
Math 350 - Solutions to review problems for Exam #1 - March 1, 2008
#1 Let V and W be finite dimensional vector spaces and let T ∈ L(V,W ). Prove that

rank(T ) + nullity(T ) = dim(V ).

Solution: This is in the text (Theorem 2.3, page 70). Here is a proof. Let β = {v1, ..., vk}
be a basis for N(T ). Then β can be extended to a basis γ = {v1, ..., vk, vk+1, ..., vn} of V .
Then dimV = n, nullity(T ) = dim(N(T )) = k, and we must show that rank(T ) = n− k.
Since rank(T ) = dim(R(T )) we can do this by showing that α = {T (vk+1), ..., T (vn)} is
a basis for R(T ). First we will show that α spans R(T ). Let w ∈ R(T ). Then w = T (v)
for some v ∈ V . Since {v1, ..., vn} is a basis for V , we have v = a1v1 + ... + anvn for some
scalars a1, ..., an ∈ F. Then w = T (v) = a1T (v1)+ ...+anT (vn). But v1, ..., vk are in N(T ),
so T (v1) = ... = T (vk) = 0. Thus w = ak+1T (vk+1) + ... + anT (vn) ∈ Span(α). Now
we show that α is linearly independent. Suppose 0 = bk+1T (vk+1) + ... + bnT (vn). Then
0 = T (bk+1vk+1 + ... + bnvn) and so bk+1vk+1 + ... + bnvn ∈ N(T ). Since β is a basis for
N(T ) this means that

bk+1vk+1 + ... + bnvn = c1v1 + ... + ckvk

for some scalars c1, ..., ck ∈ F. But then

−c1v1 − ...− ckvk + bk+1vk+1 + ... + bnvn = 0.

Since γ is linearly independent, this means that c1 = ... = ck = bk+1 = ... = bn = 0.
Thus all the bi are equal to 0. This shows that α is linearly independent and our proof is
complete.

#2 Let V be a finite-dimensional vector space over F and let X and Y be subspaces of V .
Recall that X + Y denotes {x + y|x ∈ X, y ∈ Y }.

(a) Show that X + Y is a subspace of V .
(b) Show that X ∩ Y is a subspace of V .
(c) Prove that

dim(X + Y ) = dim(X) + dim(Y )− dim(X ∩ Y ).

Solution: (a) Since 0 ∈ X and 0 ∈ Y we have 0 = 0 + 0 ∈ X + Y . Now let u1, u2 ∈
X + Y, a ∈ F . Then u1 = x1 + y1, u2 = x2 + y2 where x1, x2 ∈ X, y1, y2 ∈ Y . Then
u1 + u2 = (x1 + y1) + (x2 + y2) = (x1 + x2) + (y1 + y2). Since x1 + x2 ∈ X and y1 + y2 ∈ Y
we have u1 + u2 ∈ X + Y. Also au1 = a(x1 + y1) = (ax1) + (ay1). Since ax1 ∈ X and
ay1 ∈ Y we have au1 ∈ X + Y . Thus X + Y is a subspace.
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(b) Since 0 ∈ X and 0 ∈ Y we have 0 ∈ X ∩ Y . Now let u1, u2 ∈ X ∩ Y and a ∈ F .
Then u1, u2 ∈ X so u1 + u2 ∈ X. Also u1, u2 ∈ Y so u1 + u2 ∈ Y . Thus u1 + u2 ∈ X ∩ Y.
Now au1 ∈ X and au1 ∈ Y so au1 ∈ X ∩ Y . Thus X ∩ Y is a subspace.

(c) Let α = {u1, ..., uk} be a basis for X ∩ Y . Then we may extend α to a basis
β = {u1, ..., uk, x1, ..., xl} of X and we may extend α to a basis γ = {u1, ..., uk, y1, ..., ym}
of Y . Thus we have dim(X) + dim(Y )− dim(X ∩ Y ) = (k + l) + (k + m)− k = k + l + m,
and so we need to prove that dim(X + Y ) = k + l + m. We will verify this by showing
that δ = {u1, ..., uk, x1, ..., xl, y1, ..., ym} is a basis for X + Y .

First we show that δ spans X +Y . Let u ∈ X +Y . Then u = x+y, x ∈ X, y ∈ Y . Then
x is a linear combination of elements of β. Thus x = a1u1 + ... + akuk + b1x1 + ... + blxl
for some a1, ..., ak, b1, ..., bl ∈ F . Similarly y is a linear combination of elements of γ.
Thus y = c1u1 + ... + ckuk + d1y1 + ... + dmym for some c1, ..., ck, d1, ..., dm ∈ F. Then
x + y = (a1 + c1)u1 + ... + (ak + ck)uk + b1x1 + ... + blxl + d1y1 + ... + dmym ∈ Span(δ).

Now we show that δ is linearly independent. Suppose there exist elements

r1, ..., rk, s1, ..., sl, t1, ..., tm ∈ F

such that
r1u1 + ... + rkuk + s1x1 + ... + slxl + t1y1 + ... + tmym = 0.

Then
r1u1 + ... + rkuk + s1x1 + ... + slxl = −t1y1 − ...− tmym.

Dentote this element by E. Then E = r1u1 + ... + rkuk + s1x1 + ... + slxl ∈ X and
E = −t1y1− ...− tmym ∈ Y. Thus E ∈ X ∩Y and so it is a linear combination of elements
of α. Thus

z1u1 + ... + zkuk = −t1y1 − ...− tmym

and so
z1u1 + ... + zkuk + t1y1 + ... + tmym = 0

for some z1, ..., zm ∈ F. Since γ is linearly independent we have z1 = ... = zk = y1 = ... =
ym = 0. But then E = 0 and so

r1u1 + ... + rkuk + s1x1 + ... + slxl = 0.

Since β is linearly independent we have r1 = ... = rk = x1 = ... = xl = 0. This shows that
δ is linearly independent and our proof is complete.

#3 Let β = {1, x, x2} and γ = {1, (x + 1), (x + 1)2}. These are two ordered bases for
P2(R). Let

T : P2(R)→ P2(R)
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be the linear transformation defined by

T (f) = xf ′.

(Here f = f(x) ∈ P2(R) and f ′ denotes the derivative of f .)

(a) Find [T ]β .
(b) Find [T ]γ .
(c) Find the change of basis matrix from β to γ.
(d) Find the change of basis matrix from γ to β.
(e) Explain how your answers to (a) - (d) are related.
(f) Find [T t]β∗ .

Solution: (a) We have T (1) = 0, T (x) = x, T (x2) = 2x2. Thus [T ]β =

 0 0 0
0 1 0
0 0 2

 .

(b) We have T (1) = 0, T (x + 1) = x = −1 + (x + 1), T ((x + 1)2) = 2x + 2x2 =

−2(x + 1) + 2(x + 1)2. Thus [T ]γ =

 0 −1 0
0 1 −2
0 0 2

 .

(c) This is [I]γβ =

 1 −1 1
0 1 −2
0 0 1

 .

(d) This is [I]βγ =

 1 1 1
0 1 2
0 0 1

 .

(e) ([I]γβ)
−1 = [I]βγ and

([I]γβ)
−1[T ]γ [I]γβ = [T ]β .

(f) [T t]β∗ = ([T ]β)t =

 0 0 0
0 1 0
0 0 2

 .

#4 (a) Is the set of vectors {

 1
0
−1

 ,

 0
1
−1

 ,

 1
1
−1

 ,

 1
1
0

} in R3 linearly independent?

Why or why not?

(b) Is the vector


1
−2
2
1

 in Span{


1
1
−1
1

 ,


1
−1
0
1

 ,


3
−3
1
1

}? Why or why not?



4

(c) Does the set of vectors {


−1
2
1
0

 ,


1
0
1
0

 ,


−1
−1
1
1

 ,


1
1
1
2

} span R4? Why or why not?

Solution: (a) No. A set of 4 vectors in a 3-dimensional vector space cannot be linearly
independent.

(b) No. Suppose a1


1
1
−1
1

+ a2


1
−1
0
1

+ a3


3
−3
1
1

 =


1
−2
2
1

 . Then


a1 + a2 + 3a3

a1 − a2 − 3a3

−a1 + a3

a1 + a2 + a3

 =


1
−2
2
1

 .

Thus we have the system of equations

a1 + a2 + 3a3 = 1

a1 − a2 − 3a3 = −2

−a1 + a3 = 2

a1 + a2 + a3 = 1.

Subtracting the first equation from the fourth gives −2a3 = 0 and so a3 = 0. Then we
have

a1 + a2 = 1

a1 − a2 = −2

−a1 = 2.

Then adding the first and third equations gives a2 = 3 while adding the second and third
equations gives a2 = 0. Thus there is no solution, giving the result.

(c) Yes. This set of 4 vectors in the 4-dimensional space R4 spans R4 if and only if it
is linearly independent. If

a1


−1
2
1
0

+ a2


1
0
1
0

+ a3


−1
−1
1
1

+ a4


1
1
1
2

 =


0
0
0
0


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then
−a1 + a2 − a3 + a4 = 0

2a1 − a3 + a4 = 0

a1 + a2 + a3 + a4 = 0

a3 + 2a4 = 0.

The adding twice the first equation to the second and adding the first equation to the third
gives

−a1 + a2 − a3 + a4 = 0

2a2 − 3a3 + 3a4 = 0

2a2 + 2a4 = 0

a3 + 2a4 = 0.

Subtracting the second equation from the third gives

−a1 + a2 − a3 + a4 = 0

2a2 − 3a3 + 3a4 = 0

3a3 − a4 = 0

a3 + 2a4 = 0.

Finally, subtracting 1
3 times the third equation from the fourth gives

−a1 + a2 − a3 + a4 = 0

2a2 − 3a3 + 3a4 = 0

3a3 − a4 = 0

7
3
a4 = 0.

Thus a4 = a3 = a2 = a1 = 0 so the set is linearly independent.

#5 (a) Let W1 = {f(x) ∈ P3|f(1) = f(2)}. Is W1 a subspace of P3? Why or why not?
(b) Let W2 = {f(x) ∈ P3|f(1) = 2}. Is W2 a subspace of P3? Why or why not?

Solutions: (a) Clearly the zero function is in W1. If f, g ∈ W1, then (f + g)(1) =
f(1) + g(1) = f(2) + g(2) = (f + g)(2) so f + g ∈ W1. Also, if a ∈ F we have (af)(1) =
af(1) = af(2) = (af)(2) so af ∈W1. Thus W1 is a subspace.

(b) The zero function is not in W2 and so W2 is not a subspace.
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#6 Let V and W be vector spaces and v1, ..., vn ∈ V . State the definition of each of the
following terms:

(a) The span of {v1, ..., vn}
(b) {v1, ..., vn} is linearly independent
(c) A basis of V .
(d) The dimension of V
(e) A linear transformation from V to W .

Solution: (a) Let V be a vector space over F . Span{v1, ..., vn} = {a1v1+...+anvn|a1, ..., an ∈
F}.

(b) {v1, ..., vn} is linearly independent if whenever a1v1 + .. + anvn = 0 we must have
a1 = ... = an = 0.

(c) A subset S of a vector space V is a basis for V if it spans V and is linearly indepen-
dent.

(d) The dimension of V is the number of elements in any basis for V .
(e) A function T from V to W (which are vector spaces over a field F ) is a linear

transformation if, for every v1, v2 ∈ V and every a ∈ F we have T (v1 +v2) = T (v1)+T (v2)
and T (av1) = aT (V1).

#7 (a) Is F 3 isomorphic to M2×2(F )? Why or why not?
(b) Is F 3 isomorphic to {A ∈M2×2(F )|A = At}? Why or why not?
(c) Is F 2 isomorphic to {A ∈M2×2(F )|A = At}? Why or why not?
(d) Is F 2 isomorphic to {A ∈M2×2(F )|A = −At}? Why or why not?

Solution: (a) No, since dim(F 3) = 3 and dim(M2×2(F )) = 4.
(b) {A ∈M2×2(F )|A = At} has basis

{
[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
}

and hence has dimension 3. Thus the two spaces have the same dimension and so are
isomorphic.

(c) No, as the two spaces have different dimensions.
(d) First assume that the characteristic of the field F is not 2, i.e., assume that 2 6= 0

in F . Then {A ∈M2×2(F )|A = −At} is 1-dimensional with basis {
[

0 1
−1 0

]
.} Hence the

two spaces have different dimensions and so are not isomorphic. If F has characteristic 2
then −At = At so this is the same as part (b) (and the two spaces are not isomorphic).

#8 Let V = R3, let {e1, e2, e3} be the standard basis, and let β = {f1, f2, f3} be the dual
basis. Define g ∈ L(V, R) by

g(

 r
s
t

) = r + 2s− 3t.
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Express g as a linear combination of elements of β.

Solution: Write
g = a1f1 + a2f2 + a3f3.

Recall that fi(ej) = 0 if i 6= j and that fi(ei) = 1. Then we have

1 = g(e1) = a1f1(e1) + a2f2(e1) + a3f3(e1) = a1,

2 = g(e2) = a1f1(e2) + a2f2(e2) + a3f3(e2) = a2,

−3 = g(e3) = a1f1(e3) + a2f2(e3) + a3f3(e3) = a3.

Thus g = f1 + 2f2 − 3f3.

#9 Let

A =

 3 −1 2 2
1 0 0 1
−1 2 2 4

 ,

B =

 4 −1 2 3
1 0 0 1
−1 2 2 4

 ,

and

C =

 3 5 2 2
1 2 0 1
−1 0 2 4

 .

Find elementary matrices P and Q such that PA = B and AQ = C.

Solution: The matrix B is obtained from A by adding the second row to the first row.
We obtain P by performing this same row operation on the (3 by 3) identity matrix. Thus

P =

 1 1 0
0 1 0
0 0 1

 .

The matrix C is obtained from A by adding twice the first column to the second column.
We obtain Q by performing this same column operation on the (4 by 4) identity matrix.

Thus Q =


1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

#10 Suppose V1, ..., V6 are vector spaces with

V1 ⊆ V2 ⊆ V3 ⊆ V4 ⊆ V5 ⊆ V6
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and dim(V6) = 4. Prove that Vi = Vi+1 for some i, 1 ≤ i ≤ 5.

Solution: We have

0 ≤ dim(V1) ≤ dim(V2) ≤ dim(V3) ≤ dim(V4) ≤ dim(V5) ≤ dim(V6) = 4.

Since there are only five possibilities (0, 1, 2, 3, 4) for the six integers dim(V1), ..., dim(V6)
we must have dim(Vi) = dim(Vi+1) for some i, 1 ≤ i ≤ 5. Since Vi ⊆ Vi+1 this implies
Vi = Vi+1.

#11 Let P =

 1 2 1
2 3 1
1 1 1

. Find P−1. Show your work.

Solution:  1 2 2 1 0 0
2 3 1 0 1 0
1 1 1 0 0 1


 1 2 1 1 0 0

0 −1 −1 −2 1 0
0 −1 0 −1 0 1


 1 2 1 1 0 0

0 −1 −1 −2 1 0
0 0 1 1 −1 1


 1 0 −1 −3 2 0

0 −1 −1 −2 1 0
0 0 1 1 −1 1


 1 0 0 −2 1 1

0 −1 0 −1 0 1
0 0 1 1 −1 1


 1 0 0 −2 1 1

0 1 0 1 0 −1
0 0 1 1 −1 1

 .

Therefore

P−1 =

−2 1 1
1 0 −1
1 −1 1

 .


