INVARIANT POLYNOMIALS
IN THE FREE SKEW FIELD

ROBERT LEE WILSON

Introduction

The free associative algebra on {z1,...,x,} over a field F, denoted
F < x1,...,x, >, has a universal quotient ring F z1,...,x, } called
the free skew field on {x1,...,x,} over F' (cf. [C1, C2]). The symmet-
ric group on n letters, S,, acts on F' < z1,...,x, > and hence on
F x1,...,x, ». Gelfand and Retakh [GR1 - GR3] have constructed,
using quasideterminants, an important set of elements {y1, ..., y,} con-
tained in F{ x1,...,x, ». They define, for k£ > 1, the Vandermonde
quasideterminant

-1 k—1
x] .oz
Vi(zy TR) =
( T ) Ty Tk
1 1
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They then define y1 = z1, yp = V(21,....,28)2%(V (21, ...,21)) "t for
k > 1, and

ANij= Dy

j2lhi>.. . >0>1

for 1 < i < j < n. Gelfand and Retakh prove [GR3] that, for 1 <
it <n, A, is Sp-invariant. They also conjecture that any S,,-invariant
polynomial in {y1,...,y,} is, in fact, a polynomial in {Ay,,...,Apn}.
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This is in contrast to the fact [BC| that the algebra of S,-invariant
elements in F' < x1,...,2, > is not finitely generated. The present
paper is devoted to proving the Gelfand-Retakh conjecture.

We begin, in Section 1, by recalling an important universal property
of F{ x1,...,z, }and by proving some technical results about certain
division rings, in particular, the left quotient rings of the universal en-
veloping algebras of certain finite-dimensional Lie algebras. In Section
2 we use these results to prove that certain subsets of FX x1, ..., x, }are
algebraically independent. In Section 3 we characterize the .S,,-invariant
elements in any associative algebra A with an 5,,-action and appropriate
independence properties. Finally, in Section 4 we combine the results of
Sections 2 and 3 to obtain the proof of the Gelfand-Retakh conjecture
(Theorem 4.1).

The author is grateful to I. Gelfand and V. Retakh for introducing
him to this theory and for many stimulating conversations.

1. PRELIMINARIES

§1.1 The universal property of the free field X z1,...,z, »

The free associative algebra, F' < x1,...,x, >, on the set {x1,...,z,}
is a free ideal ring, i.e., every left (respectively, right) ideal is a left
(respectively, right) F' < z1,...,x, >-module of unique rank. Conse-
quently, F' < x1,...,x, > has a universal field of fractions, denoted
F x4, ...,z Pand called the free skew field over F on {z1.,,,.z,} (cf.
[C1, C2]).

This means that there is a homomorphism

p:F <z, x, >— K x,. T, R
and that if D is any division ring and
a:F<z,..,x, >— D

is a homomorphism, then there is a subring A of F zq,...,z, ) con-
taining F' < x1, ..., x, > and a homomorphism

6:A— D

such that o = Bu and that if a € A and $(a) # 0, then a1 € A.
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Note that the symmetric group S,, acts on F' < z1,...,x, > by per-
muting subscripts and so S, acts on F x1,...,z, »

§1.2 Abelian valuations

Let A be an associative algebra over F. Recall (e.g., [C2, p. 83]) that
a valuation on A is a function

I+ A= ZU {00}

such that

(1.2.1) if a € A, then ||a|| = —oo if and only if a = 0;

(1.2.2) if a € A and 0 # r € F then |ra|| = ||al|;

(1.2.3) if a,b € A, then ||a + b|| < maz{]|al, ||b||}; and

(1.2.4) if a,b € A, then |lab|| = ||a| + ||b]].
Definition. Let A be an associative algebra over F' and ||| be a
valuation on A. We say that ||| is an abelian valuation if it satisfies:

(1.2.5) if a,b € A, a,b# 0, then ||[a,b]| < ||la]| + [|0]-

Note that, in view of (1.2.4), if A has a valuation, then A must be a
domain, i.e., A can have no nonzero zero divisors. It is easy to see that
if ||]| is a valuation

Ay ={a € Allal < i}

for all + € Z, then

.CA {1 CAyCAC...CA
is an increasing filtration of the associative algebra A. In this case
(1.2.5) holds if and only if the associative graded algebra of A, grA is
abelian.

Recall that a domain A is a left Ore domain if whenever 0 # a,b € A,
there exist 0 # ¢,d € A such that ca = db. Recall also that a left Ore
domain A may be imbedded in a left ring of quotients D, that is, there
is a division ring D D A such that every element of D has the form a=1b
where a,b € A,a # 0.
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Lemma 1.1. Let A be a left Ore domain and let ||| be a valuation
on A. Let D be a left ring of quotients of A. Then ||| has a unique
extension to a valuation on D, again denoted |||, and

(1.2.6) la= ol = [1b]] — [lall

for all a,b € A,a # 0. Furthermore, if ||| is an abelian valuation on A,

then its extension is an abelian valuation on D.

Proof Suppose ||| extends to a valuation on D. Then, by (1.2.4),
for a,b € A,a # 0 we have [|b]| = [la(a™'b)[| = ||al| + [la™"b||, and so
la= 0|l = [[b]] — [lall-

Now let w € D and suppose u = a~'b = ¢~ 'd, where a,b,c,d €
A,a,c # 0. Then there exist e, f € A such that 0 # g = ea = fc. Thus,
by (12.4), [lgll = llell + llall = If]| + llc|. Furthermore, a=1 = g~'e
and ¢! = g71f. Consequently a='b = g~ teb = c7'd = g~ ' fd and
so eb = fd. Therefore |le| + [|b|| = ||f|| + ||d|| and hence ||b]| — ||la|| =
(el +llell) = Clell + llall) = il +11£1) = AL+ lell) = [ldll = lle]|. Thus
we may extend ||| from A to D by setting

la="0]l = [1bl] — llal

for a,b € A,a # 0.

We next show that || || satisfies conditions (1.2.1) - (1.2.4) on D.

Suppose u € D,u = a~'b,a,b € A,a # 0. Then ||u|| = ||b] — ||all,
and so ||u|| = —oo if and only if ||b|| = —oo0. But ||b|| = —oc if and only
if b =0, and v = 0 if and only if b = 0. Hence (1.2.1) holds for D.
Also, if 0 # 7 € F, then [[rul| = [[r(a™'b)|| = [a™ (rb)|| = [[rb]| — [lall =
16]| = [|a|l = ||u||. Thus (1.2.2) holds for D.

Now let u,v € D,u = a~'b,v = ¢ 'd,a,b,c,d € A,0 # a,c. Then
there exist 0 # e, f,g € A such that g = ea = fe. By (1.2.4) for A
this gives [|g|| = |le|| + |lall = |||l + ||l¢||. Furthermore, a=* = g~'e and
c =g 1f Thusu+v=a"tb+ctd= g t(eb+ fd). Then ||u+v| =
leb+ fd|| — llgll and, by (1.2.3) for A, this is < maz{|lebl|, | fdll} — llgll
By (1.2.4) for A, this is equal to

maz{|lel|+[|b]l, [[FI+[dll} = lgll = maz el = lgll+[bll, [ F1=llgl + [}

= maz{[[b]| = llall, [[d]| = llcl[} = maz{[Jull, [[o]}.
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Thus (1.2.3) holds for D.

To prove (1.2.4) for D note that if uw = 0 or v = 0, then (1.2.4)
holds for v and v. Hence we may assume u,v # 0, and so a,b #
0. Then there exist 0 # r,s,t € A such that ¢ = rb = sc. Then
we have ||s|| — ||r|| = [|b]| — |l¢||. Now b = =t and ¢ = s~'t. Thus
wv = a"tbetd = a~r7lsd, and so ||uv| = —||a| — ||7]| + ||s]| + [|d|| =
161l = Nlall +lldll = llell = [lull + vl

Finally, assume that ||| satisfies (1.2.5) for A. To prove (1.2.5) for
D note that

[u,v] = [a™'b,c1d]

=la e bd+a b, d+ e Hat db+ ¢ a1 b, d).
Then since
[b,c7 ] = —c7[b, e,

[a™!,d] = —a a,dla™!

and

et e ) =cta a,Ja et

the result follows from (1.2.4) and (1.2.5) for A and (1.2.2) and (1.2.3)
for D.

§1.3 A filtration of U(L)

Given a filtration of a Lie algebra L, we will define a corresponding
filtration of the universal enveloping algebra U(L) and prove several
properties of this filtration.

Let

W CACACCACA=A

be a filtration of the (not necessarily associative) algebra A. Recall that
grA, the associated graded algebra, is defined by setting

(grA) [i] = AiJAi
for © < 0, setting

grA = Z(QTA)M

i<0
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and defining a bilinear product on grA by
(a4 Ai1)(b+ Aj1) =ab+ Aigj

for i,7 < 0,a € A;,b € A;. Note that if A is a Lie algebra (respec-
tively, an associative algebra), then grA is a Lie algebra (respectively,
an associative algebra).

Now let

(1.3.1) CL;CLiy C..CL1CLy=1L

be a filtration of the Lie algebra L satisfying

(1.3.2) niL; = (0),

and let U(L) denote the universal enveloping algebra of L. For i < 0,
let

(1.3.3) U(L)i =Y Li,Li,...L,

where the sum is taken over all ¢ > 0,i1,...,4; < 0,21 + ... + 74 = 1.
Clearly

(1.34) .. CU(L); CU(L)is1 C ... CU(L)_y C U(L)o = U(L)

is a filtration of U(L).
Define a function
v:L—ZU{—o0}

by
(1.3.5) v(a) = inf{ila € L;}.

By (1.3.2) we have that v(a) = —oo if and only if a = 0.

Let B be a basis of the Lie algebra L. We say that B is compatible
with the filtration (1.3.1) if BN L; is a basis for L; for every i < 0. If
B is a compatible ordered basis of L define, for i < 0,5 > 0, P(B);; =
{blbt|0 <t S j,bl,...,bt € B,bl S .. < bt,’U<b1) + ... —I—’U(bt) < ’L}
and P(B); = U;2oP(B); ;. Note that, by the Poincaré-Birkhoff-Witt
Theorem, P(B)y is a basis for U(L).
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Lemma 1.2. Let L be a Lie algebra with filtration (1.3.1). Let B be
a compatible ordered basis of L. Then, for i < 0,P(B); is a basis for
U(L);.

Proof. P(B); is linearly independent since it is a subset of the basis
P(B)o of U(L). It is contained in U(L); by (1.3.3). Thus it is sufficient
to show that P(B); spans U(L),;. Now it is immediate from (1.3.3) that

{c1...cs|s > 0,¢1,...,cs € Byv(ey) + ... +v(es) < i}

spans U(L);. Thus it is sufficient to show that if s > 0,¢q1,...,¢cs €
B, and v(c1) + ... + v(es) = i, then c¢;...cs is in the span of P(B); .
This is vacuously true for s = 0,1. Assume the result holds for s — 1.
Then ¢;...cs = (c1...cs—1)cs and, applying the induction assumption to
c1...Ccs—1, we may assume that ¢; < ... <c¢gs_1. If ¢cs_1 < ¢s we are done,
so we may assume that there is some 7,1 < 7 < s — 1 so that ¢; < ¢, if
and only if [ < j. Then

s—1
C1...Cs = C1...Cj—1C5CjCjy1...C5—1 + E c1.--Ci—1ler, eslergg cs—q.
l=j

The first summand is in P(B); s (by the choice of j). Since (1.3.1) is a
filtration of the Lie algebra L, we have that [c;, ¢;] is a linear combination
of elements b € B with v(b) < v(¢;) + v(cs). The induction assumption
then shows that for each [,j <1 < s—1,¢1...ci—1[c, ¢s]ciq1-..Cs—1 1S a
linear combination of elements of P(B); s—1 C P(B); . This completes
the proof of the lemma.

Corollary 1.3. Let L be a Lie algebra with filtration (1.3.1) satisfying
(1.3.2). Assume that there is a compatible basis of L. Then L; =
LNU(L); for all i and N;U(L); = (0).

Note that, in view of Corollary 1.3, we may extend the function v

defined in (1.3.5) to U(L) by setting

(1.3.6) v(u) = inf{ilu € U(L);}

for all uw € U(L).
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Corollary 1.4. Let L be a Lie algebra with filtration (1.3.1) satisfying
(1.3.2). Assume that there is a compatible basis of L. Then U(grL) =
grU(L).

Proof. The linear map ¢ : grL — grU(L) defined by ¢(a + L;—1) =
a+U(L)j—1 for i <0,a € L; is a Lie homomorphism. Hence it extends
to a homomorphism of associative algebras

¢ :U(grL) — grU(L).

Let B be an ordered basis for L which is compatible with (1.3.1).
For b € B, let b' = b+ Ly)—1 € (9rL)y@) and b” = b+ U(L)yp)—1 €
(grU(L))y)—1- Then {b'|b € B} is an ordered basis for grL, and so
{b}..b}|t > 0,b1,....,bs € B,by < ... < b} is a basis for U(grL). Clearly
(b + Lypy—1) = b” for each b € B and so ¢(b...b;) = bY..b/. By
Lemma 1.1, {b7..b)|t > 0,b1,....0, € B,by < ... < b} is a basis for
grU(L). Thus ¢ is an isomorphism.

Now let L = >, g Ly be a graded Lie algebra over F' and U(L)
be its universial enveloping algebra. For k < 0, we define U(L) to
be the span of all products a;...a; where ¢ > 0,a; € Ljs,) for 1 < <t
and Zle s; = k. This gives U(L) = »_, .o U(L)}y) the structure of a
graded associative algebra.

Now assume L = ), _ L and define a filtration of L by

(1.3.7) Li= > Ly

i—1<k<0

for ¢+ < 0. This is not the most natural way to define a filtration of
L; setting L; = Y ..o Ly defines a filtration which is more closely
related to the graded algebra L (in the sense that its associated graded
algebra is isomorphic to L). However, as the following lemma shows, the
definition (1.3.7) has properties which make it useful for our purposes.

Note that there exist bases compatible with (1.3.7). Indeed, if By, is
a basis of Ly for each k& < 0, then the basis B = U By, is compatible
with (1.3.7).

Lemma 1.5. Let L = Zkgo Ly be a graded Lie algebra. Define a
filtration by (1.5.6) and a function v on U(L) by (1.3.6). Then v is an
abelian valuation.
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Proof. It is immedate from (1.3.7) that grL is abelian. Corollary
1.3 then shows that grU(L) is isomorphic to a polynomial algebra and
hence is an integral domain. It is then immediate that v is an abelian
valuation.

Let L be a finite-dimensional graded Lie algebra. It is well-known
(cf. [J]) that U(L), the universal enveloping algebra of L, is a left Ore
domain. Let Q(L) denote the left ring of quotients of U(L). Thus Q(L)
is a division ring which contains U(L) and every element of Q(L) is of
the form a~'b where a,b € U(L) and a # 0.

Corollary 1.6. Let L be a finite-dimensional graded Lie algebra. Then
Q(L) has an abelian valuation satisfying (1.2.6) and (1.3.2).

Proof. This is immediate from Lemmas 1.1 and 1.5.

Lemma 1.7. Let L = ), oLy and M = ), o M}; be graded Lie
algebras. Let ¢ : L — M be a surjective homorphism of graded Lie
algebras and let ® : U(L) — U(M) be the unique homomorphism
extending ¢. Suppose ker ¢ C Ly. Then if u € U(L) and ||u| > k, we
have | ®(w)]| = lul.

Proof. Ker ® is the ideal of U(L) generated by ker ¢. Then, since
ker ¢ C Ly C U(L)r and each U(L); is an ideal in U(L), we have
ker ® CU(L).

Clearly || ®(w)|| > |Jul|. If [|®(u)] > |lu| then, setting i = [jul|, we
have u € U(L);,u ¢ U(L);—1,®(u) € U(M),_1. Since ¢ (and hence ®)
is surjective, there exists u’ € U(L);—1 so that ®(u’) = ®(u). Hence
u—u €ker ® CU(L)k. Thusu € v +U(L)y CU(L)i—1 +U(L)x C
U(L);—1, a contradiction.

Let L = S @ I have filtration (1.3.1) where I is an ideal of L, S is a
subalgebra of L and L; = SN L; + 1N L; for all . Then L, S and I are
all filtered Lie algebras, and so U(L);,U(S); and U(I); are all defined
and the following relations among these filtrations are obvious.

Lemma 1.8. Let L = S @& I have filtration (1.5.1) where I is an ideal
of L, S is a subalgebra of L and L; = SN L; + 1N L; for all i.

(a) U(I):S; € S;UUI)i +U()ig5

(b) U(I)iU(S)j < Zkgo U(S)j—kU(I)H-k;'

(c) U(L)i = 22i<j<o U(S);U(I)iy;
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(d) U(I); =UI)NU(L);.

§1.4 The free Lie algebra F(n)

Let F(n) denote the free Lie algebra on {z1,...,z,}. For k > 0 define
M(n)p to be the set of all products

(ad z;,)(ad x;,)...(ad x4, )2, 1 <id1,.., 0, <n,

and define F(n)[_j to be the span of M(n)y. Then
(1.4.1) F(n) =Y Fn)y
k<0

is a graded Lie algebra.
Now assume n > 2 and, for k£ > 0, define M(n).r> to be the span
of all products

(ad z;,)(ad x;,)...(ad x4, )xi, 1 <iy,..,0 <n,

where l
Z 02,i; =k
j=1

and define F(n)<x> to be the span of M(n)k~. Then

(1.4.2) F(n)=> F(n)k>

k>0

is a graded Lie algebra.
Let Z(n) denote the ideal of F(n) generated by {z2,...,x,}. Then

F(n) =Fzr1+Z(n)

and so '
U(F(n) =) 21U(Z(n)
i>0
is a vector space grading. Define S(n)(;1 = > o<ic; 2iU(Z(n)). Then
S(n){jl}S(n){jz} - S(n){j1+j2} and U(Z(n)) = S(n){o} C S(n){l} C ...
is an increasing filtration of the associative algebra U(F(n)).
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For i < 0,7 > 0 define G(7,j) = U(F(n))i—1 + U(F(n)); N S(n) ;.
Note that G(i1,71) C G(i2, j2) when iy < ig or when i1 = is and j; < ja.

As in Section 1.3, the grading (1.4.1) of F(n) gives a grading of
U(F(n))

(1.4.3) U(F(n)) =Y UFm)y

and the grading (1.4.2) of F(n) gives a grading of U(F(n))

(1.4.4) U(F(n) =Y UF(n))<ks-

k<0

By the results of Section 1.3 there is an abelian valuation, denoted
|I|l, on U(F(n)) corresponding to the grading (1.4.1).

Now let A be a domain with an abelian valuation which we again
denote by ||a]|.

Lemma1.9. Let f € U(F(n)) 2 F < X1y, Ty >, ULy evey Uy, V14 vy Uy, €
A, and ||u;]| <0, ||lvs]] <O for all i. Then

(1.4.5) [f(ur, s un) [ < (I
and
(1.4.6) 1F (s oy i) — F(1 + 01, ey g + vn)|| < || f]] — 1.

Proof. Note that, for each i, ||u; + v;|| < maz{||u;|, ||vi||} = 0.
We first prove two special cases of the lemma.

(1) The lemma holds if f € M(n)py.
Proof of (1). In this case

f=(ad x;,)(ad x;,)...(ad z;,_,)x;,
for some 1 < iy, ..,ip <n.If k> 1, let

= (ad z;,)...(ad z;,_, )z,
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Then ||f|| = —k+ 1 and || f'|| = —k + 2.
We will proceed by induction on k. If k = 1, then f(uq,...,up) = u;
for some ¢ and so, by hypothesis, || f(u1,...,un)|| = ||ui]| < 0 and

(1, ey tin) = flur + 01, 0 U +00)|| = [Jus — (w; +v;)|| = |Jvi]] <O.

Thus, for k =1, (1.4.5) and (1.4.6) hold.
Now assume that & > 1 and that the result holds for all g € M(n);,
[ < k. Then, in particular, the result holds for f’, and so || f/(u1, ..., un)||

< NI = —k+ 2 and [[f(u1, . un) — f(ur + vi,eun + vl
< |If'I =1 = —k + 1. Moreover, since |lu; + v;|| < 0 for all i, we
also have || f'(u1 +v1, ..., un +vp)|| < [’ = =k + 2. Then, by (1.2.5),

1 (s ooy un) | = My (s oo )< i | 4 1 (g s un) | = 1
< (unyun)l = 1< —k+2-1=—k+1=|f].

Furthermore,
Hf(ub 7un) - f(ul + V1y.ery Un + /Un)”

= ||[’lL1, f(u17 ~--7un)] - [ul + Ul?f/(ul + V1, Up + Un)]” -
w1, f/(ury ey tin) = f (U1 401, ooy U +00) ] =1, f/ (U1 +01, oy U +0,)] |-

As ||[U1,f/(u17...,Un)—f/(ul+?}1, ,un-l-vn)]H S ||u1||+||f/(u1’ -~~7un)_
f/(ul + U1,y Up + Un)“ -1< —k and ||[Ulaf/(u1 + V1, Uy T Un)]”
< lvor ]l + I/ (ug + 01, ooyt + vp)|| — 1 < —Fk, we have

| f(ur,.coyun) — flur + o1, un + )| < =k = f]| — 1.
Thus, by induction on k, (1.4.5) and (1.4.6) hold whenever f € M(n) .

(2) The lemma holds if f = fi...f1, fi € M(n)p,), k1 + ... + ki = k.

Proof of (2). If I > 1, set f' = fo...fi. We have ||f|| = —k + [ and
If'l = —k+1+Fk —1.

We will proceed by induction of [. If [ = 1, then (1.4.5) and (1.4.6)
hold by case (1). Assume [ > 1 and that the result holds for all
g = g1...g¢ where t < [ and each g; € M(n)(,, for some s;. Then,
in particular, the result holds for f’, and so || f'(u1,...,u,)|| < ||f']] and

||fl(u17 ’un) - f/(U1 + V1, Un +Un)|| < ||f/|| — 1.
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Then, by (124), [ f(ur, st = [fi(tr e i) f/ (11, o )]
1 @t )|+ D s )| < (il + ] = N Faxther
more, f(uy,...,un) — f(ur +v1,...,un +vp) = (fr(ug,...,un) — f1(us +
V1 ooy U +00)) (f (w1 + 01, oy U +00)) H(f1(ur, ey wn) (f (ug,y ooy up) —
P01 + 01, st + 0)). TS [ (11, ) — (03 4 01, eyt + )|
< maz{||f1(wry oy un) — f1 (w1401, ooy U +0) ||| f/ (w1 F01, ooy un +05) ||
Hfl(ulv ST un)HHfI(ul? ,Un) _f/(ul +v1, ,un—|—’l)n)”} < max{(”le -
D+ LA+ =13 < 1A+ 111 = /] 1. Thus, by induction
on [, the lemma holds in case (2).

Finally, let f be an arbitrary element of U(F(n)) and let ||f| = k.
Thus f € U(F(n)), and so f is a linear combination of elements of the

form treated in case (2). The conclusion of the lemma then follows from
(1.2.2), (1.2.3) and case (2).

§1.5 The Division Ring Q(n)
Let A be an associative algebra and t € A. As usual, define [; : A —
A by li(u) = tu, r4 : A — A by ry(u) = ut and ad(t) : A — A by
ad(t) =l — ry.

Lemma 1.10. Let A be an associative algebra and let t € A be an
invertible element such that ad(t) is locally nilpotent. Let s € Z. Then

(i) (r)* = (1) S52o(=1)7 () (1)* 7 (ad ()
(i1) ad(t*) = 5232, (=197 () () (ad 1))

Proof. We have r; = l;—ad(t) = l;(1—(I;) " (ad(t))). Since (I;)~*(ad(t))
is locally nilpotent, (i) follows. Furthermore, ad(t°) = (I;)*—(r¢)*. Then
substituting the expression for (r,)® from (i) gives (ii).

Let L be a Lie algebra. Recall that the sequence of ideals L' D
L? D ... (the lower central series) is defined inductively by L! = L and
L+t = [L* L] for i > 1. Note that F(n)* = i<k F(n)py-

Define

FNi(n) = F(n)/F(n)".

This is the free nilpotent Lie algebra of degree k on {xy,...,x,}. Let
ag : F(n) — FNg(n) denote the quotient map. This extends to a
homomorphism, which we again denote aj from F < zq,..,x, >=
U(F(n)) to U(FN(n)). Since ker ai = F(n)* = i<k F(n)y is a
graded ideal in F(n), we see that FNy(n) has the structure of a graded
Lie algebra.
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Note that FNi(n) is finite-dimensional. Thus U(FAN,(n)) has a left
ring of quotients which we denote by Qx(n). By Corollary 1.6, Qx(n)
has an abelian valuation, denoted |||, satisfying (1.2.6) and (1.3.2).
Note that ay : F < x1,..., 2, >— Qr(n).

Write t; = ag(z;) for 1 < ¢ < n, and let Ri(n) denote the sub-
algebra of Qg (n) generated by t1,...,t, and t;*. Let ZANy(n) denote
ax(Z(n)). Clearly ZNk(n) is the ideal of FANi(n) generated by to, ..., t,,
FNi(n) = Ft; + ZNk(n), and

(1.5.1) U(FNi(n) =Y HU(INk(n

>0

is a vector space direct sum. Since the sum in (1.5.1) is direct, so is

(1.5.2) > HUINk(n)) = Ry(n)

1€EZ

Let Sk(n)y = Dicz.i<; tiU(ZNk(n)). Then, by Corollary 1.8(ii), we
have
S() (115K (M) 2y © Sk(n) 1442

Thus ... C Sk(n);3 C Sk(n)j+13 C ... is a filtration of Ry (n) with

NjezSk(n) 3 = (0)
and
Ujesz(n){j} = Rk(n)
For ¢ < 0,5 € Z, define

Gk(’b,j) = Rk(n)i_1 + Rk(n)z N Sk(n){j}

Note that Gi(i1,71) € Gg(iz,j2) when i3 < iy or when i3 = i and
J1 < Jo.
Lemma 1.11. (Z) [tjll,Gk(iQ,jg)] Q Gk<7,2 - 1,j1 —|—j2 - 1),

(ii) G(i1, j1)G iz, jo) C G(i1 + 2, j1 + j2);

(i4) G (i1, j1)Gr(i2, j2) € Gr(i1 +i2,j1 + j2);

(z'v) [G(il,jl),G(ig,jg)] g G(Z1 + ig — 1,j1 +j2).
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(U) [Gk(ibjl)?Gk(iZ?jQ)] - Gk<zl +i9 — 17j1 +32)
Proof. Clearly (ad t1)Gk(i,j) € G(i—1, 7). Hence, by Lemma 1.10(ii),

(ad t3)G(i,5) € > 157! (ad 1)'G(i, j)

=1
C ;7 'G(i— 1,§) + Re(n)i—2 CG(i— 1,j + s — 1),

proving (i).

Since U(F(n))pU(F(n))g S U(F(n))ptq and S(n);,35(n)guy S
S(n){j,+j.y we have (ii). Similarly, since Ry(n),Rr(n); € Ri(n)piq
and Sk (1) ¢;,35%(n) oy € Sk(n){j,+5.1 We have (iii).

As [U(F(n))p, U(F(n))g] € U(F(n))prq-1 and [S(n)y;,y,5(n)g,1] €
S(n){j,+j.y we have (iv) Similarly, since [Ry(n)p, Ri(1)q] € Rir(7)ptq—1
and [Sk(n)g5,3, Sk(n) 03] € Sk(n
n) €

){31+J2} we have (v).
Lemma 1.12. Let f(xq,...,x U(Fn))<kgs> NG(i,7). Then

k(n
g

(1.5.3) thf(ty, bty by e tn) — f(t1, o tn) € GE(i,§ — 1).

Proof. Let X(k,1,j) denote the set of all f(z1,...,2,) € U(F(n))<k>N
G(i,j) such that (1.5.3) holds. Note that if f(z1,...,2,) € X(k,1,]),
then f(ty,....tn) € Gi(i,5) so thf(ty, tat;  ts, ..., tn) € Gr(i,j), and
f(tr,taty  ts, o tn) € Gr(i, 5 — k).

Clearly each X(k,i,j) is a subspace of U(F(n)). Furthermore, 1 €
X(0,0,0),z; € X(0,0,1),22 € X(1,0,0) and z; € X(0,0,0) if j > 2.

Now let f(acl, ...,:L‘n) S X(k‘l,il,j1> and g(:l?l, ...,I‘n) S X(kg,ig,jg).
Then

f@y, o mn)g(@e, . 2) € U(F(n)) <ty >U(F (1)) <hy>NG (i1, j1)G (42, J2)

By Lemma 1.11(ii) this is contained in U(F (n)) <k, +k,> NG (i1 +i2, j1 +
Jj2). Furthermore,

thrtke 0 ot T s, e b)) g (Er, ot sy ey ) — F(E1, e ) g (s e )

= th ke f (ot ts, )] g (tr, oty s, et

F (5 f (b, bt Tty oy 1)) (E52 gt ot T Es, o 1))
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—f(tl,...,tn)g(tl, ...,tn)
_ gk fpke —1 —1
=1 [tl ,f(thtgtl ,tg,...,tn)]g(tl,tgtl ,tg,...,tn)
—tFU(f (b1, ot s, e tn) — F(E1, oo ) (E52g(t1, ot Y ts, o
FF (b1, e b)) (2 gty bt T sy o tn) — g(t1, o tn)).
By Lemma 1.11, the first summand is contained in

Gr(0,k1)Gr(in — 1,1 — k1 + k2 — 1)G(i2, j2 — k2)

CGrlis+ia— 1,51 +j2 — 1).

The second summand is contained in Gy (i1, j1 — 1)Gg(iz2, j2) C Gr(i1 +
i2, j1+j2—1) and the third summand is contained in G (i1, j1 )G (i2, jo—
1) C Gg(i1 + 92,71 + j2 — 1). Thus X (k1,1, j1)X (k2,i2,752) € X (k1 +

k2,01 + 2, J1 + ja2)-
Similarly

[f(mlv ...,$n),g($1, ,l‘n)] € U(}—(n))<k1+kz> N [G(i17j1)’ G(Z%]Q)]

By Lemma 1.11(ii) this is contained in U(F(n))<k,+k,> N G(i1 + i2 —

1,41 + j2). Furthermore,
R £ty bt ta, e tn), g(t1, tot T L t3, ey )]

—[f(t1, . tn), g(t1, ..., tn)]
= —tM [ f (b, ot b e ), ER2 gt ot T s, )
—th2[th gty bt T ta, e b)) f (1, tat T Y ts, ey b))
[ f (b bt T sy e ), B2 gty ot T Es, o )]
—[f(t1, s tn), g(t1, .oy tn)]
= M [f(tr, tat T ts, s ), 2] g(tr, tot T s, o 1)

—th2 [t gty tat  ts, s )] f(tr, tat Tty e b))

[ f (b bt T sy e ) — f(Er, oy tn) 2 gty tot T s, oy )]

Ff(tr, e tn), 52 gt bt T tsy o tn) — gt oy )]
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Lemma 1.11 shows that the first summand is in
Gr(0,k1)[Gr(i1, j1 — k1), t52]G (ia, jo — k2)

C Gr(0,k1)Gr (i1 — — k1 4 k2 — 1)Gy(i2, j2 — k2)
- Gk(il +io — 1,51 +j2 — 1),

and similarly, the second summand is also in G (i1 +i3 — 1, j1 +j2 — 1).

The third summand is in [Gk(il,jl — 1), Gk(ig,jz)] - Gk(zl +io—1,71+

j2 — 1), and similarly the fourth summand is also in Gy (i1 +1i2 — 1,71 +

jg — 1) Thus [X(kl, ilajl); X(kg, ig,jg)] - X(kl +k2, 11+ — 1,j1 —|—_]2)
It is then immediate, by induction on s, that

(ad z;,)(ad x;,_,)...(ad x1,)x), € X(I,s—1,0)

whenever | = 377, d9;, and s > 2. Thus every element of M(n)<>
belongs to X (I, p,0) for some p < 0 or to X(1,0,1). Now U(F(n))<;=N
G(i, j) is spanned by products b;...b, where b; € M(n)<;,> and I +... +
l; = I. But such a product belongs to X (lk,4,j) (by Lemma 1.11), and
so the lemma is proved.

Lemma 1.13. (i) G(i,j) = 3, 21U(Z(n))i- 1+Zo<z<J 2 U(Z(n))s;
(it)  Gi(i,5) = Xps; WU ENk(n))im1 + Xy, LU IN(n));-

Proof. Since F(n) = Fz; +Z(n), we have
= Z U(Fz1)qU(Z(n))p—q
q

But U(Fz1), = (0) if ¢ < 0, so U(F(n)), = U(Fz1)oU(Z(n)), =
S0 2iU(Z(n)),. This gives (i) and (ii) is similar.

Corollary 1.14. Let f € U(F(n)) and ak(f) € Gi(i,j) where k > |i|.
Then f € G(i,7).

Proof. We have f = Y ,° 2! f, where f, € U(Z(n)). Since ay(f) =
Soti(ax(f1)) € Gili, ), the lemma shows that ay(f;) € U(ZN(n));
for 0 <1 < jand ag(fi) € U(ZN(n))i—1 for I > j. Then Lemma 1.7
implies f; € U(Z(n)); for 0 <1 < jand f; € U(Z(n));—1 for I > j, so
that f € G(i, 7).



18 ROBERT LEE WILSON

Lemma 1.15. Let A be an Ore domain with an abelian valuation ||||.
Suppose u,v € A, ||u| =0, ||v|| < 0. Then ||(u+v)~! —u"t| <O0.

Proof: There exist r,s,p € A such that p = r(u + v) = su # 0. Then
(u+v)t=ptrut=plsand (u+v) ! —ut =p~t(r—s). Since
|u|| = ||u+ v|]| = 0 we have, ||p|| = [|r]| = ||s]|. Also r(u+ v) = su so
(r — s)u = —rv, and hence ||r — s|| = ||7]| + [|v|| = ||lu|| < ||r]|. Thus
[(w+v)~ —u = llp~ (r =)l = Ir = sl = llpll < ||| = [I7] = 0.

§1.6 Quasideterminants

We begin by recalling (from [GR3]) the definition of the quasideter-
minants of an n by n matrix A = (a;;),¢ € I,j € J with entries in a
ring R. For n =1, we set |A|;; = a;;.

Forn > 1, and a € I,3 € J we denote by A%?, the matrix of order
n — 1 constructed by deleting the row with the index a and the column
with the index [ in the matrix A. Suppose that, for p € I,q € J, the
expressions |qu|i_j1,i el,jeJi#p,j+#q,are defined. Set

|Alpg = apq — Zapjmpq‘;jlaiq'
Here the sum is taken over all i € I ~ {p},j € J \ {q}. The expression
|A|,q, if it is defined, is called the quasideterminant of indices p and ¢
of the matrix A.

By the well-known nonvanishing of Vandermonde determinants over
commutative domains, the Vandermonde quasideterminants that occur
in the definition of the elements y1, ..., y, exist in Q2(n), hence in Qi (N)
for all £k > 1 and also in F z1,...,x, »

2. INDEPENDENCE RESULTS

We will show that certain subsets of FX x1, ..., z, } are algebraically
independent. Our first lemma records a well-known result (cf. [CI1,

c2).

Lemma 2.1. The set {z1,...,z,} C F x1,...,2, }is algebraically
ndependent.

Let ap : F < z1,...,2, >— Qr(n) be the homomorphism de-
fined in Section 1.4. Let Ay denote the corresponding subalgebra of
F x1,...,x, Pand let fi : Ay — Qk(n) be the extension of «y which
exists by the universal property of F x1,...,z, > as described in Sec-
tion 1.1.
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Proposition 2.2. Assume that uy,...,u, € F x1,...,x, > satisfy
ULy .y Uy € Ag for all k > 1. Assume further that for each i and k
ok (u;)|| < 0. Then {xzi+us,..., xn+u,} is an algebraically independent
subset of F{ 1, ...,y ».

Proof: Assume that {7 + uy,...,x, + u,} is not algebraically inde-
pendent. Then there is some 0 # f € F < x1,...,x, > such that 0 =
flz1+ug, ...,z +uy,). Take k < || f|| and write ag(z;) = t;, g (u;) = v;
for 1 < i < n. Then Lemma 1.7 shows that ||f| = ||f(t1,....tn)]|
and we have f(t1,....tn) — f(t1 + v1, .., tn + vn) = ar(f(z1, .0y xn) —
flz1 + tpy ooy @y + up)) = a(f(z1,....20)) = f(t1,...,t,). However,
f(z1,...,xy) # 0 by Lemma 2.1. Then (1.4.6) shows that || f(t1,...,t,) —
f(t1 +v1, .yt + o)l fIl, & contradiction.

Corollary 2.3. The set {y1,....yn} C F x1,...,2, P is algebraically
mndependent.

Proof: Recall that y; = V(xy,...,2)z;(V(z1,..., 7)) = a4+
(V(x1, .oy i), 25)(V (21, ..oy 25)) 7L Set

U; = [V(.fl, ceey (Ei), xl](V(acl, ceey J,‘i))_l

and w; = ap(V(21,...,2:)). Then |lag(uw;)| = |[[ws,t:]w;t||. Then
(1.2.5) and (1.2.6) show that ||ag(u;)|| > [Jw: ||+ ||t:|| — ||w;]] = 0. Hence
Proposition 2.2 applies and gives the result.

For 1 < i < mn—1 let o; denote the permutation of {1,...,n} which
interchanges 7 and ¢ + 1 and fixes all j # 4,4 + 1. Then o; induces
an automorphism, again denoted o;, of F z1,...,z, ». Define s; =

(i + 0i(yi)) (i — oi(ys)) " and z; = (yi — o (y:))/2.
Lemma 2.4. Letl1 <i<n-—1. The set

{yla vy Yi—15205 Sis Yit-2y ooy yn} - F{ Z1y.ey T j>
1s algebraically independent.

Proof: The automorphism 7 of the vector space Fx1+ ...+ Fx,, defined
by
T((# — @i1)/2) = 21

T(xi + CL‘@'_H) = X9
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T(zj) = 2jp0,if 1<j<i—1
T(x;) = xj,if j>i+2

extends to an automorphism, again denoted 7, of F z1,...,x, >.
Note that a7 (y;)

= o7(zj + [V(z1, .0y ), ] (V (21, ...,mj))*l) € ap7(xj) + Qr(n)_1
Also ak'r(zi) € Q{kT((QZZ‘ — xi+1)/2) + Qk(n)_l == tl + Qk(’n)_l. Finally,
ar7(si) = art((yi + 0i(y:) (i — 0i (i)~ ")

= {ar7(x; + [V(21, ..y 20), 2] (V (21, oy )) + X411
+oi(V (@1, oy 0)), wiga]oa(V(2n, o)) ™)}
{agT(z; + [V (21, 00y )y 4] (V (21, - )) bz

—loi(V(w1, .y i), Tiga]o(V (3317---#1%)) !
€ {art(zi + 2ig1) + Qr(n) s Hawr(zi — zi1) + Qu(n) 1}

By Lemma 1.15 this is contained in
{oat (i + 2i1) + Qu(n) - H(ewT (2 — 2i41)) ™ + Qr(n) -1}

= apT((Ti + Ti1) (T — Tig1) ") + Qr(n)—1 = tztfl + Qk)n_y

Now suppose that {y1, ..., ¥i—1, 2i, Si, Yi+2, ---, Yn } is not algebraically
independent. Then there is some 0 # f € F < z1,...,x, >= U(F(n))
such that

S (26,280,915 s Yio1, Yit2s -, Yn) = 0.

We may assume, without loss of generality, that f € U(F(n))<;> for
some [, and we may find ¢ < 0,5 > 0so that f € G(4,7), f # G(i,j —1).
Take k > |i|. We then have 0 = a7 f(2i, 28, Y1, s Yio1, Yit2s s Yn)
= f(t, +v1,t2t1_1 + g, t3+vs, ..., b, +vy,) where ||v;|| < 0 for all i. Then
Lemma 1.9  shows  that || f(t1,tat] ", t3, .0 tn)l| =
£ (ke oty t s, oy tn) — f(tL Fvr, tot Tt o, ta+vs, o by o) || < i — 1.
But Lemma 1.12 shows that

thf byttt tsy e tn) — f(t1, o tn) € G(i,5 — 1).

Thus f(t1,....tn) € G(i,j — 1) + U(FN(n))i—1 = Gi(i,j —1). But, by
Corollary 1.14, this implies that f(z1,...,x,) € G(i,j—1), contradicting
our choice of 7 and j.
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3. INVARIANT ELEMENTS

Let A be an associative algebra over F' and o € Aut A. For any
subset X C A, let F[X] denote the F-subalgebra of A generated by
X. Let {aq,...,ak,s,z} be an algebraically independent subset of A.
Assume that 0z = —2,08 = —s and ca; = a; for all 4.

Let by = (sz+ 2)/2 and by = (zs — 2) /2.

Proposition 3.1. Let 0 # f € B = F[by,bs,aq, ...,ax] satisfy of = cf
for some c € F. Then c=1 and f € F[by + by, bab1,aq, ..., ax].

Proof: We may assume, without loss of generality, that f is homoge-
neous of degree [ (as a polynomial in by, bo, a1, ..., ax). The result clearly
holds if [ = 0. We will proceed by induction on /. Thus we assume [ > 1
and write

k
f=bifi +bafo+ Zajgj

j=1

where f1, f2,91,...,9x € B are homogeneous of degree [ — 1. Then 2f =
(s +1)zf1 +2(s — 1) fa + 22?21 a;g;i = s(zf1) + z(fr + sfa — f2) +
2 Z?Zl a;g; and so

k
0=2(cf —cf) € sz(afi —cfi1) + 2Zaj(agj —cg;) + zB.

Jj=1

As {as,...,ax, s, z} is algebraically independent, we have 0 = of; —

cfi = 0g1 —cg1 = ... = 0gr — cgr. Then the induction assumption

implies that fi1,91,...,9x € F[b1 + b2, bab1,a1,...,ar]. Replacing f by
k

f=(b1+b2) f1 =325, ajgj, we may assume that 0 = f1 = g1 = ... = gx.

Note that (as obs ¢ Fby) this proves the proposition in the case | = 1.
Now assume [ > 2 and write

k
f = bg(blhl + b2h2 + Z ajpj)

j=1
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where hi,ho,p1,...,pr € B. Then 4f = (2(s* — 1)z — 22)hy +(2(s —
1)z(s —1))ho 4+ 2(zs — 2) Z?Zl a;p;) and so

0=4(cf —cf) € zs*z(chy — chy)

k k

+2zs Z a;(op; —cpj) + 2s Z a;j(opj + cpj) + 2°B + zs2B.
Jj=1 j=1

As{ay,...,ax, s, z} is algebraically independent, we have 0 = ch;—chy =
op1—Cp1 = ... = 0P —CPr = Op1+cp1 = ... = opi +cpi. Consequently,
p1 = ... = pr = 0. Furthermore, the induction assumption implies that
hi € F[by + ba, baby, aq, ..., ax| and so, replacing f by f — babihy, we see
that we may assume h; = 0 and so 4f = 4b3hy = z(s — 1)2(s — 1)hy =
252(5 — 1)hg — 2%(s — 1)hy = 2s2q — 22q where ¢ = (s — 1)hy € B. Then

0=4(cf —cf) = —zs2(cq + cq) — 2*(0q — cq).

As{ay,...,ar, s, z} is algebraically independent, it follows that ocq+cq =
0 and 0q — cq = 0. Thus ¢ = 0 and so ho = 0, proving the proposition.

Let vy, ..., y, be algebraically independent elements of an associative
algebra A over a field F. Let

Y = Fly1, ..., yn]

be the subalgebra of A generated by v, ...,y,. Note that, by the alge-
braic independence of the y;, we have

Write .
Y=Y uY
=i
for 1 <¢ <mnand set Y,41 = (0). For 1 <i < n, set

Y[i] = F[?le v Yi—1,Yi T Yit1, Yi+1Yi, Yi+2, -~~7yn]'

For 1 < j < i <n, define
Aij=0
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and for 1 < j < n, define
AO,] = 1.

For 1 <i < j < n, define

ANij= D YUY

]2l1>>l121

For 1 < j <mn, set
Aj = F[A17j7 ...,Aj,j,yj—kl, ~--;yn]~

Lemma 3.2. If1<j<n—1, then A;NnYUl = A;y.
Proof: Note that for 1 < j<n—1and 1 <i<n, we have
Aijir = yirahioa; + A
and consequently
Aji1 © Ay

Furthermore, we also see that
Nij1 =Yy Nico i1 + (Vi1 +y) N1 j—1 + Aijja
for2<i<mn,1<j<n-1,and so
Ajq C ylil

Thus '
Aj1 CA;NYUL

Hence we need to show that if f € A; NY!l then f € Aj11. Without
loss of generality, we may assume that f is homogeneous of degree t > 0
in {y1,...,yn}. The assertion is clearly true if ¢ = 0. We now proceed
by induction on ¢, assuming that the assertion is true for homogeneous
polynomials of degree < t.

Suppose that for 1 < i < n, we have f € Y;NA; NY!. Then we may
write

f=yifi+t ..+ Ynfn



24 ROBERT LEE WILSON

where f;, ..., fn €Y,

=Moo+ .+ 09 T yjt19i41 + -+ Yngn
where g1,...,9n € Aj, and f =

yrhi+..+yi—1hj 1+ +yie0) b +yie1yihi o1 Fyje2hjie + o ynhn,
where hi, ..., h,, € YU, We will show that
feYinAj +YinA;nyll

Note that, since Y1 =Y and Y,,+; = 0, iterating this result proves the
lemma.

To prove our assertion, first suppose that ¢« < j. Then g; = ... =
gi-1 = h1 = ... = hiy =0 and ¥ f; = yiyi—1.-.y19: = yih;. Thus
Yi—1.-y19; € YV and so g; € YUl But then g; € A; N YU and so,
by the induction assumption, g; € Ajyi. But then A; j119; € YiN A
and so, since f — A; j119; = [ — (yj41Mi—1,; + Nij)gi € Yip1, we have
f—Nijt19: € YiNAjyq, proving our assertion.

Next suppose that ¢ = j + 1. Then we have y;119j41 = yj+1¥;hj+1,
and so gj+1 = yjhj+1 € Aj. Then gj+1 = Aj,j ;-+1 with h;-+1 € Aj and
80 hji1 = yj—1.-y1hjq € YUl Tt follows that hii1 € Aji1, so by the
induction assumption h’,; € Aji1. Then yj19541 = yj10;;0) 0, =
Ai+1,j+1h;-+1 € Aji1. Since f—yj1195+1 € Yiq1, our assertion is proved
in this case.

Finally, suppose ¢ > j+1. Then y;g9; = y;h; so g; = h; inA; NY' 7 and,
by the induction assumption g; € Aji1. Therefore y;9; € Ajy1. Since
f —vi9; € Yit1, our assertion is proved in this case as well, completing
the proof of the lemma.

Noting that Y7 = Ay we obtain the following immediate consequence
of Lemma 3.2:

Proposition 3.3. For 2 < j < n, we have ﬂz:—llY[i] =Aj.
4. PROOF OF THE GELFAND-RETAKH CONJECTURE

Theorem 4.1. Let f € Flyi,...,ys| and suppose of = f for allo € S,.
Then f € F[A1 ..., Ay pl.

Proof: We have ||y; — ;|| < 0and |ly; —oi(y:)|| = 0. Thus y; —oi(y:) #
0 and so (y; — o;(y;)) ! exists.
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It is clear from the definition that
oi(y;) = yj

whenever j < i. By the Gelfand-Retakh Theorem we have y; +1v:yi—1...y1
= A¢+1,7;+1 = Ui(Ai+1,i+1) = Ui(yi—l—l)az‘(yi)(yi—l---yl) and so

Uz’(yiﬂ)ai(yi) =Yi+1Yi-

Similarly, we have A;;ir1 = (Yir1 + ¥i)Ni—1i—1 + Yir1¥iNi—2i1 =
0i(Aii+1) = i1ty Aoty yiliozi = oY +yi) A1 i+
Yit1Yil\i—2,i—1. Therefore

0i(Yit1 + Yi) = Yit1 + Yi-

AISO, fOI’j > ¢+ 1 we have Aj,j = yjAj—l,j—l = Uiyj(Aj—l,j—l) =
Ui(yj)Aj—l,j—l- Thus

Ui<yj) =Yj

whenever j > i+ 1.

Let u; = (yi +0i(i))/2,vi = (Yir1 + 0i(Yi+1))/2, and z; = (y; —
0:(yi))/2. Since 0;(Yit1 + Yi) = Yit1 + yi, we also have z; = —(y;41 —
0:(yi11))/2. We have noted that z; ' exists; set s; = wu;z;'. By
Lemma 2.4 we have that the set {y1,...,¥i—1, Si, Zi, Yi+2, -, Yn } 1S al-
gebraically independent. Since 0;(y;+1)0i(yi) = Yi+1Yi, we have that
zig = (03(Yit1)Yi — Yir10(ys))/4 = v;z;. Then we have

Yi = U; + 25 = 8;2; + 24,

Yi+1 = Vi — 25 = 2iSi — 2.

Note that o;(s;) = —s; and 0;(z;) = —z;. Therefore the hypotheses
of Proposition 3.1 are satisfied (with k = n—2,a; = y; for 1 < j <
i—1,8=si,2=2,a; =Yyjyo for i < j <n—2and o = o;). Therefore
f S F[yla"'ayi—hyi + yi+layi+1yiayi+27"'>yn] or, in the notation of
Proposition 3.3, f € Y4, Since this holds for all ,1 < i < n — 1,
Proposition 3.3 shows that f € A,,, proving the theorem.
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