
Math 300-02 - SOLUTIONS TO REVIEW PROBLEMS
FOR FINAL EXAM - MAY 10, 2009

Note that there are were misprints in the statements of both parts of problem
#11.

The solutions given here are to the corrected versions.

#1 Suppose A and B are true while P and Q are false. State whether or not each of
the following is true and justify your answer.

(a) (A⇒ P )⇒ Q;

SOLUTION: Since A is true and P is false, A⇒ P is false. Then (A⇒ P )⇒ Q is true.

(b) (P ⇒ A)⇒ Q;

SOLUTION: Since A is true, P ⇒ A is true. Since Q is false, we have that (P ⇒ A)⇒ Q
is false.

(c) (P ⇒ A)⇒ B;

SOLUTION: Since B is true, (P ⇒ A)⇒ B is true.

#2: Make truth tables for each of the following propositional forms:
(a) (R ∨ S)⇒ (R ∧ S);

SOLUTION: 
R S R ∨ S R ∧ S (R ∨ S)⇒ (R ∧ S)
T T T T T
T F T F F
F T T F F
F F F F T

 .
(b) R ∨ (S ∧ T ).

SOLUTION: 

R S T S ∧ T R ∨ (S ∧ T )
T T T T T
T T F F T
T F T F T
T F F F T
F T T T T
F T F F F
F F T F F
F F F F F


.
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#3 Prove that (∼ R) ∨ S is equivalent to ∼ (∼ S ∧R).

SOLUTION: We will show that the truth tables are the same.


R S ∼ R ∼ S (∼ R) ∨ S (∼ S ∧R) ∼ (∼ S ∧R)
T T F F T F T
T F F T F T F
F T T F T F T
F F T T T F T

 .
Since the columns headed (∼ R)∨S and ∼ (∼ S∧R) are the same, the two propositional

forms are equivalent.

#4 Is each of the following a tautology, a contadiction, or neither?
(a) (P ⇒ Q) ∨ (Q⇒ P )

SOLUTION: The truth table for (P ⇒ Q) ∨ (Q⇒ P ) is


P Q P ⇒ Q Q→ P (P ⇒ Q) ∨ (Q⇒ P )
T T T T T
T F F T T
F T T F T
F F T T T

 .
This shows that (P ⇒ Q) ∨ (Q⇒ P ) is always true, i.e., it is a tautology.

(b) (P ⇒ Q) ∧ (Q⇒ P ).

SOLUTION: If P and Q are both true, this is true. If P is false and Q is true then
P ⇒ Q is true and Q ⇒ P is false, so that (P ⇒ Q) ∧ (Q ⇒ P ) is false. Thus the
propositional form is neither a tautology nor a contradiction.

(c) (P ⇒ Q) ∧ (P∧ ∼ Q)

SOLUTION: If P is false or if Q is true, then P∧ ∼ Q is false and so (P ⇒ Q)∧(P∧ ∼ Q)
is false. Also, if P is true and Q is false, then P ⇒ Q is false and so (P ⇒ Q)∧ (P∧ ∼ Q)
is false. Thus, in any case, (P ⇒ Q) ∧ (P∧ ∼ Q) is false, and so it is a contradiction.

#5 Prove that P ⇒ Q is equivalent to ∼ Q⇒∼ P .

SOLUTION: We will show that the truth tables are the same.
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
P Q P ⇒ Q ∼ Q ∼ P ∼ Q⇒∼ P
T T T F F T
T F F T F F
F T T F T T
F F T T T T

 .
Since the coulmns headed P ⇒ Q and ∼ Q⇒∼ P are the same, the two propositional

forms are equivalent.

#6 Which of the following statements are true, where the universe is the power set of
{1, 2, 3, 4, 5}? Why?

(a) (∀A)(∃B)(A ⊆ B);

SOLUTION: This is true. For example, we can take B = A.

(b) (∀A)(∃B)(A = B);

SOLUTION: This is true. We must take B = A.

(c) (∃A)(∀B)(A ⊆ B);

SOLUTION: This is true. We must take A = ∅.

(d) (∃A)(∀B)(A = B);

SOLUTION: This is false, for if were true, taking B = {1} would imply A = {1} while
taking B = {2} would imply A = {2}.

#7 Prove that if n is an integer, the n2 + 5n is an even integer.

SOLUTION: Since n is either even or odd, we can divide the proof into two cases.
Case I: n is even. Then n = 2k for some integer k and n2+5n = n(n+5) = (2k)(n+5) =

2(k(n+ 5)). Since k(n+ 5) is an integer, this shows that n2 + 5n is even.
Case II: n is odd. Then n = 2k + 1 for some integer k and so

n2 + 5n = n(n+ 5) = n(2k + 1 + 5) = n(2(k + 3)) = 2n(k + 3).

Since n(k + 3)4 is an integer, n2 + 5n is even.

#8 (a) Give a direct proof that that if n is a natural number then

n

n+ 1
<
n+ 1
n+ 2

.
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SOLUTION: We know that 0 < 1. Then n(n+2) = n2+2n = n2+2n+0 < n2+2n+1 =
(n+ 1)2. Since n is a natural number, (n+ 1)(n+ 2) is a positive number. Thus

n

n+ 1
=

n(n+ 2)
(n+ 1)(n+ 2)

<
(n+ 1)2

(n+ 1)(n+ 2)
=
n+ 1
n+ 2

.

(b) Give a proof by contradiction to show that if n is a natural number then

n

n+ 1
<
n+ 1
n+ 2

.

SOLUTION: Suppose the assertion is not true. Then

n

n+ 1
>
n+ 1
n+ 2

.

Multiplying both sides by (n + 1)(n + 2) (which is positive since n is a natural number),
we see that

n(n+ 2) > (n+ 1)2.

Thus
n2 + 2n > n2 + 2n+ 1

and so 0 > 1, a contradiction.

#9 Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, B = {2, 4, 6, 8, 10}, C = (1, 5), and D = (3, 7]. Find:
(a) A−B;

SOLUTION: {1, 3, 5, 7, 9}

(b) B −A;

SOLUTION: {10}

(c) A ∩B;

SOLUTION: {2, 4, 6, 8}

(d) C ∩D;

SOLUTION: (3, 5)

(e) ∼ C ∩D.
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SOLUTION: [5, 7]

(f) B.

SOLUTION: 5

(g) P(B) (where P(B) denotes the power set of B).

SOLUTION: 25 = 32

(h) B − ∅.

SOLUTION: 5

(i) P(B)− ∅.

SOLUTION: 25 − 1 = 31

#10 Let A,B,C be sets. Prove that A ∩ (B − C) = (A ∩B)− C.

SOLUTION: Let x ∈ A ∩ (B − C). Then x ∈ A and x ∈ B − C. Thus x ∈ A, x ∈ B and
x /∈ C. Therefore x ∈ A ∩B and, since x /∈ C, we have x ∈ (A ∩ B)− C. This shows that
A ∩ (B − C) ⊆ (A ∩B)− C.

Now let x ∈ (A ∩ B) − C. Then x ∈ A ∩ B and x /∈ C. Thus x ∈ A, x ∈ B, and
x /∈ C. Thus x ∈ B − C and, since x ∈ A we have x ∈ A ∩ (B − C). This shows that
(A ∩B)− C ⊆ A ∩ (B − C).

Since we have proved both A∩ (B−C) ⊆ (A∩B)−C and (A∩B)−C ⊆ A∩ (B−C),
we have A ∩ (B − C) = (A ∩B)− C.

#11 Use the principle of mathematical induction to prove that for any natural number n
we have:

(a)
n∑
k=1

(6k − 2) = 3n2 + n.

SOLUTION: Let S = {n|
∑n
k=1(6k − 2) = 3n2 + n}. We want to show that S = N. The

principle of mathematical induction says that if
(i) 1 ∈ S and
(ii) (l ∈ S)⇒ (l + 1 ∈ S) then S = N. We will verify (i) and (ii).
First we consider (i). Since

∑1
k=1(6k − 2) = 4 and 3(12)− 1 = 4, we see that (i) holds.
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Now assue that l ∈ S. Then
∑l
k=1(6k − 2) = 3l2 + l. Hence

l+1∑
k=1

(6k − 2) = (
l∑

k=1

(6k − 2)) + (6(l + 1)− 2) = 3l2 + l + 6l + 4 =

3(l2 + 2l + 1) + 1 = 3(l + 1)2 + 1.

This shows that l+1 ∈ S. Thus the principle of mathematical induction shows that S = N
and so we have

∑n
k=1(6k − 2) = 3n2 + n for all natural numbers n.

(b)
n∑
k=1

k3 =
n2(n+ 1)2

4
.

SOLUTION: Let S = {n|
∑n
k=1 k

3 = n2(n+1)2

4 . We want to show that S = N. The
principle of mathematical induction says that if

(i) 1 ∈ S and
(ii) (l ∈ S)⇒ (l + 1 ∈ S) then S = N. We will verify (i) and (ii).
First we consider (i). Since

∑1
k=1 k

3 = 1 and 11(1+1)2

4 = 4
4 = 1, we see that (i) holds.

Now assue that l ∈ S. Then
∑l
k=1 k

3 = l2(l+1)2

4 . Hence

l+1∑
k=1

k3 = (
l∑

k=1

k3) + (l + 1)3 =

l2(l + 1)2

4
+ (l + 1)3 = (l + 1)2(

l2

4
+ (l + 1)) =

(l + 1)2(
l2 + 4l + 4

4
) =

(l + 1)2(l + 2)2

4
.

This shows that l+1 ∈ S. Thus the principle of mathematical induction shows that S = N
and so we have

∑n
k=1 n

3 = n2(n+1)2

4 for all natural numbers n.
#12 Use the well-ordering principle to prove that for any natural number n > 3 there

are integers x and y such that
n = 2x+ 5y.

SOLUTION: Let

S = {n ∈ N|n > 3, n 6= 2x+ 5y for any integers x, y}.
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We want to show that S = ∅. We will do this by contradiction. Thus we assume that
S 6= ∅. Then by the well-ordering principle, S contains a smallest element, say m. Now
m 6= 4, since 4 = 2(2) + 5(0) and 2 and 0 are integers. Also m 6= 5, since 5 = 2(0) + 5(1)
and 0 and 5 are integers. Thus m > 5 so m− 2 > 3. But m− 2 /∈ S since m is the smallest
element in S. Thus m−2 = 2x+5y for some integers x and y. But then m = 2(x+1)+5y.
Since x+1 and y are integers, this shows that m /∈ S. This contradiction shows that S 6= ∅
is impossible. Thus S = ∅ and the result is proved.

#13 Use the well-ordering principle to prove that any natural number n > 1 is a product of
prime numbers (that is, there is some natural number k and there are some prime numbers
a1, , , , .ak such that n = a1a2...ak).

SOLUTION: Let S denote the set of all natural numbers n > 1 such that n is not a
product of primes. We want to show that S = ∅. We will do this by contradiction. Thus
we assume that S 6= ∅. Then by the well-ordering principle, S contains a smallest element,
say m. Then m cannot be a prime (for if it is, m = a1 where a1 is a prime so m /∈ S). Since
m is not prime, we can find natural numbers r and s such that r, s 6= 1 and r, s 6= m with
m = rs. Then r = m

s < m and s = m
r < m. Thus, since m is the smallest element of S,

r, s /∈ S. But r, s 6= 1 so r, s > 1. Thus r must be a product of primes, say r = a1...ak for
some natural number k and some primes a1, ..., ak Also s must be a product of primes, say
s = b1...bt for some natural number t and some primes b1, ..., bt. Then m = a1...akb1...bt is
a product of primes, so m /∈ S, a contradiction.

#14 Suppose A = 27, B = 15, and A ∩B = 8. Find A ∪B,A−B and B −A

SOLUTION:
A ∪B = A+B −A ∩B = 27 + 15− 8 = 34.

A−B = A−A ∩B = 27− 8 = 19.

B −A = B −A ∩B = 15− 8 = 7.

#15 (a) Suppose A = 6, and B = 11. How many functions from A to B are there? How
many one-to-one functions from A to B are there?

SOLUTION: There are 116 functions from A to B and (11)(10)(9)(8)(7)(6) of these
functions are one-to-one.
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(b) Suppose further that A = A1 ∪ A2 with A1 = 4 and A2 = 2 and that B = B1 ∪B2

with B1 = 5 and B2 = 6. How many of the one-to-one functions from A to B satisfy
f(A1) ⊆ B1 and f(A2) ⊆ B2?

SOLUTION: ((5)(4)(3)(2))((6)(5))

#16 State the definitions of: the converse of a conditional sentence, the contrapositive of
a conditional sentence, a relation from A to B, the domain of the relation R, the range of
the relation R, a function from A to B, a function from A onto B, a one-to-one function
from A to B, a finite set, an infinite set,a denumerable set, a countable set, congruence
modulo n, an equivalence relation, a partial order, a total order.

SOLUTION: Here are page references to the text:
the converse of a conditional sentence and the contrapositive of a conditional sentence:

page 12
a relation from A to B: page 133,
the domain of the relation R and the range of the relation R: page 135
a function from A to B: page 179
a function from A onto B page 198
a one-to-one function from A to B: page 201
a finite set and an infinite set: page 224
a denumerable set: page 230
a countable set: page 232
congruence modulo n page 248
an equivalence relation: page 147, though this uses terms defined on page 145
a partial order: page 161
a total order: page 165

#17 Suppose a relation R from a set A to itself is both an equivalence relation and a
partial order. What is R?

SOLUTION: Since R is reflexive, we have aRa for every a ∈ A. Suppose a, b ∈ A and
aRb. Then, since R is symmetric, we have bRa and, since R is antisymmetric we have
a = b. Thus R = {(a, a)|a ∈ A}.

#18 Let R = {(n, n2)|n ∈ Z} which is a relation from Z to Z. What is the inverse relation?

SOLUTION: The inverse relation is {(n2, n)|n ∈ Z}. Note that this is not a function.

#19 Prove that congruence modulo n is an equivalence relation on the set of integers and
describe the corresponding partition.



9

SOLUTION: For any integer a we have a − a = 0 = n0. Thus n divides a − a and so
a ≡n a. Thus ≡n is reflexive. If a ≡n b then n divides a− b so a− b = nk for some integer
k. Then b−a = n(−k) and, since −k is an integer, we have b ≡n a. Thus ≡n is symmetric.
Finally, suppose a ≡n b and b ≡n c. Then n divides a− b and b− c so there are integers k
and l such that a−b = nk and b−c = nl. Then a−c = (a−b)+(b−c) = nk+nl = n(k+l).
Since k + l is an integer, n divides a − c so a ≡n c. Thus ≡n is transitive and so it is an
equivalence relation.

Now let a ∈ Z. Then there are integers q and r with 0 ≤ r < n such that a = nq + r.
Then a−r = nq so n divides a−r. Thus a ≡n r. Thus every integer is congruent modulo n
to one of the integers 0, 1, ..., n−1. Now the equivalence class of r is r/ ≡n= {r+nq|q ∈ Z}.
Note that if 0 ≤ r < s < n then 0 < s − r < n and so n does not divide s − r which
means that r and s are not congruent modulo n. Thus (r/ ≡n) ∩ (s/ ≡n) = ∅. Hence the
partition of Z corresponding to ≡n is

{nq|q ∈ Z} ∪ {1 + nq|q ∈ Z} ∪ ... ∪ {(n− 1) + nq|q ∈ Z}.

#20 (a) Define a relation R on the integers by aRb if and only if a2 < b. Is R a partial
order? Why or why not? Is it a total order?

SOLUTION: Note that (−1)2 > −1 so (−1,−1) /∈ R. Thus R is not reflexive so it is not
a partial order (and so can’t be a total order).

(b) Define a relation S on the integers by aSb if and only a2 ≡n b where n is a natural
number. Suppose that S is an equivalence relation. What can you say about n.

SOLUTION: Since S is an equivalence relation, it must be reflexive. Thus, in particular,
(-1)S(-1) and so n divides (−1)2 − (−1) = 2. Thus n = 1 or n = 2. Note that in either of
these cases S is an eqiuvalence relation, for if n = 1 then aSb for all integers a and b (so
S is reflexive, symmetric and transitive) while if n = 2 we have aSb if and only if a and b
have the same parity so S is just congruence modulo 2.

#21 Let f{(x, x3)|x ∈ R} and g(x) = {(x, |x| − 1)|x ∈ R}. These are two functions from
R to R.

(a) Find the domain of f ◦ g and of g ◦ f .

SOLUTION: The domain of f and the domain of g are both R so the domain of f ◦ g
and the domain of g ◦ f are both R.

(b) Let h be a function from R to R. Prove that h is one-to-one if and only if f ◦ h is
one-to-one and is onto if and only if f ◦ h is onto.

SOLUTION: Note that f is one-to-one and onto. Let a, b ∈ R. Then, since f is one-to-
one, h(a) = h(b) if and only if f(h(a)) = f(h(b)). But f(h(a)) = f ◦ h(a) and f(h(b)) =
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f ◦ h(b). Thus h(a) = h(b) if and only if f ◦ h(a) = f ◦ h(b), showing that h is one-to-one
if and only if f ◦ h is one-to-one.

Since f is onto, for any a ∈ R there is some b ∈ R such that f(b) = a. Suppose h is
onto. Then there is some c ∈ R such that h(c) = b. But then a = f(b) = f(h(c)) = f ◦h(c)
so f ◦h is onto. Conversely, suppose f ◦h is onto. Then for any a ∈ R there is some d ∈ R
such that a = f ◦ h(d). Then a = f(h(d), so f is onto.

#22 Let A and B be countable sets. Prove that A ∪B and A×B are countable.

SOLUTION: See the proof of Theorem 5.26 for A∪B. Now for b ∈ B note that A×{b}
is a subset of A×B which is equivalent to A (for the function g from A to A×{b} defined
by g(a) = (a, b) is one-to-one and onto). Thus A×B = ∪b∈BA× {b} is a countable union
of countable sets. If B is finite then the argument of Theorem 5.26 shows that A × B is
countable. If A is finite, interchange the roles of A and B and use the arguent of Theorem
5.26 again. If A and B are both denumberable, use the arguent of Theorem 5.28.

#23 Prove that N is not finite.

SOLUTION: Suppose N is finite. Then it is equivalent to either ∅ or to Nk for some
natural number k. Since N is not empty, it cannot be equivalent to ∅. Thus for some
natural number k there must be an one-to-one onto function f from Nk to N. Then
f(1)+f(2)+ ...+f(k)+1 is an natural number, so it must equal f(j) for some j, 1 ≤ j ≤ k.
Then f(1) + ...+ f(j − 1) + f(j + 1) + ...+ f(k) + 1 = 0. But this number is greater than
or equal to 1, a contradiction. Thus N cannot be finite.

#24 (a) Let (x1, x2, ...) be a sequence of real numbers and L be a real number. State the
definition of limn→∞xn = L.

SOLUTION: See page 215.

(b) Find

limn→∞
n2 + 1
n2 − 1

and prove your assertion using your definition from part (a). (If you want to, you may
use (without proving it) the following fact: given any real number r there is some natural
number K such that K > r.)

SOLUTION: We will show that

limn→∞
n2 + 1
n2 − 1

= 1.
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Let ε > 0 be given. Now

|n
2 + 1
n2 − 1

− 1| = |n
2 + 1
n2 − 1

− n2 − 1
n2 − 1

| = | 2
n2 − 1

|.

Now whenever n > 1 we have n2 − 1 > n. Then if N is a natural number with N > 2
ε and

n > N we have
n2 − 1 > n > N >

2
ε

and so

ε >
2

n2 − 1
= | 2

n2 − 1
| = |n

2 + 1
n2 − 1

− 1|

proving that

limn→∞
n2 + 1
n2 − 1

= 1.

(c) Show that the sequence given by xn = cos(nπ) diverges.

SOLUTION: Note that cos(nπ) = (−1)n. Suppose limn→∞(−1)n = L. Then we can
find some integer natural number N so that for any natural number n > N we have

|(−1)n − L| < 1
2
.

But there are both even and odd natural numbers greater thanN , so we have both |1−L| <
1
2 (which implies L > 0) and | − 1− L| < 1

2 (which implies L < 0). Thus the assumption
that the sequence converges leads to a contradiction, so the series must diverge.

#25 Arrange the following cardinal number in order:

{π, e,−1},Q,N,P({1, 2, 3}),R,N×N,Z×N,N3,N4.

SOLUTION:

3 = {π, e,−1} = N3 < 4 = N4 < 8 = P({1, 2, 3}) < Q =

N = N×N = Z×N < R.


