Math 351
Solutions to review problems for Exam #2 November 17, 2007

Exam #2 will be given during the normal class period on Monday, November 19. It
will cover material from Sections 4.5, 4.6, 5.1 - 5.3, 6.3, 9.1, 9.4, 7.1 - 7.4. This set of review
problems is about twice as long as the exam. As usual, Z denotes the ring of integers, Q
denotes the field of rational numbers, and C denotes the field of complex numbers.

#1 Let f(z) € R[z] have degree 7. Prove that f(z) is a reducible polynomial in R[z]. You
may want to use the fact that every irreducible polynomial in C[x] has degree 1.

Solution: Since f(z) € R[z] C Clz], we have
f(@) =a(z —b)(z = ba)...(x — br)

for some a, by, bs,..,b7 € C. Since the coefficients of f(z) are real, we also have
f(x) =a(z — by)(x — ba)...(x — by),

where % denotes the complex conjugate of u. Thus by is a root of f(z) and so is one of
bi,...,b7. If by = by then by € R, so z — by € R[z] and hence f(z) is reducible in R[z]. If
by = b; for some 5,2 < j <7 then (x — by)(x — b;) = (z — b1)(z — b1) € R[z] and f(x) is
reducible in R[z].

#2 Let f(x) and g(z) be polynomials in Z[z]. Let p be a prime integer. Prove that if
p divides every coefficient of f(x)g(x) then either p divides every coefficient of f(z) or p
divides every comefficient of g(z).

Solution: Let f(z) = a,z™ + ... + a1x + ap and g(x) = by,x™ + ... + byx + bg. Assume
p does not divide every coefficient of f(z) and does not divide every coefficient of g(x).
Then we may find 7,0 < i < n, such that play for 0 < k < i, but p fa;. We may also find
J,0 < j < m, such that p|bs for 0 < k < j, but p fb;. Write ¢; =0if [ > n and b = 0 if
[ > m. Then the coefficient of x**7 in f(x)g(z) is ;Zé arbit;—;. Since p|a; whenever | < i
and pl|b;4;_; whenever | > i we see that the coefficient of 2'*7 in f(x)g(z) is congruent to
a;b; modulo p. But p fa;b;.

#3 Let f(x) = apx™ + ...+ a12+ag € Z[z] and suppose that £ # 0 is a root of f(x) where

r,s € Z and r and s are relatively prime. Prove that r|ag and s|a,,.

Solution: We have 0 = s" f(%) = a,r" + Ay 1T S+ pyor™ 252 + . ayrs™ T+ aps™.
Thus
™ = —(Ap_17" " s F ap_or™ 3% + . arrs” T Fags”) =

—5(Ap 17" A Ao 25 o ayrs™ T2 aps™ Y.

Thus s|a,r™ and, since (r,s) = 1, r|a,. Similarly
aps™ = —(anr™ 4+ ...+ a1rs" ) = —r(a,r" Tt + L as™h
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and so r|ag.

#4 Let f(x) € Z]z] and assume that f(z) is an irreducible polynomial in Z[z]. Prove that
f(z) is an irreducible polynomial in Q[z]. You may want to use the results of problems

#2 and #3.

Solution: We will assume that f(z) € Z[z] is reducible in Q[z], say f(z) = g(x)h(x)
where g(z), h(x) € Qlz]| are polynomials of degree > 1, and show that f(z) is reducible
in Z[x|. First note that there are integers m and n such that mg(z),nh(x) € Z[z]. Thus
mnf(z) = (mg(x))(nh(z)) is reducible in Z[z]. Let S denote the set of all positive integers
[ such that [f(z) is reducible in Z[z]. Then mn € S, so S is nonempty. Hence S contains
a smallest element k. If £ > 1 then some prime p divides k and hence p divides every
coefficient of kf(x). Since kf(z) is reducible in Z[z] we have kf(x) = r(z)s(z) for some
polynomials 7(z), s(z) € Z[x] of degree > 1. Then, by the result of problem #2, either
p divides every coefficient of r(x) or p divides every coefficient of s(z). In the first case
%r(:c) € Z[x] and so %f(a:) = (%r(x))(s(:t;)) is reducible in Z[x]. This contradicts the
minimality of k. In the second case %s(az) € Z|x] and so %f(a:’) = (r(x))(%s(x)) is reducible
in Z[x]. Again, this contradicts the minimality of k. Thus & = 1 and the proof is complete.

#5 Show (by constructing an example) that there is a field with 8 elements.

Solution:

Suppose f(zx) is an irreducible polynomial of degree 3 over the field Z5. Then F =
Z[z]/(f(x)) is a field whose elements are all the cosets of the ideal f(z). Now if g(x) € Zs|[z]
we may write g(x) = q(z)f(z) + r(x) where q(x),r(x) € Zs[z] and either r(z) = 0 or r(z)
has degree < 2. Then the coset g(z) + (f(x)) is equal to the coset r(z) + (f(z)) and so
the number of elements in F' is equal to the number of possible r(z). Since there are only
2 choices (in Z3) for each of the 3 coefficients of (), we see that F' has 8 elements. Thus
we only need to find an irreducible polynomial of degree 3 over Zs. Since a polynomial
of degree 3 is reducible if and only if it has a root, we simply need to find a polynomial
f(x) = 23 + ax? + bx + c such that f(0) # 0, f(1) # 0. Since Z5 has only two elements (0
and 1), this means that c= f(0) = 1,1 +a+b+c= f(1) = 1. Thus f(x) is irreducible if
and only if c = 1 and a + b = 1. Thus there are two irreducible polynomials of degree 3
over Zo: 3>+ 22+ 1 and 23 + z + 1.

#6 Let F be a field and f(x) € Flz|. Let p(x) € F|x]| be a polynomial of degree > 1.
Prove that f(z)+ (p(x)) is a unit in F[z]/(p(x)) if and only if f(z) and p(z) are relatively
prime.

Solution: f(x)+ (p(x)) is a unit in F[z|/(p(z)) if and only if there is some g(z) € F|[x]

such that f(z)g(x) + (p(z)) = (f(x) + (p(2)))(9(x) + (p(z)) = 1 + (p(z)). This happens
if and only if f(z)g(z) — 1 € (p(x)) and this is equivalent to f(z)g(xz) — 1 = k(x)p(x) for
some k(z) € Fx]. This may be rewritten as f(x)g(z) — p(x)k(z) = 1. But this condition
holds if and only if f(x) and p(z) are relatively prime.
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#7 (a) State the definition a prime ideal in a ring R.

(b) Prove that an ideal I in a commutative ring R with identity is a prime ideal if
and only if R/I is an integral domain.

(c) State the definition of a maximal ideal in a ring R.

(d) Prove that if R is a commutative ring with identity, then an ideal I in R is maximal

if and only if R/I is a field.

Solution:

(a) An ideal I C R is prime if whenever a,b € R, ab € I we have either a € I or b € I.

(b) Suppose I is prime ideal in R. Let a+1,b+1 € R/I and assume (a+1)(b+1) =0
in R/I. Then ab+1 =1 so ab € I. Since I is prime, either a € I or b € I and hence either
a+I=0o0rb+1=0in R/I. Hence R/I is an integral domain. Conversely, suppose R/I
is an intgral domain and a,b € R,ab € I. Then (a+ I)(b+ 1) =ab+1=1=01in R/I so
eithera+1=0o0r b+ I =01in R/I. Thus either a € I or b € I, so [ is a prime ideal.

(c) An ideal I C R is a maximal ideal in R if I # R whenever J is an ideal of R with
I C J C R then either J =1 or J = R.

(d) Let S be a commutative ring with identity. If S is the only nonzero ideal of S
and if 0 # a € S then (a) = S so 1 € (a). Thus 1 = ab for some b € S and so S is a field.
Conversely, if S is a field any nonzero ideal must contain 1 and so must equal S. Since an
ideal I C R is maximal if and only if R/I is the only nonzero ideal of R/I we have the
result.

#8 Show that Z[v/—2] is a Euclidean domain with §(a + bv/=2) = a? + 2b%.

Solution: Write R = Z[\/—2]. R is a subring of the field Q[v/—2], so it is an integral
domain. Thus to show R is a Euclidean domain we must verify two conditions on d: (i)
If u,v € R then 6(u) < d(uwv); (ii) If u,v € R,v # 0 then u = qv + r for some ¢, € R
with r = 0 or §(r) < §(v).Now for v = a + by/—2 € R C C we have @, the complex
conjugate of u, is a — by/—2 and §(u) = uu. Thus for u,v € R we have 6(uv) = (uv)(uv) =
(uw)(vo) = 0(u)d(v) and so §(u) < §(uv). Thus the first condition holds. To verify the
second condition assume v # 0 and note that, since Q[v/—2] is a field, u = (w; +w2y/—2)v
for some wy,ws € Q. Then we may find ¢1,¢2 € Z such that |wy — q1| < %, lwe — qa] < %
Set ¢ = q1 + g2/—2 and set 7 = u — qu. We must show that either r = 0 or §(r) < §(v).
Now 7 = u — qu = (w1 + wav/—2)v — qv = (w1 — ¢1) + (w2 — g2)v/—2)v. Then writing
v = vy + v2y/—2 we have

r=((w1 —q) + (w2 — ¢2)V=2)(v1 + v2v/=2) =

(w1 — q1)v1 — 2(w2 — g2)v2) + (w1 — q1)v2 + (w2 — g2)v1)V—2
and so

5(r) = (w1 — q1)v1 — 2(wa — g2)v2)* + 2((w1 — q1)v2 + (w2 — g2)v1)* =

(w1 — q1)%v3 — 4(w1 — q1)v1 (w2 — g2)va + 4(wa — g2)*v5+

2(w1 — q1)v3 + 4(w1 — q1)va(wa — g2)v1 + 2(wa — g2)%0F =
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(w1 = q1)* + 2(w2 — g2)*)01 + (4(w2 — g2)” + 2(w1 — q1)*)v3 <

3 3
Zv% + 51}% < §(v).

#9 Let R be an integral domain. Define S = {(a,b)|a,b € R,b # 0}. Define (a,b) ~
(c,d) if ad = be. Show that ~ is an equivalence relation.

Solution:

Reflexivity: Since ab = ba we have (a,b) ~ (a,b).

Symmetry: Assume (a,b) ~ (¢,d). Then ad = be and so ¢b = da. Hence (c,d) ~ (a,b).

Transitivity: Assue (a,b) ~ (¢,d),(c,d) ~ (e, f). Then ad = bc and cf = de. Mul-
tiplying the first equalty by f gives adf = bcf and multiplying the second by b gives
bcf = bde. Thus adf = bde. Hence 0 = adf — bde = d(af — be). Since R is an integral
domain and d # 0 we have af — be = 0 so af = be and hence (a,b) ~ (e, f).

#10 Let R = {a + bv/3|a,b € Z}. Then R is an integal domain (why?) and so R has a
quotient field F'. What is F7

Solution: R is a subring of the field of real numbers and is therefore an integral domain.
Let £ = {a + bV/3|a,b € Q}. Note that if 0 # a + by/3 € E then

(a + bV3)(a — bV/3) = a® — 3b*
is a rational number and is nonzero (since /3 is irrational). Thus

_ b\/g)
pv3)t = 2 =bV3)
(a + bV/3) RS
Hence F is a subfield of the field of real numbers. Then by Theorem 9.31, E contains a
subfield isomorphic to F'. But any subfield of the real numbers containing R must contain

all rational numbers and must contain /3, so it must contain E. Thus F is isomorphic to
E.

#11 Let G be a group, g,h,k € G and gh = gk. Prove that h = k. Conclude that the
multiplicative inverse of g is unique.

Solution: Since G is a group, it contains an identity element e and some element u such
that ug = e. Then h = eh = (ug)h = u(gh) = u(gk) = (ug)k = ek = k. Now suppose
u,v € G are inverses of g. Then gu = e = gv and so we have u = v.

#12 Compute the product
(1 2 3 4 5 6 7 Y 1 2 3 4 5 6 7)
4 6 1 2 3 7 572 3 4 1 5 6 7

in the symmetric group on 7 elements.



Solution:
( 2 3 4 5 6 7 )
6 1 2 4 3 7 5

#13 Let g = (;

(a) Find g~
(b) Find the order of g.

; ? é i (13 ;) in the symmetric group on 7 elements.

Solution:1 5
(@) (5
(b) Note that g(1) = 2,9*(1) = g(2) = 5,¢°(1) = g(5) = 4,¢*(1) = g(4) = 6,¢°(1) =
g(6) = 1. Thus g*(1) = 1 if and only if 5|k. This computation also shows that g°(2) =
2,9%(5) = 5,9°(4) = 4, and ¢°(6) = 6. Similarly g(3) = 7,¢%(7) = 3 and so ¢g¥(3) = 3 if
and only if 2|k and the computation also shows that ¢?(7) = 7. Thus 10 must divide the
order of g and ¢'° is the identity permuation. Thus the order of g is 10.

34567)
75 2 4 3

#14 Let G be a group with identity element e. Suppose g2 = e for all g € G. Prove that
G is commutative.

Solution: Here are two slightly different proofs:
(i) Multiply both sides of g> = e by g7 to get g = g~ ! for all g € G. Now let g,h € G
and recall that (gh)~! = h=1g~!. Then

gh=(gh)"' =h"'g"" = hg.

(i) Let g,h € G. Then (gh)? = ghgh = e. Also g?> = h? = e so g?h? = e. Hence
ghgh = gghh. Multiply on the left by g=! to get hgh = ghh and then multiply on the
right by h~! to get hg = gh.

#15 Let G be a commutative group with identity element e and let n € Z,n > 1. Let
H = {g € G|g™ = e}. Prove that H is a subgroup of G.

Solution: Since e € H, we have that H is nonempty. If g,h € H, then (gh)"” = g"h™ =
ee = e, 50 gh € H. Also, (¢ )" =g =(¢g")"1 =e ! =¢ 509! € H Thus H is a
subgroup.



