MATH 350, Section 01 - Spring 2008 - Review Problems (corrected as of May 7)

Problems 9,16,18 and 19 have been corrected since the original posting.

#1 Let $S = \{w_1, ..., w_k\}$ be an orthogonal set of nonzero vectors. Prove that S is linearly independent.

#2 Let V be a finite-dimensional vector space and let U and W be subspaces of V. Prove that

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W).$$

#3 Let

$$\beta = \{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$

and

$$\gamma = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \}.$$

These are two ordered bases for $M_{2\times 2}(\mathbf{R})$. Let

$$T: M_{2\times 2}(\mathbf{R}) \to M_{2\times 2}(\mathbf{R})$$

be the linear transformation defined by

$$T(A) = A + A^t.$$

- (a) Find $[T]_{\beta}$.
- (b) Find $[T]_{\gamma}$.
- (c) Find the change of basis matrix from β to γ .
- (d) Find the change of basis matrix from γ to β .
- (e) Explain how your answers to (a) (d) are related.

#4 (a) Is the set of vectors $\left\{\begin{bmatrix}1\\-1\\2\end{bmatrix},\begin{bmatrix}1\\0\\3\end{bmatrix},\begin{bmatrix}3\\-1\\8\end{bmatrix}\right\}$ in \mathbf{R}^3 linearly independent? Why or why not?

(b) Is the vector
$$\begin{bmatrix} 1 \\ -2 \\ 3 \\ -2 \end{bmatrix}$$
 in $Span\{\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ -1 \\ 1 \end{bmatrix}\}$? Why or why not?

(c) Does the set of vectors
$$\left\{\begin{bmatrix}1\\1\\1\\1\end{bmatrix},\begin{bmatrix}1\\0\\1\\0\end{bmatrix},\begin{bmatrix}1\\2\\4\\8\end{bmatrix},\begin{bmatrix}1\\-2\\4\\4\end{bmatrix}\right\}$$
 span \mathbf{R}^4 ? Why or why not #5 Let

$$A = \begin{bmatrix} 1 & 3 & -1 & -1 & -1 \\ 1 & 2 & 0 & 1 & -1 \\ 2 & 5 & -1 & 0 & -2 \\ 2 & 3 & 1 & 4 & -1 \end{bmatrix}.$$

- (a) Find the reduced row echelon form for A
- (b) Find a basis for the null space $N(L_A)$
- (c) Find a basis for Col A
- (d) Find a basis for $Row\ A$

#6 Let
$$P = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$
. Find P^{-1} .

#7 Let $A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{bmatrix}$.

- (a) Find all eigenvalues for A and find a basis for each eigenspace.
- (b) Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- #8 (a) Compute $\det A$ if

$$A = \begin{bmatrix} 1 & -1 & -1 & -2 \\ 1 & -2 & 1 & 4 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 3 \end{bmatrix}$$

(b) Compute det B if

$$B = \begin{bmatrix} 0 & 0 & 0 & 0 & 5 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix}$$

#9 Suppose A is a 5 by 6 matrix over \mathbf{R} and let R be the reduced row echelon form of A. Suppose that the columns of R form an orthogonal set. Prove that some column of A is 0.

#10 Let
$$W = Span(\begin{bmatrix}1\\1\\0\\1\end{bmatrix},\begin{bmatrix}2\\3\\1\\1\end{bmatrix},\begin{bmatrix}3\\1\\1\\-1\end{bmatrix})$$
, a subspace of \mathbf{R}^4 .

- a) Use the Gram-Schmidt procedure to find an orthogonal basis for W.
- b) Find an orthonormal basis β for W.
- c) Express $\begin{bmatrix} 9\\2\\2\\-2 \end{bmatrix}$ as a linear combination of the elements of β .
- #11 Let T be the linear operator on $P_3(\mathbf{R})$ defined by

$$T(f) = xf''$$
.

(Here $f = f(x) \in P_2(\mathbf{R})$, f' denotes the derivative of f, and f'' denotes the second derivative of f.) Let W be the T-cyclic subspace of $P_3(\mathbf{R})$ generated by x^3 .

- (a) Find a basis for W.
- (b) Find the characteristic polynomial of T_W , the restriction of T to W.
- #12 Let A be a 9 by 9 matrix with eigenvalues 1, 2 and 3. Suppose

$$rank(A - I) = 7, rank(A - I)^2 = 6, rank(A - I)^3 = 5, rank(A - I)^4 = 5;$$

$$rank(A - 2I) = 8, rank(A - 2I)^2 = 8;$$

$$rank(A - 3I) = 7.$$

Find all possible Jordan canonical forms of A. (There is more than one.)

#13 Suppose A has reduced row echelon form

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Let a_i denote the *i*-th column of A and suppose

$$a_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 3 \end{bmatrix}, a_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, a_5 = \begin{bmatrix} 2 \\ 2 \\ -1 \\ 2 \end{bmatrix}.$$

Find A. #14 Find all values of a such that the following system of linear equations has a solution. Then, for each such a, find all of the solutions.

$$x_1 + x_2 + x_3 + x_4 = 2$$

$$x_1 + 3x_2 + x_3 + x_4 = 4$$

$$2x_2 + x_3 - x_4 = a$$

$$x_1 + 3x_2 + 2x_3 = 2a$$

#15 Let A be an m by n matrix over a field F. Assume that, for any $b \in F^m$, the equation Ax = b has a unique solution. Prove that m = n.

#16 Let A be an 5 by 3 matrix over \mathbf{R} . Let b and c be two vectors in \mathbf{R}^5 . Assume that $\begin{bmatrix} -1\\3\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$ are solutions of Ax=b and that $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ is a solution of Ax=c. Find infinitely many solutions of Ax=2b+c.

#17 Let

Find an orthogonal matrix P and a diagonal matrix D such that such that

$$P^tAP = D.$$

#18 Let T be a self-adjoint linear transformation from \mathbb{R}^4 to \mathbb{R}^4 with exactly 3 eigenvalues: 0, 1, and 2. Suppose that

$$T\left(\begin{bmatrix}1\\1\\2\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\\2\\1\end{bmatrix},$$

$$T(\begin{bmatrix} 1\\-2\\0\\1 \end{bmatrix}) = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix},$$

and

$$T(\begin{bmatrix} -4\\-2\\3\\0 \end{bmatrix}) = 2 \begin{bmatrix} -4\\-2\\3\\0 \end{bmatrix}.$$

Suppose that

$$\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

is an eigenvector for T. What is the characteristic polynomial of T?

#19 Let $V = P_2(\mathbf{C})$. Define

$$\langle f,g \rangle = \int_0^1 f(t)g(t)dt.$$

Find an orthonormal basis for V.

#20 State the definitions of: an inner product space, the orthogonal complement of a subspace, the projection of a vector u on the line through a vector v, the adjoint of a linear transformation, a self-adjoint matrix, an orthogonal matrix, an orthonormal set, the generalized eigenspace corresponding to an eigenvalue λ . You should also be able state definitions of any of the terms listed in the previous review sheets.

#21 Let T be a linear transformation from a vector space V to V. let K_{λ} denote the generalized eigenspace of T corresponding to an eigenvalue λ .

- (a) Show that K_{λ} is a T invariant subspace of V.
- (b) Show that if $\mu \neq \lambda$ then the restriction of $T \mu I$ to $K\lambda$ is invertible.
- (c) If the distinct eigenvalues of T are $\lambda_1, ..., \lambda_k$ show that

$$V = K_{\lambda_1} \oplus \ldots \oplus K_{\lambda_k}.$$

#22 Let W denote the subspace of \mathbb{R}^5 spanned by

$$\left\{ \begin{bmatrix} 1\\2\\1\\-3\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1\\-1\\1 \end{bmatrix} \right\}.$$

Find a basis for W^{\perp} .