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Abstract. We establish a precise relationship between binomial coefficents
and Littlewood-Richardson coefficients for interpolation polynomials and Mac-
donald polynomials, and obtain explicit formulas for both kinds of coefficients.

Introduction

Let F = Q (q, t) denote the field of rational functions in q, t. In ([18], [6], [19],
[4]) the author and F. Knop introduced two inhomogeneous polynomial bases

(0.1) {Gη : η ∈ Cn} ⊂ F [x1, . . . , xn] , {Rλ : λ ∈ Pn} ⊂ F [x1, . . . , xn]
Sn

whose index sets are, respectively, compositions and partitions of length n:

Cn := {η = (η1, . . . , ηn) : ηi ∈ Z≥0} , Pn := {λ ∈ Cn : λ1 ≥ λ2 ≥ . . . ≥ λn} .
Rλ and Gη are called interpolation polynomials and, as shown in ([19], [4]),

their top degree terms are, respectively, the symmetric and nonsymmetric Macdon-
ald polynomials of type A ([12], [17, 3, 11]).

In this paper we prove several new results about Rλ and Gη. We first introduce
common notation to avoid having to state the results twice. Thus we write

{hv (x) : v ∈ L} ⊂ R
to denote either of the two situations in (0.1).

The index set L admits a partial order ⊇ , which, together with the “rank”
function |v| = v1 + · · ·+ vn, makes L into a graded poset ([2]). Furthermore there
is a certain map u �→ u : L → Fn such that hv is characterized as the unique
polynomial in R of degree |v| satisfying
(0.2) hv (v) = 1; and hv (u) = 0 unless u ⊇ v.

We refer the reader to sections 0.3 and 1.1 for precise definitions of ⊇ and u �→ u
in the symmetric and non-symmetric cases, respectively.
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2 SIDDHARTHA SAHI

0.1. Binomial coefficients. Our first result is a formula for the special values
hv (ū), which are called binomial coefficients in [15, 21]; we define

(0.3) buv := hv (ū)

We denote by :⊃ the covering relation of ⊇; thus we have

u :⊃ v iff u ⊇ v and |u| = |v|+ 1

The buv are explicitly known if u :⊃ v (see [1, 15] and formulas (0.15),(0.18) below);
to emphasize this fact we write

auv =

{
buv if u :⊃ v
0 else

.

Consider the L × L matrices A = (auv), B = (buv), and the diagonal matrix
Z = (|u| δuv), where we define for any n-tuple, e.g. for y ∈ Fn

|y| := y1 + · · ·+ yn

By (0.2), (0.3) B is unitriangular and hence invertible. We denote its inverse by

B−1 = (b′uv)

Theorem 0.1. .

(1) The following recursions characterize buv and b′uv:

(i) buu = 1, (ii) (|u| − |v|)buv =
∑

w:⊃vbuw(|w| − |v|)awv.(0.4)

(i) b′uu = 1, (ii) (|u| − |v|)b′uv =
∑

w⊂:uauw(|w| − |u|)b′wv.(0.5)

(2) The matrices A,B,Z satisfy the commutation relations

(0.6) (i) [Z,B] = B [Z,A] , (ii)
[
Z,B−1

]
= − [Z,A]B−1

(3) Let Cuv := {w = (w0, w1, · · · , wk) | w0 = u,wk = v, wi :⊃ wi+1}; then

buv =
∑

w∈Cuv
wt (w) with wt (w) =

∏k−1
i=0

[
|wi|−|wi+1|
|w0|−|wi+1|awi,wi+1

]
.(0.7)

b′uv =
∑

w∈Cuv
wt′ (w) with wt′ (w) =

∏k−1
i=0

[
|wi+1|−|wi|
|wi|−|wk| awi,wi+1

]
.(0.8)

0.2. Littlewood Richardson coefficients. Our second result concerns the
Littlewood Richardson coefficients cuv := cuv (p), which are defined for each p ∈ R
by the product expansion

(0.9) p (x)hv (x) =
∑

ucuvhu (x) .

Theorem 0.2. The following recursion characterizes cuv := cuv (p):
(0.10)
(i) cuu = p (u) (ii) [|u| − |v|]cuv =

∑
w:⊃v

cuw[|w| − |v|]awv −
∑

w⊂:u
[|u| − |w|]auwcwv

The matrices C = C (p) = (cuv) and D = D (p) = (p (u) δuv) satisfy:

(0.11) (i) C = B−1DB, (ii) [Z,C] = [C, [Z,A]] .

Of special interest are the Littlewood Richardson coefficients for hw, which are
defined as follows:

(0.12) cuvw := cuv (hw) .

These can be expressed entirely in terms of binomial coefficients. Define

Cu
vw (z) = Cuz × Czw × Czv, Cu

vw = ∪zC
u
vw (z)
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LITTLEWOOD-RICHARDSON COEFFICIENTS FOR MACDONALD POLYNOMIALS 3

and for ω =
(
w1,w2,w3

)
∈ Cu

vw define

wt (ω) = wt′
(
w1

)
wt

(
w2

)
wt

(
w3

)
.

Theorem 0.3. The coefficient cuvw is given explicitly as follows:

(0.13) cuvw =
∑

zb
′
uzbzwbzv =

∑
ω∈Cu

vw
wt (ω)

0.3. The symmetric case. We now make the above results explicit in the
symmetric case, and give an application of Theorem 0.3 to symmetric Macdonald
polynomials.

Definition 0.4. For λ ∈ Pn we define

λ̄ =
(
λ̄1, · · · , λ̄n

)
where λ̄i = qλit1−i

For λ, μ ∈ Pn we write λ ⊇ μ if λi ≤ μi for all i, so that the diagram of λ contains
that of μ. We write λ :⊃ μ if λ ⊇ μ and |λ| = |μ|+ 1.

By [19], [4] for each λ ∈ Pn there exists a unique polynomial Rλ (x) in

F [x1, . . . , xn]
Snsuch that

deg (Rλ) = |λ| , Rλ (μ̄) = δλμ for |μ| ≤ |λ|

Definition 0.5. For λ, μ ∈ Pn we define the symmetric binomial coefficient to
be bλμ = Rλ (μ̄). If λ :⊃ μ we write aλμ = bλμ.

Our result give an explicit formula for bλμ. To state this formula we recall some
standard notation related to partitions from [12].

The Young diagram of a partition λ is a left-justified array of boxes with λi

boxes in row i. Transposing the diagram of λ gives the diagram of a new partition,
usually denoted λ′, such that λ′

j is the length of the jth column of the diagram of
λ. If s = (i, j) is the box in row i and column j; we define the arm and leg of s to
be

a (s) = λi − j, l (s) = λ′
j − i.

and we define the (q, t)-hooklengths of λ as in [12, VI.8.1,1’]:

cλ(s) = 1− qa(s)tl(s)+1, cλ =
∏

s∈λcλ(s)(0.14)

c′λ(s) = 1− qa(s)+1tl(s), c′λ =
∏

s∈λc
′
λ(s)

If λ ⊇ μ we write λ/μ for the ”skew” diagram consisting of the boxes in λ
which are not in μ. If λ :⊃ μ then λ/μ consists of a single box.

A standard skew tableau of shape λ/μ is a labelling of the boxes of λ/μ by the
numbers 1, 2, · · · , k where k = |λ| − |μ|, such that the labels increase from left to
right along each row and from top to bottom along each column. We write STλ/μ

for the set of such tableaux, which can also be regarded as sequences of partitions

λ = λ0 :⊃ λ1 :⊃ · · · :⊃ λk = μ

where λi is obtained from λ by deleting the boxes with labels 1, · · · , i.

Theorem 0.6. If λ :⊃ μ with λ/μ = (i, j), let Ri and Cj denote the (other)
boxes in row i and column j, respectively, then we have

(0.15) aλμ = t1−i
∏
s∈Cj

cλ(s)

cμ(s)

∏
s∈Ri

c′λ(s)

c′μ(s)
.
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4 SIDDHARTHA SAHI

Definition 0.7. If T ∈ STλ/μ with T =
(
λ = λ0 :⊃ λ1 :⊃ · · · :⊃ λk = μ

)
we

define

wt (T ) =

k−1∏
i=0

[
|λi|−|λi+1|
|λ|−|λi+1| aλi,λi+1

]
, wt′ (T ) =

k−1∏
i=0

[
|λi|−|λi+1|
|μ|−|λi| aλi,λi+1

]

Theorem 0.8. If λ �⊇ μ then bλμ = 0. If λ ⊇ μ then we have

bλμ =
∑

T∈STλ/μ
wt (T )

Moreover if we define

b′λμ :=
∑

T∈STλ/μ
wt′ (T )

then we have ∑
μ
bλμb

′
μν = δλν

Definition 0.9. For p (x) ∈ F [x1, . . . , xn]
Sn we define its Littlewood-Richardson

coefficients cλμ = cλμ (p) via the product expansion

p (x)Rμ (x) =
∑

λcλμRλ (x) .

We also define

cλμν = cλμ (Rν) = cλν (Rμ)

Theorem 0.10. The coefficients cλμ = cλμ (p) are characterized as follows

(i) cλλ = p
(
λ
)
(ii) [|λ| − |μ|]cλμ =

∑
ν:⊃μ

cλν [|ν| − |μ|]aνμ −
∑

ν⊂:λ

[|λ| − |ν|]aλνcνμ

Moreover we have

cλμν =
∑

κ
b′λκbκμbκν

0.4. Macdonald polynomials. We now give an application of Theorem 0.10
to Macdonald polynomials.

Let Jλ (x; q, t) be the ”integral form” of the symmetric Macdonald polynomial
as in [12, VI.8.3]. The Jλ are orthogonal with respect to the (q, t)-inner product
〈., .〉 defined in [12, VI.1.5]. By [12, VI.8.7] we have

(0.16) 〈Jλ, Jμ〉 = jλδλμ where jλ = cλc
′
λ

Using Theorem 0.3 we can obtain an explicit formula for the scalar product 〈Jλ, JμJν〉.

Definition 0.11. For λ, μ, ν in Pn we define

n (λ) =
∑

i (i− 1)λi =
∑

(i,j)∈λ (i− 1) =
∑

jλ
′
j

(
λ′
j − 1

)
/2

n (λ, μ, ν) = n (λ)− n (μ)− n (ν)

Theorem 0.12. We have

(0.17) 〈Jλ, JμJν〉 =
{

cλμνjμjνq
−n(λ′,μ′,ν′)t2n(λ,μ,ν) if |λ| = |μ|+ |ν|

0 else
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0.5. Remarks.

(1) The definitions and notations for the symmetric interpolation polynomials
are slightly different in [19], [4], and [15]. The precise connection between
these definitions is explained on P. 471 of [21].

(2) The nonsymmetric analog of Theorem 0.6 is contained in [1, Cor 4.2], and
we give a concise reformulation. Suppose η :⊃ γ ∈ Cn, let 1 ≤ i1 < . . . <
ik ≤ n be the corresponding indices as in (1.1), and for 1 ≤ j ≤ n define
constants aj , a

′
j ∈ F as follows:

aj =

{
γil j ∈ [il−1, il)
qγi1 j ≥ ik

, a′j =

{
γil j ∈ (il−1, il]
qγi1 j > ik

.

Then we have

(0.18) aηγ =
an − t1−n

1− t
·
∏n

j=1

a′j − tγj

aj − γj

The analogs of Theorems 0.8 and 0.10 are straightforward.
(3) The nonsymmetric analog of Theorem 0.12 involves three steps. We sketch

the argument below and we leave the details to the interested reader.
• The first step is to define the analog of the (q, t)-scalar product for
nonsymmetric Macdonald polynomials. This involves a reinterpreta-
tion of the results of [14] along the lines of [20]. Note however that
the natural scalar product is Hermitian (with q∗ = q−1, t∗ = t−1).

• The second step is to define the integral form of the nonsymmetric
Macdonald polynomials and compute its norm explicitly.

• Finally one needs to compute the precise normalization constant re-
lating the integral nonsymmetric Macdonald polynomial and the top
term of the nonsymmetric interpolation polynomial.

(4) The results of this paper in the limiting case of Jack polynomials were
obtained in [22].

1. Proofs of Theorems 0.1, 0.2, 0.3

1.1. Preliminaries. In this section we recall the definition of the partial order
⊇ and the map u �→ u on the index set L. For L = Pn these are defined as in
Definition 0.4.

For L = Cn, the definition of ⊇ is due to [4]. For γ, η in Cn, we write η :⊃ γ if
there are indices 1 ≤ i1 < . . . < ik ≤ n such that

(1.1) ηi =

⎧⎨
⎩

γi1 + 1 if i = ik
γij+1

if i = ij , j < k
γi otherwise

Definition 1.1. [4] We define the partial order ⊇ on Cn to be the transitive
closure of :⊃; conversely :⊃ is the covering relation of ⊇.

For L = Cn the definition of u is due to ([6], [19], [4]), and involves the
permutation action of the symmetric group Sn on n-tuples (in Cn,Fn,Zn, etc.).
The Sn-orbit of η ∈ Cn contains a unique partition that we denote η+. The set
{σ ∈ Sn : σ(η+) = η} contains a unique element of minimal length that we denote
by ση. (Here, as usual, the length of a permutation σ is the number of σ-inversions,
i.e. pairs of indices 1 ≤ i < j ≤ n such that σ (i) > σ (j).)
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6 SIDDHARTHA SAHI

Definition 1.2. For η in Cn we define η ∈ Fn to be

(1.2) η := ση (η+)

Remark 1.3. The restrictions of (⊇, u �→ u) from Cn to Pn agree with the
corresponding structures on Pn.

Let L denote Cn or Pn, and let R denote F [x1, . . . , xn] or F [x1, . . . , xn]
Sn

accordingly. We recall that |u| := u1 + · · ·+ un, and for d ∈ Z≥0 we define

Rd = {p ∈ R | deg (p) ≤ d} , Ld = {u ∈ L | |u| ≤ d} , L̄d = {u | u ∈ Ld}
The following result is key to the definition of interpolation polynomials hv.

Proposition 1.4. [19, 4] A polynomial in Rd is determined by its values on
L̄d.

We briefly sketch the argument. In the symmetric case the main idea goes
back to [18] and arose in connection with author’s joint work with B. Kostant

[8, 9] on the Capelli identity. Evaluation gives a linear map Ev : Rd → FL̄d and
the proposition asserts that this is an isomorphism. We first note that both spaces
have dimension # (Ld); this is obvious for F

L̄d , while for Rd it follows by expressing
a (symmetric) polynomial in terms of (symmetric) monomials. Therefore it suffices
to prove that Ev is surjective, which can be carried out by induction on d.

Interpolation polynomials are images of delta functions under Ev−1.

Definition 1.5. hv (x) is the unique polynomial in R|v| satisfying

hv (u) = δuv for all u ∈ L|v|

The following ”extra” vanishing result relates hv (x) and ⊇.

Proposition 1.6. [6, 4] We have hv (u) = 0 unless u ⊇ v.

1.2. Proofs. The proof of Theorem 0.1 depends on the following simple iden-
tity for hv (x).

Proposition 1.7. Let |x| denote x1 + · · ·+ xn, then we have

(1.3) (|x| − |v|)hv(x) =
∑

w:⊃v(|w| − |v|)awvhw(x)

Proof. Both sides of (1.3) are polynomials of degree d = |v|+1. By Proposi-
tion 1.4 it suffices to show that they agree on L̄d. Now let x = u, then by formula
(0.2) both sides vanish if |u| < d and both become (|u| − |v|)auv if |u| = d. �

Proof of Theorem 0.1. We first prove (0.4). By formulas (0.2), (0.3) we
get buu = hu (u) = 1, which is (0.4i). Next (0.4ii) follows from Proposition 1.7 by
setting x = u in (1.3) and using formulas (0.2), (0.3). Finally (0.4) characterizes
buv by induction on |u| − |v|.

Next note that (0.6i) is equivalent (0.4ii), and (0.6ii) is equivalent (0.5ii). Also
(0.6ii) is equivalent to (0.6i) since[

Z,B−1
]
= −B−1 (ZB −BZ)B = −B−1 [Z,B]B

This proves (0.6) and (0.5ii). Now (0.5i) is obvious, and (0.5) characterizes b′uv by
induction on |u| − |v|.

We next prove (0.7). Let b̄uv temporarily denote the sum in (0.7), It suffices to
verify that b̄uv satisfies the recursion (0.4). Now (0.4i) holds since b̄uu involves the
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single chain w = (u, u) whose weight is the empty product 1. For (0.4ii) we observe
that

wt (w) = wt (w̄) |wk−1|−|v|
|u|−|v| awk−1,v where w̄ = (w0, w1, · · · , wk−1)

Therefore collecting the terms in (0.7) with wk−1 = w, we get

b̄uv =
∑

w:⊃v

[∑
w̄∈Cuw

wt (w̄)
] |w|−|v|

|u|−|v| awv =
∑

w:⊃v b̄uw
|w|−|v|
|u|−|v| awv,

which is (0.4ii). Therefore b̄uv = buv for all u, v. The proof of (0.8) is similar. �

Proof of Theorem 0.2. We first prove (0.11). Substituting x = w in (0.9)
we get

p (w)hv (w) =
∑

ucuvhu (w) .

By (0.2,0.3) this becomes

dwwbwv =
∑

ubwucuv,

Hence we obtain the matrix identity DB = BC, which is equivalent to (0.11i).
To prove (0.11ii) we calculate as follows:

[Z,C] =
[
Z,B−1DB

]
=

[
Z,B−1

]
DB +B−1 [Z,D]B +B−1D [Z,B]

The middle term vanishes since Z and D are both diagonal matrices. The first and
last terms can be computed by formula (0.6) and we get

[Z,C] = − [Z,A]B−1DB +B−1DB [Z,A] = − [Z,A]C + C [Z,A] = [C, [Z,A]]

We now prove (0.10). Since B is unitriangular, (0.11i) implies that C and
D have the same diagonal entries, which is (0.10i). Next (0.10ii) is equivalent to
(0.11ii). Finally (0.11) characterizes cuv by induction on |u| − |v|. �

Proof of Theorem 0.3. For p = hw, the diagonal matrix D = D (hw) has
diagonal entries dzz = hw (z̄) = bzw. By formula (0.11ii) we have

cuvw =
∑

zb
′
uzdzzbzv =

∑
zb

′
uzbzwbzv

which is the first equality in (0.13). The second equality follows from (0.7), (0.8).
�

2. Proofs of Theorems 0.6, 0.8, 0.10, 0.12

2.1. Preliminaries. In this section we recall some basic results on the sym-
metric interpolation polynomials Rλ (x), which are needed for the proofs of Theo-
rems 0.6, 0.8, 0.10, 0.12 below.

We write R(n)
d :=

{
p ∈ F [x1, . . . , xn]

Sn | deg (p) ≤ d
}

and define the sym-

metrized monomials

mλ =
∑

σ∈D(λ)x
σ1
1 · · ·xσn

n for λ ∈ Pn
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where D (λ) denotes the set of all distinct rearrangements of λ. Also define maps

ω : R(n−1)
d → R(n)

d , τ : R(n)
d → R(n)

d , τ ′ : R(n−1)
d → R(n−1)

d , υ : R(n)
d → R(n)

d+n

ω
(
mλ1,...,λn−1

)
= mλ1,...,λn−1,0, extended by linearity(2.1)

(τf) (x1, . . . , xn) = f
(
x1 − t1−n, . . . , xn − t1−n

)
(τ ′f) (x1, . . . , xn−1) = f

(
x1 + t1−n, . . . , xn−1 + t1−n

)
(υf) (x) = f

(
q−1x

)∏n

j=1

xi − t1−n

λ̄i − t1−n

Proposition 2.1. If λ ∈ Pn with |λ| = d there is a unique Rλ (x) ∈ R(n)
d with

(2.2) Rλ (μ) = δλμ for all partitions μ with |μ| ≤ d

Moreover if λn > 0 , then

(2.3) Rλ = υ (Rλ−ε) for ε = (1, · · · , 1)

If λn = 0 then there is a unique S (x) ∈ R(n)
d−n such that

(2.4) Rλ = (τωτ ′) (Rλ−) + υ (S) for λ− = (λ1, . . . , λn−1)

This is proved in ([19], [4]). The function S (x) is chosen by induction so that
the right side of (2.4) vanishes for μ̄ if |μ| ≤ d and μn > 0. One verifies that (2.3)
and (2.4) serve to define Rλ (x) by induction on n+ |λ|.

As shown in ([19], [4]), the polynomials Rλ (x) are eigenfunctions for certain
difference operators. We recall the result below:

Proposition 2.2. Let D1 be the operator defined by

D1 =
∑

kAk (x) (1− Tk) .

where

Ak (x) =
(
1− t1−nx−1

k

)∏
l �=k

xk − txl

xk − xl

and Tk is the k-th q−1-shift operator

Tkf (x1, . . . , xn) = f
(
x1, . . . , q

−1xk, . . . , xn

)
then we have

(2.5) D1Rμ (x) =
[∑

k

(
tk−1 − μ̄−1

k

)]
Rμ (x)

2.2. Proofs.

Proof of Theorem 0.6. We evaluate (2.5) at x = λ̄ to get[∑
k

(
tk−1 − μ̄−1

k

)]
Rμ

(
λ̄
)
=

[∑
kAk

(
λ̄
)]

Rμ

(
λ̄
)
−
∑

kAk

(
λ̄
)
Rμ

(
λ− εk

)
which we rewrite as follows:

(2.6)
[∑

kAk

(
λ̄
)
−
∑

k

(
tk−1 − μ̄−1

k

)]
Rμ

(
λ̄
)
=

∑
kAk

(
λ̄
)
Rμ

(
λ− εk

)
As in Lemma 3.5 of [19], we have

Ak

(
λ̄
)
Rμ

(
λ− εk

)
= 0 if k �= i

and by Lemma 3.3 of [19], we have∑
kAk

(
λ̄
)
=

∑
k

(
tk−1 − λ̄−1

k

)
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LITTLEWOOD-RICHARDSON COEFFICIENTS FOR MACDONALD POLYNOMIALS 9

Since μ̄k = λ̄k for k �= i, (2.6) can be rewritten as

(
μ̄−1
i − λ̄−1

i

)
Rμ

(
λ̄
)
= Ai

(
λ̄
)
=

(
1− t1−nλ̄−1

i

)∏
l �=i

λ̄i − tλ̄l

λ̄i − λ̄l

Substituting μ̄i = q−1λ̄i and rewriting, we get

Rμ

(
λ̄
)
=

λ̄i − t1−n

q − 1

∏
l �=i

λ̄i − tλ̄l

λ̄i − λ̄l

To complete the proof of (0.15) it suffices to verify the two identities∏
s∈Cj

cλ(s)

cμ(s)
=

∏
l<i

λ̄i − tλ̄l

λ̄i − λ̄l
(2.7)

t1−i
∏
s∈Ri

c′λ(s)

c′μ(s)
=

λ̄i − t1−n

q − 1

∏
l>i

λ̄i − tλ̄l

λ̄i − λ̄l
.(2.8)

Now Cj consists of boxes {(l, j) | l < i}. For s = (l, j) ∈ Cj we have

aλ (s) = aμ (s) = λl − j = λl − λi; lλ (s) = lμ (s) + 1 = i− l.

cλ(s)

cμ(s)
=

1− qaλ(s)tlλ(s)+1

1− qaμ(s)tlμ(s)+1
=

1− qλl−λiti−l+1

1− qλl−λiti−l
=

qλit1−i − qλlt2−l

qλit1−i − qλlt1−l
=

λ̄i − tλ̄l

λ̄i − λ̄l

which implies (2.7).
We now prove (2.8). Denote the left and right sides of (2.8) by X (λ, i) and

Y (λ, i) respectively. First suppose j = 1. Then Ri is the empty set and X (λ, i) =
t1−i. Also we have λi = 1 and λl = 0 for l > i therefore we get

Y (λ, i) =
qt1−i − t1−n

q − 1

n∏
l=i+1

qt1−i − t2−l

qt1−i − t1−l
= t1−i = X (λ, i)

Now suppose j > 1. Let k be the largest index such that λk > 0 and define

λ∗ = (λ1 − 1, · · · , λk − 1, 0, · · · , 0)
Note that necessarily k ≥ i. Now we have

X (λ, i)

X (λ∗, i)
=

c′λ(1, i)

c′μ(1, i)
=

1− qjtk−i

1− qj−1tk−i

Also for l ≤ k the ratios λ̄i−tλ̄l

λ̄i−λ̄l
are unchanged when we replace λ by λ∗. Thus

Y (λ, i)

Y (λ∗, i)
=

qλit1−i − t1−n

qλi−1t1−i − t1−n

n∏
l=k+1

qλit1−i − t2−l

qλit1−i − t1−l

n∏
l=k+1

qλi−1t1−i − t1−l

qλi−1t1−i − t2−l

=
qλit1−i − t2−(k+1)

qλi−1t1−i − t2−(k+1)
=

1− qjtk−i

1− qj−1tk−i
=

X (λ, i)

X (λ∗, i)

and the identity X (λ, i) = Y (λ, i) follows by induction on |λ|. �

Theorems 0.8, 0.10 now follow from Theorems 0.1, 0.2, respectively. For the
proof of Theorems 0.12 we need a preliminary result.

Lemma 2.3. Let kλ be the coefficient of mλ (x) in Rλ (x); then

(2.9) kλ = (−1)
|λ|

t2n(λ)q−n(λ′)/c′λ.
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Proof. We proceed by induction on n+ |λ|. The result is obvious for n+ |λ| =
0, and so we may suppose n+ |λ| = 0.

If λn = 0 then Rλ = (τωτ ′) (Rλ−) + υ (S) by formula (2.4). Now τ, τ ′ do not
change the leading terms of a polynomial, ω maps mλ− to mλ, and the coefficient
of mλ in υ (S) is 0. Therefore we deduce that kλ = kλ− , and since the right side of
(2.9) is unchanged under passage from λ to λ− the equality (2.9) holds by induction.

If λn > 0 then let μ = λ− ε. By formula (2.3) we deduce

kμ/kλ = q|μ|
∏n

j=1

(
λ̄i − t1−n

)
= (−1)

n
q|μ|tn(1−n)∏n

j=1

(
1− qλitn−i

)
Therefore by induction we get

kλ =
(−1)

|μ|
t2n(μ)q−n(μ′)/c′μ

(−1)
n
q|μ|tn(1−n)

∏n
j=1 (1− qλitn−i)

= (−1)|λ|
t2n(μ)+n(n−1)q−n(μ′)−|μ|

c′μ
∏n

j=1 (1− qλitn−i)

To complete the proof its suffices to verify the following identities for λ = μ+ ε

2n (λ) = 2n (μ) + n (n− 1) , n (λ′) = n (μ′) + |μ| , c′λ = c′μ
∏n

j=1

(
1− qλitn−i

)
whose (easy) verifications we leave to the reader. �

Proof of Theorem 0.12. For two polynomials p (x), q (x) in F [x1, . . . , xn]
we write p ∼d q if p− q has total degree < d.

As shown in [12], the coefficient of mλ in Jλ (x) is cλ. Therefore if we define

(2.10) rλ = cλ/kλ = (−1)
|λ|

t−2n(λ)qn(λ
′)jλ

then by Lemma 2.3 we get

Jλ (x) ∼|λ| rλRλ (x)

Therefore if d = |μ|+ |ν| then by Definition 0.9 we get

JμJν ∼d rμrνRμRν =
∑

|λ|≤drμrνc
λ
μνRλ ∼d

∑
|λ|=drμrνr

−1
λ cλμνJλ.

Since since the first and last polynomials are homogenous of degree d, they are
equal. Therefore by (0.16) we get

〈Jλ, JμJν〉 =
{

rμrνr
−1
λ cλμνjλ if |λ| = |μ|+ |ν|
0 else

.

To complete the proof it suffices to verify that

rμrνr
−1
λ jλ = jμjνq

−n(λ′,μ′,ν′)t2n(λ,μ,ν) if |λ| = |μ|+ |ν|
which follows immediately from (2.10). �
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