Math 428 - Solutions to review problems for Final Exam - December 16, 2009
This is the complete set of review problems.

4 1 Let G be the complete bipartite graph with partite sets {a,b,c, d} and {e, f,g}-

i) Find a bf-path of maximal length.
Solution: Let b = vg,v1,V2,...,vx = f be a bf-path of length k. Since G is bipartite, v;
must belong to {a,b,c,d} when i is even and must belong to {e, f, g} when i is odd. Since
the vertices in a path must be distinct, there can be at most 3 vertices v; with ¢ odd. Thus
k < 5. The path b,e,a,g,¢, f has length 5 and so is of maximal length.

ii) Find a bc-path of maximal length.
Solution: Let b = v, v1,v2,...,V = C be a be-path of length k. Since G is bipartite, v;
must belong to {a,b,c,d} when ¢ is even and must belong to {e, f,g} when i is odd. Since
the vertices in a path must be distinct, there can be at most 3 vertices v; with ¢ odd. Thus
k < 6. The path b,e,q,9, d, f,c has length 6 and so is of maximal length.

iii) Find a trail of maximal length _‘
Solution: Note that the size of G is 12, so no trail can have more than 12 edges. Let P be
any trail and S be the set of edges in P. Then P is an Eulerian trail or Eulerian circuit in
the edge induced subgraph < S >. Hence this subgraph can contain at most two vertices
of odd degree. Now in the graph G, the vertices a, b,c,d all have degree 3 and the vertices
e, f,g all have degree 4. For there to be an Eulerian trail in < .S >, S must be obtained by
removing at least one edge incident each of two of the vertices of degree 3 in G. Thus, no
trail in G can have more than 10 vertices. In fact, if S = {af, ag,bf, by, ce, cf,cg,de,df , eg}
then < S > has three vertices (a, b and e) of degree 9, two vertices (c and d) of degree
3 and two vertices (f and g) of degree 4 and so < § > has an Eulerian trail. Using
Fleury’s algorithm we see that ¢, g,d, f,b,g,a, f,c,e,d is one such trail and hence is a trail
of maximal length in G.

# 2 Let G and H be planar graphs.

a) Suppose G + H is planar. Show that either G or H has order < 2.
Solution: We will prove the contrapositive. Suppose that G and H both have order > 3.
Let ay,ag,a3 be three vertices of G and by, ba, b be three vertices of H. Then a;b; is an
edge of G + H for all z,j,1 < 3,7 <3. Let §= {a;b;|l1 < 4,5 < 3}. Then the edge induced
subgraph < § > of G + H is isomorphic to K3 3 and so, by Kuratowski’s Theorem, G + H
cannot be planar.

b) Does the converse of (a) hold. That is, if G and H are planar and G has order < 2
does G + H have to be planar?
Solution: G + H does not have to be planar. For example K, + K4 is isomorphic to Ks
and so is not planar.

# 3 For each of the following sequences, answer the following questions (giving reasons).
i) Is the sequence graphical?
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ii) If the sequence is the degree sequence of a graph G, can G be connected? Does G
have to be connected?

iii) If the sequence is the degree sequence of a graph G, can G be Eulerian? Does G
have to be Eulerian?

iv) If the sequence is the degree sequence of a graph G, can G be Hamiltonian? Does
G have to be Hamiltonian?

v) If the sequence is the degree sequence of a graph G, can G be planar? Can G be
maximal planar? Does G have to be planar or maximal planar?

a) (5,4,4,3,3,3)
Solution: This sequence is graphical if and only if (3, 3,2, 2, 2) is graphical and (3, 3,2, 2, 2)
is graphical if and only if (2,2,1,1) is graphical. Since (2,2, 1,1) is the degree sequence of
P, we see that (5,4,4,3,3,3) is graphical. Suppose G is a graph with this degree sequence.
Then since the vertex of degree 5 must be adjacent to 5 other vertices and since G has
order 6 we see that the vertex of degree 5 is adjacent to every other vertex and so G must
be connected. Since G has vertices of odd degree, it cannot be Eulerian. Since §(G) = 3
and so 26(G) is > the order of G, we see that G must be Hamiltonian. The plane graph G
shown below has the given degree sequence. However, the graph G2 shown below contains
a subgraph isomorphic to K33 and so is not planar. No graph with this degree sequence
can be maximal planar, since the order n is 6 and the size m is (5+4+4+3+3+3)/2 =11
s0 3n—6=12#m.
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b) (5,4,4,4,3,3)
Solution: This sequence is not graphical since it contains an odd number of odd entries.
c) (5,4,4,1,1,1)
Solution: This sequence is graphical if and only if (3, 3,0,0,0) is graphical. The sequence
(3,3,0,0,0) is not graphical since if it were there would be only two vertices of positive
degree and hence no vertex could have degree greater than 1.



d) (5,5,4,4,2,2,2,2)

Solution: This sequence is graphical if and only if (4,3,3,2,2,1,1) is graphical and
(4,3,3,2,2,1,1) is graphical if and only if (2,2,1,1,1,1) is graphical. Since P, U P, has
degree sequence (2,2,1,1,1,1) the given sequence is graphical. Let G be a graph with this
degree sequence. Suppose G is not connected. Let G; be a component containing a vertex
of degree 5 and G be another component. Then, since G; contains a vertex of degree 5,
its order is at least 6. Thus the order of G9 is at most 2. However, any vertex of G5 has
degree > 2, which is impossible. Thus G must be connected. Since G' contains vertices of
odd degree, it cannot be Eulerian. The graphs G; and G2 below have the given degree
sequence. Since G has a cut-vertex, it is not Hamiltonian. The graph G is Hamiltonian
(since the perimeter of the octagon is a Hamilton cycle. Finally, if G were to contain a
subdivision of K5 as a subgraph, it would have to contain at least 5 vertices of degree > 4.
But G contains only 4 such vertices. Similarly, if G were to contain a subdivision of K33
as a subgraph, it would have to contain at least 3 vertices of degree > 3. But G contains
only 4 such vertices. Thus, by Kuratowski’s Theorem, G must be planar. Since G has
order n =8 and size m = (b+5+4+4+2+2+2=2)/2 =13 wesee that 3n—6 = 18 # m
and so G cannot be maximal planar.
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# 4 Let n be an integer, n > 3.

(a) How many isomorphism classes of n — 1-regular graphs of order n are there? Why?
Solution: Such a graph must be K, so there is only one isomorphism class.

(b) How many isomorphism classes of n — 2-regular graphs of order n are there? Why?
Solution: If n is odd, there are 0 isomorphism classes of such graphs, since such a graph
would have an odd number of vertices of odd degree. If n is even, the complement would
have degree sequence (1,1, ...,1) and so would be isomorphic to P U ... U P, where there
are n/2 copies of P,. Thus there is only one isomorphism class in this case.
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# 5 Give an embedding of C3 U P, as an induced subgraph of a 3-regular graph.
Solution: Here are two such embeddings.
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# 6 Let v be a cut-vertex of a graph G. How many blocks of G can contain v?

Soluiton: Suppose v is contained in p blocks of G. Since every vertex of G is contained is
some block we must have p > 1. Suppose v is contained in only one block, say B. Since v is
a cut vertex there exist vertices u, w of G such that there is a u—w path in G and that every
u — w path in G contains v. Let u = up, U1, ..., Ug—1,Ux = U = Wi, Wi~1; ..., W1, Wo = W.
be a u — v path. Then every ug—; — wi—1 path in G must contain v. But, since B is
the only block containing v, the edges ux_1v and vw;—; must belong to B and so ug—1,
w;_1 are vertices of B. But then v is a cut-vertex of B, contradicting the fact that B is
nonseparable. Thus p > 2. Considering the graph drawn below shows that p can be any

integer > 2.
1 j/
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# 7 Prove that if B and C are blocks of a graph G (and B # C) then |[V(B)NV(C)| <
1. Solution: Suppose z,y € V(B) N V(C) with z # y. Let D be the graph with
V(D) = V(B)u V(C),E(D) = E(B)U E(C). We will show that D is nonseparable.
Since D properly contains B this contradicts the fact that B, being a block, is a maxial
nonseparable subgraph. To see that D is nonseparable, let v € D. Suppose v ¢ V(B). Then
v € V(C). Now the block B is connected and C' — v is connected (since C is nonseparable.
Since V(B) NV (C — v) # 0 (since it contains = and y) we have that D — v is connected.
Similarly, if v ¢ C we see that D — v is connected. Finally, suppose that v € V(B)NV(C).
Then B — v and C — v are connected. Furthermore, V(B —v) NV (C —v) # 0 (for it must
contain at least one of the two vertices z and y. This in this case D — v is connected.
Hence D — v is always connected an so v cannot be a cut vertex. The completes the proof.

# 8 Find all trees T' such that T is planar. Explain.
Solution: If T has order < 5 then T is planar (for any graph of order 4 is planar, the only
nonplanar graph of order 5 is K5, and T is not complete).

If T has order n then T has size ((n(n —1)/2) — (n — 1). Thus if T is planar we have

3n—62((n(n-1)/2) - (n—1)

50
0>n2—-9n+14=(n—-2)(n-"17).

Thus if T has order > 8, T is nonplanar.

It remains to consider trees of order 6 and 7.

Suppose T is a tree of order 6 and that T contains a subgraph H isomorphic to K3 3.
Let A and B be the partite sets of H. Then every vertex in A is adjacent in G to every
vertex in B. This means that in T no vertex in A is adjacent to any vetex in B. Since
AUB = V(T) this shows that T is not connected, a contradiction. Thus T cannot contain
a subgraph isomorphic to K3 3. Now suppose T contains a subgraph isomorphic to a
subdivsion of K5. Then T must contain at least 5 vertices of degree > 4 and so T' must
contain at least 5 vertices of degree 1. This means that the degree sequence of T must be
(5,1,1,1,1,1). Note that in this case T does contain a subgraph isomorphic to K5 so T
is nonplanar. In any other case (for T’ of order 6), Kuratowski’s Theorem shows that T is
planar.

Now suppose T is a tree of order 7. If T is Py, let v be the middle vertex. Then T'—v
has two components, say G; and Gs. Since, in T, no vertex of G is adjacent to any
vertex of G we have that in T every vertex of Gy is adjacent to every vertex of G. Thus
T contains a subgraph isomorphic to K33 and so is not planar. Thus if T is planar, T
contains a vertex of degree > 3. If T contains a vertex v of degree 5 or 6 then we may find 5
vertices v, Uz, Vs, Vs, Us adjacent to v in T. Then (as T is acyclic) no two of there vertices
are adjacent in 7' and hence any two are adjacent in T. Thus T contains a subgraph
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isomorphic to K5 and so is nonplanar. Next suppose that T' contains a vertex v of order
4. Then G — v has 4 components. Say these components are G, G2, G3, G4 and that they
have orders ai, as,as,as where a; > ag > ag > a4. Since a; + ap + a3 + a4 = 6, there are
only two possibilities for the sequence (a1, as,as,as). These are (3,1,1,1) and (2,2,1,1).
In the first case, every vertex in G1 is adjacent in T to every vertex of G2, G3 and Gy.
In the second case, every vertex in G1 U G3 is adjacent in T to every vertex in Ga U Gy.
Thus in either ease there is a subgraph isomorphic to K3 3 and so T is nonplanar. Finally,
suppose that T' contains a vertex v of degree 3. Then G — v has 3 components. Say these
components are Gy, Gq, G3 and that they have orders a1, a2, a3 where a; > as > a3. Since
a1 + as + as = 6, there are only three possibilities for the sequence (a1, a2,a3). These are
(4,1,1),(3,2,1) and (2,2,2). In the first case, v is adjacent to one vertex w in G1 and no
vertex in Gy — w is adjacent to any vertex in {v} U V(G2) UV(Gs). Thus T contains a
subgraph isomorphic to K3 3. In the second ease no vertex in G is adjacent to any vertex
in Gy U G35 and so again T contains a subgraph isomorphic to K33 and so is nonplanar.
In the last case, the tree T is represented by the left-hand diagram below and so T is
represented by the right-hand diagram below. This shows that T is planar in this case.
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To summarize our results, if T' is a tree of order n, then T is planar if and only if either:

(a) n < 5;

(b) n =6 and T is not ;‘>®ﬁ6
}




(c)n="Tand T is 6

# 9 a) Show that v(Ks) = 1.

Solution: We have seen in class that K5 is nonplanar. (One way to see this is that K
has order n = 5 and size m = 10. Since 3n — 6 = 9 < m we know that K is nonplanar.)
Thus we only need to show that K5 can be embbedded in S;. Here is such an embedding.
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b) Show that y(Ks3) = 1.
Solution: Since K43 contains a subgraph isomorphic to K3, it is nonplanar by Kura-
towski’s Theorem. Thus we only need to show that K43 can be embedded in S;+1. Here
is such an embedding.

N [ g
)323(/‘ 7 )XX fnd oo Hom
%

o T 0y Jonhly loft
N, i it
—\ O\W’h« — edgps

-




8

# 10 Suppose a graph G of order n has chromatic number n. Does G have to be complete?
Why or why not?

Solution: G must be complete. We will establish this by proving the contrapositive.
Suppose G is not complete. Then we may label the vertices of G as vy, vs, ..., Un—1, Un, With
Up—1 not adjacent to v,. Then we may color G with n — 1 colors by giving vertex V; color
i for 1 <n — 1 and giving vertex v, color n — 1. Thus x(G) <n — 1.

# 11 Prove that a graph G of order > 3 is connected if and only if G contains two distinct
vertices u and v such that G — u and G — v are connected. (This is Theorem 1.10.)
Solution: See the text for this. The proof is split into two parts: Theorems 1.8 and 1.9.

# 12 Let G andH be graphs with V(G)NV (H) = 0. State the definitions of GUH, G + H,
and G x H.
Solution: See pages 23 and 24 of the text for these definitions.

# 13 Prove that two graphs G and H are isomorphic if and only if G and H are isomorphic.
Solution: See the text for this. It is Theorem 3.1.

# 14 Let F,G and H be graphs.

(a) Suppose that F'UH and GU H are isomorphic. Do F' and G have to be isomorphic.
Explain your answer.
Solution: We know that if A and B are isomorphic graphs then A is connected if and only
if B is connected. (This is Theorem 3.5(b).) Thus if ¢ is an isomorphism from a graph C
to a graph D and C' is a component of C, its image ¢(C’) is a component of D. Now let
G’ be a component of G. Let a be the number of components of F' that are isomorphic to
G', b be the number of components of H that are isomorphic to G’ and ¢ be the number of
components of G that are isomorphic to G’. Then F'UH has a +b components isomorphic
to G' and G U H has b+ ¢ components that are isomorphic to G'. Since FUH and GUH
are isomorphic we see that a + b = b+ ¢ so a = c¢. Thus we may find a one-to-one onto
map of V(F) onto V(G) which restricts to an isomorphism on each component of F', so I
and G are isomorphic.

(b) Suppose that F'+ H and G+ H are isomorphic. Do F and G have to be isomorphic.
Explain your answer. Hint: Consider using problem #13.
Solution: F and G do have to be isomorphic. To see this, suppose F' + H and G + H
are isomorphic. Then by Theorem 3.1 (which is problem #13), F'+ H and G + H are
isomorphic. Now F'+ H is isomorphic to F UH. Thus we have F U H is isomorphic to
G U H. Then by part (a) we have that F is isomorphic to G. Finally, using Theorem 3.1
again gives that F' and G are isomorphic.

# 15(a) Suppose G has no cut vertices. How many bridges can G have? Explain.
Solution: Let G/ be a component of G and suppose G’ has a bridge. If G’ has order > 3
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then G’ has a cut vertex, so G has a cut vertex, contradicting our hypothesis. If G’ has
order 2 then G’ is isomorphic to P, and so contains one bridge. If G’ has order 1 then
it has no bridges. Consequently, the number of bridges of G is equal to the number of
components of G that are isomorphic to P,. This number can be any nonnegative integer.
Note that if the hypothesis that G is connected is added, then the number of bridges must
be 0 or 1.

(b) Suppose G has exactly one cut vertex. How many bridges can G have? Explain.
Solution: The number of bridges can be any nonnegative integer, for the graph formed
by joining two triangles at one vertex has one cut vertex and no bridges, the graph formed
by joining a triangle and a P at one vertex has one cut vertex and one bridge, and, for
n > 2, the tree of order n + 1 with degree sequence (n,1,1,...,1) has one cut vertex and n
bridges.

#16 Suppose that G is a graph of order n containing no isolated vertices. Prove that
a(G) + B(G) = n and that a1 (G) + f1(G) = n.
Solution: The result for oy and By is Theorem 8.7 in the text.

To prove the result for o and B note that a subset S C V(G) is independent if and only
if its complement V(G) — S is a vertex cover. Thus the complement of an independent set
of maximum cardinality is a vertex cover of minimum cardinality. '

#17 Let G be a graph. Prove that v(G) < 1+ A(G) and that v(G) < 1+ maz{5(G)}
where the maximum is taken over all induced subgraphs.
Soluiton These results are Theorems 10.7 and 10.9 in the text.




H#I¥ Fud a  wminmmal Spennivg Yree N
ln. tha &n\\&aﬁwck M\Sh«{e& ﬁm@ﬁ\ ws!ng
‘Kru&-l:alg alaowr\(’/w avdl  al=o us! ug Frine 3
@\_5OV‘L“M\M— Elow youxs wov 'k

b _.*Z@Q— PRSI, T
ID Z&é/eg
6 5

S-O\W\f(}m " Nole ¥k Yoo are |3 V@\"\ia‘gé/

SO O-MV\/ S@C{)/\V'\,\Vﬁ oo 2ol haw& \Z @&%515
Ora GJ@@\\Cmtwn ot K\Pu,elm,l[é DijOH‘M"W‘ solocts
orden. (Other

fo edaes 32 -y @y W
¢ " ble_.Ldzw/ +o A!'?%KQ/\EV& cho <

A Wﬂgﬁﬁ:’;( ol
A edsgps W0 Mo stk WO
One. @3@@\\@0\4@% o ?‘P\\M '3 aﬂé@r%w (&LMLW} @,} VX
selocls e edgs €, Cs f@Z»@w@,ez,@q@,lﬁpc)C’, e
i ek ovdoe ! > D




\\%

* 19 Fiud a mimmal e V/ Q@MJ,W
St and a monmed. stk o m&/waﬁbi 5\,5\30”}
-V Fm\’fﬂé m o Ha & Lo v 3m£;.(4. ExF(mw
ow Mewprs  Fhoown o b wd

Ju,s-kﬁy you AMS WA

by e Vs Via Vis

1\ T; /O'TC’

V',.L

@

.|

2\‘

{\/4, ng% o a4 WV ﬁe@mm% :fz@?[‘

{ b\VIS\/'4V \/,1 II\/Q lv3$\/4’7/j LlV \/45\/55 \/54 V53 V'5_2 V‘?
nw a @)L 039 Z_ |VL‘L@\/\~J% d)ﬂ@m -V @43%5 )
By Mev»am’sﬂwowm Heg aw tesp \ALQﬁ mmm%ﬁ&’




vV
#20 . Ty each of Yo Q)]wafg ﬂm@(@

‘g\n& /7 W Ew[c’mm CIY‘&W/?L If’ on &'le? o

( £ one 596/57(, T4 hone W&E

Al \M\Si’\ccw ‘naw,

' wﬂo (A‘QA/\(__‘MQJU\LW O\V‘C\A‘L
\)3 baé‘a&b\wé‘g}@,\mnol)

78} eowol o
Ci V‘awr{'

e ol exactly foo
b WIS )N ol O(ch@* &Qjm
%0 J&\y\zz s av
E\,&QMLGM"I/WL\

(-i% ﬁ‘csl’\ /\,J ovxmﬁqbca“‘l

LA G(L(; dt,“hfﬁ/t\

o Pawd\ or Ew'e\f Leeh

Yl

&)y oo ae4 vevhaa ,
( m&i i}iﬁ Euﬁﬁm&’hQ/ /5
NN




#21  To o o Ao Bl oy g e
HWWL@VJM/LM L{)L\y o Z‘”L’y o ‘

| h ~V
((3) A wmw & Hm»\‘\/@mm\
b oyde so K Caywvm“"
kR 6 — P v
' A vt Ham Homa
\D / oo w0 Homllona-
Y} —F ¢
A \ . e &bc&f%\wak
NN &
v a P\\g/w \do niaw
Cyu
(e)
6 __o__— 6 — &)
2
0) /(’) @/,___..._.—-—OV
b 6 ——10
) w not HWHﬁ-mmi U dnd VT h anc 00-@3)«& 2
s o 4,9, wust law 1in any Bas [Fon tan oyc[ﬁ Buk

”303"‘ k A 67&/\@ :




Ve 74

#22 Cond Yo chvomake  nuebe i

Iowj@/ej \WC;L
v =,
VS Vil

- \ V. Sl\/\(ﬂ—
A H-Co avwilﬂx\i ;\rﬁw@( oo

3 _
w2/ \ ~
> \\O \\ ' \é/ 4\ l
O /_,.. ) / 3
3 \ \6____—-9
> \
A ‘4—-Col0\n “ Ga 6\4@«;(4 /b[\&ai@[if(/;(f@"’ Oﬁ‘(j\g
A (/U&' W L4 ea, colors
PQWMSO\/\ on Hhe V9 iw - V(/AQ
(gs dees an'y 080 cycle) W vﬂ\&wf@uw




