Math 350 - Review problems - February 25, 2008

#1 Let V and W be finite dimensional vector spaces and let $T \in \mathcal{L}(V, W)$. Prove that

$$rank(T) + nullity(T) = dim(V).$$

#2 Let V be a finite-dimensional vector space over F and let X and Y be subspaces of V. Recall that X + Y denotes $\{x + y | x \in X, y \in Y\}$.

- (a) Show that X + Y is a subspace of V.
- (b) Show that $X \cap Y$ is a subspace of V.
- (c) Prove that

$$dim(X + Y) = dim(X) + dim(Y) - dim(X \cap Y).$$

#3 Let $\beta = \{1, x, x^2\}$ and $\gamma = \{1, (x+1), (x+1)^2\}$. These are two ordered bases for $P_2(\mathbf{R})$. Let

$$T: P_2(\mathbf{R}) \to P_2(\mathbf{R})$$

be the linear transformation defined by

$$T(f) = xf'.$$

(Here $f = f(x) \in P_2(\mathbf{R})$ and f' denotes the derivative of f.)

- (a) Find $[T]_{\beta}$.
- (b) Find $[T]_{\gamma}$.
- (c) Find the change of basis matrix from β to γ .
- (d) Find the change of basis matrix from γ to β .
- (e) Explain how your answers to (a) (d) are related.
- (f) Find $[T^t]_{\beta^*}$.

#4 (a) Is the set of vectors $\left\{\begin{bmatrix}1\\0\\-1\end{bmatrix},\begin{bmatrix}0\\1\\-1\end{bmatrix},\begin{bmatrix}1\\1\\0\end{bmatrix}\right\}$ in \mathbf{R}^3 linearly independent?

Why or why not?

- (b) Is the vector $\begin{bmatrix} 1 \\ -2 \\ 2 \\ 1 \end{bmatrix}$ in $Span\{\begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ 1 \\ 1 \end{bmatrix}\}$? Why or why not?
- (c) Does the set of vectors $\left\{\begin{bmatrix} -1\\2\\1\\0\end{bmatrix},\begin{bmatrix} 1\\0\\1\\0\end{bmatrix},\begin{bmatrix} -1\\-1\\1\\1\end{bmatrix},\begin{bmatrix} 1\\1\\1\\2\end{bmatrix}\right\}$ span \mathbf{R}^4 ? Why or why not?

#5 (a) Let $W_1 = \{f(x) \in \mathcal{P}_3 | f(1) = f(2)\}$. Is W_1 a subspace of \mathcal{P}_3 ? Why or why not?

(b) Let $W_2 = \{f(x) \in \mathcal{P}_3 | f(1) = 2\}$. Is W_2 a subspace of \mathcal{P}_3 ? Why or why not?

#6 Let V and W be vector spaces and $v_1, ..., v_n \in V$. State the definition of each of the following terms:

- (a) The span of $\{v_1, ..., v_n\}$
- (b) $\{v_1, ..., v_n\}$ is linearly independent
- (c) A basis of V.
- (d) The dimension of V
- (e) A linear transformation from V to W.

#7 (a) Is F^3 isomorphic to $M_{2\times 2}(F)$? Why or why not?

- (b) Is F^3 isomorphic to $\{A \in M_{2\times 2}(F) | A = A^t\}$? Why or why not?
- (c) Is F^2 isomorphic to $\{A \in M_{2\times 2}(F) | A = A^t\}$? Why or why not?
- (d) Is F^2 isomorphic to $\{A \in M_{2\times 2}(F) | A = -A^t\}$? Why or why not?

#8 Let $V = \mathbb{R}^3$, let $\{e_1, e_2, e_3\}$ be the standard basis, and let $\beta = \{f_1, f_2, f_3\}$ be the dual basis. Define $g \in \mathcal{L}(V, \mathbb{R})$ by

$$g(\begin{bmatrix} r \\ s \\ t \end{bmatrix}) = r + 2s - 3t.$$

Express g as a linear combination of elements of β .

#9 Let

$$A = \begin{bmatrix} 3 & -1 & 2 & 2 \\ 1 & 0 & 0 & 1 \\ -1 & 2 & 2 & 4 \end{bmatrix},$$

$$B = \begin{bmatrix} 4 & -1 & 2 & 3 \\ 1 & 0 & 0 & 1 \\ -1 & 2 & 2 & 4 \end{bmatrix},$$

and

$$C = \begin{bmatrix} 3 & 5 & 2 & 2 \\ 1 & 2 & 0 & 1 \\ -1 & 0 & 2 & 4 \end{bmatrix}.$$

Find elementary matrices P and Q such that PA = B and AQ = C.

#10 Suppose $V_1, ..., V_6$ are vector spaces with

$$V_1 \subseteq V_2 \subseteq V_3 \subseteq V_4 \subseteq V_5 \subseteq V_6$$

and $dim(V_6) = 4$. Prove that $V_i = V_{i+1}$ for some $i, 1 \le i \le 5$.

#11 Let
$$P = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. Find P^{-1} . Show your work.