## MATH 350, Section 01 - Spring 2008 - Solutions to review Problems - corrected May 7

#1 Let  $S = \{w_1, ..., w_k\}$  be an orthogonal set of nonzero vectors. Prove that S is linearly independent.

**Solution:** Suppose  $0 = a_1w_1 + ... + akw_k$  for some  $a_1, ..., a_k \in F$ . Then for each  $i, 1 \le i \le k$ ,

$$0 = <0, w_i> = < a_1w_1 + ... + akw_k, W_i> = a_1 < w_1, w_i> + ... + a_k < w_k, w_i>...$$

Since S is orthogonal,  $\langle w_j, w_i \rangle = 0$  for all  $j \neq i$ . Thus

$$0 = a_i < w_i, w_i > .$$

Since  $w_i \neq 0$  we have  $\langle w_i, w_i \rangle \neq 0$  and so  $a_i = 0$ . Since this is true for all  $i, 1 \leq i \leq k$ , S is linearly independent.

#2 Let V be a finite-dimensional vector space and let U and W be subspaces of V. Prove that

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W).$$

**Solution:** Let  $X = \{x_1, ..., x_l\}$  be a basis for  $U \cap W$ . Then we may extend X to a basis  $\{x_1, ..., x_l, y_1, ..., y_m\}$  for U and we may also extend X to a basis  $\{x_1, ..., x_l, z_1, ..., z_n\}$  for W.

We claim that  $\{x_1, ..., x_l, y_1, ..., y_m, z_1, ..., z_m\}$  is a basis for U + W.

We will first show that this set is linearly independent. Suppose

$$a_1x_1 + \dots + a_lx_l + b_1y_1 + \dots + b_my_m + c_1z_1 + \dots + c_nz_n = 0$$

for some  $a_1, ..., a_l, b_1, ..., b_m, c_1, ..., c_n \in F$ . Then

$$a_1x_1 + \dots + a_lx_l + b_1y_1 + \dots + b_my_m = -(c_1z_1 + \dots + c_nz_n).$$

Now the vector on the right-hand side of this equation is in U and the vector on the left-hand side of the equation is in W. Since these vectors are equal we have

$$a_1x_1 + \dots + a_lx_l + b_1y_1 + \dots + b_my_m \in U \cap W.$$

But X is a basis for  $U \cap W$  and so

$$a_1x_1 + \dots + a_lx_l + b_1y_1 + \dots + b_my_m = d_1x_1 + \dots + d_lx_l$$

for some  $d_1, ..., d_l \in F$ . Then

$$(a_1 - d_1)x_1 + \dots + (a_l - d_l)x_l + b_1y_1 + \dots + b_my_m = 0$$

and, since  $\{x_1,...,x_l,y_1,...,y_m\}$  is linearly independent we have  $b_1=...=b+m=0$ . Thus

$$a_1x_1 + \dots + a_lx_l + c_1z_1 + \dots + c_nz_n = 0$$

and, since  $\{x_1, ..., x_l, z_1, ..., z_n\}$  is linearly independent, we have  $a_1 = ... = a_l = c_1 = ... = c_n = 0$ . This shows that  $\{x_1, ..., x_l, y_1, ..., y_m, z_1, ..., z_m\}$  is linearly independent.

Now we show that  $\{x_1, ..., x_l, y_1, ..., y_m, z_1, ..., z_m\}$  spans U + W. Let  $v \in U + W$ . Then  $v = u + w, u \in U, w \in W$ . Since  $\{x_1, ..., x_l, y_1, ..., y_m\}$  is a basis for U, we have

$$u = a_1x_1 + \dots + a_lx_l + b_1y_1 + \dots + b + my_m$$

for some  $a_1, ..., a_l, b_1, ..., b_m \in F$ . Similarly, since  $\{x_1, ..., x_l, z_1, ..., z_n\}$  is a basis for W, we have

$$w = c_1 x_1 + \dots + c_l x_l + d_1 z_1 + \dots + d_n z_n$$

for some  $c_1, ..., c_l, d_1, ..., d_n \in F$ . Then

$$v = u + w = (a_1 + c_1)x_1 + \dots + (a_l + c_l)x_l + b_1y_1 + \dots + b_my_m + d_1z_1 + \dots + d_nz_n.$$

Thus  $v \in Span\{x_1, ..., x_l, y_1, ..., y_m, z_1, ..., z_m\}$ .

Now we can prove the dimension forumla. We have that dim(U+W) = l+m+n, dim(U) = l+m, dim(W) = l+n, and  $dimU \cap W) = l$ . Thus  $dim(U) + dim(W) - dim(U \cap W) = l+m+l+n-l=l+m+n=dim(U+W)$  as required.

#3 Let

$$\beta = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$

and

$$\gamma = \{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \}.$$

These are two ordered bases for  $M_{2\times 2}(\mathbf{R})$ . Let

$$T: M_{2\times 2}(\mathbf{R}) \to M_{2\times 2}(\mathbf{R})$$

be the linear transformation defined by

$$T(A) = A + A^t.$$

- (a) Find  $[T]_{\beta}$ .
- (b) Find  $[T]_{\gamma}$ .
- (c) Find the change of basis matrix from  $\beta$  to  $\gamma$ .
- (d) Find the change of basis matrix from  $\gamma$  to  $\beta$ .
- (e) Explain how your answers to (a) (d) are related.

Solution: Write

$$w_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, w_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, w_3 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, w_4 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$

and

$$v_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, v_4 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

With this notation we have:

(a) 
$$T(w_1) = 2w_1, T(w_2) = 2w_2, T(w_3) = w_2 - w_4, T(w_4) = 2w_4$$
. Thus

$$[T]_{\beta} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

(b) 
$$T(v_1) = 2v_1, T(v_2) = 2v_2, T(v_3) = v_3 + v_4, T(v_4) = v_3 + v_4$$
. Thus

$$[T]_{\gamma} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

(c) 
$$w_1 = v_2 + v_3 + v_4$$
,  $w_2 = (\frac{1}{2})v_1 + (\frac{1}{2})v_2 + v_3 + v_4$ ,  $w_3 = (\frac{1}{2})v_1 + (\frac{1}{2})v_2 + v_3$ ,  $w_4 = (\frac{1}{2})v_1 + (\frac{1}{2})v_2$ . Thus

$$[I]_{\beta}^{\gamma} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}.$$

(d) 
$$v_1 = -w_1 + w_2 + w_4, v_2 = w_1 - w_2 + w_4, v_3 = w_3 - w_4, v_4 = w_2 - w_3$$
. Thus

$$[I]_{\gamma}^{\beta} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & -1 & 0 \end{bmatrix}.$$

(e) 
$$([I]_{\gamma}^{\beta})^{-1} = [I]_{\beta}^{\gamma} \text{ and } T_{\beta} = [I]_{\gamma}^{\beta} [T]_{\gamma} [I]_{\beta}^{\gamma}.$$

#4 (a) Is the set of vectors  $\left\{\begin{bmatrix}1\\-1\\2\end{bmatrix},\begin{bmatrix}1\\0\\3\end{bmatrix},\begin{bmatrix}3\\-1\\8\end{bmatrix}\right\}$  in  $\mathbf{R}^3$  linearly independent? Why or why not?

(b) Is the vector 
$$\begin{bmatrix} 1 \\ -2 \\ 3 \\ -2 \end{bmatrix}$$
 in  $Span\{\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ -1 \\ 1 \end{bmatrix}\}$ ? Why or why not?

(c) Does the set of vectors 
$$\left\{\begin{bmatrix}1\\1\\1\\1\end{bmatrix},\begin{bmatrix}1\\0\\1\\0\end{bmatrix},\begin{bmatrix}1\\2\\4\\8\end{bmatrix},\begin{bmatrix}1\\-2\\4\\4\end{bmatrix}\right\}$$
 span  $\mathbf{R}^4$ ? Why or why not

Solution: (a) The matrix

$$\begin{bmatrix}
 1 & 1 & 3 \\
 -1 & 0 & -1 \\
 2 & 3 & 8
 \end{bmatrix}$$

has row echelon form

$$\begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

and hence has rank 2. Thus the set of vectors is not linearly independent.

(b) The augmented matrix

$$\begin{bmatrix} 1 & 1 & 3 & 1 \\ -1 & -2 & -3 & -2 \\ -1 & 0 & -1 & 3 \\ 1 & 1 & 1 & -2 \end{bmatrix}$$

has row echelon form

$$\begin{bmatrix} 1 & 1 & 3 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Since the last column does not contain an initial 1, the the vector  $\begin{bmatrix} 1 \\ -2 \\ 3 \\ -2 \end{bmatrix}$  is in  $Span\{\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ -1 \\ 1 \end{bmatrix}$ 

(c) The matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & -2 \\ 1 & 1 & 4 & 4 \\ 1 & 0 & 8 & 4 \end{bmatrix}$$

has row echelon form

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & -3 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and hence has rank 3. Thus the given set does not span  $\mathbb{R}^4$ .

#5 Let

$$A = \begin{bmatrix} 1 & 3 & -1 & -1 & -1 \\ 1 & 2 & 0 & 1 & -1 \\ 2 & 5 & -1 & 0 & -2 \\ 2 & 3 & 1 & 4 & -1 \end{bmatrix}.$$

- (a) Find the reduced row echelon form for A
- (b) Find a basis for the null space  $N(L_A)$
- (c) Find a basis for  $Col\ A$
- (d) Find a basis for  $Row\ A$

Solution: (a) The reduced row echelon form is

$$R = \begin{bmatrix} 1 & 0 & 2 & 5 & 0 \\ 0 & 1 & -1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

(b) If 
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$
, and  $0 = Ax$  then

$$0 = Rx = \begin{bmatrix} x_1 + 2x_3 + 5x_4 \\ x_2 - x_3 - 2x_4 \\ x_5 \\ 0 \end{bmatrix}.$$

Thus

$$x_1 = -2x_3 - 5x_4,$$

$$x_2 = x_3 + 2x_4,$$

$$x_3 = x_3,$$

$$x_4 = x_4,$$

and

$$x_5 = 0.$$

Then

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -5 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

and so

$$\left\{ \begin{bmatrix} -2\\1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -5\\2\\0\\1\\0 \end{bmatrix} \right\}$$

is a basis for  $N(L_A)$ .

(c) The columns of R containing an initial 1 are the first, second and fifth columns. The corresponding column for A form a basis for Col(A), so

$$\left\{ \begin{bmatrix} 1\\1\\2\\2\\2 \end{bmatrix}, \begin{bmatrix} 3\\2\\5\\3 \end{bmatrix}, \begin{bmatrix} -1\\-1\\-2\\-1 \end{bmatrix} \right\}$$

is a basis for  $Col\ A$ .

(d) The nonzero rows for R form a basis for  $Row\ A$ . Thus

$$\{[1 \ 0 \ 2 \ 5 \ 0], [0 \ 1 \ -1 \ -2 \ 0], [0 \ 0 \ 0 \ 0 \ 1]\}$$

is a basis for  $Row\ A$ .

#6 Let 
$$P = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$
. Find  $P^{-1}$ .

Solution: Applying elementary row operations

$$\begin{bmatrix} 1 & 1 & 2 & | & 1 & 0 & 0 \\ -1 & 1 & -1 & | & 0 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 2 & 1 & | & 1 & 1 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \\ 0 & 2 & 1 & | & 1 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \\ 0 & 2 & 1 & | & 1 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 0 & 1 \\ 0 & 0 & -1 & | & 1 & 1 & -2 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 & 0 & | & 3 & 2 & -4 \\ 0 & 1 & 0 & | & 1 & 1 & -1 \\ 0 & 0 & 1 & | & -1 & -1 & 2 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 & | & 2 & 1 & -3 \\ 0 & 1 & 0 & | & 1 & 1 & -1 \\ 0 & 0 & 1 & | & -1 & -1 & 2 \end{bmatrix}.$$

Thus

$$P^{-1} = \begin{bmatrix} 2 & 1 & -3 \\ 1 & 1 & -1 \\ -1 & -1 & 2 \end{bmatrix}.$$

#7 Let 
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

- (a) Find all eigenvalues for A and find a basis for each eigenspace.
- (b) Find an invertible matrix P and a diagonal matrix D such that  $P^{-1}AP = D$ .

Solution: (a)  $det(A - \lambda I) =$ 

$$\det\begin{bmatrix} 3-\lambda & 1 & -1\\ 1 & 3-\lambda & -1\\ 0 & 1 & 1-\lambda \end{bmatrix} = (3-\lambda)^2(1-\lambda) - 1 - 1 + (3-\lambda) + (3-\lambda) - (1-\lambda) =$$

$$(3-\lambda)^2(1-\lambda) + (3-\lambda) = (3-\lambda)((3-\lambda)(1-\lambda) + 1) =$$

$$(3-\lambda)(\lambda^2 - 4\lambda + 4) = (3-\lambda)(2-\lambda)^2.$$

Thus the eigenvalues are 2 and 3. Now

$$E_2 = N(\begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix}) = N(\begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Thus  $E_2$  has basis

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}.$$

Also

$$E_3 = N(\begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & -2 \end{bmatrix}) = N(\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}).$$

thus  $E_3$  has basis

$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}.$$

(b) We may take 
$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 and  $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .

#8 (a) Compute det A if

$$A = \begin{bmatrix} 1 & -1 & -1 & -2 \\ 1 & -2 & 1 & 4 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 3 \end{bmatrix}$$

(b) Compute det B if

$$B = \begin{bmatrix} 0 & 0 & 0 & 0 & 5 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix}$$

Solution: (a)

$$det(A) = det \begin{bmatrix} 1 & -1 & -1 & -2 \\ 0 & -1 & 2 & 6 \\ 0 & 2 & 2 & 3 \\ 0 & 1 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & -2 \\ 0 & -1 & 2 & 6 \\ 0 & 0 & 6 & 15 \\ 0 & 0 & 2 & 11 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & -2 \\ 0 & -1 & 2 & 6 \\ 0 & 0 & 6 & 5 \\ 0 & 0 & 0 & 6 \end{bmatrix} = -36.$$

vskip 6 pt (b) Expanding along the first row gives

$$det(B) = 5det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = 5.$$

#9 Suppose A is a 5 by 6 matrix over  $\mathbf{R}$  and let R be the reduced row echelon form of A. Suppose that the columns of R form an orthogonal set. Prove that some column of A is 0.

**Solution:** If the columns of R are all nonzero, then the set of columns of R, being an orthogonal set of nonzero vectors, is a linearly independent set. But there are six columns of R and these columns are in the 5-dimensional space  $\mathbb{R}^5$ . Thus the set of columns of R cannot be linearly independent and so some column of R must be 0. But then the corresponding column of R must be 0.

The problem was originally stated as "Suppose A is a 5 by 6 matrix over  $\mathbf{R}$  and let R be the reduced row echelon form of A. Suppose that the columns of R form an orthogonal set. Prove that some column of A is 0." This is actually easier since the argument given above for R can be applied directly to A.

#10 Let 
$$W = Span(\begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix})$$
, a subspace of  $\mathbf{R}^4$ .

(a) Use the Gram-Schmidt procedure to find an orthogonal basis for W.

- (b) Find an orthonormal basis  $\beta$  for W.
- (c) Express  $\begin{bmatrix} 9\\2\\2\\-2 \end{bmatrix}$  as a linear combination of the elements of  $\beta$ .

**Solution:** (a) Let  $v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$ ,  $v_2 = \begin{bmatrix} 2 \\ 3 \\ 1 \\ 1 \end{bmatrix}$ ,  $v_3 = \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix}$ ). Then applying the Gram-Schmidt

procedure we get an orthogonal basis  $\{w_1, w_2, w_3\}$  for W where

$$w_1 = v_1,$$

$$w_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 = \begin{bmatrix} 2\\3\\1\\1 \end{bmatrix} - 2 \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\1\\1\\-1 \end{bmatrix},$$

$$w_3 = v_3 - \frac{\langle v_3, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_3, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 = \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 3 \\ 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \\ -1 \end{bmatrix}.$$

(b) Dividing each of the  $w_i$  by its length we get that

$$\left\{ \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \frac{1}{\sqrt{3}} \begin{bmatrix} 0\\1\\1\\-1 \end{bmatrix}, \frac{1}{\sqrt{6}} \begin{bmatrix} 2\\-1\\0\\-1 \end{bmatrix} \right\}$$

is an orthonormal basis for W.

(c) If v is any vector in W, then  $v = \frac{\langle v, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 + \frac{\langle v, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 + \frac{\langle v, w_3 \rangle}{\langle w_3, w_3 \rangle} w_3$ . Applying this to the given vector we get

$$\begin{bmatrix} 9 \\ 2 \\ 2 \\ -2 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 1 \\ -1 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ -1 \\ 0 \\ -1 \end{bmatrix}.$$

#11 Let T be the linear operator on  $P_3(\mathbf{R})$  defined by

$$T(f) = xf''.$$

(Here  $f = f(x) \in P_2(\mathbf{R})$ , f' denotes the derivative of f, and f'' denotes the second derivative of f.) Let W be the T-cyclic subspace of  $P_3(\mathbf{R})$  generated by  $x^3$ .

- (a) Find a basis for W.
- (b) Find the characteristic polynomial of  $T_W$ , the restriction of T to W.

**Solution:** (a)  $T(x^3) = x(6x) = 6x^2, T(6x^2) = x(12) = 12x, T(12x) = x(0) = 0$ . Thus  $\{x^3, 6x^2, 12x\}$  is a basis for  $T_W$ .

(b) The matrix of  $T_W$  with respect to the basis found in part (a) is  $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ . Thus the characteristic polynomial of  $T_W$  is

$$\det \begin{bmatrix} -\lambda & 0 & 0 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda \end{bmatrix}.$$

Since this matrix is lower triangular, its determinant is the product of the diagonal entries. Thus the characteristic polynomial of  $T_W$  is  $-\lambda^3$ .

#12 Let A be a 9 by 9 matrix with eigenvalues 1, 2 and 3. Suppose

$$rank(A - I) = 7, rank(A - I)^2 = 6, rank(A - I)^3 = 5, rank(A - I)^4 = 5;$$
  

$$rank(A - 2I) = 8, rank(A - 2I)^2 = 8;$$
  

$$rank(A - 3I) = 7.$$

Find all possible Jordan canonical forms of A. (There is more than one.)

**Solution:** First consider the eigenvalue 1. We have

$$nullity(A - I) = 2$$
,  $nullity(A - I)^2 = 3$ ,  $nullity(A - I)^3 = 4$ ,  $nullity(A - I)^4 = 4$ .

Thus

$$nullity(A - I) = 2, nullity(A - I)^{2} - nullity(A - I) = 1,$$
$$nullity(A - I)^{3} - nullity(A - I)^{2} = 1, nullity(A - I)^{4} - nullity(A - I)^{3} = 0.$$

Thus the dot diagram for the eigenvalue 1 is

• • .

Thus there are blocks of size 3 and 1 with eigenvalue 1. Note that this means that  $dim(K_1) = 4$ .

Now consider the eigenvalue 2. We have

$$nullity(A - 2I) = 1, nullity(A - 2I)^2 = 1.$$

Thus

$$nullity(A - 2I) = 1$$
,  $nullity(A - 2I)^2 - nullity(A - 2I) = 0$ .

Thus the dot diagram for the eigenvalue 2 is

•

Thus there is a single block of size 1 with the eigenbalue 2. Note that this means that  $dim(K_2) = 1$ .

Finally consider the eigenvalue 3. We have  $dim(K_3) = 9 - dim(K_1) - dim(K_2) = 9 - 4 - 1 = 4$ . Also nullity(A - 3I) = 2 and so the first row of the dot diagram must contain two dots. Now the number of dots in the diagram must be the dimension of  $K_3$ , i.e., it must be 4 Thus there are two possible dot diagrams:

• •

and

• •

There are then two possible Jordan canonical forms for A. The first has diagonal blocks

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, [1], [2], \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix},$$

and the second has diagonal blocks

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, [1], [2], \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}, [3].$$

#13 Suppose A has reduced row echelon form

$$\begin{bmatrix} 1 & 2 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Let  $a_i$  denote the *i*-th column of A and suppose

$$a_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 3 \end{bmatrix}, a_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, a_5 = \begin{bmatrix} 2 \\ 2 \\ -1 \\ 2 \end{bmatrix}.$$

Find A.

**Solution:** Let R denote the reduced row echelon form and let  $r_i$  denote the i-th column of

R. Then 
$$r_2 = 2r_1, r_4 = r_1 + r_3, r_6 = -r_1 + 3r_3 - r_5$$
. Since the columns of  $A$  satisfy the same relations we have  $a_2 = 2a_1 = \begin{bmatrix} 2 \\ -1 \\ 4 \\ 6 \end{bmatrix}, a_3 = a_4 - a_1 = \begin{bmatrix} -1 \\ 2 \\ -1 \\ -3 \end{bmatrix}, a_6 = -a_1 + 3a_3 - a_5 = \begin{bmatrix} -3 \\ 2 \\ 2 \\ -5 \end{bmatrix}$ .

Thus

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 & 2 & -6 \\ -1 & -2 & 2 & 1 & 2 & 5 \\ 2 & 4 & -1 & 1 & -1 & -4 \\ 3 & 6 & -3 & 0 & 2 & -14 \end{bmatrix}.$$

#14 Find all values of a such that the following system of linear equations has a solution. Then, for each such a, find all of the solutions.

$$x_1 + x_2 + x_3 + x_4 = 2$$

$$x_1 + 3x_2 + x_3 + x_4 = 4$$

$$2x_2 + x_3 - x_4 = a$$

$$x_1 + 3x_2 + 2x_3 = 2a$$

**Solution:** The augmented matrix of the system is

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 1 & 3 & 1 & 1 & 4 \\ 0 & 2 & 1 & -1 & a \\ 1 & 3 & 2 & 0 & 2a \end{bmatrix}.$$

This has row echelon form

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & a - 2 \\ 0 & 0 & 0 & 0 & a - 2 \end{bmatrix}.$$

Thus there is a solution if and only if a = 2. Setting a = 2 we see that the reduced row echelon form of the augmented matrix is

$$\begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Then  $x_4$  is the only free variable and if  $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$  is a solution we have

$$x_1 + 2x_4 = 1,$$
$$x_2 = 1,$$

$$x_3 - x_4 = 0.$$

Thus the set of solutions is

$$\left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -2\\0\\1\\1 \end{bmatrix} \middle| x_4 \in \mathbf{R} \right\}.$$

#15 Let A be an m by n matrix over a field F. Assume that, for any  $b \in F^m$ , the equation Ax = b has a unique solution. Prove that m = n.

**Solution:** If Ax = b has a solution, then  $b \in Col(A)$ . Thus if Ax = b has a solution for every  $b \in F^m$  we have  $Col(A) = F^m$  and so rank(A) = m. If the solution of Ax = b is unique, then  $nullity(L_A) = 0$  and so rank(A) = n. Thus if Ax = b has a unique solution for every  $b \in F^m$  we have m = ran(A) = n.

#16 Let A be an 5 by 3 matrix over  $\mathbf{R}$ . Let b and c be two vectors in  $\mathbf{R}^5$ . Assume that  $\begin{bmatrix} -1\\3\\1 \end{bmatrix}$  and  $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$  are solutions of Ax = b and that  $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$  is a solution of Ax = c. Find infinitely many solutions of Ax = 2b + c.

Solution: We have that

$$\begin{bmatrix} -1\\3\\1 \end{bmatrix} - \begin{bmatrix} 2\\1\\2 \end{bmatrix} = \begin{bmatrix} -3\\2\\-1 \end{bmatrix}$$

is a solution of Ax = 0 and hence for any  $a \in \mathbf{R}$  we have that

$$2\begin{bmatrix} -1\\3\\1 \end{bmatrix} + \begin{bmatrix} 0\\1\\0 \end{bmatrix} + a\begin{bmatrix} -3\\2\\-1 \end{bmatrix}$$

is a solution of Ax = 2b + c.

#17 Let

Find an orthogonal matrix P and a diagonal matrix D such that such that

$$P^tAP = D.$$

**Solution:** By expanding along the first row and evaluating each of the resulting 3 by 3 determinants, we see that  $det(A - \lambda I) = (1 - \lambda)^3 (4 - \lambda)$ . Thus the eigenvalues ar 1 and 4. Now

Then we see that  $E_1$  has basis  $\begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$ ,  $\begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}$ . By applying the Gram-Schmidt procedure

we see tht  $E_1$  has orthogonal basis

$$\left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} \frac{-1}{2}\\1\\0\\\frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{-1}{3}\\\frac{-1}{3}\\1\\\frac{1}{3} \end{bmatrix} \right\}$$

and hence has orthonormal basis

$$\left\{ \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ 0 \\ \frac{\sqrt{2}}{2} \end{bmatrix}, \begin{bmatrix} \frac{-\sqrt{6}}{6} \\ \frac{\sqrt{6}}{3} \\ 0 \\ \frac{\sqrt{6}}{6} \end{bmatrix}, \begin{bmatrix} \frac{-\sqrt{3}}{6} \\ \frac{-\sqrt{3}}{6} \\ \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{6} \end{bmatrix} \right\}.$$

We also see that

$$E_4 = N(\begin{bmatrix} -3 & 1 & 1 & -1 \\ 1 & -3 & 1 & -1 \\ 1 & 1 & -3 & -1 \\ -1 & -1 & -1 & -3 \end{bmatrix}) = N(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}).$$

Thus  $E_4$  has basis  $\left\{ \begin{bmatrix} -1\\-1\\-1\\1 \end{bmatrix} \right\}$  and so has orthonormal basis

$$\left\{ \begin{bmatrix} \frac{-1}{2} \\ \frac{-1}{2} \\ \frac{1}{2} \end{bmatrix} \right\}.$$

Then we may take

$$P = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{-\sqrt{6}}{6} & \frac{-\sqrt{3}}{6} & \frac{-1}{2} \\ 0 & \frac{\sqrt{6}}{3} & \frac{-\sqrt{3}}{6} & \frac{-1}{2} \\ 0 & 0 & \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{6} & \frac{1}{2} \end{bmatrix}$$

and

$$D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}.$$

#18 Let T be a self-adjoint linear transformation from  $\mathbb{R}^4$  to  $\mathbb{R}^4$  with exactly 3 eigenvalues: 0, 1, and 2. Suppose that

$$T\left(\begin{bmatrix}1\\1\\2\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\\2\\1\end{bmatrix},$$

$$T(\begin{bmatrix} 1\\-2\\0\\1 \end{bmatrix}) = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix},$$

and

$$T\left(\begin{bmatrix} -4\\-2\\3\\0 \end{bmatrix}\right) = 2\begin{bmatrix} -4\\-2\\3\\0 \end{bmatrix}.$$

Suppose that

$$\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

is an eigenvector for T. What is the characteristic polynomial of T?

**Solution:** The eigenvector

$$\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

is not orthogonal to

$$\begin{bmatrix} -4 \\ -2 \\ 3 \\ 0 \end{bmatrix}$$

which is an eigenvector belonging to 2. Thus

$$\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

must be an eigenvector belonging to 2, so  $dim(E_2) = 2$ . Hence the characteristic polynomial of T is  $\lambda(1-\lambda)(2-\lambda)^2$ .

#19 Let  $V = P_2(\mathbf{C})$ . Define

$$\langle f,g \rangle = \int_0^1 f(t)g(t)dt.$$

Find an orthonormal basis for V.

**Solution:**  $P_2(\mathbf{C})$  has basis  $1, t, t^2$ . We apply the Gram-Schmidt process to this to get a basis consisting of

$$t - \frac{\langle 1, t \rangle}{\langle 1, 1 \rangle} 1 = (t - \frac{1}{2}),$$

and

$$t^{2} - \frac{\langle 1, t^{2} \rangle}{\langle 1, 1 \rangle} 1 - \frac{\langle t - \frac{1}{2}, t^{2} \rangle}{\langle t - \frac{1}{2}, t - \frac{1}{2} \rangle} = t^{2} - t + \frac{1}{6}.$$

Dividing each of these basis elements by its length we get the orthonormal basis

$$\{1, \sqrt{12}(t-\frac{1}{2}), \sqrt{180}(t^2-t+\frac{1}{6})\}.$$

#20 State the definitions of: an inner product space, the orthogonal complement of a subspace, the projection of a vector u on the line through a vector v, the adjoint of a linear transformation, a self-adjoint matrix, an orthogonal matrix, an orthonormal set, the generalized eigenspace corresponding to an eigenvalue  $\lambda$ . You should also be able state definitions of any of the terms listed in the previous review sheets.

## **Solution:**

These definitions are in the text.

#21 Let T be a linear transformation from a vector space V to V. let  $K_{\lambda}$  denote the generalized eigenspace of T corresponding to an eigenvalue  $\lambda$ .

- (a) Show that  $K_{\lambda}$  is a T invariant subspace of V.
- (b) Show that if  $\mu \neq \lambda$  then the restriction of  $T \mu I$  to  $K\lambda$  is invertible.
- (c) If the distinct eigenvalues of T are  $\lambda_1, ..., \lambda_k$  show that

$$V = K_{\lambda_1} \oplus ... \oplus K_{\lambda_k}$$
.

## **Solution:**

See the proofs of Theorems 7.1, 7.2 and 7.3 i the text.

#22 Let W denote the subspace of  $\mathbb{R}^5$  spanned by

$$\left\{ \begin{bmatrix} 1\\2\\1\\-3\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\1\\-1\\1 \end{bmatrix} \right\}.$$

Find a basis for  $W^{\perp}$ .

## Solution:

$$W^{\perp} = N(\begin{bmatrix} 1 & 2 & 1 & -3 & 2 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & -1 & 1 \end{bmatrix}) = N(\begin{bmatrix} 1 & 0 & 0 & 10 & -2 \\ 0 & 1 & 0 & -4 & 1 \\ 0 & 0 & 1 & -5 & 2 \end{bmatrix}.$$

Therefore 
$$\left\{\begin{bmatrix} -10\\4\\5\\1\\0\end{bmatrix},\begin{bmatrix} 2\\-1\\-2\\0\\1\end{bmatrix}\right\}$$
 is a basis for  $W^{\perp}$ .