will show that certain subsets of F (< x1, ..., xn >) are algebraically
independent. Our first lemma records a well-known result (cf. [C1,
C2]).

Lemma 2.1. The set {x1, ..., xn} ⊂ F (< x1, ..., xn >) is algebraically
independent.

Let αk : F < x1, ..., xn >−→ Qk(n) be the homomorphism de-
fined in Section 1.4. Let Ak denote the corresponding subalgebra of
F (< x1, ..., xn >) and let βk : Ak −→ Qk(n) be the extension of αk which
exists by the universal property of F (< x1, ..., xn >) as described in Sec-
tion 1.1.
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Proposition 2.2. Assume that u1, ..., un ∈ F (< x1, ..., xn >) satisfy
u1, ..., un ∈ Ak for all k ≥ 1. Assume further that for each i and k
‖αk(ui)‖ < 0. Then {x1+u1, ..., xn+un} is an algebraically independent
subset of F (< x1, ..., xn >) .

Proof: Assume that {x1 + u1, ..., xn + un} is not algebraically inde-
pendent. Then there is some 0 6= f ∈ F < x1, ..., xn > such that 0 =
f(x1 +u1, ..., xn+un). Take k < ‖f‖ and write αk(xi) = ti, αk(ui) = vi
for 1 ≤ i ≤ n. Then Lemma 1.7 shows that ‖f‖ = ‖f(t1, ..., tn)‖
and we have f(t1, ..., tn) − f(t1 + v1, ..., tn + vn) = αk(f(x1, ..., xn) −
f(x1 + un, ..., xn + un)) = α(f(x1, ..., xn)) = f(t1, ..., tn). However,
f(x1, ..., xn) 6= 0 by Lemma 2.1. Then (1.4.6) shows that ‖f(t1, ..., tn)−
f(t1 + v1, ..., tn + vn)‖‖f‖, a contradiction.

Corollary 2.3. The set {y1, ..., yn} ⊂ F (< x1, ..., xn >) is algebraically
independent.

Proof: Recall that yi = V (x1, ..., xi)xi(V (x1, ..., xi))
−1 = xi+

[V (x1, ..., xi), xi](V (x1, ..., xi))
−1. Set

ui = [V (x1, ..., xi), xi](V (x1, ..., xi))
−1

and wi = αk(V (x1, ..., xi)). Then ‖αk(ui)‖ = ‖[wi, ti]w−1
i ‖. Then

(1.2.5) and (1.2.6) show that ‖αk(ui)‖ > ‖wi‖+‖ti‖−‖wi‖ = 0. Hence
Proposition 2.2 applies and gives the result.

For 1 ≤ i ≤ n − 1 let σi denote the permutation of {1, ..., n} which
interchanges i and i + 1 and fixes all j 6= i, i + 1. Then σi induces
an automorphism, again denoted σi, of F (< x1, ..., xn >) . Define si =
(yi + σi(yi))(yi − σi(yi))−1 and zi = (yi − σ(yi))/2.

Lemma 2.4. Let 1 ≤ i ≤ n− 1. The set

{y1, ..., yi−1, zi, si, yi+2, ..., yn} ⊂ F (< x1, ..., xn >)

is algebraically independent.

Proof: The automorphism τ of the vector space Fx1 + ...+Fxn defined
by

τ((xi − xi+1)/2) = x1

τ(xi + xi+1) = x2
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τ(xj) = xj+2, if 1 ≤ j ≤ i− 1

τ(xj) = xj , if j ≥ i+ 2

extends to an automorphism, again denoted τ , of F (< x1, ..., xn >) .
Note that αkτ(yj)

= αkτ(xj + [V (x1, ..., xj), xj ](V (x1, ..., xj))
−1) ∈ αkτ(xj) +Qk(n)−1.

Also αkτ(zi) ∈ αkτ((xi − xi+1)/2) +Qk(n)−1 = t1 +Qk(n)−1. Finally,

αkτ(si) = αkτ((yi + σi(yi))(yi − σi(yi))−1)

= {αkτ(xi + [V (x1, ..., xi), xi](V (x1, ..., xi))
−1 + xi+1

+[σi(V (x1, ..., xi)), xi+1]σi((V (x1, ..., xi))
−1))}.

{αkτ(xi + [V (x1, ..., xi), xi](V (x1, ..., xi))
−1 − xi+1

−[σi(V (x1, ..., xi)), xi+1]σi((V (x1, ..., xi))
−1))}−1

∈ {αkτ(xi + xi+1) +Qk(n)−1}{αkτ(xi − xi+1) +Qk(n)−1}−1.

By Lemma 1.15 this is contained in

{αkτ(xi + xi+1) +Qk(n)−1}{(αkτ(xi − xi+1))−1 +Qk(n)−1}
= αkτ((xi + xi+1)(xi − xi+1)−1) +Qk(n)−1 = t2t

−1
1 +Q(k)n−1.

Now suppose that {y1, ..., yi−1, zi, si, yi+2, ..., yn} is not algebraically
independent. Then there is some 0 6= f ∈ F < x1, ..., xn >= U(F(n))
such that

f(zi, 2si, y1, ..., yi−1, yi+2, ..., yn) = 0.

We may assume, without loss of generality, that f ∈ U(F(n))<l> for
some l, and we may find i ≤ 0, j ≥ 0 so that f ∈ G(i, j), f 6= G(i, j−1).
Take k > |i|. We then have 0 = αkτf(zi, 2si, y1, ..., yi−1, yi+2, ..., yn)
= f(t1 +v1, t2t

−1
1 +v2, t3 +v3, ..., tn+vn) where ‖vi‖ < 0 for all i. Then

Lemma 1.9 shows that ‖f(t1, t2t
−1
1 , t3, ..., tn)‖ =

‖f(t1, t2t
−1
1 , t3, ..., tn)−f(t1 +v1, t2t

−1
1 +v2, t3 +v3, ..., tn+vn)‖ ≤ i−1.

But Lemma 1.12 shows that

tk1f(t1, t2t
−1
1 , t3, ..., tn)− f(t1, ..., tn) ∈ G(i, j − 1).

Thus f(t1, ..., tn) ∈ Gk(i, j − 1) +U(FN (n))i−1 = Gk(i, j − 1). But, by
Corollary 1.14, this implies that f(x1, ..., xn) ∈ G(i, j−1), contradicting
our choice of i and j.
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3. Invariant elements

Let A be an associative algebra over F and σ ∈ Aut A. For any
subset X ⊂ A, let F [X] denote the F -subalgebra of A generated by
X. Let {a1, ..., ak, s, z} be an algebraically independent subset of A.
Assume that σz = −z, σs = −s and σai = ai for all i.

Let b1 = (sz + z)/2 and b2 = (zs− z)/2.

Proposition 3.1. Let 0 6= f ∈ B = F [b1, b2, a1, ..., ak] satisfy σf = cf
for some c ∈ F . Then c = 1 and f ∈ F [b1 + b2, b2b1, a1, ..., ak].

Proof: We may assume, without loss of generality, that f is homoge-
neous of degree l (as a polynomial in b1, b2, a1, ..., ak). The result clearly
holds if l = 0. We will proceed by induction on l. Thus we assume l ≥ 1
and write

f = b1f1 + b2f2 +
k∑

j=1

ajgj

where f1, f2, g1, ..., gk ∈ B are homogeneous of degree l− 1. Then 2f =

(s + 1)zf1 + z(s − 1)f2 + 2
∑k
j=1 ajgj = s(zf1) + z(f1 + sf2 − f2) +

2
∑k
j=1 ajgj and so

0 = 2(σf − cf) ∈ sz(σf1 − cf1) + 2
k∑

j=1

aj(σgj − cgj) + zB.

As {a1, ..., ak, s, z} is algebraically independent, we have 0 = σf1 −
cf1 = σg1 − cg1 = ... = σgk − cgk. Then the induction assumption
implies that f1, g1, ..., gk ∈ F [b1 + b2, b2b1, a1, ..., ak]. Replacing f by

f− (b1 +b2)f1−
∑k
j=1 ajgj , we may assume that 0 = f1 = g1 = ... = gk.

Note that (as σb2 /∈ Fb2) this proves the proposition in the case l = 1.

Now assume l ≥ 2 and write

f = b2(b1h1 + b2h2 +
k∑

j=1

ajpj)
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where h1, h2, p1, ..., pk ∈ B. Then 4f = (z(s2 − 1)z − z2)h1 +(z(s −
1)z(s− 1))h2 + 2(zs− z)∑k

j=1 ajpj) and so

0 = 4(σf − cf) ∈ zs2z(σh1 − ch1)

+2zs

k∑

j=1

aj(σpj − cpj) + 2s

k∑

j=1

aj(σpj + cpj) + z2B + zszB.

As {a1, ..., ak, s, z} is algebraically independent, we have 0 = σh1−ch1 =
σp1−cp1 = ... = σpk−cpk = σp1 +cp1 = ... = σpk+cpk. Consequently,
p1 = ... = pk = 0. Furthermore, the induction assumption implies that
h1 ∈ F [b1 + b2, b2b1, a1, ..., ak] and so, replacing f by f − b2b1h1, we see
that we may assume h1 = 0 and so 4f = 4b22h2 = z(s− 1)z(s− 1)h2 =
zsz(s− 1)h2− z2(s− 1)h2 = zszq− z2q where q = (s− 1)h2 ∈ B. Then

0 = 4(σf − cf) = −zsz(σq + cq)− z2(σq − cq).
As {a1, ..., ak, s, z} is algebraically independent, it follows that σq+cq =
0 and σq − cq = 0. Thus q = 0 and so h2 = 0, proving the proposition.

Let y1, ..., yn be algebraically independent elements of an associative
algebra A over a field F . Let

Y = F [y1, ..., yn]

be the subalgebra of A generated by y1, ..., yn. Note that, by the alge-
braic independence of the yi, we have

Y = ⊕ni=1yiY.

Write

Yi =

n∑

l=i

ylY

for 1 ≤ i ≤ n and set Yn+1 = (0). For 1 ≤ i < n, set

Y [i] = F [y1, ..., yi−1, yi + yi+1, yi+1yi, yi+2, ..., yn].

For 1 ≤ j < i ≤ n, define
Λi,j = 0
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and for 1 ≤ j ≤ n, define
Λ0,j = 1.

For 1 ≤ i ≤ j ≤ n, define

Λi,j =
∑

j≥l1>...>li≥1

yl1yl2 ...yli .

For 1 ≤ j ≤ n, set

Λj = F [Λ1,j , ...,Λj,j , yj+1, ..., yn].

Lemma 3.2. If 1 ≤ j ≤ n− 1, then Λj ∩ Y [j] = Λj+1.

Proof: Note that for 1 ≤ j ≤ n− 1 and 1 ≤ i ≤ n, we have

Λi,j+1 = yj+1Λi−1,j + Λi,j

and consequently
Λj+1 ⊆ Λj .

Furthermore, we also see that

Λi,j+1 = yj+1yjΛi−2,j−1 + (yj+1 + yj)Λi−1,j−1 + Λi,j−1

for 2 ≤ i ≤ n, 1 ≤ j ≤ n− 1, and so

Λj+1 ⊆ Y [j].

Thus
Λj+1 ⊆ Λj ∩ Y [j].

Hence we need to show that if f ∈ Λj ∩Y [j], then f ∈ Λj+1. Without
loss of generality, we may assume that f is homogeneous of degree t ≥ 0
in {y1, ..., yn}. The assertion is clearly true if t = 0. We now proceed
by induction on t, assuming that the assertion is true for homogeneous
polynomials of degree < t.

Suppose that for 1 ≤ i ≤ n, we have f ∈ Yi∩Λj ∩Y [j]. Then we may
write

f = yifi + ...+ ynfn
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where fi, ..., fn ∈ Y ,

f = Λ1,jg1 + ...+ Λj,jgj + yj+1gj+1 + ...+ yngn

where g1, ..., gn ∈ Λj , and f =

y1h1 + ...+yj−1hj−1 +(yj+yj+1)hj+yj+1yjhj+1 +yj+2hj+2 + ...+ynhn,

where h1, ..., hn ∈ Y [j]. We will show that

f ∈ Yi ∩ Λj+1 + Yi+1 ∩ Λj ∩ Y [j].

Note that, since Y1 = Y and Yn+1 = 0, iterating this result proves the
lemma.

To prove our assertion, first suppose that i ≤ j. Then g1 = ... =
gi−1 = h1 = ... = hi−1 = 0 and yifi = yiyi−1...y1gi = yihi. Thus
yi−1...y1gi ∈ Y [j], and so gi ∈ Y [j]. But then gi ∈ Λj ∩ Y [j] and so,
by the induction assumption, gi ∈ Λj+1. But then Λi,j+1gi ∈ Yi ∩ Λj+1

and so, since f − Λi,j+1gi = f − (yj+1Λi−1,j + Λi,j)gi ∈ Yi+1, we have
f − Λi,j+1gi ∈ Yi ∩ Λj+1, proving our assertion.

Next suppose that i = j + 1. Then we have yj+1gj+1 = yj+1yjhj+1,
and so gj+1 = yjhj+1 ∈ Λj . Then gj+1 = Λj,jh

′
j+1 with h′j+1 ∈ Λj and

so hj+1 = yj−1...y1h
′
j+1 ∈ Y [j]. It follows that h′j+1 ∈ Λj+1, so by the

induction assumption h′j+1 ∈ Λj+1. Then yj+1gj+1 = yj+1Λj,jh
′
j+1 =

Λi+1,j+1h
′
j+1 ∈ Λj+1. Since f−yj+1gj+1 ∈ Yi+1, our assertion is proved

in this case.
Finally, suppose i > j+1. Then yigi = yihi so gi = hi inΛj∩Y [j] and,

by the induction assumption gi ∈ Λj+1. Therefore yigi ∈ Λj+1. Since
f − yigi ∈ Yi+1, our assertion is proved in this case as well, completing
the proof of the lemma.

Noting that Y1 = Λ2 we obtain the following immediate consequence
of Lemma 3.2:

Proposition 3.3. For 2 ≤ j ≤ n, we have ∩j−1
i=1Y

[i] = Λj .

4. Proof of the Gelfand-Retakh conjecture

Theorem 4.1. Let f ∈ F [y1, ..., yn] and suppose σf = f for all σ ∈ Sn.
Then f ∈ F [Λ1,n, ...,Λn,n].

Proof: We have ‖yi−xi‖1 < 0 and ‖yi−σi(yi)‖ = 0. Thus yi−σi(yi) 6=
0 and so (yi − σi(yi))−1 exists.
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It is clear from the definition that

σi(yj) = yj

whenever j < i. By the Gelfand-Retakh Theorem we have yi+1yiyi−1...y1

= Λi+1,i+1 = σi(Λi+1,i+1) = σi(yi+1)σi(yi)(yi−1...y1) and so

σi(yi+1)σi(yi) = yi+1yi.

Similarly, we have Λi,i+1 = (yi+1 + yi)Λi−1,i−1 + yi+1yiΛi−2,i−1 =
σi(Λi,i+1) = (yi+1+yi)Λi−1,i−1+yi+1yiΛi−2,i−1 = σi(yi+1+yi)Λi−1,i−1+
yi+1yiΛi−2,i−1. Therefore

σi(yi+1 + yi) = yi+1 + yi.

Also, for j > i + 1 we have Λj,j = yjΛj−1,j−1 = σiyj(Λj−1,j−1) =
σi(yj)Λj−1,j−1. Thus

σi(yj) = yj

whenever j > i+ 1.

Let ui = (yi + σi(yi))/2, vi = (yi+1 + σi(yi+1))/2, and zi = (yi −
σi(yi))/2. Since σi(yi+1 + yi) = yi+1 + yi, we also have zi = −(yi+1 −
σi(yi+1))/2. We have noted that z−1

i exists; set si = uiz
−1
i . By

Lemma 2.4 we have that the set {y1, ..., yi−1, si, zi, yi+2, ..., yn} is al-
gebraically independent. Since σi(yi+1)σi(yi) = yi+1yi, we have that
ziui = (σi(yi+1)yi − yi+1σ(yi))/4 = vizi. Then we have

yi = ui + zi = sizi + zi,

yi+1 = vi − zi = zisi − zi.

Note that σi(si) = −si and σi(zi) = −zi. Therefore the hypotheses
of Proposition 3.1 are satisfied (with k = n− 2, aj = yj for 1 ≤ j ≤
i− 1, s = si, z = zi, aj = yj+2 for i ≤ j ≤ n− 2 and σ = σi). Therefore
f ∈ F [y1, ..., yi−1, yi + yi+1, yi+1yi, yi+2, ..., yn] or, in the notation of
Proposition 3.3, f ∈ Y [i]. Since this holds for all i, 1 ≤ i ≤ n − 1,
Proposition 3.3 shows that f ∈ Λn, proving the theorem.
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