
Math 300 - Solutions to review problems for Exam #2 - April 12, 2009

#1 Use mathematical induction to prove that 8 divides 52n − 1 for every integer n ≥ 1.

Solution: Let
S = {k ∈ N|8 divides 52k − 1}.

Since 8 divides 52 − 1 = 25− 1 = 24 we have 1 ∈ S. Next assume that k ∈ S. Now

52(k+1) − 1 = (52 − 1)52k + (52k − 1) = (24)52k + (52k − 1).

Since 8 divides 24, the first summand is divisible by 8, and since we are assuming that
k ∈ S, the second summand is divisible by 8. Thus 52(k+1) − 1 is divisible by 8 and so
k+1 ∈ S. Thus, by the principle of mathematical inuction, S = N and so 8 divides 52n−1
for all n ∈ N.

#2 Use the well ordering principle to show that if a, b are natural numbers then there exist
integers q, r ≥ 0 such that a = qb+ r and 0 ≤ r < b.

Solution: Let

A = {a− q1b|a− q1b > 0, q1 ≥ 0, and q1 is an integer}.

Then A is a subset of the natrual numbers. Furthermore, A 6= ∅ because a = a−0(b) ∈ A..
Thus by the well-ordering principle, A contains a smallest element. Call this element r1.
Then since r1 ∈ A we have r1 = a− q1b and so

a = q1b+ r1.

Thus if r1 < b we may take q = q1, r = r1 and we are done. Now suppose r1 > b. Then
a− (q1 + 1)b = (a− q1b)− b = r1 − b > 0 and so r1 − b ∈ A. But this is impossible, since
r1 is the smallest element of A and r1 > r1 − b. Finally, suppose r1 = b. Then b = a− q1b
and so 0 = a− (q1 + 1)b. Then taking q = q1 + 1 and r = 0 gives the result.

#3 Suppose A = 33, B = 17, and A ∩B = 12. Find A ∪B.

Solution: Recall that, for any finite sets X,Y we have

X + Y = X ∪ Y +X ∩ Y .

Thus 33 + 17 = 12 +A ∪B and so A ∪B = 38.

#4 Suppose A = 11.
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(a) Find P(A).

Solution: P(A) = 211.

(b) How many subsets B ⊆ A satisfy B = 4?

Solution: The number of such sets is
(

11
4

)
= (11)(10)(9)(8)/4! = 330.

#5 (a) State the definition of a relation from A to B.

Solution: A relation from A to B is a subset of A×B. (See page 133.)
(b) Suppose A = 7, B = 5. How many relations from A to B are there?

Solution: Since A×B = 35, the number of relations from A to B is

P(A×B) = 235.

#6 Let A = {1, 2, 3, 4, 5}. For each of the following relations from A to A state whether
or not it is an equivalence relation. If it is an equivalence relation give the corresponding
partition of A.

(a) R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4), (5, 5)}.

Solution: This is an equivalence relation and the corresponding partition of A is

{{1, 2, 3}, {4}, {5}}.

(b) R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 4), (4, 5), (5, 5)}.

Solution: This is not an equivalence relation since (4, 5) ∈ R, but (5, 4) 6∈ R.

#7 (a) State the reflexive, symmetric, anti-symmetric, and transitive properties of a rela-
tion.

Solution: See page 145 for reflexive, symmetric and transitive and page 160 for antisym-
metric.

(b) State the definition of an equivalence relation, of a partial order, of a total order,
and of a partition.

Solution: See page 147 for equivalence relation, page 161 for partial order, page 165 for
total order and page 154 for partition.

#8 For 0 ≤ n ≤ 6, let Jn = {k ∈ Z|7 divides k−n}. Show that {J0, ..., J6} is a partition
of the integers and describe the corresponding equivalence relation.
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Solution: If 0 ≤ n < 7, then n ∈ Jn, so Jn 6= ∅. Suppose Jm ∩ Jn 6= ∅. Then there is
some integer k ∈ Jm ∩ Jn and so 7 divides k − m and 7 divides k − n. Then 7 divides
(k −m)− (k − n) = n−m. Since 0 ≤ m,n < 7 this implies that m = n and so Jm = Jn.
Finally, let be any integer. Then we may write k = 7q + r for some integers q and r with
0 ≤ r < 7. (This is essentially the result proved in problem #2.) Then k ∈ Jr. Hence
Z = ∪0≤r<7Jr. Let R be the corresponding equivalence relation. Then, for integers a and
b , we have aRb if and only if there is some k such that a, b ∈ Jk. (That is, a and b belong
to the same one of the J’s.) Then 7 divides a − k and 7 divides b − k so 7 divides a − b.
Thus a ≡7 b. On the other hand, if a and b are integers with a ≡7 b and a ∈ Jk then
7 divides a − k and 7 divides a − b so 7 divides b − k = (a − k) − (a − b). Thus b ∈ Jk
and so aRb. This shows that R, the equivalence relation corresponding to the partition
{J0, ..., J6}, is ≡7.

#9 (a) Define a relation R on the integers by aRb if and only if either a = b or a+ 2 < b.
Is R a partial order? Is it a total order?

Solution: Since aRa for every integer a, R is reflexive. Suppose aRb and bRa. If a 6= b we
must have a+2 < b and b+2 < a so a+2 < b < b+2 < a which is impossible. Thus a = b
and so R is antisymmetric. Finally, if we have aRb and bRc then we have either a = b or
a+ 2 < b and we also have either b = c or b+ 2 < c. Now if a = b then either a = b = c or
a+ 2 = b+ 2 < c so we have aRc. Also, if b = c we have either a = b = c or a+ 2 < b = c
and so we have aRc. Finally, if a+ 2 < b and b+ 2 < c, then a+ 2 < b < b+ 2 < c so we
have aRc. Thus R is transitive and so R is a partial order. It is not a total order since,
for any integer a, neither aR(a+ 1) or (a+ 1)Ra holds.

(b) Define a relation S on the integers by aSb if and only a and b have the same parity
(i.e., both are even or both are odd) and a ≤ b. Is S a partial order? Is it a total order?

Solution:
Clearly aSa holds for every integer a, so S is reflexive. If aSb and bSa then, a ≤ b and

b ≤ a so a = b. Thus S is antisymmetric. Finally, if aSb and bSc hold, then a, b and c all
have the same parity and a ≤ b ≤ c so aSc holds. Thus S is transitive. S is not a total
order since if m is even and n is odd, then neither mSn or nSm holds.

#10 State the definition of a function f from a set A to a set B. State the definition of
the domain, codomain, and range of f .

Solution: See page 179 for function, domain and codomain, page 135 for range (as this
is defined for all relations, not just for functions). Note that domain of any relation from
A to B is defined (page 135) but that, for a function from A to B , the domain is A.

#11 Let A = {1, 2, 3, 4}, B = {x, y, z}. Let f be the function from A to B defined by
f(1) = z, f(2) = x, f(3) = y, f(4) = z and g be the function from B to A defined by
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g(x) = 4, g(y) = 3, g(z) = 2. Find f ◦ g and g ◦ f . Is either of the functions f ◦ g, g ◦ f
one-to-one? Onto?

Solution:

(f ◦ g)(x) = f(g(x)) = f(4) = z, (f ◦ g)(y) = f(g(y)) = f(3) = y,

(f ◦ g)(z) = f(g(z)) = f(2) = x.

This function is one-to-oe and onto.

(g ◦ f)(1) = g(f(1)) = g(z) = 2, (g ◦ f)(2) = g(f(2)) = g(x) = 4,

(g ◦ f)(3) = g(f(3)) = g(y) = 3, (g ◦ f)(4) = g(f(4)) = g(z) = 2.

This function is not one-to-one (for (g ◦ f)(1) = (g ◦ f)(4) = 2) and is not onto (since 1
is not in its range).

#12 Suppose f is a function from A to C an g is a function from B to C. When will f ∪ g
be a function? Why?

Solution: f sup g will be a function if and only if f |A∩B = g|A∩B. To see this, note that
if x ∈ A ∩ B then the pairs (x, f(x)) and (x, g(x)) are both in f ∪ g. But if f ∪ g is a
function, there can only be one b ∈ B such that (x, b) is in f ∪ g. Thus, for x ∈ A ∩B we
must have f(x) = g(x).

#13 State the definition of: limn→∞xn = L.

Solution: See page 215.

#14 (a) Show that limn→∞
n+1
1−2n = −1

2 .

Solution: Given ε > 0 we must find a natural number N so that whenever n > N we
have

| n+ 1
1− 2n

− −1
2
| < ε.

Now , adding the two fractions within the absolute value, we have

| n+ 1
1− 2n

− −1
2
| = | (2n+ 2) + (1− 2n)

2(1− 2n)
| = | 3

2(1− 2n)
|.

Now if n ≥ 1 we have 1−2n < 0 and so | 3
2(1−2n) | =

3
4n−2 . Furthermore, 3

4n−2 < ε if and
only if 3

ε < 4n− 2. Now suppose N is an integer such that N > 3
4ε + 1

2 and that n > N .
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Then 4n − 2 > 4N − 2 > 4( 3
4ε + 1

2 ) − 2 = 3
ε . We have seen that this holds if and only if

| n+1
1−2n −

−1
2 | < ε and so we are done.

(b) Show that limn→∞
2n

3n = 0.

Solution: We must show that for any ε > 0 there is some natural number n such that if n
is a natural number and n > N then | 2n3n | < ε. This is the same as requiring that 1

ε < ( 3
2 )n.

Now one can show by induction tht (3
2 )n > n for all n ≥ 1 and so it is sufficient to show

that 1
ε < n. We can arrange for this to hold by taking N to be any integer greater than 1

ε .

(c) Show that the sequence given by xn = (−1)n(1− 1
n ) diverges.

Solution: If the sequence converges, then there is some L such that for any ε > 0 there
is a natural number N such that |xn −L| < ε whenever n is a natural number larger than
N . In particular there is some N such that |xn − L| < 1

3 whenever n > N . But if n > N
then we also have n+ 1 > N and so we have

|xn − xn+1| ≤ |xn − L|+ |xn+1 − L| <
2
3
.

Now
|xn − xn+1| = |(−1)n(1− 1

n
)− (−1)n+1(1− 1

n+ 1
)| =

|(−1)n||(1− 1
n

) + (1− 1
n+ 1

)| = |2− 1
n+ 1

− 1
n
|.

But if n > 1 we have 1
n + 1

n+1 <
1
2 + 1

3 < 1 and so |2− 1
n+1 −

1
n | = 2− 1

n+1 −
1
n > 1. Thus

the sequence cannot converge.


