
MATH 354-03 April 4, 2005

Solutions to practice questions for exam #2

#1 Consider the linear programming problem

Maximize: cTx
Subject to:
Ax ≤ b
x ≥ 0.

This problem is in standard form.
(a) State the dual problem.
(b) Show that if x is any feasible solution to the primal problem and w

is any feasible solution to the dual problem then cTx ≤ bTw.
(c) Show that if the primal problem is unbounded, then the dual problem

is infeasible.
(d) Show that the dual of the dual of the given problem is the primal

problem.

Solution: (a) The dual problem is:

Minimize: bTw
Subject to:
ATw ≥ c
w ≥ 0.

(b) Since Ax ≤ b and since w ≥ 0 we have

wTAx ≤ wTb.

Also, wTAx is a 1 by 1 matrix and so is equal to its transpose xTATw.
Since ATw ≥ c and x ≥ 0, this gives

wTAx ≥ xT c = cTx.
1
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Combining these inequalities gives the result.

(c) If the dual problem is feasible, then (by (b)) for any feasible solution w
to the dual problem, bTw is an upper bound for the values of the objective
function for the primal problem. Thus if the dual problem is feasible, the
primal problem must be bounded.

(d) When the dual problem is written in standard form it becomes:

Maximize: −bTw
Subject to:
−ATw ≤ −c
w ≥ 0.

The dual of this (as in part (a)) is:

Minimize: −cTu
Subject to:

(−AT )Tu ≥ −c
u ≥ 0.

Since (AT )T = A, when this is written in standard form it becomes:

Maximize: cTu
Subject to:
Au ≤ c
u ≥ 0,

which is the primal problem

#2 Consider the linear programming problem

Maximize: rTx
Subject to:
Ax = s
x ≥ 0
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This problem is in canonical form. Find the dual of this problem, by writing
the primal problem in standard form and using your answer to #1. Explain
why the dual involves unrestricted variables.

Solution: We may write the problem in standard form as

Maximize: rTx
Subject to:
Ax ≤ s
−Ax ≤ −s
x ≥ 0

We may rewrite this problem as

Maximize: rTx
Subject to:[

A
−A

]
x ≤

[
s
−s

]
.

x ≥ 0.

Then (as in #1(a)), the dual is

Minimize:

[
s
−s

]T
w

Subject to:[
A
−A

]T
w ≥ r

w ≥ 0.

Here (if A is m by n), w =




w1

.

.

.
w2m


 is a column vector in R2m. Then

setting ui = wi − wi+m for 1 ≤ i ≤ m we have that u is unrestricted and
[

s
−s

]T
w = sTu
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and [
A
−A

]T
w = ATu.

Thus the dual problem may be written:

Minimize: sTu

Subject to:
ATu ≥ r
u unrestricted.

#3 Find the dual of the linear programming problem:

Minimize: −3x1 + 2x2 + x4

Subject to:
2x1 + x2 + x3 + 2x4 ≥ 7
x2 + 3x4 = 5
x1, x2 ≥ 0, x3 ≤ 0, x4 unrestricted.

Solution: We first write the problem in terms of positive variables by
setting x′3 = −x3 and x4 = x+

4 − x−4 . This gives:

Minimize: −3x1 + 2x2 + x+
4 − x−4

Subject to:
2x1 + x2 − x′3 + 2x+

4 − 2x−4 ≥ 7

x2 + 3x+
4 − 3x−4 = 5

x1, x2, x
′
3, x

+
4 , x

−
4 ≥ 0.

Now we write this problem in standard form:
Maximize: 3x1 − 2x2 − x+

4 + x−4
Subject to:
−2x1 − x2 + x′3 − 2x+

4 + 2x−4 ≤ −7

x2 + 3x+
4 − 3x−4 ≤ 5

−x2 − 3x+
4 + 3x−4 ≤ −5
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x1, x2, x
′
3, x

+
4 , x

−
4 ≥ 0.

The dual is therefore

Minimize: −7w1 + 5w2 − 5w3

Subject to:

−2w1 ≥ 3

−w1 + w2 − w3 ≥ −2

w1 ≥ 0

−2w1 + 3w2 − 3w3 ≥ −1

2w1 − 3w2 + 3w3 ≥ 1

w1, w2, w3 ≥ 0.

We may combine the last two inequalities into a single equality and write
w4 = w2 − w3 to get

Minimize: −7w1 + 5w4

Subject to:

−2w1 ≥ 3

w1 + w4 ≥ −2

2w1 − 3w4 = 1

w1 ≥ 0, w4 unrestricted.

#4 Use the revised simplex method to solve the linear programming prob-
lem

Maximize: 2x1 + x2 + 3x3 + x6 + 2x7 + 3x8

Subject to:

2x1 + x2 + x4 + 3x5 + x7 ≤ 24

x1 + 3x3 + x4 + x5 + 2x6 + 3x8 ≤ 30

5x1 + 3x2 + 3x4 + 2x5 + x7 + 5x8 ≤ 18

3x1 + 2x2 + x3 + x6 + 3x8 ≤ 20

x1, ..., x8 ≥ 0.

Give the current B−1 and the current list of basic variables at each step.

Solution: The initial tableau is:
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2 1 3 0 0 1 2 3 0 0 0 0
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 xB

0 x9 2 1 0 1 3 0 1 0 1 0 0 0 24
0 x10 1 0 3 1 1 2 0 3 0 1 0 0 30
0 x11 5 3 0 3 2 0 1 5 0 0 1 0 18
0 x12 3 2 1 0 0 1 0 3 0 0 0 1 20

−2 −1 −3 0 0 −1 −2 −3 0 0 0 0 0

.

Initially B−1 = I4, the 4 by4 identity matrix, and xB = b =



x9

x10

x11

x12


 .

From the initial tableau we see that the first pivot should be on the (2, 3)
position. Then the new B−1 is




1 0 0 0
0 1

3 0 0
0 0 1 0
0 − 1

3 0 1




and the new xB =



x9

x3

x11

x12


. This is equal to the new B−1 times b which

is




24
10
18
10


 . The new cB =




0
3
0
0


 .

Now cTBB
−1 = [ 0 1 0 0 ] and so

zj = cTBtj = cTBB
−1Aj = [ 0 1 0 0 ]Aj .

Using this we compute the new values of zj − cj , getting the new objective
row:
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[−1 −1 0 1 1 1 −2 0 0 1 0 0 ] .

We now pivot on the 7th column. To choose the pivot row we compute

t7 = B−1A7 = B−1




1
0
1
0


 =




1
0
1
0


 . The θ-ratios are 24 for the first row and

18 for the third row. Thus we pivot on the (3, 7) position.
Then the new B−1 is




1 0 −1 0
0 1

3 0 0
0 0 1 0
0 − 1

3 0 1




and the new xB =



x9

x3

x7

x12


. This is equal to the new B−1 times b which

is




6
10
18
10


. The new cB =




0
3
2
0


 .

Now cTBB
−1 = [ 0 1 2 0 ] and so

zj = cTBtj = cTBB
−1Aj = [ 0 1 2 0 ]Aj .

Using this we compute the new values of zj − cj , that is the new objective
row:

[ 9 5 0 7 5 1 0 10 0 1 2 0 ] .

Since all the entries in the new objective row are ≥ 0, the current solution
is optimal. This solution is
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x1 = x2 = 0, x3 = 10, x4 = x5 = x6 = 0, x7 = 18, x8 = 0.

#5 Consider the linear programming problem:

Maximize: 4x1 + 3x2 + 6x3

Subject to:
3x1 − 4x2 − 6x3 ≤ 18
−2x1 − x2 + 2x3 ≤ 12
x1 + 3x2 + 2x3 ≤ 1
x1, x2, x3 ≥ 0.

The optimal solution to this problem is z = 4 at the point x1 = 1, x2 =
0, x3 = 0 and the final tableau for the simplex method is:

x1 x2 x3 x4 x5 x6

x4 0 −13 −12 1 0 −3 15
x5 0 5 6 0 1 2 14
x1 1 3 2 0 0 1 1

0 9 2 0 0 4 4

(a) State the dual problem and find its optimal solution
(b) Find all values of ∆c2 such that the solution above remains optimal.
(c) Find all values of ∆c5 such that the solution above remains optimal.
(d) Find the optimal solution of the problem obtained by changing c6 to 3.
(e) Suppose the final tableau is obtained from the initial tableau by multi-
plying by B−1. Find B−1.
(f) Find the optimal solution to the problem obtained by changing the
constant term in the third constraint (b3) from 1 to 5.
(g) Find the optimal solution to the problem obtained by changing the
constant term in the third constraint (b3) from 1 to 7.
(h) A further constraint x2 + x3 ≥ 1 is added to the original problem. Use
the dual simplex method to find an optimal solution to this new problem
(if one exists).
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(i) A different further constraint 2x1 + x2 ≤ 1 is added to the original
problem (not to the modified problem in (h)). Use the dual simplex method
to find an optimal solution to this new problem (if one exists).

Solution: (a) The dual problem is

Minimize: 18w1 + 12w2 + w3

Subject to:

3w1 − 2w2 + w3 ≥ 4

−4w1 − w2 + 3w3 ≥ 3

6w1 + 2w2 + 2w3 ≥ 6

w1, w2, w3 ≥ 0.

Since the initial tableau contains an identity matrix corresponding to the
slack variables x4, x5, x6, the optimal solution or the dual problem is given
by the entries in the objective row of the final tableau that occur in the
columns corresponding to slack variables. Thus the optimal solution of the
dual problem is 


0
0
4


 .

(b) Since x2 is not basic, the current solution remains optimal if z2−c2 ≥
∆c2. Taking the value of z2 − c2 from the final tableau, we see that the
condition is that ∆c2 ≤ 9.

(c) We copy the final tableau for the problem and add the (top) row
recording the (original) values of the ci and the (leftmost) column recording
the cB :

4 3 6 0 0 0
cB x1 x2 x3 x4 x5 x6

0 x4 0 −13 −12 1 0 −3 15
0 x5 0 5 6 0 1 2 14
4 x1 1 3 2 0 0 1 1

0 9 2 0 0 4 4
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We now change the value of c5 in this tableau and recompute the entries
in the objective row to obtain:

4 3 6 0 ∆c5 0
cB x1 x2 x3 x4 x5 x6

0 x4 0 −13 −12 1 0 −3 15
∆c5 x5 0 5 6 0 1 2 14

4 x1 1 3 2 0 0 1 1
0 9 + 5∆c5 2 + 6∆c5 0 0 4 + 2∆c5 4 + 14∆c5

.

Now the condition that the solution is optimal is that every zj − cj ≥ 0,
that is,

9 + 5∆c5 ≥ 0, 2 + 6∆c5 ≥ 0, and 4 + 2∆c5 ≥ 0. This is equivalent to
∆c5 ≥ − 1

3 .
(d) The current solution remains optimal since 4 = zj − cj ≥ ∆c6 = 3.
(e) Since the 4-th through 6-th columns of the initial tableau form an

identity matrix, the B−1 appears in the 4-th through 6-th columns of the

final tableau. Thus B−1 =




1 0 −3
0 1 2
0 0 1


 .

(f) The right-hand column of the final tableau will be replaced byB−1




18
12
5


 =




3
22
5


 . Since the entries are all positive, this is a feasible solution and so is

an optimal solution. Thus x1 = 5, x2 = x3 = 0, x4 = 3, x5 = 22, x6 = 0 is
the optimal solution. The corresponding value of the objective function is
z = 20.

(g) The right-hand column of the final tableau will be replaced byB−1




18
12
7


 =



−3
26
7


 . Using this vector to replace the right-hand column of the final
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tableau we obtain:

x1 x2 x3 x4 x5 x6

x4 0 −13 −12 1 0 −3 −3
x5 0 5 6 0 1 2 26
x1 1 3 2 0 0 1 7

0 9 2 0 0 4 28

.

One iteration of the dual simplex procedure (pivoting on the (1, 3) posi-
tion) gives

x1 x2 x3 x4 x5 x6

x3 0 13
12 1 − 1

12 0 1
4

1
4

x5 0 − 3
2 0 1

2 1 1
2

49
2

x1 1 5
6 0 1

6 0 1
2

13
2

0 59
6 0 1

6 0 5
2

55
2

Thus x1 = 13
2 , x2 = 0, x3 = 1

4 is the optimal solution.
(h) The new constraint may be written x2 + x3 − u1 = 1 or as −x2 −

x3 + u1 = −1. Adding this constraint to the final tableau gives

x1 x2 x3 x4 x5 x6 u1

x4 0 −13 −12 1 0 −3 0 15
x5 0 5 6 0 1 2 0 14
x1 1 3 2 0 0 1 0 1
u1 0 −1 −1 0 0 0 1 −1

0 9 2 0 0 4 4

.

Now apply the dual simplex method, pivoting on the (4, 3) position to
obtain a tableau whose 3-rd row is

[ 1 2 0 0 0 1 2 −1 ] .

Since the last entry in this row is negative and all other entries are
positive, there is no feasible solution.

(i) The new constraint may be written 2x1 + x2 + u1 = 1. Since each
basic variable should appear in only one constraint and since x1 is basic,
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we will subtract 2 times the 3-rd constraint from this constraint to obtain
−5x2 − 4x3 − 2x6 + u1 = −1. Adding this constraint to the final tableau
gives

x1 x2 x3 x4 x5 x6 u1

x4 0 −13 −12 1 0 −3 0 15
x5 0 5 6 0 1 2 0 14
x1 1 3 2 0 0 1 0 1
u1 0 −5 −4 0 0 −2 1 −1

0 9 2 0 0 4 0 4

.

We now apply the dual simplex method and pivot on the (4, 3) position.
This gives the tableau

x1 x2 x3 x4 x5 x6 u1

x4 0 2 0 1 0 3 −3 18
x5 0 − 5

2 0 0 1 −1 3
2

25
2

x1 1 1
2 0 0 0 0 1

2
1
2

x3 0 5
4 1 0 0 1

2 − 1
4

1
4

0 13
2 0 0 0 3 1

2
7
2

.

#6 Find an optimal solution to the following pure integer programming
problem.

Maximize: x1 + 3x2

Subject to:

x1 − 2x2 ≥ 0

x1 + 2x2 ≤ 42

x1, x2 ≥ 0, x1, x2 integers.

Solution: First we solve the problem without the integrality restriction.
The initial tableau is
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1 3 0 0
x3 −1 2 1 0 0
x4 1 2 0 1 42

−1 −3 0 0 0

.

We pivot on the (1, 2) position and obtain

1 3 0 0
x2 − 1

2 1 1
2 0 0

x4 2 0 −1 1 42
− 5

2 0 3
2 0 0

.

Now we pivot on the (2, 1) position and obtain

1 3 0 0
x2 0 1 1

4
1
4

21
2

x1 1 0 − 1
2

1
2 21

0 0 1
4

5
4

105
2

.

Thus x1 = 21, x2 = 21
2 is a solution to the problem without the integrality

condition.
Now we add the cutting plane constraint

−1

4
x3 −

1

4
x4 + u1 = −1

2
.

Then the tableau becomes

1 3 0 0 0
x2 0 1 1

4
1
4 0 21

2

x1 1 0 − 1
2

1
2 0 21

u1 0 0 − 1
4 − 1

4 1 − 1
2

0 0 1
4

5
4 0 105

2

.

Using the dual simplex method we see that we must pivot on the (3, 3)
position. Thus we obtain the tableau
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1 3 0 0 0
x2 0 1 0 0 1 10
x1 1 0 0 1 −2 22
x3 0 0 1 1 −4 2

0 0 0 1 1 52

.

Thus the optimal integral solution is x1 = 22, x2 = 10.

#7 Find an optimal solution to the following pure integer programming
problem.

Maximize: x1 + 2x2 + x3 + x4

Subject to:
2x1 + x2 + 3x3 + x4 ≤ 8
2x1 + 3x2 + 4x4 ≤ 12
3x1 + x2 + 2x3 ≤ 18
x1, x2, x3, x4 ≥ 0, x1, x2, x3, x4 integers

Solution:
First we solve the problem without the integrality restriction. The initial

tableau is

1 2 1 1 0 0 0
x5 2 1 3 1 1 0 0 8
x6 2 3 0 4 0 1 0 12
x7 3 1 2 0 0 0 1 18

−1 −2 −1 −1 0 0 0 0

.

We pivot on the (2, 2) position to obtain

1 2 1 1 0 0 0
x5

4
3 0 3 − 1

3 1 − 1
3 0 4

x2
2
3 1 0 4

3 0 1
3 0 4

x7
7
3 0 2 − 4

3 0 − 1
3 1 14

1
3 0 −1 5

3 0 2
3 0 8

.
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Now we pivot on the (1, 3) position to obtain

1 2 1 1 0 0 0
x3

4
9 0 1 − 1

9
1
3 − 1

9 0 4
3

x2
2
3 1 0 4

3 0 1
3 0 4

x7
13
9 0 0 − 10

9 − 2
3 − 1

9 1 34
3

7
9 0 0 14

9
1
3

5
9 0 28

3

.

Since the entries in the objective row are all positive, this gives an optimal
solution to the problem without the integrality restriction.

Now we use the first row to impose a cutting plane constraint:

−4

9
x1 −

8

9
x4 −

1

3
x5 −

8

9
x6 + u1 = −1

3
.

Adding this to our previous tableau gives

1 2 1 1 0 0 0 0
x3

4
9 0 1 − 1

9
1
3 − 1

9 0 0 4
3

x2
2
3 1 0 4

3 0 1
3 0 0 4

x7
13
9 0 0 − 10

9 − 2
3 − 1

9 1 0 34
3

u1 − 4
9 0 0 − 8

9 − 1
3 − 8

9 0 1 − 1
3

7
9 0 0 14

9
1
3

5
9 0 0 28

3

.

Using the dual simplex method, we pivot on the (4, 6) position to obtain

1 2 1 1 0 0 0 0 0
x3

1
2 0 1 0 3

8 0 0 − 1
8

11
8

x2
1
2 1 0 1 − 1

8 0 0 3
8

31
8

x7
3
2 0 0 −1 − 5

8 0 1 − 1
8

91
8

x6
1
2 0 0 1 3

8 1 0 − 9
8

3
8

1
2 0 0 1 1

8 0 0 73
8

.

Now we impose the cutting plane constraint (coming from the first row)

−1

2
x1 −

3

8
x5 −

7

8
u1 + u2 = −3

8
.
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Adding this to our previous tableau gives

1 2 1 1 0 0 0 0 0
x3

1
2 0 1 0 3

8 0 0 − 1
8 0 11

8

x2
1
2 1 0 1 − 1

8 0 0 3
8 0 31

8

x7
11
9 0 0 −1 − 5

8 0 1 − 1
8 0 91

8

x6
1
2 0 0 1 3

8 1 0 − 9
8 0 3

8

u2 − 1
2 0 0 0 − 3

8 0 0 − 7
8 1 − 3

8

1 0 0 1 1
8 0 0 5

8 0

.

Using the dual simplex method, we pivot on the (5, 5) position to obtain

1 2 1 1 0 0 0 0 0
x3 0 0 1 0 0 0 0 −1 1 1
x2

2
3 1 0 1 0 0 0 2

3 − 1
3 4

x7
2
3 0 0 −1 0 0 1 4

3 − 5
3 12

x6 0 0 0 1 0 1 0 −2 1 0
x5

4
3 0 0 0 1 0 0 7

3 − 8
3 1

1
3 0 0 1 0 0 0 1

3
1
3 9

.


