
MATH 354-03 February 19, 2005

Solutions to practice questions for exam #1

#1 A furniture manufacturer wishes to determine how many tables, chairs,
desks, or bookcases he should make in order to optimize the use of his
available resources. These products utilize two different types of lumber:
pine and oak. The manufacturer has on hand 1,500 board feet of pine and
1,000 board feet of oak. He has 800 hours of his employees’ time available
for the entire job. His sales forecast plus his back orders require him to make
at least 40 tables, 130 chairs, 30 desks and no more than 10 bookcases.

Each table requires 5 board feet of pine, 2 board feet of oak, and 3 hours
of labor.

Each chair requires 1 board feet of pine, 3 board feet of oak, and 2 hours
of labor.

Each desk requires 9 board feet of pine, 4 board feet of oak, and 5 hours
of labor.

Each bookcase requires 12 board feet of pine, 1 board feet of oak, and
10 hours of labor.

The manufacturer makes a profit of $12 on a table, $5 on a chair, $15 on
a desk, and $10 on a bookcase.

Set up a linear programming model of this situation. State explicitly
what each of your variables (for example, x1, x2, ...) represents). DO NOT
attempt to solve the resulting linear programming problem.

SOLUTION: Let x1 denote the number of tables to be produced, x2 the
number of chairs, x3 the number of desks and x4 the number of bookcases.

maximize: 12x1 + 5x2 + 15x3 + 10x4

subject to:
5x1 + x2 + 9x3 + 12x4 ≤ 1500
2x1 + 3x2 + 4x3 + 1x4 ≤ 1000
3x1 + 2x2 + 5x3 + 10x4 ≤ 800
x1 ≥ 40, x2 ≥ 130, x3 ≥ 30
0 ≤ x4 ≤ 10.
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#2 A manufacturer has distribution centers located in Atlanta (A), Chicago
(C), and New York (NY). These centers have available 40, 20, and 40 units of
his product, respectively. His retail outlets require the following number of
units: Cleveland (CL)- 25; Louisville (L) - 10; Memphis (M)- 20; Pittsburgh
(P)- 30; and Richmond (R)- 15. The shipping cost per unit in dollars
between each center and outlet is given in the following table:

CL L M P R
A 55 30 40 50 40
C 35 30 100 45 60
NY 40 60 95 35 30

.

Set up a linear programming model of this situation. State explicitly
what each of your variables (for example, x1, x2, ...) represents. DO NOT
attempt to solve the resulting linear programming problem.

SOLUTION:
There are fifteen variables denoted xI,J where I stands for A, C, or NY

(designating a distribution center) and J stands for CL, L, M, P, or R
(designating a retail outlet). The variable xI,J denotes the number of units
to be shipped from distribution center I to retail outlet J.

minimize: 55xA,CL + 30xA,L + 40xA,M + 50xA,P + 40xA,R + 35xC,CL +
30xC,L + 100xC,M + 45xC,P + 60xC,R + 40xNY,CL + 60xNY,L + 95xNY,M +
35xNY,P + 30xNY,R
subject to:
xA,CL + xA,L + xA,M + xA,P + xA,R ≤ 40
xC,CL + xC,L + xC,M + xC,P + xC,R ≤ 20
xNY,CL + xNY,L + xNY,M + xNY,P + xNY,R ≤ 40
xA,CL + xC,CL + xNY,CL ≥ 25
xA,L + xC,L + xNY,L ≥ 10
xA,M + xC,M + xNY,M ≥ 20
xA,P + xC,P + 35xNY,P ≥ 30
xA,R + xC,R + xNY,R ≥ 15
xI,J ≥ 0 for all I,J.



3

#3 Convert the following linear programming problem into (a) standard
form, and (b) canonical form.

minimize: −3x1 + 2x2 + x4

subject to:
x1 + x2 ≥ 5− x1 − x3 + 2x4

x2 + 3x4 = 5
x1, x2 ≥ 0, x3 ≤ 0, x4 unconstrained.

SOLUTION:
(a)

Replace x3 with −x5 and x4 with x6 − x7. Then the problem becomes:

maximize: 3x1 − 2x2 − x6 + x7

subject to:
−2x1 − x2 + x5 + 2x6 − 2x7 ≤ −5
x2 + 3x6 − 3x7 ≤ 5
−x2 − 3x6 + 3x7 ≤ −5
x1, x2, x5, x6, x7 ≥ 0.

(b)
Replace x3 with −x5 and x4 with x6−x7 and introduce a slack variable,

x8, to change the first consraint in (a) to an equality. Then the problem
becomes:

maximize 3x1 − 2x2 − x6 + x7

subject to:
−2x1 − x2 + x5 + 2x6 − 2x7 + x8 = −5
x2 + 3x6 − 3x7 = 5
x1, x2, x5, x6, x7, x8 ≥ 0.

#4 Consider the linear programming problem
Maximize: x+ y
Subject to:
−x+ y ≤ 2
2x+ y ≤ 6
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x+ 2y ≤ 6
x, y ≥ 0.
Sketch the feasible region and the lines with equations x+y = 2, x+y =

3, x + y = 4, x + y = 5, x + y = 6. Find the optimal solution and explain
how you find it.

SOLUTION: The feasible region is the pentagon with vertices (0, 0), (0, 2),
( 2

3 ,
8
3 ), (2, 2), and (3, 0). The line with equation x + y = k has x-intercept

(k, 0) and y-intercept (0, k). The maximum value of the objective funcetion
x+ y is the largest value of k such that the graph of the equation x+ y = k
intersects the feasible region. This occurs for k = 4. Thus the optimal value
of the objective function is 4 at the point (2, 2).

#5 Consider the linear programming problem
Maximize: x+ y
Subject to:
−2x+ y ≤ 2
x− 2y ≤ 2
3x+ 5y ≥ 15
x, y ≥ 0.
Sketch the feasible region. Does this problem have an optimal solution?

Why or why not?

SOLUTION: The feasible region is that portion of the plane between the
graphs of the equations −2x+y = 2 (a line with y-intercept (0, 2) and slope
2) and x − 2y = 2 (a line with x-intercept (2, 0) and slope 1

2 ) and above
the graph of the equation 3x + 5y = 15 (a line with x-intercept (5, 0) and
y-intercept (0, 3)). This region is unbounded. Note, for example, that it
contains the point (k, k) whenever k ≥ 15

8 . Since the value of the objective
function at this point is 2k, we see that there is no optimal solution.

#6 Consider the linear programming problem
Maximize: x+ y
Subject to:
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2x+ y ≤ 6

x+ 2y ≤ 6

2x+ 3y ≥ 24

x, y ≥ 0. Sketch the feasible region. Does this problem have an optimal
solution? Why or why not?

SOLUTION: The feasible region is empty, so there is no optimal solution.

#7 State the definitions of the following terms:

(a) feasible region of a linear programming problem

(b) convex set in Rn

(c) extreme point of a convex set

SOLUTION:

(a) The feasible region is the set of all points satisfying the constraints.

(b) A subset C of Rn is convex if whenever it contains points x and y it
contains all points on the line segment joining x and y.

(c) A point x in a convex set C is an extereme point if x is not in the
interior of the line segment joining any two points y and z in C.

#8 Let x and y be vectors in Rn. Describe the line segment joining x and
y.

SOLUTIONS: The line segment joining x and y consists of all λx+(1−λ)y
where 0 ≤ λ ≤ 1.

#9 Prove that the feasible region of a linear programming problem is
convex.

SOLUTION: Suppose the problem is in standard form, so that the con-
straints are Ax ≤ b and x ≥ 0. Let y and z be two feasible solutions. We
must show that λy + (1−λ)z satisfies the constraints whenever 0 ≤ λ ≤ 1..
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Now, since 0 ≤ λ ≤ 1 we have λ ≥ 0 and 1− λ ≥ 0. Therefore

A(λy + (1− λ)z) =

A(λy) +A((1− λ)z) =

λAy + ((1− λ))z ≤
λb + (1− λ)b = b

and
(λy + (1− λ)z) ≥
λ0 + (1− λ)0 = 0.

#10 (a) Find an optimal solution (if there is one) to the following linear
programming problem using the simplex method.

Maximize: 4x1 + 3x2 + 6x3

Subject to:
3x1 − 4x2 − 6x3 ≤ 18
−2x1 − x2 + 2x3 ≤ 12
x1 + 3x2 + 2x3 ≤ 1
x1, x2, x3 ≥ 0.

(b) Find an optimal solution (if there is one) to the following linear
programming problem using the simplex method. (Note that only one co-
efficient has been changed from the problem in (a).)

Maximize: 4x1 + 3x2 + 6x3

Subject to:
3x1 − 4x2 − 6x3 ≤ 18
−2x1 − x2 + 2x3 ≤ 12
−x1 + 3x2 + 2x3 ≤ 1
x1, x2, x3 ≥ 0.

SOLUTION:
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(a) Introduce slack variables x4, x5, and x6. Then the initial tableau is

x1 x2 x3 x4 x5 x6

x4 3 −4 −6 1 0 0 18
x5 −2 −1 2 0 1 0 12
x6 1 3 2 0 0 1 1

−4 −3 −6 0 0 0 0

The negative entry of largest value in the objective row is in the third
column. Th θ-ratios are 12

2 = 6 and 1
2 . Thus we pivot on the entry in the

third row, third column. The new tableau is

x1 x2 x3 x4 x5 x6

x4 6 5 0 1 0 3 21
x5 −3 −4 0 0 −1 −1 11
x3

1
2

3
2 1 0 0 1

2
1
2

−1 6 0 0 0 3 3

The only negative entry in thye objective row is in the first column. The

θ-ratios are 21
6 and

1
2
1
2

= 1. Thus we pivot on the entry in the third row,

first column. The new tableau is

x1 x2 x3 x4 x5 x6

x4 0 −13 −12 1 0 −3 15
x5 0 5 6 0 1 2 14
x1 1 3 2 0 0 1 1

0 9 2 0 0 4 4

All entries are optimal, so the resulting solution (z = 4 at the point
x1 = 1, x2 = 0, x3 = 0) is optimal.

(b) The initial tableau is

x1 x2 x3 x4 x5 x6

x4 3 −4 −6 1 0 0 18
x5 −2 −1 2 0 1 0 12
x6 −1 3 2 0 0 1 1

−4 −3 −6 0 0 0 0
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As in part (a) we pivot on the third row, third column, getting

x1 x2 x3 x4 x5 x6

x4 0 5 0 1 0 3 21
x5

−7
3 −4 0 0 −1 −1 11

x3
−1
2

3
2 1 0 0 1

2
1
2

−7 6 0 0 0 3 3

Now the entry in the first column of the objective row is negative and
every entry above it is ≤ 0. Thus there is no optimal solution (because the
objective function may take arbitrarily large values).

#11 In each part, find an optimal solution (if there is one) to the following
linear programming problem using the two-phase simplex method (or the
big M method).

(a) Maximize: x1 + x2

Subject to:

−x1 − x2 + x3 + x4 = 2

−4x1 − x2 + 2x3 + 3x4 = 5

x1, x2, x3, x4 ≥ 0

(b) Maximize: x1 + x2

Subject to:

2x1 + x2 + x4 = 6

3x2 + x3 + x5 = 8

3x1 + 6x2 + 2x3 + x4 + x5 = 20

x1, x2, x3, x4, x5 ≥ 0

SOLUTION:

(a) Introduce artificial variables y1 and y2 so that the constriants become

−x1 − x2 + x3 + x4 + y1 = 2
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−4x1 − x2 + 2x3 + 3x4 + y2 = 5.

We want to minimize y1 + y2 or, equivalently, maximize −y1 − y2.
Now −y1 = −2−x1−x2 +x3 +x4 and −y2 = −5−4x1−x2 +2x3 +3x4.

Hence we want to maximize −y1−y2 = −7−5x1−2x2 + 3x3 + 4x4. This is
the same as maximizing −5x1 − 2x2 + 3x3 + 4x4. Thus the initial tableau
for phase one is:

x1 x2 x3 x4 y1 y2

y1 −1 −1 1 1 1 0 2
y2 −4 −1 2 3 0 1 5

5 2 −3 −4 0 0

The negative entry of largest absolute value in the objective row is in
the fourth column. The θ-ratios are 2 and 5

3 . Thus we pivot on the second
row, fourth column. The new tableau is

x1 x2 x3 x4 y1 y2

y1
1
3

−2
3

1
3 0 1 −1

3
1
3

x4
−4
3

−1
3

2
3 1 0 1

3
5
3

−1
3

2
3

−1
3 0 0 4

3

.

We may now pivot on the first row, first column. The new tableau is

x1 x2 x3 x4 y1 y2

x1 1 −2 1 0 3 −1 1
x4 0 −3 2 1 4 1 3

0 0 0 0 1 1

This shows that x1 = 1, x2 = x3 = 0, x4 = 3 is a feasible solution to the
original problem.

The initial tableau for the second phase is obtained by deleting the
columns corresponding to y1 and y2 from the previous tableau and replacing
the objective row by the row obtained from the objective function for the
original problem modified by row operations to make the entries in basic
columns 0.
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Thus, in this problem, we start with the row

−1 −1 0 0

and add the row

1 −2 1 0

to get

0 −3 1 0 .

Thus our initial tableau for phase two is

x1 x2 x3 x4

x1 1 −2 1 0 1
x4 0 −3 2 1 3

0 −3 1 0

.

But now the entry in the second column of the objective row is negative
and every entry above it is ≤ 0. This means that there is no optimal value
of the objective function, i.e., the objective function can take arbitrarily
large values.

(b) Introduce artificial variables y1, y2 and y3 to get constraints

2x1 + x2 + x4 + y1 = 6

3x2 + x3 + x5 + y2 = 8

3x1 + 6x2 + 2x3 + x4 + x5 + y3 = 20.

We want to minimize y1 + y2 + y3 or, equivalently, to maximize −y1 −
y2− y3. Now −y1− y2− y3 = −6 + 2x1 +x2 +x4− 8 + 3x2 +x3 +x5− 20 +
3x1 + 6x2 + 2x3 + x4 + x5 = −34 + 5x1 + 10x2 + 3x3 + 2x4 + 2x5. Thus the
initial tableau for phase one is
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x1 x2 x3 x4 x5 y1 y2 y3

y1 2 1 0 1 0 1 0 0 6
y2 0 3 1 0 1 0 1 0 8
y3 3 6 2 1 1 0 0 1 20
−5 −10 −3 −2 −2 0 0 0

The negative entry of largest absolute value in the objective row is −10
in the second column. The smallest θ-ratio in the second column is 8

3 which
occurs in the second row. Thus we pivot on the second row, second column
and obtain the new tableau

x1 x2 x3 x4 x5 y1 y2 y3

y1 2 0 −1
3 1 −1

3 1 −1
3 0 10

3

x2 0 1 1
3 0 1

3 0 1
3 0 8

3
y3 3 0 0 1 −1 0 −2 1 4
−5 0 1

3 −2 4
3 0 10

3 0

Now the entry of largest absolute value in the objective row is −5 in the
first column. The smallest θ-ratio in the first column is 4

3 which occurs in
the third row. Thus we pivot on the third row, first column and obtain the
new tableau

x1 x2 x3 x4 x5 y1 y2 y3

y1 0 0 −1
3

1
3

1
3 1 1 −2

3
2
3

x2 0 1 1
3 0 1

3 0 1
3 0 8

3

x1 1 0 0 1
3

−1
3 0 −2

3
1
3

4
3

0 0 1
3

−1
3

−1
3 0 0 5

3

Now one of the entries of largest absolute value in the objective row is
−1
3 in the fourth column. The smallest θ-ratio in the fourth column is 2

which occurs in the first row. Thus we pivot on the first row, fourth column
and obtain the new tableau
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x1 x2 x3 x4 x5 y1 y2 y3

x4 0 0 −1 1 1 3 3 −2 2
x2 0 1 1

3 0 1
3 0 1

3 0 8
3

x1 1 0 1
3 0 −2

3 −1 −5
3 1 2

3
0 0 0 0 0 1 1 1

This shows that x1 = 2
3 , x2 = 8

3 , x4 = 2, x3 = x5 = 0 is a feasible solution
to the original problem.

The initial tableau for the second phase is obtained by deleting the
columns corresponding to y1, y2 and y3 from the previous tableau and re-
placing the objective row by the row obtained from the objective function
for the original problem modified by row operations to make the entries in
basic columns 0. Thus, in this problem, we start with the row

−1 −1 0 0 0

add the row

1 0 1
3 0 −2

3

to get

0 −1 1
3 0 −2

3

then add the row

0 1 1
3 0 1

3

to get

0 0 2
3 0 −1

3 .

Since the entries in the positions corresponding to basic columns are all
0, this will be our objective row. Thus our initial tableau for phase two is
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x1 x2 x3 x4 x5

x4 0 0 −1 1 1 2
x2 0 1 1

3 0 1
3

8
3

x1 1 0 1
3 0 −2

3
2
3

0 0 2
3 0 −1

3

The only negative entry in the objective row is in the fifth column. The
smallest θ-ratio in this column is 2 which occurs in the first row. Thus we
pivot on the first row, fifth column and get the new tableau

x1 x2 x3 x4 x5

x5 0 0 −1 1 1 2
x2 0 1 2

3
−1
3 0 2

x1 1 0 −1
3

2
3 0 2

0 0 1
3

1
3 0

This satisfies the optimality condition, so the optimal solution is x1 =
x2 = x5 = 2, x3 = x4 = 0, giving the value of 4 for the objective function.


