
Math 351
Solutions to review problems for Exam #2 November 17, 2007

Exam #2 will be given during the normal class period on Monday, November 19. It
will cover material from Sections 4.5, 4.6, 5.1 - 5.3, 6.3, 9.1, 9.4, 7.1 - 7.4. This set of review
problems is about twice as long as the exam. As usual, Z denotes the ring of integers, Q
denotes the field of rational numbers, and C denotes the field of complex numbers.

#1 Let f(x) ∈ R[x] have degree 7. Prove that f(x) is a reducible polynomial in R[x]. You
may want to use the fact that every irreducible polynomial in C[x] has degree 1.

Solution: Since f(x) ∈ R[x] ⊂ C[x], we have

f(x) = a(x− b1)(x− b2)...(x− b7)

for some a, b1, b2, .., b7 ∈ C. Since the coefficients of f(x) are real, we also have

f(x) = ā(x− b̄1)(x− b̄2)...(x− b̄7),

where ū denotes the complex conjugate of u. Thus b̄1 is a root of f(x) and so is one of
b1, ..., b7. If b̄1 = b1 then b1 ∈ R, so x − b1 ∈ R[x] and hence f(x) is reducible in R[x]. If
b̄1 = bj for some j, 2 ≤ j ≤ 7 then (x − b1)(x − bj) = (x − b1)(x − b̄1) ∈ R[x] and f(x) is
reducible in R[x].

#2 Let f(x) and g(x) be polynomials in Z[x]. Let p be a prime integer. Prove that if
p divides every coefficient of f(x)g(x) then either p divides every coefficient of f(x) or p
divides every comefficient of g(x).

Solution: Let f(x) = anx
n + ... + a1x + a0 and g(x) = bmx

m + ... + b1x + b0. Assume
p does not divide every coefficient of f(x) and does not divide every coefficient of g(x).
Then we may find i, 0 ≤ i ≤ n, such that p|ak for 0 ≤ k < i, but p 6 |ai. We may also find
j, 0 ≤ j ≤ m, such that p|bk for 0 ≤ k < j, but p 6 |bj . Write al = 0 if l > n and bl = 0 if

l > m. Then the coefficient of xi+j in f(x)g(x) is
∑i+j
l=0 albi+j−l. Since p|al whenever l < i

and p|bi+j−l whenever l > i we see that the coefficient of xi+j in f(x)g(x) is congruent to
aibj modulo p. But p 6 |aibj .

#3 Let f(x) = anx
n + ...+a1x+a0 ∈ Z[x] and suppose that r

s 6= 0 is a root of f(x) where
r, s ∈ Z and r and s are relatively prime. Prove that r|a0 and s|an.

Solution: We have 0 = snf( rs ) = anr
n + an−1r

n−1s+ an−2r
n−2s2 + ...+ a1rs

n−1 + a0s
n.

Thus
anr

n = −(an−1r
n−1s+ an−2r

n−2s2 + ...+ a1rs
n−1 + a0s

n) =

−s(an−1r
n−1 + an−2r

n−2s+ ...+ a1rs
n−2 + a0s

n−1).

Thus s|anrn and, since (r, s) = 1, r|an. Similarly

a0s
n = −(anr

n + ...+ a1rs
n−1) = −r(anrn−1 + ...+ a1s

n−1)
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and so r|a0.

#4 Let f(x) ∈ Z[x] and assume that f(x) is an irreducible polynomial in Z[x]. Prove that
f(x) is an irreducible polynomial in Q[x]. You may want to use the results of problems
#2 and #3.

Solution: We will assume that f(x) ∈ Z[x] is reducible in Q[x], say f(x) = g(x)h(x)
where g(x), h(x) ∈ Q[x] are polynomials of degree ≥ 1, and show that f(x) is reducible
in Z[x]. First note that there are integers m and n such that mg(x), nh(x) ∈ Z[x]. Thus
mnf(x) = (mg(x))(nh(x)) is reducible in Z[x]. Let S denote the set of all positive integers
l such that lf(x) is reducible in Z[x]. Then mn ∈ S, so S is nonempty. Hence S contains
a smallest element k. If k > 1 then some prime p divides k and hence p divides every
coefficient of kf(x). Since kf(x) is reducible in Z[x] we have kf(x) = r(x)s(x) for some
polynomials r(x), s(x) ∈ Z[x] of degree ≥ 1. Then, by the result of problem #2, either
p divides every coefficient of r(x) or p divides every coefficient of s(x). In the first case
1
pr(x) ∈ Z[x] and so k

pf(x) = ( 1
pr(x))(s(x)) is reducible in Z[x]. This contradicts the

minimality of k. In the second case 1
ps(x) ∈ Z[x] and so k

pf(x) = (r(x))( 1
ps(x)) is reducible

in Z[x]. Again, this contradicts the minimality of k. Thus k = 1 and the proof is complete.

#5 Show (by constructing an example) that there is a field with 8 elements.

Solution:

Suppose f(x) is an irreducible polynomial of degree 3 over the field Z2. Then F =
Z[x]/(f(x)) is a field whose elements are all the cosets of the ideal f(x). Now if g(x) ∈ Z2[x]
we may write g(x) = q(x)f(x) + r(x) where q(x), r(x) ∈ Z2[x] and either r(x) = 0 or r(x)
has degree ≤ 2. Then the coset g(x) + (f(x)) is equal to the coset r(x) + (f(x)) and so
the number of elements in F is equal to the number of possible r(x). Since there are only
2 choices (in Z2) for each of the 3 coefficients of r(x), we see that F has 8 elements. Thus
we only need to find an irreducible polynomial of degree 3 over Z2. Since a polynomial
of degree 3 is reducible if and only if it has a root, we simply need to find a polynomial
f(x) = x3 + ax2 + bx+ c such that f(0) 6= 0, f(1) 6= 0. Since Z2 has only two elements (0
and 1), this means that c = f(0) = 1, 1 + a+ b+ c = f(1) = 1. Thus f(x) is irreducible if
and only if c = 1 and a + b = 1. Thus there are two irreducible polynomials of degree 3
over Z2: x3 + x2 + 1 and x3 + x+ 1.

#6 Let F be a field and f(x) ∈ F [x]. Let p(x) ∈ F [x] be a polynomial of degree ≥ 1.
Prove that f(x) + (p(x)) is a unit in F [x]/(p(x)) if and only if f(x) and p(x) are relatively
prime.

Solution: f(x) + (p(x)) is a unit in F [x]/(p(x)) if and only if there is some g(x) ∈ F [x]
such that f(x)g(x) + (p(x)) = (f(x) + (p(x)))(g(x) + (p(x)) = 1 + (p(x)). This happens
if and only if f(x)g(x) − 1 ∈ (p(x)) and this is equivalent to f(x)g(x) − 1 = k(x)p(x) for
some k(x) ∈ F [x]. This may be rewritten as f(x)g(x)− p(x)k(x) = 1. But this condition
holds if and only if f(x) and p(x) are relatively prime.
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#7 (a) State the definition a prime ideal in a ring R.
(b) Prove that an ideal I in a commutative ring R with identity is a prime ideal if

and only if R/I is an integral domain.
(c) State the definition of a maximal ideal in a ring R.
(d) Prove that if R is a commutative ring with identity, then an ideal I in R is maximal

if and only if R/I is a field.

Solution:
(a) An ideal I ⊆ R is prime if whenever a, b ∈ R, ab ∈ I we have either a ∈ I or b ∈ I.
(b) Suppose I is prime ideal in R. Let a+I, b+I ∈ R/I and assume (a+I)(b+I) = 0

in R/I. Then ab+ I = I so ab ∈ I. Since I is prime, either a ∈ I or b ∈ I and hence either
a+ I = 0 or b+ I = 0 in R/I. Hence R/I is an integral domain. Conversely, suppose R/I
is an intgral domain and a, b ∈ R, ab ∈ I. Then (a+ I)(b+ I) = ab+ I = I = 0 in R/I so
either a+ I = 0 or b+ I = 0 in R/I. Thus either a ∈ I or b ∈ I, so I is a prime ideal.

(c) An ideal I ⊆ R is a maximal ideal in R if I 6= R whenever J is an ideal of R with
I ⊆ J ⊆ R then either J = I or J = R.

(d) Let S be a commutative ring with identity. If S is the only nonzero ideal of S
and if 0 6= a ∈ S then (a) = S so 1 ∈ (a). Thus 1 = ab for some b ∈ S and so S is a field.
Conversely, if S is a field any nonzero ideal must contain 1 and so must equal S. Since an
ideal I ⊆ R is maximal if and only if R/I is the only nonzero ideal of R/I we have the
result.

#8 Show that Z[
√
−2] is a Euclidean domain with δ(a+ b

√
−2) = a2 + 2b2.

Solution: Write R = Z[
√
−2]. R is a subring of the field Q[

√
−2], so it is an integral

domain. Thus to show R is a Euclidean domain we must verify two conditions on δ: (i)
If u, v ∈ R then δ(u) ≤ δ(uv); (ii) If u, v ∈ R, v 6= 0 then u = qv + r for some q, r ∈ R
with r = 0 or δ(r) < δ(v).Now for u = a + b

√
−2 ∈ R ⊆ C we have ū, the complex

conjugate of u, is a− b
√
−2 and δ(u) = uū. Thus for u, v ∈ R we have δ(uv) = (uv) ¯(uv) =

(uū)(vv̄) = δ(u)δ(v) and so δ(u) ≤ δ(uv). Thus the first condition holds. To verify the
second condition assume v 6= 0 and note that, since Q[

√
−2] is a field, u = (w1 +w2

√
−2)v

for some w1, w2 ∈ Q. Then we may find q1, q2 ∈ Z such that |w1 − q1| ≤ 1
2 , |w2 − q2| ≤ 1

2 .

Set q = q1 + q2

√
−2 and set r = u − qv. We must show that either r = 0 or δ(r) < δ(v).

Now r = u − qv = (w1 + w2

√
−2)v − qv = ((w1 − q1) + (w2 − q2)

√
−2)v. Then writing

v = v1 + v2

√
−2 we have

r = ((w1 − q1) + (w2 − q2)
√
−2)(v1 + v2

√
−2) =

((w1 − q1)v1 − 2(w2 − q2)v2) + ((w1 − q1)v2 + (w2 − q2)v1)
√
−2

and so

δ(r) = ((w1 − q1)v1 − 2(w2 − q2)v2)2 + 2((w1 − q1)v2 + (w2 − q2)v1)2 =

(w1 − q1)2v2
1 − 4(w1 − q1)v1(w2 − q2)v2 + 4(w2 − q2)2v2

2+

2(w1 − q1)2v2
2 + 4(w1 − q1)v2(w2 − q2)v1 + 2(w2 − q2)2v2

1 =

3



((w1 − q1)2 + 2(w2 − q2)2)v2
1 + (4(w2 − q2)2 + 2(w1 − q1)2)v2

2 ≤
3

4
v2

1 +
3

2
v2

2 < δ(v).

#9 Let R be an integral domain. Define S = {(a, b)|a, b ∈ R, b 6= 0}. Define (a, b) ∼
(c, d) if ad = bc. Show that ∼ is an equivalence relation.

Solution:
Reflexivity: Since ab = ba we have (a, b) ∼ (a, b).
Symmetry: Assume (a, b) ∼ (c, d). Then ad = bc and so cb = da. Hence (c, d) ∼ (a, b).
Transitivity: Assue (a, b) ∼ (c, d), (c, d) ∼ (e, f). Then ad = bc and cf = de. Mul-

tiplying the first equalty by f gives adf = bcf and multiplying the second by b gives
bcf = bde. Thus adf = bde. Hence 0 = adf − bde = d(af − be). Since R is an integral
domain and d 6= 0 we have af − be = 0 so af = be and hence (a, b) ∼ (e, f).

#10 Let R = {a + b
√

3|a, b ∈ Z}. Then R is an integal domain (why?) and so R has a
quotient field F . What is F?

Solution: R is a subring of the field of real numbers and is therefore an integral domain.
Let E = {a+ b

√
3|a, b ∈ Q}. Note that if 0 6= a+ b

√
3 ∈ E then

(a+ b
√

3)(a− b
√

3) = a2 − 3b2

is a rational number and is nonzero (since
√

3 is irrational). Thus

(a+ b
√

3)−1 =
(a− b

√
3)

a2 − 3b2
.

Hence E is a subfield of the field of real numbers. Then by Theorem 9.31, E contains a
subfield isomorphic to F . But any subfield of the real numbers containing R must contain
all rational numbers and must contain

√
3, so it must contain E. Thus F is isomorphic to

E.

#11 Let G be a group, g, h, k ∈ G and gh = gk. Prove that h = k. Conclude that the
multiplicative inverse of g is unique.

Solution: Since G is a group, it contains an identity element e and some element u such
that ug = e. Then h = eh = (ug)h = u(gh) = u(gk) = (ug)k = ek = k. Now suppose
u, v ∈ G are inverses of g. Then gu = e = gv and so we have u = v.

#12 Compute the product

(
1 2 3 4 5 6 7
4 6 1 2 3 7 5

)(
1 2 3 4 5 6 7
2 3 4 1 5 6 7

)

in the symmetric group on 7 elements.
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Solution:

(
1 2 3 4 5 6 7
6 1 2 4 3 7 5

)

#13 Let g = (
1 2 3 4 5 6 7
2 5 7 6 4 1 3

) in the symmetric group on 7 elements.

(a) Find g−1.
(b) Find the order of g.

Solution:

(a) (
1 2 3 4 5 6 7
6 1 7 5 2 4 3

)

(b) Note that g(1) = 2, g2(1) = g(2) = 5, g3(1) = g(5) = 4, g4(1) = g(4) = 6, g5(1) =
g(6) = 1. Thus gk(1) = 1 if and only if 5|k. This computation also shows that g5(2) =
2, g5(5) = 5, g5(4) = 4, and g5(6) = 6. Similarly g(3) = 7, g2(7) = 3 and so gk(3) = 3 if
and only if 2|k and the computation also shows that g2(7) = 7. Thus 10 must divide the
order of g and g10 is the identity permuation. Thus the order of g is 10.

#14 Let G be a group with identity element e. Suppose g2 = e for all g ∈ G. Prove that
G is commutative.

Solution: Here are two slightly different proofs:
(i) Multiply both sides of g2 = e by g−1 to get g = g−1 for all g ∈ G. Now let g, h ∈ G

and recall that (gh)−1 = h−1g−1. Then

gh = (gh)−1 = h−1g−1 = hg.

(ii) Let g, h ∈ G. Then (gh)2 = ghgh = e. Also g2 = h2 = e so g2h2 = e. Hence
ghgh = gghh. Multiply on the left by g−1 to get hgh = ghh and then multiply on the
right by h−1 to get hg = gh.

#15 Let G be a commutative group with identity element e and let n ∈ Z, n ≥ 1. Let
H = {g ∈ G|gn = e}. Prove that H is a subgroup of G.

Solution: Since e ∈ H, we have that H is nonempty. If g, h ∈ H, then (gh)n = gnhn =
ee = e, so gh ∈ H. Also, (g−1)n = g−n = (gn)−1 = e−1 = e, so g−1 ∈ H. Thus H is a
subgroup.
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