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Triple groups and Cherednik algebras 

Bogdan Ion and Siddhartha Sahi 

ABSTRACT. The goal of this paper is to define a new class of objects which 
we call triple groups and to relate them with Cherednik's double affine Heeke 
algebras. This has as immediate consequences new descriptions of double 
affine Weyl and Artin groups, the double affine Heeke algebras as well as the 
corresponding elliptic objects. From the new descriptions we recover results 
of Cherednik on automorphisms of double affine Heeke algebras. 

Introduction 

The classical theory of root systems associated with finite dimensional semisim-
ple Lie algebras admits two generalizations. The first one, the Kac-Moody theory, 
originated in the effort to extend the classical theory to include certain classes of 
infinite dimensional Lie algebras as, for example, the simple infinite dimensional 
Lie algebras of vector fields on finite dimensional spaces as classified by Cartan 
at the beginning of the 20th century. The theory, which was initiated in the mid 
1960's by V. Kac and R. Moody, grew to be extremely rich and with abundant 
connections with diverse areas of mathematics. The second generalization, axioma-
tized by K. Saito, emerged from the theory of semi-universal deformations of simply 
elliptic singularities and the structure of Milnor lattices attached to these singu-
larities. This second theory is still in the very early stages of development from 
a representation-theoretical point of view, at present extending only the classical 
theory of root systems. These root systems were called by Saito 2--extended root 
systems or elliptic root systems. Saito defined in fact more general classes of root 
systems, k--extended root systems (k being any positive integer), but for values of k 
higher than three these do not have any geometrical or representation-theoretical 
relevance yet. The problem of attaching corresponding notions of Lie algebras and 
groups to k--extended root systems is wide open although in the elliptic case some 
constructions exist in the literature. 

To briefly compare the two theories note that they include the classical theory 
and they agree on one other class of root systems: the 1-extended root systems 
coincide with affine root systems in Kac-Moody theory. With this exception, they 
produce quite different outcomes. To mention a few differences note that the Weyl 
groups associated to Kac-Moody root systems are always Coxeter groups, but the 
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2 BOGDAN ION AND SIDDHARTHA SAHI 

corresponding groups associated to k--extended root systems are not. Also, the 
Weyl group of a k--extended root system does not act properly discontinuously 
anywhere in its reflection representation and as a consequence we do not have a 
Tits cone, and no natural notion of positive root system or Dynkin diagram. Saito 
was nevertheless able to classify the irreducible elliptic root systems parameterizing 
them by what he called "elliptic Dynkin diagrams". 

Since, as mentioned above, the Weyl groups associated to elliptic root systems 
(also called elliptic Weyl groups) are not Coxeter groups, a presentation of them 
in terms of elliptic Dynkin diagrams was one of the first questions to be asked. A 
candidate for such a presentation was exposed in [14]. The presentation is com-
plicated and does not bring any light into the structure of the elliptic Weyl group. 
Another problem along these lines which was asked in [14] is the description of 
the fundamental group of the complement of the discriminant of the semi-universal 
deformation of simply-elliptic singularities: the elliptic Artin group. In fact, the 
elliptic Weyl groups appeared before of the formal definition of elliptic root systems 
in the work of Looijenga [10] who considered extended Coxeter groups. Under this 
terminology the elliptic Weyl groups would be called extended affine Weyl groups. 
Also, the elliptic Artin groups were described (in the non-exceptional cases) by 
generators and relations by H. van der Lek [9] under the name of extended Artin 
groups. The elliptic Artin group was recognized by Cherednik [1] as being closely 
related to his double affine Artin groups and Heeke algebras. 

At this point a broad picture emerges since Cherednik's work has deep con-
nections with quantum many-body problems, conformal field theory and also with 
representation theory via Macdonald theory, which encloses information about real 
and p-adic groups and also about affine Kac-Moody groups. There are also con-
nections with harmonic analysis, q-Riemann zeta functions, Gauss-Selberg sums 
and more. The area is in full development and interesting connections are still to 
be made. In all the applications the structure of double affine Artin groups and 
Heeke algebras is especially important. 

The first results on the structure of double affine Heeke algebras appeared in 
Cherednik's work on Macdonald's conjectures. For the proof of the constant term 
conjecture only basic properties of Heeke algebras are used, but for the proof of the 
evaluation-duality conjecture a deeper result was needed: the existence of a special 
involution on double affine Heeke algebras called the duality involution. The exis-
tence of this involution is certainly non-obvious, see for example [5], [12, Chapter 
3] for a proof. Cherednik discovered that in fact this is part of an action of GL(2, Z) 
as outer automorphisms of double affine Artin groups. This allows, for example, 
representations of PSL(2, Z) for which the matrix coefficients are expressed in terms 
of special values of Macdonald polynomials at roots of unity. Let us mention that 
in the case of a root system of type An such actions appeared before in the work 
of A. Kirillov, Jr [8] on modular tensor categories and quantum groups at roots of 
unity. In this case the two approaches are most probably connected via the equiv-
alence (see [7]) between certain categories of representations of quantum groups 
and affine Kac-Moody algebras. For the root system of type An the picture seems 
to be even richer since PSL(2, Z) (which is the mapping class group of the torus 
with one marked point) can be replaced with the mapping class group of any two 
dimensional surface with marked points. 
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TRIPLE GROUPS AND CHEREDNIK ALGEBRAS 3 

The main goal of this paper is to give a completely new description of double 
affine Heeke algebras, Artin groups and double affine Weyl groups, and consequently 
of the corresponding elliptic objects. Our description is much simpler than the 
existing ones and has the virtue of making the existence of the difference Fourier 
transform and of the PSL(2, Z) action mentioned above simple consequences. All 
our proofs are at the level of Artin groups, since any other result is then obtained 
by passing to various quotients. It turns out that in fact all these symmetries of 
double affine Artin groups are descending from those of a new object, which we 
call triple group, of which the double affine Artin group is a quotient. A brief 
description of our results follows. The reader should refer to Section 1 for notation 
and conventions. 

DEFINITION 1. Let A be an irreducible affine Cartan matrix subject to our 
restriction and S(A) its Dynkin diagram. The triple group A is given by generators 
and relations as follows: 

Generators: one generator 7i for each node, with the exception of the affine 
node for which we have three generators T01, To2 and To3· We use the notation 
v = Tol To2To3· 

Relations: a) Braid relations for each pair of generators associated to any pair 
of distinct nodes (note that there are three generators associated to the affine node}. 

b) If the affine node is connected with the node a by a single lace, the 
elements To1, To2, To3, To1 To2'Tc)i1 and 'Tc)31To2To3 satisfy the single lace Coxeter 
relation with vky;,.v-k for all integers k. 

c) If there are double laces connecting the affine node with the node 
a the following relation holds for any 1 ~ i < j ~ 3 

(0.1) 

Of course we can define the corresponding triple Weyl group W by further 
asking that the generators have order two. All the facts we discuss will have as an 
immediate consequence corresponding results for the triple Weyl group. 

A few comments on this definition may be useful at this stage. We would like 
to stress that the above definition is not symmetric in the generators Toi which 
means that the symmetric group on three letters will not act on the triple group. 
However, we will prove in Theorem 2.6 and Theorem 4.10 that the braid group 
on three letters acts faithfully as automorphisms of the triple group. What is 
completely obvious from this Definition is the existence of an anti-involution which 
fixes all the generators except To1 and To3 which are interchanged. Also, we like to 
note that in Definition 1, b) we ask the relations for the element To1 To2 'Tci11 merely 
for symmetry. They follow from the ones for 1(j31To2To3 by observing that 

To1To2'Tol"1 = 'D'To31To2To3v-1. 
Our main result, Theorem 3.10, shows that the double affine Artin group is a 

quotient of the triple group. In fact, in this quotient the relations in Definition 1, 
b) will become redundant, allowing us to give a new description of double affine 
Artin groups and Heeke algebras. 

For double affine Artin groups the descent of the above anti-involution, whose 
existence is a trivial consequence of our new description, gives (by composition with 
the anti-involution which sends all the generators to their inverses) the duality in-
volution responsible for the difference Fourier transform. Note that previous results 
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4 BOGDAN ION AND SIDDHARTHA SAHI 

explaining in an uniform way the existence of this involution required topological 
arguments [1), [5). There is also an algebraic proof of this result [12). This proof 
proceeds by carefully checking of all the necessary relations between the generators 
in the Cherednik presentation and requires special considerations for some types of 
root systems. 

Also, the above action of the braid group on three letters descends to double 
affine Artin groups and Heeke algebras. Here we rediscover results of Cherednik 
which explain that there is a morphism from the modular group to the group of 
outer automorphisms of an double affine Artin group. These results are described 
in Theorem 4.4, Theorem 4.5 and Corollary 4.8. As another consequence we obtain 
descriptions of elliptic Weyl groups and elliptic Artin groups for certain types of 
elliptic root systems. 

There are interesting quotients of the triple groups of which the double affine 
Artin groups are quotients but which, unlike the triple groups, are described by 
a finite number of relations. These quotients also inherit the anti-involution and 
the action of the braid group on three letters. It is not yet clear if any of these 
quotients (or the triple group itself) have a topological interpretation. 

1. Preliminaries 

1.1. Notation and conventions. For the most part we adhere to the nota-
tion in [6). Let A= (ajk)O~j,k~n be an irreducible affine Cartan matrix, S(A) the 
Dynkin diagram and (a0 , ••• , an) the numerical labels of S(A) in Table Aff from 
[6, p.48-49). Note that we consider that the nodes i and j are connected in the 
Dynkin diagram by aijaji laces. Unless A= Al1) this produces the same diagrams 
as in [6). We denote by (a;)', ... , a~) the labels of the Dynkin diagram S(At) of the 
dual algebra which is obtained from S(A) by reversing the direction of all arrows 
and keeping the same enumeration of the vertices. 

Let (~, R, Rv) be a realization of the Cartan matrix A and let (6, R, flv) be 
the associated finite root system (which is a realization of the Cartan matrix A = 
(ajkh~j,k~n)· If we denote by {aj}O~j~n a basis of R such that {aj}l~j~n is a 
basis of R we have the following description 

~· = 6* +lR8 +lRAo, 
where 8 = L,'J=o ajaj. The vector space ~· has a canonical scalar product defined 
as follows 

(aj, ak) := dj 1ajk , (Ao, aj) := 8j,oa01 and (Ao, Ao) := 0, 

with dj := aja'f-1 and 8j,o Kronecker's delta. The simple coroots are { a'j .-
djaj }o~j~n· The lattice Q = EBj=17laj is the root lattice of R and if the affine 
Cartan matrix is not A~~ the lattice Q = EBj=07laj = Q EB 7l8 is the root lattice 
of R. For the affine Cartan matrix A~~ we will have to replace the root lattice 
Q by the weight lattice P and to keep in mind that the root lattice of R is Q = 
EBj=07laj = P EB ~7l8. 

To keep the notation as simple as possible we agree to use the 
same symbol Q to refer to the root lattice or the weight lattice 
depending on the affine root system as explained above. 
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TRIPLE GROUPS AND CHEREDNIK ALGEBRAS 5 

Although the ideas we will present here apply in general, the objects associated 
to the irreducible affine Cartan matrices B~ 1 ), C~l), FP) and G~ 1 ) require special 
treatment and we will not study them here. Their special behavior is a consequence 
of the fact that they lack certain types of symmetries which are otherwise abundant. 

For the rest of the paper we assume our irreducible affine root 
system to be such that the affine simple root a0 is short (this 
includes of course the case when all the roots have the same length). 
The exceptions to this condition are: B~ 1 ), C~l), FP) and G~l). 

For any root system denote by a the simple root corresponding to the node 
in the Dynkin diagram which is connected to node associated to the affine simple 
root a0 . If there are two such nodes (which is the case for S(A};-))) we choose one 
of them. By l0 we denote the number of laces by which the nodes corresponding 
to a0 and a are connected. Note that lo is always 1, except for A= B~ 2 ), A~~ for 
which it takes the value 2. 

1.2. Affine and double affine Weyl groups. Given a E R, x E ~* let 
2(x, a) 

S0 (x) :=x- -(-)a. a, a 
The affine Weyl group W is the subgroup of GL(~*) generated by all s0 (the 
simple reflections Sj = s"'i are enough). The finite Weyl group W is the subgroup 
generated by s1 , ... , Sn· Both the finite and the affine Weyl group are Coxeter 
groups and they can be abstractly defined as generated by s1, ... , sn, respectively 
s0 , •.. , sn, and some relations. These relations are called Coxeter relations and they 
are of two types: 

a) reflection relations: s] = 1; 
b) braid relations: SiSj · · · = SjSi · · · (there are mij factors on each side, mij 

being equal to 2, 3, 4, 6 if the number of laces connecting the corresponding 
nodes in the Dynkin diagram is 0, 1, 2, 3 respectively). 

The double affine Weyl group W is defined to be the semidirect product W 1>< Q 
of the affine Weyl group and the lattice Q (regarded as an abelian group with 
elements TfJ, where (3 is a root), the affine Weyl group acting on the root lattice as 
follows 

-1 
WTfJW = T w(fJ). 

This group is the hyperbolic extension of an elliptic Weyl group which is by defini-
tion the Weyl group associated with an elliptic root system (see [14] for definitions). 
The cases we consider cover all elliptic root systems with equal labels (p,p) (some 
of these will have isomorphic elliptic Weyl groups). It also has a presentation with 
generators and relations (called elliptic Coxeter relations). We refer the reader to 
[14] for the details. We only note here that the above mentioned presentation is 
considerably more complex than the one for Coxeter groups: for the infinite series 
it involves at least 2n - 2 generators and the genuine elliptic Coxeter relations (i.e. 
which are not Coxeter relations) are relations among groups of three or four of the 
generators. 
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6 BOGDAN ION AND SIDDHARTHA SAHI 

The affine Weyl group W can also be presented as a semidirect product in the 
following way: it is the semidirect product of W and the lattice Q (regarded as an 
abelian group with elements >..~-', where J.L is in Q), the finite Weyl group acting on 
the root lattice as follows 

0 \ 0-1 \ W/\1-'W = /\w(~-t)· 

Using this description we immediately see that the double affine Weyl group could 
be described as follows. 

PROPOSITION 1.1. The double affine Weyl group is the group generated by the 
finite Weyl group W, two lattices {AI-'} ~-tEQ' { r13} i3EQ and an element Ta018 with the 
following relations: 

(i) w>..l-'w-1 = Aw(J-t) and WTf3W-1 = Tw(/3) for any w in the finite Weyl group 
and any J.L, (3 in the root lattice; 

(ii) A!-'Tf3 = Tf3AI-'L(f3,J-t)8; 
(iii) r -1, is central. a 0 u 

To elucidate the alluded relation between the affine Weyl group and the elliptic 
Weyl group we give the following definition. 

DEFINITION 1.2. The elliptic Weyl group is the factor group of the double affine 
Weyl group by the group generated by Ta-1 8 . 

0 

For r a real number, ~; = { x E ~ ; (x, b) = r} is the level r of~*. We have 

~; = ~ 0 +rAo = 6* +IRb +rAo. 
The action of W preserves each ~; and we can identify each ~; canonically with ~ 0 
and obtain an (affine) action of Won ~ 0 . For example, the level zero action of s0 

and >..1-' on ~ 0 is 

sa(x) 
>..1-'(x) 

so(x) + (x, B)a01b, 
x-(x,J.L)b, 

and the full action of the same elements on ~* is 

where we denoted bye= b- aoao. 

1.3. Artin groups and Heeke algebras. To any Coxeter group we can 
associate its Artin group, the group defined with the same generators which satisfy 
only the braid relations (that is, forgetting the reflection relations). The finite and 
affine Weyl groups are Coxeter groups; we will make precise the definition of the 
Artin groups in these cases. 

DEFINITION 1.3. With the notation above define 
(i) the finite Artin group Aw as the group generated by elements 

T1, ... ,Tn 

satisfying the same braid relations as the reflections s1, ... , sn; 
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(ii) the affine Artin group Aw as the group generated by the elements 

To, ... ,Tn 
satisfying the same braid relations as the reflections s0 , ... , Sn. 

7 

From the definition it is clear that the finite Artin group can be realized as 
a subgroup inside the affine Artin group. For further use we also introduce the 
following lattices Qy := {Y11 ; f..L E Q} and Qx := {X,a; f3 E Q}. Recall that the 
affine Weyl group also has a second presentation, as a semidirect product. There 
is a corresponding description of the affine Artin group due to van der Lek [9] and 
independently obtained by Lusztig [11] and Bernstein (unpublished). To be more 
precise, Lusztig and Bernstein give a proof for the corresponding description of the 
extended Heeke algebra (the proof also works for the extended Artin group), which 
is easier and purely algebraic. H. van der Lek's result is more difficult and the proof 
uses the topological construction on the affine Artin group. 

PROPOSITION 1.4. The affine Artin group Aw is generated by the finite Artin 
group and the lattice Qy such that the following relations are satisfied for all 1 :::; 
i:::; n 

(i) 1iY11 = Y11Ti if (f..L, an = 0, 
(ii) TiY11Ti = Ys,( 11 ) if (f..L, a{) = 1. 

REMARK 1.5. In this description Y11 = T>-.~" for f..L any anti-dominant element 
of the root lattice. For example Y_a019 = T88 To. In fact, the above Proposition 
implies that the element T8-;; 1 Y_a-1 9 ( = To) satisfies the predicted braid relations 

0 
with the generators Ti. 

The special form of the Coxeter relations makes clear that the affine Artin 
group admits an anti-involution L which fixes all its generators. From Proposition 
1.4 and the above Remark it follows that the element T 8-;; 1L(Y_a019 ) = T8-;; 1T0T88 , 

and as a consequence also L(T8-;; 1ToT88 ) = T88 ToT8-;;1, satisfies with the generators 
Ti the same braid relations as T0 . This also follows from the topological description 
of the affine Artin group. 

PROPOSITION 1.6. The cyclic group of infinite order Z acts on the affine Artin 
group as automorphisms by conjugation with T88 on To and by fixing the rest of the 
generators. 

In fact van der Lek's description is even more precise; he identifies a finite set 
of relations which should be imposed. 

PROPOSITION 1.7. The affine Artin group Aw is generated by the finite Artin 
group and the lattice Qy such that the following relations are satisfied for 1 :::; i, j :::; 
n 

(i) For any pair of indices (i,j) such that 2rji = -(aj, a{), with rji a non-
negative integer we have 

TX111 = Y111 Ti (1.1) 
where /-Lj = aj + rjiai; note that (f..Lj, a{)= 0, 

(ii) For any pair of indices (i,j) such that 2rji- 1 = -(aj, a{), with rji a 
non-negative integer we have 

TiY111 Ti = Ys,( 111 ) (1.2) 
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8 BOGDAN ION AND SIDDHARTHA SAHI 

where /-lj = O:j + rjio:i; note that (J-lj, o:£) = 1. 
If we are in the A~~ case the relations for the pair ( i, n) are those obtained by 
considering a01o:n instead of O:n in the above formulas. 

Cherednik [2] (in the case of a reduced root system) and Sahi [13] (for a nonre-
duced root system) defined the so-called double affine Heeke algebra. We extract 
here from their definition only the definition of the double affine Artin group. 

DEFINITION 1.8. The double affine Artin group Aw is generated by the affine 
Artin group Aw, the lattice Qx and the element X -1, such the following relations a0 u 
are satisfied for all 0 ::; i ::; n 

(i) Xa-1 0 is central , 
0 

(ii) TiX/3 = X13Ti if ((3, o:£) = 0, 
(iii) TiXf3Ti = Xs,(/3) if ((3, o:£) = -1. 

To avoid cumbersome notation we will make use of the convention Ya-1 0 .-o 
X_a-1 0 . The following fact exploits the similarity of the above definition with 

0 
presentation of the affine Artin group given in Proposition 1.4. 

REMARK 1.9. The elements Xa-1 0 T 8~ 1 and To satisfy the same braid relations 
0 

with the generators Ti. In fact, subgroup of the double affine Artin group generated 
by Ti, i =f 0 and the lattice Qx could be described as follows. It is the group with 
generators Ti, i =f 0 and Xa-1 0 and such that the elements Ti, Xa-1 0T8--:, 1 satisfy 

0 0 ° 
the same braid relations as si, i =f 0 and s0 • The relations (ii) and (iii) in the above 
Proposition can be used to define generators for the commutative lattice Qx. 

The double affine Weyl group is not a Coxeter group, but a generalized Coxeter 
group (in the sense of Saito and Takebayashi, see [14]) and we can define the 
associated Artin group in the same way as for a Coxeter group (i.e. by keeping the 
generalized braid relations and forgetting the reflection relations). The equivalence 
between the two definitions has been recently established in [15]. 

DEFINITION 1.10. The elliptic Artin group is the factor group of the double 
affine Artin group by the group generated by Xa-1 0 . 

0 

As before, let us give a more refined description of the double affine Art in group. 
It is based, as in the case of the affine Artin group, on the topological description 
of the double affine Artin group [5]. 

PROPOSITION 1.11. The double affine Artin group Aw is generated by the 
affine Artin group and the lattice Qx such that the following relations are satisfied 
for 0 ::; i ::; n and 1 ::; j ::; n 

(i) For any pair of indices (i,j) such that 2rji = -(o:j, o:£), with rji a non-
negative integer we have 

TiXJ.Lj = XJ.LjTi (1.3) 
where /-lj = O:j + rjio:i; note that (J-lj, o:£) = 0, 

(ii) For any pair of indices (i,j) such that 2rji + 1 = -(o:j, o:£), with rji a 
non-negative integer we have 

TiXJ.LjTi = Xs,(J.Lj) (1.4) 

where /-lj = O:j + rjio:i; note that (J-lj, o:£) = -1, 
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TRIPLE GROUPS AND CHEREDNIK ALGEBRAS 9 

(iii) Xa-1 0 is central. 
0 

If we are in the A~~ case the relations for the pair ( i, n) are those obtained by 
considering a0\xn instead of an in the above formulas. 

To define the Heeke algebras, we introduce a field lF (of parameters) as follows: 
fix indeterminates q and to, ... , tn such that t1 = tk if and only if dj = dk; let m be 
the lowest common denominator of the rational numbers {(a1, >.k) 11::; j, k::; n}, 
and let lF denote the field of rational functions in q!n and t}. For the Cartan matrix 
A~~ we need in fact more parameters: in this case two more indeterminates are 
added to our field to3 and to2- To keep a uniform notation we use t01 to refer to to 
in this case. 

DEFINITION 1.12. 
(i) The finite Heeke algebra 1iw is the quotient of the group lF -algebra of the 

finite Artin group by the relations 

(1.5) 

for 1 ::; j ::; n. 
(ii) The affine Heeke algebra 1iw is the quotient of the group lF -algebra of the 

affine A rtin group by the relations 

(1.6) 

for all 0 ::; j ::; n. 

Note here that by [5, Remark 1. 7] the relation (1.6) for j = 0 needn't be 
imposed if the root system is reduced, since it is a consequence of the other relations. 
However it is absolutely necessary to impose it for A~~. The definition of the double 
affine Heeke algebra makes use of this fact. 

DEFINITION 1.13. The double affine Heeke algebra 1iw is the quotient of the 
group lF -algebra of the double affine Artin group by the relations 

(1. 7) 

and 
Xo = q-1 . (1.8) 

If the root system is non-reduced the following relations are also imposed 

(1.9) 

(1.10) 

(1.11) 

The above definition of the double affine Heeke algebra for A~~ coincides indeed 
with the definition given by Sahi [13] after setting t 03 = un, t 02 = u0 and making 
use of Lemma 4.1 in [13]. 
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10 BOGDAN ION AND SIDDHARTHA SARI 

1.4. The modular group and the braid group on three letters. Let us 
consider the modular group SL(2, /Z) of two-by-two matrices with integer entries 
and determinant one. By B3 we denote the braid group acting on three letters. 
With generators and relations it has the following description: B3 is the group 
generated by a, b satisfying the relation 

aba = bab. (1.12) 

Inside SL(2, /Z) consider the following elements 

and 

LEMMA 1.14. There exists a surjective morphism of groups 

1r : B3 __, SL(2, /Z) 
defined by 1r(a) = u12, 1r(b) = u21· The kernel of this morphism is the subgroup of 
the braid group spanned by c\ with c = (aba) 2 the generator of the center of B 3 . 

PROOF. Indeed, a simple computation shows that u 12 and u 21 satisfy the braid 
relation and also ( u 12 u 21)6 =I, where I is the identity matrix. It is a straightforward 
check that imposing the above two relations on the two generators u 12 and u 21 
constitutes an abstract description of the modular group. D 

2. Automorphisms of triple groups 

2.1. A few remarks. We start by a few comments on the definition of the 
triple group. There are three copies of the affine Artin group imbedded inside the 
triple group and their interaction needs to be elucidated. Each of them contains 
a commutative subgroup isomorphic with the lattice Q, whose elements will be 
denoted by X2i. 

We shall see how slightly more complicated relations also hold. We approach 
first the case of a single affine bond. The following Lemma will be very useful. 

LEMMA 2.1. Assume that two elements p and q satisfy the single lace Coxeter 
relations with a third element x. Then the following are equivalent 

(i) The element qp satisfies the double lace Coxeter relation with x; 
(ii) The element p-1qp satisfies the single lace Coxeter relation with x. 

Furthermore, if the above equivalent conditions also hold the element (qp)- 1p(qp) 
satisfies the single lace Coxeter relation with x. 

PROOF. To prove the equivalence let us note that 

and also 

p-1qp. X. p-1qp p-1qx-1p. X. qp 
P-1qx-1q-1 . qp. x. qp 
p-1X-1q-1. X. qp. X. qp 

-1 X. p qp. X xp-1x-1 . x. qp. x 
p-1X-1p. X. qp. X 
p-lx-1q-1 . qp. X. qp. X 

In consequence the left hand sides are equal if and only if the right hand sides are 
equal. The equivalence is now clear. 
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Suppose now that the equivalent conditions also hold. Since 
p. p-1qp = qp 

11 

and p, p-1qp satisfy the single lace Coxeter relation with x and qp satisfies the 
double lace Coxeter relation, by the first part of the Lemma we obtain that 

(p-1qp)-1p(p-1qp) = (qp)-1p(qp) 

satisfies the single lace Coxeter relation with x. 

An immediate consequence of this principle is the following 

PROPOSITION 2.2. If lo = 1 the elements 

'1~j2 1 Tcn '102 and '1~j3 1 '1~j2 1 To3To2To3 
satisfy the single lace Coxeter relation with VkTo.v-k, for any integer k. 

D 

PROOF. Denote VkTo.v-k by x. For the first element we apply the second part 
of previous Lemma for p = '101 and q = To1To21Q!1 and for the second element we 
apply the Lemma for p = To3 and q = To2· The verification of the hypothesis is 
straightforward. D 

Next we shift to the case of an affine double bond. 

LEMMA 2.3. If the affine node is connected to some other node with two laces 
then the elements Toi and Toi commute with To.ToiTojTo. for any 1 ~ i < j ~ 3. 

PROOF. We prove our claim only for To2· 
Now, '102 commutes with To.To1~- 1 (by (0.1)) and with To.To2'Ic, (by braid 

relations), therefore commutes with their product. 
Hence, we have proved that 

TaTo1To2To.To2 = To2To.To1To2To.· (2.1) 
A similar argument shows that the rest of our statement is true. D 

The following result uses these observations. 

PROPOSITION 2.4. If lo = 2 the elements 

1Q21To1 '102 and '1Q31To2To3. 
satisfy with the T;, (i =f. 0} the same braid relations as '101 does. 

PROOF. For the nodes not connected with the affine node the braid relations 
are clear, following directly from the ones with the Toi 's. The only thing to be 
checked is the double lace Coxeter relation with To (recall that we denote by a the 
simple root corresponding to the node connected to the affine node). 

To.1Q2 1Tcn To2Ta'1Q21Tol To2 = To:1Q2 1 ~- 1 Ta To1 To2Ta1Q2 1To1 To2 

Ta'1Q2 1 ~- 1 '1Q2 1 To1To2To.To1To2To. by (2.1) 
'1Q2 1 ~- 1 '1Q2 1 To. '101 To2To. '101 To2To. 
'1Q21To1To2To.'1Q21To1To2To. by (2.1). 

The result for 1Q31To2To3 follows along the same lines. 

Similar things happen with respect to relation (0.1). 

D 
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12 BOGDAN ION AND SIDDHARTHA SAHI 

PROPOSITION 2.5. If lo = 2, the relation (0.1} holds also for the following pairs 
of elements 

(To2, To21To1To2), (To1, To31To2To3), ('To21To1To2, 703) and (103, To31To2To3) 
PROOF. As before we show this only for one of the above pairs. The argument 

can be easily repeated to explain the result for any of the remaining pairs. 
The element To2 commutes with -z;,-1'To21?;,-1 (by the braid relations) and with 

Tc~.To1To2'Tc~. (by (2.1)). Therefore it commutes with their product. We have showed 
that 

To2?;,-1'To21T01To2'Tc. = 7;.-1'To21T01To2'Tc.To2 
which is precisely the desired relation. 0 

2.2. An action of the braid group on three letters. Next we will explain 
how the braid group on three letters act on the triple group as automorphisms which 
fix all the generators corresponding to the non-affine nodes. Before defining this 
action let us construct an anti-automorphism which satisfies the same restrictions. 
Of course we only need to define it only on To1, 703 and To2. Let e be the anti-
involution which fixes To2 and interchanges To1 and 703. This is of course possible 
since the defining relations are invariant under such a change. It clear that this is 
an involution, its square being the identity morphism. 

Let us define next two special elements morphisms of the triple group. The 
first one will be called !! and it will fix 703 and it will send To1 to To2 and To2 to 
To21To1 To2, and the second one will be called 11. and it will fix To1 and it will send 
To2 to 703 and 703 to To31To2To3· 

THEOREM 2.6. The above maps define indeed automorphisms of the triple 
group. Moreover, the map sending a and b to !! and Q, respectively, defines a 
group morphism 

Y: B3-+ Aut(A). 

PROOF. Let us first argue that !! defines indeed a endomorphism of the double 
affine Artin group. Indeed, by Proposition 2.2 and Proposition 2.4 the images of 
the generators Toi satisfy indeed the braid relations. 

In the case of a single affine bond we have to check that the images of7o31To2To3 
satisfy the required braid relations. The image by a is v-1To1'D and there is nothing 
to prove and the image by b is To31 To21 703 To2 703 and the check it was done in 
Proposition 2.2. 

In the case of the double affine bond we need to also check that the images of 
the relations (0.1) hold. This was proved in Proposition 2.5. Therefore a and b are 
indeed endomorphisms of the triple group. 

They are indeed isomorphisms since a simple check shows that 
eae = 11.-1. 

As for the second part of our statement, this is again a straightforward check. 0 

We will later prove that this morphism is injective. 

3. The triple group and the double affine Artin group 

3.1. A refinement of Cherednik's presentation. We start by analyzing 
the presentation of the double affine Artin group in Proposition 1.11. We first focus 
on the relations (1.3) and (1.4) for the pairs of type (O,j). 
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TRIPLE GROUPS AND CHEREDNIK ALGEBRAS 13 

Type 1: These are relations associated to 1 ::; j ::; n such that 2rjo 
-(aj, a~) = (aj, e), with rjo a non-negative integer. For such a j if we 
set /Lj = aj + rjoao the following relation holds 

ToX11 j = X 11jT0 • 

Since Xa-1 0 is central, we can certainly replace /Lj in the above relation 
0 

by aj- rj0 a01e. The only case in which the scalar product ( aj, e) is even 
and nonzero is for A= B};), A~~ when it could be equal to 2. Therefore, 
the relations of this type are 

XajTo if (aj, e)= 0 
Xaj-a010 To if (aj, e)= 2. 

Note the the relation (3.2) is present only if A= B~ 2 ), A~~. 

(3.1) 
(3.2) 

Type II: These are relations associated to 1 ::; j ::; n such that 2r jO + 1 = 
-(aj, a~) = (aj, e), with rjo a non-negative integer. For such a j if we 
set /Lj = aj + rjoao the following relation holds 

TiX11 jTi = Xs,( 11 j) 

The only odd value the scalar product (aj, e) could take is 1, and this 
happens only if A -=/=- B~ 2 ), A~~. In the two excepted cases the scalar 
product takes only even values. Therefore, the relations of this type are 

ToXajTo = Xaj+ao if (aj, e)= 1. (3.3) 

Note the the relation (3.3) is not present if A= B~ 2 ), A~~. 

PROPOSITION 3.1. Assuming the notation above, we can reduce the number of 
relations in the presentation of the double affine Artin group by keeping from all 
relations of type I and II described above only the following one: 

(i) ToXaTo = Xa+ao if lo = 1, 
(ii) ToXa-a-1 0 = Xa-a-1 0To if lo = 2. 

0 0 

PROOF. Assume that (3 and 'Y are simple roots whose nodes in the Dynkin 
diagram are connected, but none of them is connected to the node of a 0 . We also 
assume that (3 is shorter that 'Y or they have the same length. This will imply that 
((3, 'Y v) = -1 always and consequently 

S-y({J) = (3 + "f· 
From equation (1.4) we know that 

T-yXf3T-y = Xa+f3 

or equivalently X-y = T-yX(JT-yX-!3. From this expression it is clear that if we know 
that T0 satisfies the braid relations and it commutes with Xf3 it will follow that T0 
commutes with X-y-

Let l0 = 1 and aj a simple root for which ( aj, e) = 0 (in other words the 
nodes of a 0 and aj are not connected in the Dynkin diagram). Using the above 
remark several times if necessary we see that the relation (3.1) is implied by the 
knowledge of the braid relations and of the commutation of T0 with Xf3, where (3 
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14 BOGDAN ION AND SIDDHARTHA SAHI 

is any neighbor of a. The commutation of T0 and X[3 holds indeed since a is short 
(remember that lo = 1) and therefore as explained above 

Now, 

ToXf3To- 1 ToTf3Xo.Tf3X-o.T01 

T(3ToXo.ToT(3T0- 1 X_01T0- 1 by the braid relations for To and Tf3 
Tf3Xo.+o.oTf3X-o.-o.o by the hypothesis 

= Tf3Xo.Tf3X-a by the commutation of T13 and Xa0 

Xf3. 

This computation shows that if we impose on To the relation stated in the hypothesis 
(besides the braid relations) then all relations of type I automatically hold. In 
the case A~ 1 ) there are two type II relations: one which we have by hypothesis 
and another one, associated to the second neighbor (let us call it a') of the affine 
simple root in the Dynkin diagram. A straightforward computation, which exploits 
the fact that To commutes with Xo.+o.'+o.o, (fact which is a consequence of the 
commuting relations proved above) will show that the type II relation for a' holds. 
For completeness, let us explain the details: 

ToXo.'To = ToX-o.-o.aXo.+o.'+o.oTo 
ToX-o.-o. 0 ToXo.+o.'+o.o by the commuting relations 
X_o.Xo.+o.'+o.o by the hypothesis 

The proof of our result in the case lo = 1 is now completed. The case lo = 2 is 
treated completely similarly. D 

3.2. Some relations. We present here some relations which hold inside the 
double affine Artin group. The relations will be useful later. 

PROPOSITION 3.2. The elements Ti (i ::f:. 0} and T0- 1 X 010 satisfy inside the 
double affine Artin group the same bmid relations as Ti and To. 

PROOF. The claim is obvious if (0, ai) = 0, or equivalently if the nodes in 
question are not connected by laces in the Dynkin diagram. The other possible 
values for the scalar product are (0, ai) = 1 (if there is a single lace connecting 
the ao and ai; consequently ai is short) and (0, at) = 2 (if there are two laces 
connecting the ao and ai; consequently ai is not short). We will consider them 
separately. In what follows we use our convention to denote by a the simple root 
whose node is connected to the affine node in the Dynkin diagram. 

First, if (0, a) = 1 by Definition 1.8 we know that 
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TRIPLE GROUPS AND CHEREDNIK ALGEBRAS 15 

Now, 

T.-1r-1 X r,-1 X 
0 a ao+a 0 ao 

T0- 1T,; 1ToXaXa0 

TaTo- 1T,; 1 Xao+a 
TaTo- 1 Xa0 Ta 

by (3.4) 
by (3.5) 
by the braid relation 
by (3.4). 

We proved the desired braid relation (recall that in this case the relevant nodes in 
the Dynkin diagram are connected by a single lace): 

Second, if (0, a)= 2 from Definition 1.8 we know that 

In the same manner, 

Xa0 Ta 
Xa+aoTo- 1 

Xa+2a0 Ta 

T,; 1Xao+a 
To- 1 Xa+ao 
TaXa+2ao· 

T0- 1 Xa0 TaT0- 1 Xa 0 Ta = T0- 1T,;1 Xao+aT0- 1 Xa0 Ta 
T0- 1T,;1T0- 1 Xao+aXa0 Ta 
T.-1r-1r,-1r. x 

0 a 0 a 2ao+a 

T. T.-1r-1r,-1x 
a 0 a 0 2ao+a 

= T0 T0- 1T;- 1 Xo:o+aT0- 1 Xo:0 

= T0 T0-l Xa0 TaTo-l Xa0 

by (3.6) 
by (3.7) 
by (3.8) 

(3.6) 
(3.7) 
(3.8) 

by the braid relation 
by (3.7) 
by (3.6). 

We proved the desired braid relation (recall that in this case the relevant nodes in 
the Dynkin diagram are connected by two laces): 

The proof is completed. 0 

If lo = 2 another important relation holds. 

LEMMA 3.3. With the notation above, if the affine node is connected by a dou-
ble lace with the node corresponding to the simple root a, the elements To and 
T~ 1 T 0- 1 Xa 0 Ta commute inside the double affine Artin group. 

PROOF. Indeed, 

r,-. r-1r,-1r-1x 
1 0 a 0 a ao+a 
T -1r,-1r-1r,-. x a 0 a 1 0 ao+a 
T -1r,-1r-1x r,-. a 0 a ao+a 1 0 

T,;1T0- 1 Xa 0 TaTo 

by (3.6) 
by the braid relation 
by (3.7) 
by (3.6) 

0 
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16 BOGDAN ION AND SIDDHARTHA SAHI 

3.3. A quotient of the triple group. The following element will play a 
central role. If, with the usual notation, so = s31 · · · sim is a reduced decomposition 
of the reflection so in terms of simple reflections, we denote by Ts 9 the product 
Tj1 • • • Tjm. Since we imposed the braid relations the definition of Tg will not depend 
on the reduced decomposition chosen. Define 

C := To1To2To3Tse· 
Consider next the following quotient of the triple group. 

DEFINITION 3.4. Let A be an irreducible affine Cartan matrix subject to our 
restriction and S(A) its Dynkin diagram. The group A is the quotient of the triple 
group A by the following relations 

(3.9) 

From now on we will consider only the group A, therefore no confusion will 
arise if we denote the images of the triple group elements by the quotient map by 
the same symbols. 

Let us collect a few facts which immediately follow from the above definition. 

LEMMA 3.5. Using the notation above, if lo = 1, To2 could be expressed in terms 
of the other generators. 

PROOF. Let us start with an immediate consequence of (3.9). Since from a 
straightforward check 

To2 = 'Ta 7ciJ.1VTri31'Ta To3V-1To1 ~- 1 , 
using the centrality of C we get 

To2 = Ta Trii1C-1V7Q31'Ta To3CV-1To1 ~- 1 , 
and using the relation (3.9) we obtain the following formula 

To2 = 7Q1 1 ~- 1 To1'TaT;.~ 1 7Q3 1 TaTo37'seTo1Ta-I, (3.10) 
which shows that indeed To2 is expressible in terms of the other generators. 0 

LEMMA 3.6. In defining the group A, if lo = 1, the relations in Definition 1 b) 
are superfluous. 

PROOF. Because v-k'TaVk = T;.~TaT;.--;;k the result follows from Proposition 
1.6. Also, by the same principle, it is enough to prove that the simple lace Coxeter 
relations between 7Q31To2To3 and Ta hold. By the Lemma 2.1 this is equivalent 
with the double lace Coxeter relations between To2 To3 and Ta. 

Let us consider the relation 

To2 To3 Ta To2 To3 Ta = Ta To2 To3 Ta To2 To3. 
It essentially says that To2To3 commutes with 'TaTo2To3'Ta. But since 

To2To3 = C7Q1 1 7;.~ 1 

and C is central this is equivalent to the fact that 701 1 7;.~ 1 and 'Ta7Q1 1 T;.~ 1 'Ta 
commute. This is always true since inside the affine Artin group generated by To1 
and 7;,, i =F 0 since it is equivalent, using for example the relations from Proposition 
1.4 and Remark 1.5, with the fact that X 0~ 18 and X01 + _18 commute. The proof a0 -a a 0 

is completed. 0 
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LEMMA 3.7. In the above definition, if lo = 2, only one of the relations (0.1} 
should be imposed. 

PROOF. We will prove that if we impose only one relation in (0.1), say 

(3.11) 
the other two easily following from this one and the fact that C is central. We will 
illustrate this briefly. 

The above relation says that To1 and Ta- 17[;·:/Ta commute. Since To1 also 
commutes with C, 7;,-17a]1 Ta-l (this is just the braid relation) and Ta~-;, 1 7a (this 
is a relation which could be checked easily), it follows that To1 commutes with their 
product, which is 

-r-1-r-1-r -r-1-r-1-r-1-r -r-1-r c -r-1-r ,. .la .1.02 .la.la .1.01 .la .la.ls0 .la = .la .lQ3.la· 
We have just proved that 

Tol7;,-1To3Tcr = Ta- 1To3TaTol· 
The argument is the same if we choose to keep any other relation. 0 

3.4. The main result. Our main goal is to prove that the double affine Artin 
group Aw is isomorphic to the group A. Let us define the candidates for isomor-
phisms between the two groups. Let the map 

¢:A-+A-w 
be defined as the extension to a group morphism of the map 

¢(7i) = Ti (fori -=1- 0), ¢(Tal) =To, ¢(To3) = Xa 0 1 0 T 8~ 1 , ¢(To2) =Ta-l Xa 0 • 

The next Proposition shows that this could indeed be done. 

PROPOSITION 3.8. The map ¢ : A ---+ Aw is well defined. 

PROOF. From Remark 1.9 and Proposition 3.2 it follows that the images of 
the generators of the group A satisfy the required braid relations inside the double 
affine Artin group Aw. Also, 

¢(C) ¢(To1To2To3~o) 

ToT 0- 1 Xa 0 Xa-loT 8~ 1 T 80 
0 

X -1< a0 u 

which is central in the double affine Artin group. The only thing which needs 
explanation is the fact that the image of relation (0.1) holds if l0 = 2. In fact, as it 
follows from Lemma 3.7, we need to do this only for one relation, say 

Indeed, 

¢(Tal Ta- 1To2Ta) ToT,; 1T0- 1 Xa 0 Ta 
'T' T-lr.-lT-lx 
1 0 a 0 a ao+a 
T-lr.-lT-lrro X a 0 a 1 0 ao+a 
T-lr.-lT-lx rro a 0 a ao+a 1 0 

T,; 1T0- 1 Xa 0 TaTo 
¢(Ta-1To2TaTol)· 

(3.12) 

by (3.6) 
by the braid relation 
by (3. 7) 
by (3.6) 
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18 BOGDAN ION AND SIDDHARTHA SAHI 

The proof is completed. D 

Let the map 
'1/J: Aw---. A 

be defined as the extension to a group morphism of the map 

'1/J(Ti) = Ti (fori =J 0), '1/J(To) = Tcn, '1/J(X -1,) = To3T,9 , 7/J(Xa-1,) =C. a 0 v 0 u 

PROPOSITION 3.9. The map 'ljJ : Aw ---+ A is well defined. 

PROOF. As noted in Remark 1.9, the elements for which we defined 'ljJ are 
enough to generate the double affine Artin group. This has the advantage of re-
ducing the number of relations for us to check to the images by 'ljJ of the following 

( 1) braid relations for Ti ( i =J 0) and T0 ; 

(2) braid relations forTi (i =J 0) and Xa-1 0T;/; 
0 

(3) X -1" is central; a 0 u 
(4) relations from Proposition 3.1. 

The only nontrivial check will be to prove that the images of the relations stated in 
Proposition 3.1 hold inside the group A. Let us consider first the case when l0 = 1. 
We have to prove that 

Tol'I/J(Xa)Tol = '1/J(Xao+a)· 
Since TaX-oTa = Xa-0 we know that 

Xa = TaX-oTaXo. 
Therefore we want that 

To1 Ta 'T,;~ 1 Tc;3 1 Ta To3T,e To1 = CTa'T,;~ 1 Ta""i/Ta 
or equivalently 

Tse Ta-1Tol Ta 'T,;~ 1 Ta3 1 Ta To3T,e To1 ya-1To3 =C. 
This immediately follows from equation (3.10). 

In the case l0 = 2 we have to prove that 

To1 '1/J(Xa-a- 10) = 'I/J(Xa_a- 10)To1· 
0 0 

As before, 
Xa-a-1 0 = T0 X_a-1 0T0 , 

0 0 

hence our statement is proved as follows 

To1 'I/J(Xa-a01o) To1 Ta 'T,;~ 1 Ta3 1 Ta 
C-1To1 Ta To1 To2Ta 
C-1To17nTo1 Ta~- 1 To2Ta 
c-1Ta To1 TaTol Ta- 1To2Ta 
c-1Ta Tal Ta ya-1To27nTol 
c-1Ta To1 To2 Ta To1 
Ta 'T,;~ 1 Ta3 1 7nTol 
'I/J(Xa-a- 1o)To1· 

0 

The proof of the Proposition is now complete. 

Our main result is the following. 
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TRIPLE GROUPS AND CHEREDNIK ALGEBRAS 19 

THEOREM 3.10. The groups Aw and A are isomorphic. 

PROOF. The morphisms constructed in Proposition 3.8 and Proposition 3.9 are 
inverses for each other, as we could easily check this on generators. D 

In other words, the definition of the group A could serve as a definition for 
the double affine Artin group. We will state this explicitly, by keeping only the 
non-redundant relations. 

THEOREM 3.11. Let A be an irreducible affine Carlan matrix subject to our 
restriction and S(A) its Dynkin diagram. The double affine Arlin group Aw is 
given by generators and relations as follows: 

Generators: one generator Ti for each node, with the exception of the affine 
node for which we have three generators To1, To2 and Toa. 

Relations: a) Braid relations for each pair of generators associated to any pair 
of distinct nodes (note that there are three generators associated to the affine node). 

b) If there are double laces connecting the affine node with the node 
o: (i.e. lo = 2} the following relation also holds 

T01T;1ToaTa = T;1ToaTaT01 

c) The element 

Xa-1 6 := T01To2ToaT88 is central 
0 

(3.13) 

(3.14) 

The elliptic Arlin group has the same description except for the last relation which 
is replaced by 

X -lr = 1 ao (} (3.15) 

By Definition 1.13 we obtain a new description of the double affine Heeke 
algebra. Note that the elements appearing in (1.10) and (1.11) are 103 and 102 , 

respectively. 
The same result at the level of Weyl groups is also of interest. 

THEOREM 3.12. Let A be an irreducible affine Carlan matrix subject to our 
restriction and S(A) its Dynkin diagram. The double affine Weyl group W is given 
by generators and relations as follows: 

Generators: one generator Si for each node, with the exception of the affine 
node for which we have three generators so1, so2 and soa. 

Relations: a) Braid relations for each pair of generators associated to any pair 
of distinct nodes (note that there are three generators associated to the affine node). 

b) If there are double laces connecting the affine node with the node 
o: (i.e. lo = 2} the following relation also holds 

(3.16) 

c) All generators have order two. 
d) If, with the usual notation, the following relation holds 

is central (3.17) 

The elliptic Weyl group has the same description except for the last relation which 
is replaced by 

CONTEMPORARY MATHEMATICS 201 

Licensed to Princeton University.  Prepared on Sat Dec 15 18:46:28 EST 2012 for download from IP 128.112.200.107.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



20 BOGDAN ION AND SIDDHARTHA SAHI 

4. Automorphisms of double affine Artin groups 

4.1. A reflection representation for the double affine Weyl group. 
The fact that the generators of the double affine Weyl group in Theorem 3.12 have 
order two suggests that it may have a faithful representation in which the generators 
will act as reflections. We construct here such a representation. 

Assume we have fixed an irreducible affine Cartan matrix A of rank n satisfying 
our assumptions. Let us define the following n + 4-dimensional real vector space 

V := 6* EB ~~1 EB ~~2 EB ~A1 EB ~A2 
together with the nondegenerate bilinear form(·,·) which extends the natural scalar 
product on 6 

(~i,Aj) ~ij, i,j = 1,2 
(~i,ak) 0, i = 1,2, k = 1 .. ·n 
(Ai, ak) = 0, i = 1,2, k = 1···n. 

By r we will denote the maximum number of laces in the Dynkin diagram of A and 
by R8 , Rt the short, respectively long, roots ink The vector space V contains the 
subset R defined as 

R = (Rs + z~l + z~2) u (Rt + rZ~l + rZ~2), if A =fA~~' 
- 0 0 1 ° 1 (2) R = (Rs+Z~l +Z~2)U(Rt+rZ~l +rZ~2)U(2Rt+Z~1 +Z~2+2(~1 +~2)), for A2n. 

For each a E R and v E V define 

() 2(v,a) _ 
sa v =v- -(-_)a. a, a 

The sa are reflections of V. We consider an action of the double affine Weyl group 
W on the vector space V by letting the simple reflections Si acting as sa;, and s01 , 

so3 and so2 acting as sa()l(•h-O)• sa()l(t52 -o) and sa()l(t51+t52 -o)• respectively. Also, 
the element T a -1 8 acts as 

0 

PROPOSITION 4.1. The above action of the generators of the double affine Weyl 
group extend to a faithful representation 

p: W--+ GL(V). 

PROOF. All the relations in the Theorem 3.12 are easily verified. Hence, we 
defined indeed a representation of the double affine Weyl group. To check that 
it is faithful we use Proposition 1.1 which has as a consequence the fact that any 
element of W can be put in the form w>..p.Tf3 and the following explicit actions of 
>..~-'and Tf3: 

1 2 >..p.(x) = x- (x, f..L)~l + (x, ~l)(f..L- 2lf-LI ~1) 

r13(x) = x- (x, (3)~2 + (x, ~2)((3- ~lfJI 2 ~2). 
The verification is straightforward. 
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TRIPLE GROUPS AND CHEREDNIK ALGEBRAS 21 

From now on we will not distinguish between the double affine Weyl group and 
its image inside GL(V) via the above representation. 

Note the vector space V(o,o) := 6* EB JR81 EB lR82 is invariant under the action of 
W and that the element r -1, acts trivially on it. We immediately obtain that the a 0 u 
restriction to V(o,o) gives a faithful representation of the elliptic Weyl group. 

LEMMA 4.2. All the reflections s0 for a E R belong to the double affine Weyl 
group. 

PROOF. This is a simple check, using the fact that 

-1 
WSaW = Sw(a) 

for any wE wand a E R, and the fact that saQ"l(ol-0) and saQ"l(82-0) belong to 
the double affine Weyl group. 0 

We consider next the following subgroup of the full automorphisms group of W 

Since the generators sa01(01 _ 0) and sa01(02 _ 0) could be replaced by sa0 1(81-o) 

and sa01(J"2-o) as long as 81 and 82 generate the lattice ;Ml EB::£82, for any matrix u in 
SL(2, Z) we can define such an automorphism which sends sol and so3 to Sa01(u·li1-o) 
and sa01(u·li2-0)• respectively, Here SL(2, Z) acts as usually on the lattice generated 
by 81 and 82 . We will denote this automorphism by JJ. Let us observe that 

The following result is an immediate consequence of the above remarks. 

PROPOSITION 4.3. The map described above is an injective morphism 

v: SL(2, Z) ---+ <!5(W). 

Let us note that the above morphism could be extended to GL(2, Z). The 
element 

e := ( ~ ~ ) 

gives rise to an involution f. of W which normalizes the group of automorphisms 
given by the modular group. For example 

The fact that such automorphisms exist follows automatically from Theorem 2.6 
since the double affine Weyl group is a quotient of the triple group by relations which 
are fixed by the action of B 3 and by the fact that C2 acts trivially on this quotient. 
We preferred the explicit geometrical argument since it shows that actually SL(2, Z) 
acts faithfully on the double affine Weyl group. 
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22 BOGDAN ION AND SIDDHARTHA SAHI 

4.2. Automorphisms of double affine Artin groups. Returning to the 
double affine Artin group, denote by Toi the images of the elements Toi in Aw· We 
will be interested in automorphisms of the double affine Artin group which descend 
to automorphism of the double affine Weyl group. Let us call the group of such 
automorphisms Aut(A-w; W). As for double affine Weyl groups, let us consider the 
following group 

l!S(A-w) := {! E Aut(A-w; W) I f(Ti) = Ti, i-:/= 0, and f(Xa-1 0) = Xa-1 6}. 
0 0 

As we remarked in the case of the double affine Weyl group, the action of the 
braid group on three letters described in Theorem 2.6 descends to the double affine 
Artin group, since this is a factor of the triple group by a relation which is invariant 
under B3 . It is obvious that these descents belong to l!S(Aw ). Even more, the anti-
involution e, which fixes To2 and interchanges To1 and To3, also descends to the 
double affine Artin group. To keep our notation simple and because no confusion 
will arise we will use the same symbols to denote automorphisms of Aw which 
descend from those of A. 

It easy to see that e interchanges XI-' with Y_l-' for any element of the root 
lattice. On any group we have a canonical anti-involution which sends any element 
to its inverse. If we consider its composition with e we obtain an involution ~ which 
could be described as follows: it sends each of the generators Ti, i -1= 0 to its inverse 
and interchanges XI-' with Yl-' for any element of the root lattice. The descent of~ 
to the double affine Weyl group is~· 

This involution - or rather its descent to the double affine Heeke algebra -
plays a central role in the theory of Macdonald polynomials, where is responsible 
for the so-called difference Fourier transform. To mention only one of its many 
implications we note that the difference Fourier transform was the crucial ingredient 
in Cherednik's proof [3] of the Macdonald evaluation-duality conjecture. Let us 
state this result explicitly. 

THEOREM 4.4. The map which sends each of the generators Ti, i -1= 0 to its 
inverse and interchanges XI-' with Yl-' for any J.L E Q can be uniquely extended to an 
automorphism 

~: Aw ____. A-w 
of the double affine Artin groups. The square of~ is the identity isomorphism. 

This a trivial consequence of our description of the double affine Artin group, 
however it is quite hard to prove it starting from the original description of Chered-
nik. See [12, Chapter 3], [5, Theorem 2.2] and [13, Theorem 4.2] for a different 
proof. We restate Theorem 2.6 in the double affine Artin group context. 

THEOREM 4.5. The map sending a and b to !! and Q, respectively, defines a 
group morphism 

T : B3 ____. l!S(Aw). 

By W 0 we denote the longest element of the the Weyl group W. The following 
result is well known. 

LEMMA 4.6. Inside the affine Artin group Aw, To commutes with T 8~ 1 Two. 

Next we will describe the action of the center of the braid group B3 on the 
double affine Artin group. 
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CoROLLARY 4. 7. The generator c of the center of the braid group B3 acts (via 
Y) on the double affine Artin group as the conjugation by Two. 

PROOF. By the above Theorem c acts as conjugation by T80 on the elements 
Toi· By the above Lemma this is the same as conjugation by Two· 0 

By Deligne [4], the center of the Artin group Aw is generated by Two when 
W 0 = -1 or by T~o if W 0 =I -1. The latter occurs only for types An, n 2: 2, D2n+l 
and E5. 

COROLLARY 4.8. The above action of B3 will give a morphism from PSL(2, Z) 
(if W 0 = -1) or SL(2, Z) (if Wo =I -1) to the outer automorphism group of the 
double affine Artin group. 

The Corollary 4.8 recovers results of Cherednik [3, Theorem 4.3]. The Theorem 
4.5 also seems to follow from his work although no reference was made to the braid 
group on three letters. The implications of the above Corollary are extremely im-
portant. To give one example, it leads to projective representations of the modular 
group expressed in terms of special values of Macdonald polynomials. In turn these 
give identities involving special values of Macdonald polynomials at roots of unity. 

Our approach allows us to say more about this action. 

THEOREM 4.9. The morphism Y: B3 __, c.B(Aw) is injective. 

PROOF. The following diagram is commutative 
y 

B3- c.B(Aw-) 

~ j j 
v -

SL(2, Z) - c.B(W) 
Because v is injective, any element in the kernel of Y must be contained in the 
kernel of n, which is spanned by C2 • From the above Corollary it is clear that the 
image by Y of such an element cannot act trivially on c.B(Aw ). The Theorem is 
proved. 0 

This Theorem also implies that the original action of B3 on the triple group is 
also faithful. 

THEOREM 4.10. The morphism Y : B3 --> Aut(A) is injective. 

We close by noting that all the automorphisms of the double affine Artin groups 
given by B3 descend faithfully to the corresponding double affine Heeke algebras, 
elliptic Artin groups and elliptic Heeke algebras. For Heeke algebras there is no 
action of B3 on the parameters except for the non-reduced case where it acts by 
permuting the toi. 
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