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Abstract

In this paper we construct a family of small unitary representations for real semisimple Lie
groups associated with Jordan algebras. These representations are realized on L*-spaces of
certain orbits in the Jordan algebra. The representations are spherical and one of our key
results is a precise L’-estimate for the Fourier transform of the spherical vector. We also
consider the tensor products of these representations and describe their decomposition.
© 2003 Elsevier Science (USA). All rights reserved.
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0. Introduction

This paper is the culmination of a series dedicated to the problem of constructing
explicit analytic models for small unitary representations of certain semisimple Lie
groups (see [S1,S2,S3,DS1,DS2] and also [SS,KS])).

The groups G that we consider arise from real semisimple Jordan algebras via the
Tits—Koecher—Kantor construction. Such a G is characterized by the existence of a
parabolic subgroup P = LN which is conjugate to its opposite P = LN, and for
which N and N are abelian. The Lie algebra 7 admits a real semisimple Jordan
algebra structure and we write n for its rank.

In this situation, the Levi component L has a finite number of orbits on 1 and each
orbit has a rank <n. Each non-open orbit ¢ (rank <n) admits an L-equivariant
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measure du which is unique up to scalar multiples. (The open orbits admit one-
parameter families of such measures.) By Mackey theory, the Hilbert space 5 =

#?(0,dp) carries a natural irreducible unitary representation my of P, and we
consider the following two problems:

® Extend 7y to a unitary representation of G.
® Decompose m, ® -+ @ mgs, for rank O' + --- 4 rank * <n.

For Euclidean Jordan algebras these problems were solved in [S1,S2,DS1]. Thus in
this paper we only consider non-Euclidean Jordan algebras. As explained in [DS2],
one has to exclude rank 1 orbits in rank 2 Jordan algebras R”7 (p#¢q)—we shall call
these orbits inadmissible and the remaining non-open orbits admissible. In this paper
we prove:

Theorem 0.1. For each admissible orbit O, the representation g of P extends to an
irreducible spherical unitary representation of G on .

Now suppose (', ..., ¢° are admissible non-open orbits in N such that rank @' +
.-+ + rank ¢ <n. In Section 3.2 we define a reductive homogeneous space G'/H’,
essentially the generic fiber of the addition map from O' x --- x ¢° to N, and
consider the decomposition of the quasi-regular representation

@D
PG /1) = [ m(o)o dp(o),

v

where m(a) is the multiplicity function and dp(a) is the Plancherel measure.

Theorem 0.2. Let O, ..., (* and G', H' be as above; then there is a map 0 from the H'-
spherical dual of G' to the unitary dual of G such that

)
T @ - @nes = /A m(a)0(o) dp(o).

7

Our approach entails three different representation-theoretic techniques. We need
to consider:

(a) Harish-Chandra modules for semisimple groups;
(b) operator algebras for parabolic subgroups; and
(c) Fourier analysis for abelian nilradicals.

The algebraic considerations (Harish-Chandra modules) were carried out in [S3].
The necessary operator-algebraic results (C*-algebras, von Neumann algebras)
were obtained in [DS1,DS2]. The missing ingredient, provided by this paper,
involves abelian Fourier analysis. The key result (Proposition 2.2) is the proof
that a certain function ¢ (eventually, the ‘“‘spherical” vector in 7y) belongs to
L0, dp).
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For rank 1 orbits this result was obtained in [DS2] by establishing a close
connection between this function and a certain one-variable Bessel K-function. The
required #?-estimate then followed from a precise knowledge of the singularity of
the Bessel K-function at 0.

For higher rank orbits, we expect that there should exist a similar connection
between the spherical vectors and multivariate Bessel K-functions. However in order to
exploit this connection one would have to first develop the theory of such functions,
possibly along the lines of the theory of the multivariate Bessel J-functions of [Op].

While we feel that the connection with multivariate Bessel K-functions is of interest
and should be pursued further, in the present paper we follow a different approach.
This approach allows us to obtain the desired estimate directly, obviating the need to
first study Bessel functions. The key here is a “stability”’ result (Lemma 2.12) which
transfers the problem from a non-open orbit to a related problem on the open orbit
for the smaller group. The open orbit problem turns out to be easier to solve.

This approach was inspired in part by a recent paper of Shimura [Sh]. We thank
L. Barchini for drawing our attention to this paper.

1. Preliminaries

In this section we recall basic facts about the Tits—Kantor—Koecher construction.
All results of this section are well-known. More details may be found in [KS,DS2]
and in the references therein (in particular, [BK,Lo]). This construction associates to
a real simple Jordan algebra, a pair (G, P), where G is a real simple Lie group with
Cartan involution 6, and maximal compact subgroup K; and P = LN is a parabolic
subgroup.

In the context of Lie theory, these pairs can be characterized as follows:

(a) N is abelian,
(b) P is G-conjugate to its opposite parabolic P = 0(P) = LN.

Conditions (a) and (b) each give rise to a symmetric space denoted by K/M and
L/H, respectively, and much of the relevant information about the Jordan algebra
and the associated pair (G, P) can be described in a simple and coherent manner in
terms of these symmetric spaces. This makes it possible to have a uniform discussion
for the most part, with only some occasional arguments requiring case-by-case
considerations.

We follow the practice of denoting the real Lie algebras of various Lie groups by
the corresponding fraktur letters; with the exception of p which will denote instead
the —1 eigenspace of 6 in the Cartan decomposition g = {® p.

1.1. The symmetric space K/ M

Condition (a) from the beginning of this section implies that L is a symmetric
subgroup of G, and M = Kn L is a symmetric subgroup of K. Let t be a Cartan
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subspace in the orthogonal complement of m in f. The real rank of N as a Jordan
algebra is n = dimg t. The roots of t¢ in g always form a root system of type C,, and
we fix a basis {y;, 72, ..., 7.} of t* such that

2(tc,ac) = {£ (i £7;)/2, £v;}-
For the subsystem X~ = X(tc, fc), there are three possibilities:
A1 ={£(; — "/j)/z}a D, = {i(“/ii)’j)/z}» and C,.

The first of these cases arises precisely when N is a Euclidean Jordan algebra. This
case was studied in [S1], therefore we restrict our attention to the last two cases. If ~
is C,, there are two multiplicities, corresponding to the short and long roots, which
we denote by d and e, respectively. If X is D,, and n#2, then there is a single
multiplicity, which we denote by d, so that D, may be regarded as a special case of
C,, with e = 0.

The root system D, ~ A4, x A; is reducible and there are two root multiplicities.
As mentioned in the introduction, we explicitly exclude the case when these
multiplicities are different; this corresponds to G = O(p,q), with N = RP~14-!
(p#¢q). When the two multiplicities coincide (p = ¢), we once again denote the
common multiplicity by d.

1.2. S-triples and the Cayley transform

The discussion of the various cases can be made uniform by emphasizing the
special role played by a family of » commuting SL,’s or S-triples, together with the
associated Cayley transform.

For sL(C) the Cayley transform is defined by c¢=expadZ (X +Y)=
expad Z (x + y); and satisfies ¢(X) = x,¢(Y) = y,¢(H) = h, where

0 1 0 0 1 0
X = , V= ) h = )
S R
¥ i 1 v 1| =i 1 10 1
e = — =1 .
211 =i’ 211 i’ -1 0

Now Y (tc, gc) is a root system of type C,, with root multiplicities:

dim fi(}'fi?j)/z = d, dim pi(}',’i"//)/z = d,

dimty, =e, dimp,, =1
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We fix homomorphisms ¥; : sl,(C) - g¢ such that ¥;(X) €p,,, and we write
X =¥;(X), x=¥x), y=%0), ..,

X:ZX/’ x:ij, y:Zyj,... .
The Cayley transform of g is the product

c:expad%l(x—i—y) zexpad%l(X—kY).

We write a = ¢(it) for the Cayley transform of it. This is the abelian subalgebra of g
spanned by Ay, ..., h,.

1.3. The symmetric space L/H

Let H <L be the stabilizer of yen, then condition (b) from the beginning of this
section implies that L/H is a symmetric space. The involution ¢ for this symmetric
space consists of conjugation by a suitable element of K—corresponding to
condition (b).

Example. If G = 0,2, then L = GL,,(R) and N is the Jordan algebra of 2n x 2n
real skew-symmetric matrices, and H = Sp,(R).

In the present situation L/H is always non-Riemannian; and if we consider the
Cartan decompositions for § and ¢

[=m+r, 1=h+g;
then a is a Cartan subspace in qnr. Writing 2¢; =y, o¢~' we have
2(a,9) = {teite, +2¢},  2(a,]) = {£ (s —g)},
Z(a,n) = {& +¢,2¢}, Z(a,m) = {—& — &, —2¢}.

We observe that for ¢ in a we have

tr adz(a) = {—Zd Z(a,— +é&)—(e+1) Z 28]} (a) = =2rv(a),

wherev=¢ + &+ - +e,r=dn—1)+(e+1).
Thus we can define characters v of [, and ¢" of L by the formulas

v(Z)=— (er) tradg (Z); €'(l) =1" = |det Ady ]|—1/(2r)'

Extending trivially to N (resp. N) we obtain positive characters of the groups P
(resp. P), which we write as gre'(g), or as gr>g".
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To complete the connection with the Jordan structure, we note that the Jordan
norm ¢ on 7 is a polynomial function which transforms by the character e=>" of L.
Finally, we observe that the Killing form on g gives a pairing between n and 1 which
we rescale by setting {x1,y1y = 1.

1.4. Orbits

As is well known, the orbits of L on 1 are parametrized by their rank, with the
rank k orbit given by O = L - (y; + --+ + yx). If k = n, the stabilizer of y; + -+ + yx
is the symmetric subgroup H described previously. We now discuss the remaining
orbits; to simplify notation we fix & and write

Y =y+- e

In Jordan algebra terms, y' is a Peirce idempotent and considering the 1 and 0
Peirce-eigenspaces of y', we obtain smaller Jordan algebras 7t; and 1, with identity
elements y' and y° = ys, + --- + y,, respectively. The corresponding structure
groups L; and L are naturally the reductive subgroups of L. Subgroups of L; and
Ly will be distinguished by subscripts 1 and 0, respectively. For example,

My =MnL, My=MnLy, H =HnL;, a =anl.

Thus H, is the stabilizer of y! in L, and the full stabilizer of y! in L is given by

SZ(H] XLO)~U. (1)
Ifl,‘,"‘rﬁj

Here U is abelian, and its Lie algebra 1 is spanned by the root spaces
(1<i<k<j<n).

Example. Again, take G = O2,2,. One has L = GLy,(R), L; = GLx%(R) and Ly =
GLy(u—i)(R). Then H; =HnL; =Sp,(R) and S = (Sp;(R) x GLy,_x)(R)) - U,

where U is a vector space of 2(n — k) x 2k real matrices.
We have

[=s+(q,+u), where q; =qnl;, u=0u

The orbits of L on 1 carry equivariant measures, which we now describe. Write e"
for the positive character of L defined in Section 1.3 and letr =d(n— 1) + (e+ 1) be
as before. Then we have
Lemma 1.1. (1) The Lebesgue measure dJ. on W is e’ -equivariant.
(2) The rank k-orbit carries an e**-equivariant measure du = dy.

The proof is straightforward. We now describe a ““polar coordinates’ expression
for these equivariant measures. In [Lo] it is shown that the elements

{zin+ - +ze | z21>2> - >z >0}
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give a complete set of orbit representatives for the action of M = LN K on the rank

k orbit. Accordingly, we write Cy = R* for the cone

Cr={z=(z1,22, ..., z1) | 21> 22> - > 2, >0},

and for m in M, z in C; we write

m-z=Adm(ziy; + - + zZkyi) EN.

For z in C; we introduce the notation

k
dz;
Pk(Z) =Z|-Zk, Vk(z) = H [Z?_Zj;]’ d;Z:H—j7

1<i<j<k =1 Y

where each dz; denotes the Lebesgue measure on R. Then we have:

Proposition 1.2. Let d/ be the Lebesgue measure on M, then

[fdl = c/ {/M f(m-z) dm] d.z, where d,z = [P, V)" dz.

Cy

Proposition 1.3. Let du be the equivariant measure on the rank k orbit O, then

fdu=c / [/ f(m-z) dm} diz, where dyz = [P}t Vi) djz.
0 G LM

The scalars ¢ appearing in the above formulas are independent of f and
depend only on the normalization of the measures dA and du. These formulas
can be obtained by the usual techniques (cf. [Sc, 8.1], also [OS]). For subsequent
purposes we also need to consider the Lebesgue measure on n. For min M, z in C,,

we write

moz=Adm(zix; + -+ + zyx,) en.

Since 0 : n— satisfies O(m o z) = m - z, Proposition 1.2 implies

Corollary 1.4. Let dJ. be the Lebesgue measure on n, then

/ fdi=c /C [/M f(moz) dm} d.z, where dz = [P, [V, d*z.

(2)
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2. Estimates for spherical vectors

We can relate the P-representation g of Theorem 0.1 to a unitarizable submodule
of a certain degenerate principal series for G, which is described as follows: If y is a
character of L, we write (r,,I(y)) for the degenerate principal series representation

Indg}( (unnormalized smooth induction); thus

1(x) ={feC”(G)|f(Ing) = x(f (g) for leL,ieN,geG}

and the group G acts by right translations. By virtue of the Gelfand—Naimark
decomposition G~ PN, functions from () are determined by their restriction to N.
Combining this with the exponential map we can identify I(y) with a subspace E(y)
of C*(n). We refer to this as the noncompact picture.

For teR, we write I(t), E(t) for I(e"), E(e"); more generally, if ¢: L—T is a
unitary character, we write I(¢,¢), E(t,¢) for I(e" ®¢), E(e" ®¢). These principal
series were studied in [S3] via the “Cayley operator” D which is the constant
coefficient differential operator on n, whose symbol is the Jordan norm polynomial ¢.
Powers of D are intertwining operators for the principal series, and their eigenvalues
on the various K-isotypic components are given by the Capelli identity of [KS].

E(?) is a spherical representation of G and we write &, for the K-spherical vector.
Among the results obtained in [S3] is that for k =1, ...,n — 1, the space E(—dk)
contains a unitarizable spherical submodule. We need to study the Fourier
transforms of the corresponding spherical vectors

Q—dld kzl,...,n—l.

For this we identify m with the dual of n* via the normalized Killing form from
Section 1.3. Also we fix k<n, write @ for the spherical vector @_y, and write
(O, dy) for the rank k orbit in T together with its equivariant measure described in
Lemma 1.1.

The main results of this section are

Proposition 2.1. The measure ®dJ is a tempered distribution on nw and there exists an
M-invariant function g in £'(0,du) such that

®d). = gd.

Proposition 2.2. For k<n, one has ge £*(0,dy).

We prove these propositions in the next few subsection. The strategy is as follows:
Let us write @y, for the function @_g4, in order to emphasize dependence on n as
well as k. Now although the above results are false in general for the open orbit
(k = n), nevertheless, we can prove the desired results by reducing to a slightly
weaker estimate for k = n, which turns out to be somewhat easier to prove. We
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establish this result in the next subsection and then outline the reduction procedure
in the two following subsection.

2.1. Estimates for the open orbit

As indicated above, we first consider the function
¢ = ¢n,n =& g

We need appropriate #2-estimates with respect to the Lebesgue measure d on n for
the function ¥ and its derivatives. The “straightforward” estimate is actually false
for the group Sp,(C), but it does work for the other groups G in the table in
Appendix A.2. Thus we formulate two results, one for G # Sp,(C) and the other for
all groups:

Proposition 2.3. For all groups G other than Sp,(C), we have ®e ¥*(n,dJ.).
Proposition 2.4. For all groups G and for all m>1, we have D"®e %> (n,dJ).

For each ¢, the function @, is M-invariant, and is therefore determined by the
restriction to the subspace {zjx; + --- + z,x,} Sn; we start by giving an explicit
formula for the restriction.

t
Lemma 2.5. We have ®,(m-z) = [, (1 +z3)2 for all m in M.

Proof. For the group G = SL,(R) this is a straightforward calculation which we
leave to the reader. In the general case, we view @ as a function on G which is right
K-invariant, and left P-equivariant with character e”. We now restrict @ to the
subgroup SL, x --- x SL, corresponding to the S-triples of Appendix A.2. This
restriction is right SO, x --- x SO,-invariant, and left B x --- x B-equivariant with
character ¢ = ¢*! x --- x " (here B is the Borel subgroup of SL;). Thus applying
the SL,-calculation to each factor, we conclude that the restriction to zjx; + -+ +
z,X, 18 given as in the statement of the lemma. O

Combining this with Corollary 1.4 we obtain the following estimate
Lemma 2.6. For t< — [d(n— 1)+ (e + 1)/2], we have ®;€ £*(n,dJ).

Proof. Combining the previous lemma with Corollary 1.4, we get

/|¢,|2d/1: /C [[za+z" I @& -2)'dzdzn-du,
n =1 1<

i<j<n
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Expanding (z7 — zf)d, we can write the integrand as a sum of terms

H “hi(1 422", where each k;<2d(n—1).

Each of these integrals is a product of one-variable integrals which converge if
o0
/ xe 2011 4 x?)'dx < 0.
0

This happens if 27 + ¢ 4+ 2d(n — 1) < — 1, which proves the lemma. [

Corollary 2.7. If feE(t,e) for some t< —[dn—1)+ (e+1)/2] and 2 is any
constant coefficient differential operator, then we have 2f =?z(n, dr).

Proof. The group G acts on I(¢,¢) by right translations, and in the non-compact
picture E(t,¢) the Lie algebra g acts by polynomial coefficient vector fields on n. The
action of xen is independent of (¢,¢) and is simply the directional derivative in the
direction x. In particular, the space E(t,¢) is invariant for the action of constant
coefficient differential operators.

Thus /" = 2f also belongs to E(t,¢). Thus f7 is the restriction to N of a P-
equivariant smooth function on G. Since G = PK, any such function is determined
by its restriction to K. The constant function 1 on K corresponds to the spherical
vector @, in I(z). Thus if ¢ is the maximum of | f/| on K, then we have | f’|<c¢®;, and
the corollary follows from the previous lemma. [

We can now prove Propositions 2.3 and 2.4 (for G#Sp,(C)).

Proof of Propositions 2.3 and 2.4. (For G#Sp,(C)). From the table in Section see
that in every case except G = Sp,(C), we have 2d>e + 1. Consequently, we get

—dn< —[dn—1)+ (e+1)/2].

Proposition 2.3 now follows from Lemma 2.6, and Proposition 2.4 follows
immediately from Corollary 2.7 for all groups except for G = Sp,(C). O

Suppose now that G is Sp,(C). Then L = GL,(C) and n is the space of n x n
complex symmetric matrices. We write ¥~ for the finite-dimensional space of
holomorphic polynomials on n spanned by all the minors of the symmetric matrix x,

det/

and let ¢ be the unitary character of L given by &(/) = det]]

Lemma 2.8. ¥ is a Sp,,(C)-invariant subspace of E(1,¢).
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Proof. The character ¢' of L is simply |det /|. Therefore, the space I(1,¢) consists of
smooth functions on G = Sp,(C) satisfying f(/ng) = det(/)f(g). The group G is
0

5[] ePand w = [ | _01 } whose action in the

0
noncompact picture E(1,¢) is as follows:

generated by the elements p = {a

p-f(x) = det(a™") f(ab + axa'),
w-f(x) = det(x)f (~x ),

Evidently, transformations of the form x+ ¢+ axa’ take minors of x to linear

combinations of (possibly smaller) minors; thus ¥~ is P-invariant. Also each minor of

x~!is equal to + det (x)f1 times the complementary minor of x; thus 7 is w-

invariant. Since P is a maximal parabolic subgroup, w and P generate G, and hence
the space 7" is G-invariant.

Now the functions in ¥~ can be lifted to P-equivariant functions on the dense open
set PN in G. The G-invariance of ¥~ implies that these functions transform finitely
under right translations by K. Therefore they extend to smooth functions on K, and
hence on G. Thus we get ¥ < E(l,¢). O

Corollary 2.9. For G = Sp,(C), det (x) belongs to the space E(1,¢).
We can now finish the proof of Proposition 2.4.

Proof of Proposition 2.4. (For G = Sp,(C)). For G =Sp,(C), we have d =1,
Y(x) =det(l+ xf)fn/z, ¢(x) = det(x) det(X), D = det(dy) det(ds). Thus

DY = det(d,) det(ds) det(1 4 xx) />, (3)
Now, it is well known (see e.g. [KS]) that for u a complex symmetric matrix
det (9,) det (u)* = const det(u)* .
By a simple change of variables, we deduce that for all complex symmetric w
det(,) det(1 + wu)* = const det (w) det (1 4 wu)*".
Applying this to (3), we obtain
DY = const det(dy) det (x) det(1 + xx) ">
The function det (1+xx) /27" is the spherical vector in E(—n—2). Also,

by the corollary above, det (x) belongs to E(1,¢). Each of these functions extends
to a smooth function on G with appropriate P-equivariance. Considering the
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equivariance of the product, we deduce
det(x) det(1 4+ xx) "> ' e E(—n — 1,¢).
Since D"~'det(d,) is a constant coefficient differential operator, we get
D" = [const D" 'det (8,)][det (x) det (1 4+ xx) "> e E(-n—1,¢).
Now in the present case we have d = 1,e = 1, thus we get
—ldn—=1)+(e+1)/2] =—-n>—-n—-1
and so the result follows from Corollary 2.7. [
2.2. Proof of the &' estimate

We fix k and denote the spherical vector @, = @_g by simply @ as before. To
prove estimates for @, we first relate it to the “rank 17 spherical vector

Y= (Dl,n =,

We now describe the key result in [DS2, Theorem 0.1] concerning the function Y. Let

T= % and let K be the corresponding one-variable K-Bessel function; define an

M-invariant function v on the rank 1 orbit ¢; = L -y, cnan* by the formula

K-
v(zlm - y1]) = (IZ) for zeR", meM.
z
Then writing dyu, for the equivariant measure on ;, we have
vdu, = YdJ,

where dZ is the Lebesgue measure on n, and ~ denotes the Fourier transform of
tempered distributions. This result is proved in Propositions 2.1 and 2.2 of [DS2].
For our present purposes, it is crucial that t depends only on d and e but does not
depend on n.

An immediate consequence of Lemma 2.5 is the relation

=" (4)

This in turn implies a relation between the Fourier transforms of @ and Y which we
now explain. We start with the following abstract situation:

Suppose A4 is a Lie group, y is a positive character of 4, and B> C are subgroups
such that each of the homogeneous spaces A/B and A/C admit y-equivariant
measures dm,p and dmc.
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Lemma 2.10. The space Z = B/C admits an B-invariant measure dz, and
€f(aB) = / flaz) dz
z
gives a well-defined operator € = 6 4pc : ¥'(4/C)— L' (A/B) satisfying

/ [(gf]dmA/B:/ Sdmyc. (5)
A/B 4/C

Proof. This is completely straightforward. [
We apply the previous result to the situation where
A=L, B=S=stab,y', C=S5 =stab, y

with y' = y; + y2 + --- 4y as before, and y' = (y1, 2, ..., k) €0; x --- x O1. The
space O = L/S is the rank k orbit and hence by Lemma 1.1 carries a e*¥*-
equivariant measure. On the other hand, the space ¢} x --- x (0} also carries a e2dkv_
equivariant measure, viz. dy' = du; x -+ x dpy; moreover in this situation, ¢’ =
L/S' is an open subset whose complement has measure 0. Thus ¢’ also admits an
e*¥v_equivariant measure. Thus by the previous lemma, we obtain a well defined
operator ¢ = €155 : L' (0')— L' (0) satisfying formula (5).
Now given a function f on ¢, we define functions f on (¢, and f on ¢ by

Sy =fUy)-f (U y0), f= .
Then we have the following result:

Lemma 2.11. For v as above, put g = v = 60, then we have

gdu = ddi.
Proof. It suffices to prove
[ et gant) = o).
yel

Using {x,/-y'> = {x,[-y1> + -+ + {x,]-y; >, the left side can be rewritten as

/ B g1 Yl -y = / G dy, (6)
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where n(/ - y;) = exp (—i{x,[ - y;)). By the previous lemma, this becomes

/ mdy = ﬁ[/ o(l-yn(l-y)dw(l-y)| =Y =@ O

J=1

Proof of Proposition 2.1. In view of the previous lemma, it remains only to
prove that ge #'(0,dp). In turn, using Lemma 2.10, it suffices to show that
ve L1 (¢, dy), or equivalently that

ve LY (0, du,).

This is essentially contained in Proposition 2.1 of [DS2]. The key point is that by
Proposition 1.3 for k = 1, we get

K.
/ vdu, = / ﬁz“{”’l dz.
0, R, Z°

Since K,(z) has exponential decay at infinity, it suffices to prove that the integral on
the right converges at 0. For this we note that KT@ has a pole of order 2t =d —e — 1
at 0 if t>0, and a logarithmic singularity if T =0. At any rate (dn — 1) — 27 =
din—1)+e is greater than —1, which guarantees the convergence of the
integral. [

2.3. Proof of the & estimate

The key to the proof of Proposition 2.2 is a “stability” result for the function ¢
defined in Lemma 2.11. To state this, we temporarily write g, and dy,, for g and
du, in order to emphasize dependence on k (the rank of the orbit) and » (the rank of
the Jordan algebra). Thus Lemma 2.11 becomes

gk,ndﬂk,n = Qk,n di.

We now recall the notation 1y, 1y, L, M, etc., introduced in Section 1.4. Thus 1;
is a Jordan algebra of rank k (with same values of d and e as m). By applying
the considerations of the previous section to 1; we obtain a family of functions
gik; j=1,...,k, defined on the various L;-orbits in ;. We are particularly
interested in the function

a = 9k k

which is defined on the open orbit 0 in ;. Now by definition we have m; =n, and
moreover we have 0 <, where O is the rank k orbit in . Thus we can restrict
g = grn from O to 0. The crucial “stability” result is the following:
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Lemma 2.12. With the above notation, we have g|g =4.

Proof. The function g is also defined by the analogous two-step procedure applied to
the Jordan algebra ;. We start with the M, -invariant function v on the rank 1 orbit

0, =W, corresponding to the Bessel function K /z*. As observed after the definition
v, the parameter © = (d — e — 1)/2 is independent of n. Thus we get

oz =3, (7)

which is the rank 1 version of the present lemma.
Next, we consider the open Li-orbit ¢’ in ¢); x --- x (), and define the analogous
function v by the formula

ol -y') =0(1 - yr) -0 - i)

for y = (y1, ...,yx)€@ and I in L. Comparing this with the definition of v, and
using formula (7) we deduce

- =%

B(D’

Now the functions g and g are defined by the integrals
g(l-y") =/ o(l-z)dz for lin L,
z

g(z-yl):/gﬁ(l-adz for I in Ly, (8)

where dz and dz are the invariant measures on the homogeneous spaces
Z=5/S'cL/S' = and Z = (SAL))/(S'nL)=Li/(S'nL;) = (. However, as
in formula (1) we see that

S=((SnLy) x Ly - U,
S'=((S'nL)) x Ly) - U.
Thus in the imbedding ¢’ = ¢, we have
zZ=2Z.
Moreover, since both measures are Li-invariant, we have

dz = dz.

Thus the integrals in formula (8) coincide for [ in L, and the result follows. [
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Let f+—/ denote the inverse Fourier transform which maps functions on 1, to
functions on n;. Thus

oy = [ érp)

n

where d/ is the Lebesgue measure on n.

Lemma 2.13. Writing a for the Jordan norm polynomial on Wy, we have

(Pex) | = gll Y =g tD).

Proof. The Fourier transform of tempered distributions is defined by adjointness
from its action on Schwartz functions, and we have the relation

fdi.=fda.
Now by the definition of g we have
Gdu = b do,

where du is the equivariant measure on the open orbit Ocn. Propositions 1.2 and
1.3 imply that in polar coordinates, the measures d/ and du are given by Pz,“ ngkxz
and PZ V,ﬁ’dkxz7 respectively. Thus, writing ¢ for the Jordan norm polynomial on 1y,
we get

dp=1¢""“*V di.

Combining these formulas we obtain the result. O

Lemma 2.14. Let D be the Cayley operator on n then for =0 we have

(D' By p) | = g ).

Proof. If f(x) is a Schwartz function on n; and ¢(y) is a homogeneous polynomial
on 1y, then we have (up to a scalar multiple)

(0) = df.

where 0, is the constant coefficient differential operator on n; with “symbol” g. Thus
the proof of the Lemma consists in establishing that the above identity continues to
hold when f (like @) is a smooth function of polynomial growth such that

f e #'(w;,dA). This is fairly standard (e.g. [J, Chapter 7]); indeed by adjointness
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we have
af di. = 0(f dJ),

where the derivative on the right is the distributional derivative. Under the
assumption on f, the right side equals (9,f) d4, and the result follows. [

We are now in a position to prove Proposition 2.2.

Proof of Proposition 2.2. The function g is M-invariant, thus by Proposition 1.3, it
suffices to prove the convergence of the integral

lg(zipt + - + zee) PP Yy 2.
Cr

By the previous lemma, this can be rewritten as

Gz + -+ z) PP vy -

Ck

Using Proposition 1.3 we can further rewrite this as
L/@ﬁ&%lwkmt:dM—k+U—@+U.
m

Thus it suffices to prove that
°¢" | 2" (i, di). 9)

Now the map f +— f extends as an isometry from L?(ny,d2) to L*(ny,d)) (after
suitable normalizations of the Lebesgue measures). Thus we have

ffre L, di) = fifse L (W, d2), (10)

we shall deduce (9) from (10) by a suitable choice of fi, f>.
Let us put

s=t4+2e+1-d)=dn—k—-1)+(e+1),
since n>k, we have s>0. Now if we set
f] = 511 ¢k,ka f2 = 5[2@](’](, where [} + 5 = S, (11)

then by the previous lemma we have

|fif5] = @l =D = 2. (12)
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We now consider two cases: if G#Sp, (C) weset /; =0 and k = s; if G = Sp,(C),
we set [} =1 and /, = s — 1. In the former case we have [}, >0; while in the latter
case, we have e = 1, whence s>2 and /;,/, > 1. Thus in either case by the open orbit
estimates of Propositions 2.3 and 2.4, applied to the Jordan algebra n;, we deduce
that the functions f; and f> from formula (11) belong to #?(ny, d;x). Thus formula
(9) follows from (12) and (10). O

3. Proof of the main results

We now explain how to deduce Theorems 0.1 and 0.2 from the previous results. As
explained in the introduction, the arguments are very similar to those in
[S1,DS1,DS2]. Thus, we shall limit ourselves to only sketching the proofs of the
various results below.

3.1. Proof of Theorem 0.1

In order to prove Theorem 0.1, we introduce a number of spaces.

First of all, let E(—dk) <= C® (n) be the space of smooth vectors in the degenerate
principal series defined in Section 2. The representation © = n_g, of the group G on
this space is by “fractional linear transformations”, and we have

[m(Df](x) = e~ *())f (AdI"'[x]) for I in L,
[r(exp X' )f](x) =f(x +x') for X' in n.

By Sahi [S3], the space E(—dk) has an irreducible wunitarizable spherical (g, K)-
submodule ¥ which we also regard as a subspace of C*(n). Thus by
Harish-Chandra theory, the Hilbert space closure # of V' with respect to the
(g, K)-invariant norm carries an irreducible unitary representation of G.

For convenience, we first describe # as the closure of a G-invariant space. For
this we introduce the space V consisting of those vectors in 7(—dk) whose restriction
to K, and subsequent expansion in K-isotypic components only involves the K-types
of V. Since V is (g,K)-invariant, the space V is G-invariant and we have the
following result.

Lemma 3.1. Functions in V have finite #-norm and # is the closure of V.

Proof. This is a consequence of a general result due to Casselman—Wallach on the
smooth vectors of a representation. In the present situation, one can also give an
alternative proof along the lines of the remark in Section 2.4 of [DS2] as follows.

First of all, the K-types of V' have multiplicity 1, and have highest weights of the
form

myyy 4 e MYy,
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where m; > --- =2m =0 and y,, ..., 7, are as in Section 1.1. Moreover, the #-norm
on each K-type is computed explicitly in [S3] and the ratio of the #-norm to the
#?(K)-norm grows at most polynomially in (m1y, ..., m;). On the other hand by the
Riemann-Lebesgue lemma for f in V, the £?(K)-norms of its K-isotypic

components decay rapidly. Thus such an f will have finite /#-norm. Evidently since
V <V, the closure of Vis s# as well. [

Next, recall the space # ¢ = £*(0,du); by Mackey theory, this space carries a
natural irreducible unitary representation g of P, which is given by the following
explicit formulas:

[me (DY) = ™ (Dy(Ad 1)) for [in L,
[me(exp )Y)(y) = e 7y(y) for x inn,
where {x,y ) is the normalized Killing form of Section 1.3. We shall prove Theorem
0.1 by constructing a unitary P-isomorphism .# between (n|p, #) and (ng, #0).
We first define .# on a suitable subspace of #. For this, let €(G) be the

convolution algebra of smooth %' functions on G. Then by standard arguments, 7
extends to a representation of (G) on V and we define

W = n(%(G))d<V,

where @ = @_ is the spherical vector in I(—dk). Since G = PK and @ is K-fixed, we
also have

W = n(4(P))®,

and we shall prove the following result:

Lemma 3.2. For each [ in W there is a unique S ()€ # ¢ such that
fdi.= 5 (dy,

as tempered distributions. Furthermore, for all F € €(P) we have

S on(F) = no(F) s 7. (13)

Proof. By Proposition 2.2, for & = @_y we have
®dj. =y,

where y € # ¢; or, equivalently,

mmzlfﬁwwwwm.
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Now for / in L, by Lemma 1.1 we have

/ e [mo (W) () du(y) =™ (1) /C e (AT Y]) du(y)

o

= o (1) =2k ) / T CAL DDy () ()

o

=e (1) / e ANy () du(y) = m(1) f
o

Similarly for x’ in n, we have

0

| e melesp Wi duts) = [ O p0) duty) = nlexp ) .

Thus for any Fe%(P), we have

~

[n(F)®] di = ([ne(F)y] dp)
and we can define .# by the formula
I ((F)®) = ne(F)Y.
Then .# satisfies the conditions of the lemma. The uniqueness is clear. [

We can now finish the proof of Theorem 0.1. Given the lemma above, the proof of
the result proceeds along lines similar to [S1,DS2].

Proof of Theorem 0.1. By the previous lemma, the space W; = #(W) is a €(P)-
invariant subspace of # ¢, and moreover we can equip it with a second P-invariant
norm, namely that transferred from # (see the proof of [DS2, Theorem 2.10] for the
explicit construction of this second measure).

Now as explained in [S1, 3.3], it follows from [P] that W contains a further €(P)-
invariant subspace W, on which the two norms coincide (up to a scalar multiple
which we normalize to be 1 by rescaling .#).

Since # ¢ is irreducible, W is dense in # ¢ and thus ¢ can be regarded as the
closure of W, with respect to the #-norm. It follows that the two norms agree on
W, as well, and thus the map

I W, oW

extends to an isometric P-invariant imbedding ¢ of # ¢ into #. Now the image of
J is closed, and contains a G-invariant subspace (namely W); thus since J# is an
irreducible representation, it follows that ¢ is surjective as well. Thus ¢ is a unitary
intertwining operator between (g, #¢) and (7|p, #). The required extension of
(mg, # ¢) to G is now given by simply transferring the representation from (7, #)
via 771 O
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3.2. Proof of Theorem 0.2

We now study tensor products of our representations 7. The analogous study for
conformal groups of Euclidean Jordan algebras was conducted in [DS1].

Since the statements and proofs from [DS1] can be transferred to our present
(non-Euclidean) setting without substantial changes, we will only sketch some of the
arguments below.

Fix s>=2 and a collection of positive integers ki, ..., k, satisfying

k=ki+ - +k<n.

For each i=1,...,s, let ¢ be the L-orbit on T of rank k;, with L-equivariant
measure dy’. Let 7, be the unitary representation of G on the space #2(¢', du') as
described in Theorem 0.1. We wish to study the tensor product representation

I = Ty ® ®n(§.\

which can be realized explicitly on the space £*(0' x --- x ¢, du' x --- x du’).
Let yi, ..., y, be as in Section 1.2, and define

Vi = Yl + Y2 + 0+ Ymprk;,  where mj =ky + - + ki, 1<i<s.
Then v; is an orbit representative for ¢'; v = v; + --- + v, is an orbit representative

for the rank k orbit @; and the L-orbit of

v = (vy, ..., 05)

is an open subset of @' x --- x (¢* with full measure. We denote by S’ and S the
isotropy subgroups of v’ and v, respectively. In the notation of Section 1.4, we have
v=y!', and thus

S:(Hl XL())'U.
It is easy to see that S’ can then be written as
S'=(H| x Ly)- U,

where Hj is a certain reductive subgroup of H;. We now change the notation slightly
and write G’ for H, and H' for H].

Example. Take G = E7(7),s =2and k; = 1,k =2. Thenk =n =3 and S = G’ (the
stabilizer of the identity element of 1, the exceptional Jordan algebra of dimension
27). In this case we have G' = Fy4) and S’ = H' = Sping s (cf. [A, p. 119]).

In general, X = G'/H’ is a reductive homogeneous space, and we write IndIG{I,l
for the quasiregular representation of G' on #*(X). We decompose this using
the Plancherel measure dp and the corresponding multiplicity function
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m:ﬁl—»{O,l,Z, ..., 00}, Le.,

@
Indg/lz//\ m(o)a dp(o).

/]

We define a map © from irreducible unitary representations of G’ to unitary
representations of P as follows

0(c) = Indgy (Ec®1,),

where Eo denotes the trivial extension of o to S = (G’ x L) - U, and y, is the unitary
character of N defined by

2,(exp x) = eIV

An easy application of Mackey theory shows that all representations @ (o) are
unitary irreducible representations of P, and ©(¢)~©O(¢’) if and only if 6 ~¢’.

Proposition 3.3. The restriction of II to P decomposes as follows:

(&)
1],~ /A m(0)0(c) dp(o), (14)

v

Proof. This is proved as in [DS1, Lemma 2.1]—here is a sketch of the argument. We
define an operator F from the space of II to functions on P by the formula

[Ef)(In) = y,(InI7")f(1-V)), leL,neN.
It is an easy exercise to verify that F gives a unitary isomorphism
1]~ Indh, (1®7,).
Next, using induction by stages we obtain an isomorphism
Indgy (1®7,) ~Indgy ((Indg 1) ® 7).

A final easy calculation shows that

€]
Ind$ 1 ~E(Ind% 1)~ /A m(c)(Ec)dp(a).

'

Combining the various isomorphisms, we obtain the result. [J

Let x be a unitary representation of G on a Hilbert space #, and R be a subgroup
of G. We shall write o/(k,R) for the von Neumann algebra generated by the
operators {k(g)lgeR}. If G is a type 1 group [M], then for irreducible x one
has o/ (k,G) = B(#)—the full algebra of bounded operators on #. To extend
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the P-decomposition of IT from formula (12) to the G-decomposition, we require the
following

Proposition 3.4. </(I1,G) = </(I1, P).

The analog of Proposition 3.4 for Euclidean Jordan algebras was proved in [DS1,
4.4], by combining the low rank theory of [Lil,Li2] for classical groups and Jordan
algebra techniques for the exceptional groups. These arguments extend to the present
setting without any significant modifications. For the reader’s convenience, we
outline the steps of the argument in Appendix A.1.

Proof of Theorem 0.2. Consider the direct integral decomposition of IT

II = / K)i dn(k)

into irreducible representations of G. Then

@ @
(I, P)< / m(i).t (i, P) () < / m(ie)t (i, G) dn(1c) = A (11, G).

The equality of Proposition 3.4 is possible only when the following conditions are
satisfied (for almost every k with respect to dn):

® k|, is irreducible (then JZ/(K,P) = . (k,G));
® If k|p~K'|p, then k>«

Thus in this case (almost) every irreducible representation @(ag) from the spectrum
of IT|, extends uniquely to an irreducible representation of G, which we denote by
0(o); hence the P-decomposition of formula (14) gives rise to the G-decomposition

®
- /A m(0)0(c) dp(c)

/]

and the theorem follows. [

Example. Again, take G = Ey(7), s = 2 and k; = 1, k; = 2. Then the map g+ 0(0)
establishes a correspondence between the spectrum of I1 and the spectrum of the
rank 1 reductive symmetric space Fy4)/Spin(4,5). In other words, we obtain a
duality between (some subsets of) the unitary duals of two exceptional groups: split
F4 on one side and split £ on the other side. As with Howe’s duality correspondence
(the usual f-correspondence), we expect that this new duality will have smooth and
global analogues.
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Appendix A
A.1. Low rank representations

Let t be a unitary representation of G. Since N is abelian, the restriction 1|y
decomposes into a direct integral of unitary characters of N. This decomposition
defines a projection valued measure on the dual space N*, which we identify with 1.
If this measure is supported on a single non-open orbit ¢, = N, we say that t is a low-
rank representation of G and write

rankyt = r.

An clement x; is a primitive idempotent in a Jordan algebra N, and we can
consider the associated Peirce decomposition

N:N(Xhl)_'_N(xla%) +N(Xla0)'

Observe that the spaces N(xj, 1) and N(xj,0) are the Jordan algebras of ranks 1 and
n — 1, respectively, for the Jordan structure inherited from N.

We will write Ny for N(x,1) and Ny for N(x;,0). Similarly, we write Gy for the
conformal group of Ny, Py = LyN, for the Siegel parabolic subgroup of Gy, etc.
Below are the examples of Ny and Gy for several different groups G:

For G = 0,43,42, No = R (rank 1 Jordan algebra), and Gy = GL,(R).
If G =Sp,,,, then Gy = Spn,l,n,l.

If G = E7(7), then Ny = R%® (rank 2 Jordan algebra), and Gy = O¢.6.
If G = E7(C), then G() = 012(@)

Setf= @',g"“® @' ,¢""™ and 0’ =+ n;. Then ' is a two-step nilpotent
subalgebra of g with the center n;.

Any generic unitary irreducible representation of the group N’ is determined by
the unitary character of its center N;. We denote by p, the unitary irreducible
representation of N’ which restricts to the multiple of the character y, on Ny,
teNy = Nj\{0}.

Consider now a subgroup GyN’ of G. We can view Gy as a subgroup of a
symplectic group Sp (f) associated with the standard skew-symmetric bilinear form
on {. Hence we can use the oscillator representation of Sp (f) to extend the
representation p, of N’ to a representation of GoN’ which we denote by p,.

Let o be a unitary representation of G, rankyo =r, 0<r<n. Without loss of
generality, we may assume that ¢ has no N;-fixed vectors. Then by Mackey theory,
we can write down the decomposition

@ ~
J\GON,:/ x, ®p, dt,

v
1

where all x, are unitary representations of Gj.
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Proceeding as in [DS1, 3.1], we verify that all of the representations k; are in turn
the low-rank representations of Gy. More precisely, we have the following.

Lemma A.1. Let o be a low-rank representation of G, rankyo = r, 0<r<n. Then for
any te N\’ the Ny-spectrum of the representation K, is supported on a single Ly-orbit,
and ranky,k, =r — 1.

The next technical lemma is proved exactly as in [DS1, 3.2]:

Lemma A.2. If for all te N’ one has o/ (x;, Gy) = o (i, Py), then

® @
J%( / K,@ﬁtdt7 G())EJ%(/ K[@ﬁtdt7P0N,>
NY NY

Theorem A.3. Let ¢ be a representation of G, rankyo = r, 0<r<n. Then

A(0,G) = (o, P).

Proof. The proof of the theorem is based on the fact that Gy and P generate G, so it
is enough to verify that .o/ (g, Go) = ./ (o, P). Since PyN’ is a subgroup of P, by the
Lemma above the assertion of the theorem is equivalent to the claim that for any
teNy

JZ/(KH Go) = J?/(K,, Po)

By Lemma A.1, all x; have rank r — 1. Proceeding in the same manner, we reduce the
statement of the theorem to that about rank O representations of the certain
(classical) group Gyg. Since all rank 0 representations are the direct integrals of
characters, and any character of Gy, is determined by its restriction to the Siegel
parabolic Py, < Gy, the theorem follows. [

We now consider the tensor product
=7, ® - Qne,

for k=k +ky+ - +ks<n. Then II is low-rank representation of G and
ranky Il = k. Applying the theorem above to II, we obtain the statement of
Proposition 3.4 for k<n.

It remains to check Proposition 3.4 for k = n. For all groups G except Opi2 12,
0,+4(C) and E7(7), E7(C) the statement of the proposition follows from the results of
[Li2], since all the representations form the spectrum of IT appear in the Howe
duality correspondence for appropriate stable range dual pairs (G',G). For the
exceptional cases listed above, the argument can be constructed along the lines of
Section 4 of [DSI1].
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A.2. Tables of groups and symmetric spaces

In the first table we list the symmetric spaces K/M and L/H; and the root
multiplicities d and e in X(tc,fc). The rank of the Jordan algebra is n, except for
0y1+4(C), Opi2p12 (rank 2), and Ey(7), E7(C) (rank 3). The second table lists the
spaces X = G'/H' in the 0-correspondence of Theorem 0.2.

G K/ M L/H d e
GL,(R) 02,/(0y x Oy) GL,(R) x GL,(R)/GL,(R) 1 0
02n,2n (OZn X 02n)/02n GL2n(R)/Spn(R) 2 0
E7<7> SUg/Sp4 R* x Eé(é)/F4(4) 4 0
Opi2p42 [0,:2]*/]101 x 0;.1 R* X Opi1p41/Oppr p 0
Sp,(C) Sp,/ Un GL,(C)/04(C) [
GL,,(C) U,/ (U, x Uy) GL,(C) x GL,(C)/GL,(C) 2 1
0411(0:) 04n/U2n GLZH( )/S ( ) 4 1
E7(C) E7/(E6>< U]) C*XEé( )/ 4( ) 8 1
0,.4(C) Op+4/(Ops2 x Uy) C* x 0)12(C)/0p11(C) p 1
SPo (Sp,, * Sp,,)/Sp, GL,(H)/0;, 2
GLo,(H) Sp2./(Sp, % Sp,) GL,(H) x GL,(H)/GL4(H) 4 3
G X
GLG(R) GLk(R)/[GLkl(R) X oo X GLkl\_(R)]
O Spi(R)/[Spy, (R) x --- x Spy (R)]
Ey(7) Spiny 5/Sping 4 (k1 = 1,ka = 1)

F4(4)/Spi1’1415 (k] =2 k2 = 1)
01J+27p+2 SOMH/ Sop-p (k 1k = 1)
Sp,(C) Oi(C)/[O0k, (C) x -+ x O, (C)]
GLG(C) GLk(C)/[GLkl(C) X oo X GLkl\_(C)]
0 (C) Spi(C)/[Spy, (€) x -+ x Spy (C)]
E7(C) Sping(C)/Sping(C) (k1 =1,k =1)

F4(C)/Spiny(C) (ki =2,ky =1)
0p+4(C) 80,+1(C)/SO(C) (ki = 1,k = 1)
SPun O/10;, > - x O]

GL,,(H) GL;(H)/[GLy, (H) x --- x GLy (H)]
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