Math 300-02 - SOLUTIONS TO REVIEW PROBLEMS
FOR FINAL EXAM - MAY 10, 2009

Note that there are were misprints in the statements of both parts of problem

#11.

The solutions given here are to the corrected versions.

#1 Suppose A and B are true while P and () are false. State whether or not each of
the following is true and justify your answer.
(a) (A= P)=Q;

SOLUTION: Since A is true and P is false, A = P is false. Then (A = P) = Q@ is true.
(b) (P = 4) = Q;

SOLUTION: Since A is true, P = A is true. Since @ is false, we have that (P = A) = @
is false.

(c) (P=A)= B;
SOLUTION: Since B is true, (P = A) = B is true.

#2: Make truth tables for each of the following propositional forms:
(a) (RVS)=(RAS);

SOLUTION:
R S RVS RAS (RVS)=(RAS)
T T T T T
T F T F F
F T T F F
F F F F T
(b) RV (SAT).
SOLUTION:
TR S T SAT RV(SAT)T
T T T T T
T T F F T
T F T F T
T F F F T
F T T T T
F T F F F
F F T F F
lF F F F F i

—



#3 Prove that (~ R) V S is equivalent to ~ (~ S A R).

SOLUTION: We will show that the truth tables are the same.

R S ~R ~S (~R)VS (~SAR) ~(~SAR)
T T F F T F T
T F F T F T F
F T T F T F T
F F T T T F T

Since the columns headed (~ R)V .S and ~ (~ SAR) are the same, the two propositional
forms are equivalent.

#4 Is each of the following a tautology, a contadiction, or neither?

(a) (P=Q)V(Q=P)
SOLUTION: The truth table for (P = Q) V (Q = P) is

P Q P=>Q Q—P (P=QV(Q=P)
T T T T T
T F F T T
FT T F T
F F T T T

This shows that (P = Q) V (Q = P) is always true, i.e., it is a tautology.
(b) (P = Q)N (Q=P).

SOLUTION: If P and @ are both true, this is true. If P is false and @ is true then
P = @ is true and Q = P is false, so that (P = Q) A (@ = P) is false. Thus the
propositional form is neither a tautology nor a contradiction.

(€) (P=Q)A(PA~Q)

SOLUTION: If P is false or if @ is true, then PA ~ @ is false and so (P = Q)A(PA ~ Q)
is false. Also, if P is true and @ is false, then P = @ is false and so (P = Q) A (PA ~ Q)
is false. Thus, in any case, (P = Q) A (PA ~ Q) is false, and so it is a contradiction.

#5 Prove that P = () is equivalent to ~ QQ =~ P.

SOLUTION: We will show that the truth tables are the same.



P Q P=Q ~Q ~P ~Q=~P
T T T F F T
T F F T F F
F T T F T T
F F T T T T

Since the coulmns headed P = ) and ~ Q =~ P are the same, the two propositional
forms are equivalent.

#6 Which of the following statements are true, where the universe is the power set of
{1,2,3,4,5}? Why?
(a) (VA)(3B)(A € B);

SOLUTION: This is true. For example, we can take B = A.
(b) (VA)(3B)(A = B);

SOLUTION: This is true. We must take B = A.
(¢) (3A)(VB)(A € B);

SOLUTION: This is true. We must take A = ().
(d) (3A)(YB)(A = B);

SOLUTION: This is false, for if were true, taking B = {1} would imply A = {1} while
taking B = {2} would imply A = {2}.

#7 Prove that if n is an integer, the n? + 5n is an even integer.

SOLUTION: Since n is either even or odd, we can divide the proof into two cases.
Case I: n is even. Then n = 2k for some integer k and n?+5n = n(n+5) = (2k)(n+5) =
2(k(n +5)). Since k(n + 5) is an integer, this shows that n? + 5n is even.
Case II: n is odd. Then n = 2k + 1 for some integer k and so

n?+5n=n(n+5) =n2k+1+5)=n(2(k+3)) =2n(k +3).
Since n(k + 3)4 is an integer, n? + 5n is even.

#8 (a) Give a direct proof that that if n is a natural number then

n < n+1
n+1 n+2
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SOLUTION: We know that 0 < 1. Then n(n+2) = n?+2n = n?+2n+0 < n?+2n+1 =
(n + 1)2. Since n is a natural number, (n + 1)(n + 2) is a positive number. Thus

n n(n + 2) (n+1)2 n+1

n+1:(n+1)(n+2) (n+1)(n+2) n+2

(b) Give a proof by contradiction to show that if n is a natural number then

n <n+1
n+1 n+2

SOLUTION: Suppose the assertion is not true. Then

n < n+1
n+1 n+2

Multiplying both sides by (n + 1)(n + 2) (which is positive since n is a natural number),
we see that
nn+2) > (n+1)>%

Thus
n+2om>n’+2n+1

and so 0 > 1, a contradiction.

#9 Let A ={1,2,3,4,5,6,7,8,9}, B = {2,4,6,8,10},C = (1,5), and D = (3,7]. Find:
(a) A— B;

SOLUTION: {1,3,5,7,9}
(b) B — A;
SOLUTION: {10}
(c) AN B;
SOLUTION: {2,4,6,8}
(d) C' N D;
SOLUTION: (3,5)
(e) ~CND.



SOLUTION: [5,7]

(f) B.
SOLUTION: 5
() ﬁ (where P(B) denotes the power set of B).
SOLUTION: 2° = 32
(h) B—0.
SOLUTION: 5
(i) P(B) - 0.
SOLUTION: 2° —1 =31

#10 Let A, B, C be sets. Prove that AN (B—-C)=(ANB)—-C.

SOLUTION: Let z € AN(B—C). Thenx € Aandz € B—C. Thusz € A,z € B and
x ¢ C. Therefore z € AN B and, since x ¢ C, we have x € (AN B) — C. This shows that
AN(B-C)C(AnB)-C.

Now let z € (ANB)—C. Then x € ANB and z ¢ C. Thus x € A,z € B, and
x ¢ C. Thus x € B — C and, since € A we have x € AN (B — C). This shows that
(ANB) -~ CCAN(B-C).

Since we have proved both AN(B—-C) C (ANB)—Cand (ANB)-—C CAN(B-0),
we have AN(B—-C)=(ANnB)-C.

#11 Use the principle of mathematical induction to prove that for any natural number n
we have:

(a)

n

Z(Gk —2) =3n®+n.

k=1

SOLUTION: Let S = {n|>_}_,(6k —2) = 3n? + n}. We want to show that S = N. The
principle of mathematical induction says that if

(i) 1 € S and

(ii)) 1€ S)=(I+1€S) then S =N. We will verify (i) and (ii).

First we consider (i). Since Z,lgzl((ik —2) =4 and 3(12?) — 1 = 4, we see that (i) holds.



Now assue that [ € S. Then 22:1(6k¢ —2) = 31?2 + 1. Hence

I+1 l
D (6k—2)= () (6k—2)) + (6(I+1) —2) =31> + 1+ 6] +4 =
k=1 k=1

3PP +20+1)+1=3(1+1)*+1.

This shows that [+1 € S. Thus the principle of mathematical induction shows that S = N
and so we have Y, (6k — 2) = 3n? + n for all natural numbers n.

(b)

SOLUTION: Let § = {n|Y}_, k* = D" We want to show that S = N. The
principle of mathematical induction says that if
(i) 1 € S and
(ii) e S)=(l+1€8) then S = N. We will verify (i) and (ii).
First we consider (i). Since Zk, 1k’ =1and # = 2 =1, we see that (i) holds.
Now assue that [ € S. Then Zk:l = l2(l11)2. Hence
I+1 l
Z =0 k) +(1+1)°=
k=1
2(1+1)2 12

+(l+1)3:(l+1)2(z+(l+1)):

P+al+4, (I+1)2(1+2)2
)" 4 '
This shows that [4+1 € S. Thus the principle of mathematical induction shows that S = N
and so we have Y, n3 = M for all natural numbers n.
#12 Use the well-ordering principle to prove that for any natural number n > 3 there

are integers x and y such that

(1+1)*(

n = 2x + 5y.

SOLUTION: Let

S={neNjn>3n#2x+5y for any integers x,y}.
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We want to show that S = (). We will do this by contradiction. Thus we assume that
S # (). Then by the well-ordering principle, S contains a smallest element, say m. Now
m # 4, since 4 = 2(2) + 5(0) and 2 and 0 are integers. Also m # 5, since 5 = 2(0) + 5(1)
and 0 and 5 are integers. Thus m > 5som —2 > 3. But m —2 ¢ S since m is the smallest
element in S. Thus m —2 = 2x 4 5y for some integers = and y. But then m = 2(x+1)+5y.
Since .+ 1 and y are integers, this shows that m ¢ S. This contradiction shows that S # ()
is impossible. Thus S = () and the result is proved.

#13 Use the well-ordering principle to prove that any natural number n > 1 is a product of
prime numbers (that is, there is some natural number & and there are some prime numbers
ai,,,,.ar such that n = ajas...ax).

SOLUTION: Let S denote the set of all natural numbers n > 1 such that n is not a
product of primes. We want to show that S = (). We will do this by contradiction. Thus
we assume that S # (). Then by the well-ordering principle, S contains a smallest element,
say m. Then m cannot be a prime (for if it is, m = a; where a; is a prime so m ¢ S). Since
m is not prime, we can find natural numbers r and s such that r,s # 1 and r, s # m with
m =rs. Then r = <m and s = 7> < m. Thus, since m is the smallest element of S,
r,s ¢ S. But r,s # 1 sor,s > 1. Thus r must be a product of primes, say r = a;...a) for
some natural number k£ and some primes aq, ..., ax Also s must be a product of primes, say
s = by...by for some natural number ¢ and some primes by, ..., b;. Then m = aq...aby...b; is
a product of primes, so m ¢ S, a contradiction.

414 Suppose A =27, B=15,and ANB =8. Find AUB,A— Band B — A

SOLUTION:
AUB=A+B-ANB=27+15—8 = 34.
A-B=A-ANB=27—-8=19.
B-A=B-ANB=15-8=7

#15 (a) Suppose A= 6, and B = 11. How many functions from A to B are there? How
many one-to-one functions from A to B are there?

SOLUTION: There are 11° functions from A to B and (11)(10)(9)(8)(7)(6) of these

functions are one-to-one.



(b)_Suppose furth_er that A = A; U Ay with A:1 =4 and AZQ = 2 and that B = B; U By

with B; = 5 and By = 6. How many of the one-to-one functions from A to B satisfy
f(A1) € By and f(Az2) C Ba?

SOLUTION: ((5)(4)(3)(2))((6)(5))

#16 State the definitions of: the converse of a conditional sentence, the contrapositive of
a conditional sentence, a relation from A to B, the domain of the relation R, the range of
the relation R, a function from A to B, a function from A onto B, a one-to-one function
from A to B, a finite set, an infinite set,a denumerable set, a countable set, congruence
modulo n, an equivalence relation, a partial order, a total order.

SOLUTION: Here are page references to the text:

the converse of a conditional sentence and the contrapositive of a conditional sentence:
page 12

a relation from A to B: page 133,

the domain of the relation R and the range of the relation R: page 135

a function from A to B: page 179

a function from A onto B page 198

a one-to-one function from A to B: page 201

a finite set and an infinite set: page 224

a denumerable set: page 230

a countable set: page 232

congruence modulo n page 248

an equivalence relation: page 147, though this uses terms defined on page 145

a partial order: page 161

a total order: page 165

#17 Suppose a relation R from a set A to itself is both an equivalence relation and a
partial order. What is R?

SOLUTION: Since R is reflexive, we have aRa for every a € A. Suppose a,b € A and
aRb. Then, since R is symmetric, we have bRa and, since R is antisymmetric we have

a=>. Thus R = {(a,a)la € A}.

#18 Let R = {(n,n?)|n € Z} which is a relation from Z to Z. What is the inverse relation?

SOLUTION: The inverse relation is {(n?,n)|n € Z}. Note that this is not a function.

#19 Prove that congruence modulo n is an equivalence relation on the set of integers and
describe the corresponding partition.
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SOLUTION: For any integer a we have a — a = 0 = n0. Thus n divides a — a and so
a =, a. Thus =, is reflexive. If a =,, b then n divides a — b so a — b = nk for some integer
k. Then b—a = n(—k) and, since —k is an integer, we have b =, a. Thus =,, is symmetric.
Finally, suppose a =, b and b =,, ¢. Then n divides a — b and b — ¢ so there are integers k
and [ such that a—b = nk and b—c =nl. Thena—c = (a—b)+(b—c) = nk+nl = n(k+1).
Since k + [ is an integer, n divides a — ¢ so a =, ¢. Thus =, is transitive and so it is an
equivalence relation.

Now let a € Z. Then there are integers ¢ and r with 0 < r < n such that a = nqg + r.
Then a—r = ng so n divides a—r. Thus a =,, r. Thus every integer is congruent modulo n
to one of the integers 0, 1, ...,n—1. Now the equivalence class of r is r/ =,= {r+nq|q € Z}.
Note that if 0 < r < s < n then 0 < s —r < n and so n does not divide s — r which
means that r and s are not congruent modulo n. Thus (r/ =,) N (s/ =,) = (. Hence the
partition of Z corresponding to =, is

{nqlg e Z}y U{l+nqlge Z}U...U{(n— 1)+ nqglq € Z}.

#20 (a) Define a relation R on the integers by aRb if and only if a? < b. Is R a partial
order? Why or why not? Is it a total order?

SOLUTION: Note that (—1)2 > —1 so (—=1,—1) ¢ R. Thus R is not reflexive so it is not
a partial order (and so can’t be a total order).

(b) Define a relation S on the integers by aSb if and only a? =,, b where n is a natural
number. Suppose that S is an equivalence relation. What can you say about n.

SOLUTION: Since S is an equivalence relation, it must be reflexive. Thus, in particular,
(-1)S(-1) and so n divides (—1)? — (—=1) = 2. Thus n = 1 or n = 2. Note that in either of
these cases S is an eqiuvalence relation, for if n = 1 then aSb for all integers a and b (so
S is reflexive, symmetric and transitive) while if n = 2 we have aSb if and only if a and b
have the same parity so .S is just congruence modulo 2.

#21 Let f{(z,2%)|z € R} and g(x) = {(,|z| — 1)|x € R}. These are two functions from
R to R.
(a) Find the domain of fog and of go f.

SOLUTION: The domain of f and the domain of g are both R so the domain of fog
and the domain of g o f are both R.

(b) Let h be a function from R to R. Prove that h is one-to-one if and only if f o h is
one-to-one and is onto if and only if f o h is onto.

SOLUTION: Note that f is one-to-one and onto. Let a,b € R. Then, since f is one-to-
one, h(a) = h(b) if and only if f(h(a)) = f(h(b)). But f(h(a)) = f o h(a) and f(h(b)) =
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foh(b). Thus h(a) = h(b) if and only if f o h(a) = f o h(b), showing that h is one-to-one
if and only if f o h is one-to-one.

Since f is onto, for any a € R there is some b € R such that f(b) = a. Suppose h is
onto. Then there is some ¢ € R such that h(c) = b. But then a = f(b) = f(h(c)) = foh(c)
so foh is onto. Conversely, suppose foh is onto. Then for any a € R there is some d € R
such that a = f o h(d). Then a = f(h(d), so f is onto.

#22 Let A and B be countable sets. Prove that AU B and A x B are countable.

SOLUTION: See the proof of Theorem 5.26 for AU B. Now for b € B note that A x {b}
is a subset of A x B which is equivalent to A (for the function g from A to A x {b} defined
by g(a) = (a,b) is one-to-one and onto). Thus A x B = Upcp A x {b} is a countable union
of countable sets. If B is finite then the argument of Theorem 5.26 shows that A x B is
countable. If A is finite, interchange the roles of A and B and use the arguent of Theorem
5.26 again. If A and B are both denumberable, use the arguent of Theorem 5.28.

#23 Prove that N is not finite.

SOLUTION: Suppose N is finite. Then it is equivalent to either () or to N} for some
natural number k. Since N is not empty, it cannot be equivalent to (). Thus for some
natural number k£ there must be an one-to-one onto function f from Ni to N. Then
f()+ f(2)+...+ f(k)+1 is an natural number, so it must equal f(j) for some 5,1 < j < k.
Then f(1)+ ...+ f(j—1)+ f(j+1)+...+ f(k) + 1 = 0. But this number is greater than
or equal to 1, a contradiction. Thus N cannot be finite.

#24 (a) Let (x1,x2,...) be a sequence of real numbers and L be a real number. State the
definition of lim,,— Ty = L.

SOLUTION: See page 215.

(b) Find

, n?+1
llmn_,oo ﬁ

and prove your assertion using your definition from part (a). (If you want to, you may
use (without proving it) the following fact: given any real number r there is some natural
number K such that K > r.)

SOLUTION: We will show that

2
) n°+1
llmn*,ooﬁ = 1



11
Let € > 0 be given. Now

n?+1 1‘_’712—1—1 n2—1‘_’ 2 |
n?—1 S n2—1 n2-1"" 'm2-1"

Now whenever n > 1 we have n2 — 1 > n. Then if N is a natural number with N > % and
n > N we have

2
n?—1>n>N> "=
€

and so
- 2 | 2 | |n2+1 N
6 = g J—
n?—1 n?—1 n?—1
proving that
2
1
limn_,oonzizl.
nc —1

(c) Show that the sequence given by x,, = cos(nm) diverges.

SOLUTION: Note that cos(nm) = (—1)™. Suppose lim,_—o(—1)" = L. Then we can
find some integer natural number N so that for any natural number n > N we have

1
)" —-Ll < =.
(=) =Ll < 5

But there are both even and odd natural numbers greater than IV, so we have both |[1—L| <
+ (which implies L > 0) and | — 1 — L| < 5 (which implies L < 0). Thus the assumption
that the sequence converges leads to a contradiction, so the series must diverge.

#25 Arrange the following cardinal number in order:

{m,e,—1},Q,N,P({1,2,3}),R,N x N,Z x N,N3, Ny.
SOLUTION:

3={me —1}]=N3<4=N,<8=P({1,2,31) < Q=

N=NxN=ZxN<R.



