
Solutions (and corrections) to Practice problems -
Math 552

May 5, 2011

#1. Let R be a ring and, A ∈ mod − R, and B ∈ R − mod. Let A′ be a
submodule of A and B′ be a submodule of B. Show that (A/A′)⊗R (B/B′)
is isomorphic to (A⊗R B)/C where C is the subgroup of A⊗R B generated
by all a′ ⊗ b and a⊗ b′ for a ∈ A, b ∈ B, a′ ∈ A′, b′ ∈ B′.

Solution: Let f : A → A/A′ and g : B → B′ be the canonical surjections.
Then f ⊗ g is a a surjective homomorphism from A⊗B to (a/A′)⊗ (B/B′)
Clearly C is in the kernel of f⊗g, so f⊗g induces a surjective homomorphism

Φ : ((A⊗B)/C) → A/A′ ⊗B/B′.

Note that
Φ(a⊗ b + C) = (a + A′)⊗ (b + B′).

We will now construct the inverse map. Let

Ψ′ : (A/A′)× (B/B′) → (A⊗B)/C

be defined by
Ψ′(a + A′, b + B′) = a⊗ b + C.

One checks that this is a well-defined balanced map. Therefore there is a
homomorphism

Ψ : (A/A′)⊗ (B/B′) → (A⊗B)/C

satisfying
Ψ((a + A′)⊗ (b + B′)) = a⊗ b + C.

Then Φ and Ψ are clearly inverses.

#2. Let R be a ring and M ∈ R −mod be both artinian and noetherian.
Let f ∈ EndR(M). Recall that f∞M is defined to be ∩n≥1f

i(M) and f−∞0
is defined to be ∪n≥1ker(fn). Prove that

M = f∞M ⊕ f−∞0.

(This is Fitting’s Lemma.)

Solution: This is in the text: BA-II page pp 113-114.

#3 State the definition of a projective resolution of an R-module M and
show that any module has a projective resolution.
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Solution: See BA-II, Definition 6.5 for the definition and pages 340,341 for
the construction of a free (hence projective) resolution.

#4 Let (C ′, d′), (C, d), and (C ′′, d′′) be complexes. Let 0 → C ′ → C →
C ′′ → 0 be an exact sequence (where the chain homomorphism from C ′ to
C is denoted α and the chain homomorphism from C to C ′′ is denoted β).
Suppose that there exist module homomorphisms Si : C ′

i → Ci+1 for all
i ∈ Z such that

αi = di+1si + si−1d
′
i

for all i. Prove that if C ′′ is exact then C and C ′ are exact.

Solution: The condition on the αi says that the chain map α is homotopic
to the zero map. Thus in the long exact homology sequence we have

0 → Hi(C) → Hi(C ′′) → Hi−1(C ′) → 0

for all i. Then if C ′′ is exact, all Hi(C ′′) = 0 for all i and hence Hi(C) = 0
and Hi−1(C ′) = 0 for all i.

#5 Show that the ideal (9, 3x + 3) has infinitely many primary decomposi-
tions.

Correction and Solution: The assertion that there are infinitely many is
incorrect. Here is one: (3) ∩ (9, x + 1).

#6 If R is a commutative ring, B 6= 0 is an R-module, and P is maximal in
the set of ideals

{ann x |0 6= x ∈ B}

then P is prime. (Recall that ann x = {r ∈ r | rx = 0}.)

Solution: Let P = ann x be maximal in the set of annihilators. Suppose
u, v ∈ P, uv ∈ P, v /∈ P . Then uvx = 0 and vx 6= 0 Since ann vx ⊇ ann x
and u ∈ ann vx, the maximality of P implies u ∈ ann x = P , giving the
result.
#7 Let R be noetherian and let S be a submonoid of the multiplicative
monoid of R. Show that RS is noetherian.

Solution: This is Theorem 7.12 of BA-II.
#8 Determine the Galois groups of x5 − 6x + 3 and of (x3 − 2)(x2 − 5) over
the rational numbers.

Solution: Let f(x) = x5−6x+3. Then f(x) is irreducible by Eistenstein’s
criterion. Also, f ′(x) = 0 has only two real roots, so f(x) has at most 3
real roots and since f(−1) > 0 and f(1) < 0 it has exactly 3 real roots.

2



Then, as we have seen in class, the Galois group is S5. The Galois group of
(x3 − 2)(x2 − 5) os the direct product of S3 and the cyclic group of order 2.

#9 Let E ⊇ F be fields and u, v ∈ E. Suppose that v is algebraic over F (u),
and that v is transcendental over F . Show that u is algebraic over F (v).

Correction: Note that inclusion between E and F in the originally posted
version has been reversed.

Solution: Note that u must be transcendental over F (for, if not, v is
algebraic over F ). Let f(x) =

∑n
i=0 aixi ∈ F (u)[x] be a nonzero polynomial

such that f(v) = 0. Then ai ∈ F (u) and so ai = bi/ci where bi, ci ∈
F [u], ci 6= 0. Then we have

0 = (
∏

i

ci)f(v)

is a polynomial in u and v. We may view this as a polynomial g(u) in u
with coefficients from F (v). Since v is transcendental over F , at least one
of the coefficients of g is nonzero and so u is algebraic over F (v).

#10 Let E,K,L, and F be fields with E ⊇ K ⊇ F , E ⊇ L ⊇ F and
K ∩ L = F . Assume that E is generated by K ∪ L. Suppose [K : F ] = n1,
[L : F ] = n2, and that K and L are Galois extensions of F . What is [E : F ]?
Why?

Correction: Note that the inclusions in the originally posted version have
all been reversed and that the hypothesis that L is Galois over F has been
added.

Solution: Let H be the subgroup of Gal(E/F ) generated by Gal(E/L)
and Gal(E/K). Then an element of E fixed by all elements of H must
be in Inv(Gal(E/L)) = L and in Inv(Gal(E/K)) = K and hence must
be in K ∩ L = F . Thus |H| = [E : F ]. But Gal(E/L) and Gal(E/K)
are normal subgroups of Gal(E/F ) with trivial intersection (since an el-
ement of the intersection fixes all generators of E over F ) and so |H| =
|Gal(E/L)||Gal(E/K)| = ([E : F ]/[L : F ])([E : F ]/[K : F ]). Thus [E :
F ] = [L : F ][K : F ].
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