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1 Introduction

Many important problems in harmonic analysis require one to decompose a unitary rep-
resentation of a real reductive group G on a Hilbert space H, for example, H = L2 (X)
for some G-space X equipped with an invariant measure. In order to solve such prob-
lems one would like to know the irreducible unitary representations of G as explicitly
as possible. The starting point is of course the determination of the unitary dual ̂G,
but then it is helpful to have additional knowledge about invariants of unitary rep-
resentations, such as their annihilator varieties, existence of Whittaker functionals,
etc.

The unitary dual of Gn = GL (n,R) has been determined by Vogan [39], and in
this paper, we consider the following invariants of π ∈ ̂Gn , whose precise definitions
are given below in Sect. 1.2:

(1) the annihilator variety V (π) ⊂ gl (n,C)∗,
(2) the space W h∗

α (π) of (degenerate) Whittaker functionals of type α,
(3) the depth composition DC (π) for iterated adduced representations of π ,
(4) the Howe rank H R (π) of π .

Nilpotent orbits of Gn are indexed by partitions of n, and if π is irreducible then
its annihilator variety is the closure of a single nilpotent orbit.

Our main theorem generalizes a number of existing results in the literature.

Theorem A Let π ∈ ̂Gn and λ be the partition of n such that V(π) = Oλ. Then

(1) W h∗
λ (π) �= 0.

(2) DC(π) = λ.

In particular, this implies that the depth composition is non-increasing. By Matum-
oto’s theorem (see Corollary 1.4.1 below), our result implies also that λ is the biggest
partition with W h∗

λ (π) �= 0. By [15, Theorems 0.1, 0.2, 4.3], λ connects to Howe’s
notion of rank by

H R (π) = min (�n/2� , n − length(λ)).

We will give an independent proof of this result (see Remark 4.2.3).
Before giving the precise definitions of our invariants, we need to fix some notation

regarding partitions, compositions, nilpotent orbits, and parabolic subgroups.

1.1 Notation

Definition 1.1.1 A composition of n of length k is a sequence α = (α1, . . . , αk) of
natural numbers (i.e., strictly positive integers) such that �αi = n; a partition is a
non-decreasing composition. For a composition α, we denote by α≥/α≤ the non-
decreasing/non-increasing reordering of α.

Remark 1.1.2 The Young diagram of a partition is a left aligned array of boxes with
λi boxes in row i . The rows of the diagram for λt are the columns of the diagram
for λ.
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We sometimes use “exponential” notation for partitions; thus 422113 denotes
(4, 4, 2, 1, 1, 1).

We denote gn := gln(C).

Definition 1.1.3 If α is a composition of n, we define Jα ∈ gn to be the Jordan matrix
with diagonal Jordan blocks of size α1, . . . , αk ; explicitly

(Jα)i j =
{

1 if j = i + 1 and i �= α1 + · · · + αl for any l
0 else

We define Oα to be the orbit of Jα under the adjoint action of GL (n,C) on gn .

If λ = α≥ then we have Oα = Oλ. Moreover, by the theorem of Jordan canon-
ical form, for each nilpotent matrix X in gn , there is a unique partition λ such that
X ∈ Oλ.

Let λ,μ be partitions of n and let Oλ denote the Zariski closure of Oλ then we have

Oμ ⊆ Oλ iff μ1 + · · · + μk ≤ λ1 + · · · + λk for all k;

If λ,μ satisfy this condition, will simply write μ ⊆ λ.

Remark 1.1.4 For X,Y in gn , the trace pairing is defined to be

〈X,Y 〉 = trace (XY ) (1)

Then 〈·, ·〉 is a non-degenerate symmetric GL (n,C)-invariant bilinear form (trace
form) on gn . The trace form gives rise to an isomorphism gn ≈ g∗

n that intertwines the
adjoint and coadjoint actions of GL (n,C). This allows us to identify adjoint orbits
and coadjoint orbits.

We next fix our conventions regarding parabolic subgroups of Gn .
If α = (α1, . . . , αk) is a composition of n then we define

Si = Si (α) := {α1 + · · · + αi−1 + j : 1 ≤ j ≤ αi }

For g ∈ Gn , we let gi j
α denote the αi × α j submatrix of g with rows from Si and

columns from S j .

Definition 1.1.5 For a composition α, we define subgroups Pα, Lα, Nα of Gn as fol-
lows

Pα =
{

g | gi j
α = 0 if i < j

}

, Lα =
{

g | gi j
α = 0 if i �= j

}

,

Nα =
{

g | gi j
α = δi j if i ≤ j

}

.

Here δi j is Kronecker’s δ, while 0 and 1 denote zero and identity matrices of appro-
priate size.
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Thus, B = P1n is the standard Borel subgroup of upper triangular matrices, and
each Pα is a standard parabolic subgroup containing B. Nα is the nilradical of Pα and
Pα = LαNα is a Levi decomposition with Lα ≈ Gα1 × · · · × Gαk .

We now introduce the Bernstein-Zelevinsky product notation for parabolic
induction.

Definition 1.1.6 If α = (α1, . . . , αk) is a composition of n and πi ∈ ̂Gai then π1 ⊗
· · ·⊗πk is an irreducible unitary representation of Lα ≈ Gα1 ×· · ·× Gαk . We extend
this to Pα trivially on Nα and define

π1 × · · · × πk = I ndGn
Pα
(π1 ⊗ · · · ⊗ πk) ,

where I nd denotes normalized induction (see Sect. 2.2).

Remark 1.1.7 It follows from [39] or from ([6], and [30]) that if πi ∈ ̂Gai then
π1 × · · · × πk ∈ ̂Gn . In this case, π1 × · · · × πk is unchanged under permutation of
the πi .

Remark 1.1.8 Since Gn/Pα is compact, one can define π1 × · · · × πk analogously in
the C∞ category. We refer the reader to [40] for details. We will occasionally need to
consider this case especially in connection with complementary series construction in
the next section and elsewhere.

1.2 Invariants of unitary representations

For a representation π of a Lie group G in a Hilbert space, we denote by π∞ the
space of smooth vectors and by πω the space of analytic vectors (see Sect. 2.3). If
G is a real reductive group with maximal compact subgroup K , we also consider the
Harish-Chandra module πHC consisting of K -finite vectors.

By [41, Theorem 3.4.12] if π is an irreducible unitary representation of a reduc-
tive group G with Lie algebra g and maximal compact subgroup K , then πHC is an
irreducible (g, K )-module and thus π∞ is a topologically irreducible representation
of G.

1.2.1 The annihilator variety and associated partition

For an associative algebra A, the annihilator of a module (σ, V ) is

Ann(σ ) = {a ∈ A : σ (a) v = 0 for all v ∈ V }

If A is abelian then we define the annihilator variety of σ to be the variety correspond-
ing to the ideal Ann(σ ), that is, V (σ ) = Zeroes (Ann(σ )).

If (σ, V ) is a module for a Lie algebra g then one can apply the above consider-
ations to the enveloping algebra U (g). While U (g) is not abelian, it admits a natural
filtration such that gr (U (g)) is the symmetric algebra S (g) , and one has a “symbol”
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map gr from U (g) to S (g). We let gr (Ann(σ )) be the ideal in S (g) generated by the
symbols {gr (a) | a ∈ Ann (σ )} and define the annihilator variety of σ to be

V (σ ) = Zeroes (gr (Ann(σ ))) ⊂ g∗

If g is a complex reductive Lie algebra and M is an irreducible g-module, then it
was shown by [18] that V(M) is the closure O of a single nilpotent coadjoint orbit O.

If π is a Hilbert space representation of a Lie group G then we define V(π) :=
V(πω). If G is reductive and π is an admissible (e.g., irreducible unitary) representa-
tion thenπHC ⊂ πω ⊂ π∞,πHC is dense inπ∞ and the action of U (g) is continuous.
Thus, V(π) = V(πHC ).

If π is an irreducible unitary representation then πHC is an irreducible (g, K )-
module and thus is a finite direct sum of algebraically irreducible representations of
g. These representations are K -conjugate and thus have the same annihilator variety.
Thus [18] implies that V(π) consists of a single nilpotent coadjoint orbit, that we call
the associated orbit.

Definition 1.2.2 If λ is a partition of n such that V(π) = Oλ we call λ associated
partition and denote λ = AP(π).

For example, if π is finite dimensional then V(π) = {0} and AP(π) = 1n and if π
is generic then, by a result of Kostant (see Sect. 1.4), V(π) is the nilpotent cone of g∗

n
and AP(π) = n1.

For an admissible representation π of a real reductive group G with Lie algebra gR

and complexified Lie algebra g, one can define more refined invariants such as

(1) the asymptotic support AS (π) ⊂ g∗
R

(see [5])
(2) the wave front set W F (π) ⊂ g∗

R
(see, e.g., [34]

(3) the associated variety AV (π) ⊂ k⊥ ⊂ g∗ (see, e.g., [5]). Here k denotes the
complexified Lie algebra of the maximal compact subgroup.

By [29] and [34], these three invariants determine each other and each of them deter-
mines V (π). For GL (n,R) the converse is true as well, and since we are primarily
interested in this case we will mostly ignore the refined invariants in this paper.

1.2.3 Degenerate Whittaker functionals

In this section, we fix n and write N for N(1n); thus N is the subgroup of Gn consisting
of unipotent upper triangular matrices. Let nR be the Lie algebra of N and let n be the
complexification of nR.

Let 	 denote the set of multiplicative unitary characters of N . Then 	 can be
identified with a subset of n∗ via the exponential map. More precisely, we have

	 ≈ {

ψ ∈ n∗ | ψ ([n, n]) = 0, ψ (nR) ⊂ iR
}

where an element ψ of the right side is regarded as character of N via the formula

ψ (exp X) = eψ(X) for X ∈ nR.

We will write Cψ for the one-dimensional space regarded as a module for N or n
via ψ .
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Definition 1.2.4 If π ∈ ̂Gn and ψ ∈ 	, we define

W h′
ψ (π) = Homn

(

πHC ,Cψ

)

, W h∗
ψ (π) = Homcont

N (π∞,Cψ)

where Homcont
N denotes the space of continuous N -homomorphisms.

It is well known that πHC is dense in π∞, hence by restriction, we get an inclusion

W h∗
ψ (π) ⊆ W h′

ψ (π) (2)

Moreover, πHC is finitely generated as an n-module and hence we get

dim W h∗
ψ (π) ≤ dim W h′

ψ (π) < ∞

We refer to elements of W h∗
ψ (π) and W h′

ψ (π) as (degenerate) Whittaker func-
tionals of type ψ .

Remark Let n̄ be the space of strictly lower triangular matrices. Then the trace form
restricts to a non-degenerate pairing of n̄ with n, allowing one to identify n̄ ≈ n∗. Under
this identification elements of	 correspond to imaginary “subdiagonal” matrices, that
is, to matrices X ∈ gn satisfying

X pq ∈ iR if p = q + 1 and X pq = 0 if p �= q + 1

Since we have identified g∗
n ≈ gn via the trace form, the above remark also allows

us to regard n∗ as a subspace of g∗
n . Hence we may also regard 	 as a subspace of g∗

n .

Definition 1.2.5 Let α be a composition of n, Jα be the corresponding Jordan matrix
as in Definition 1.1.3, andw be the longest element of the Weyl group. ThenwJαw−1

is subdiagonal and iwJαw−1 can be regarded as an element of	 by the above remark.
We denote this character by ψα . Note that ψα ∈ Oα .

For π ∈ ̂Gn we also denote

W h′
α (π) = W h′

ψα
(π) , W h∗

α (π) = W h∗
ψα
(π) (3)

1.2.6 The adduced representation, “derivatives” and the depth composition

In [7,8] Bernstein and Zelevinsky introduced the important notion of “derivative” for
representations of GL

(

n,Qp
)

. An Archimedean analog of the “highest” derivative
for π ∈ ̂Gn was defined in [30], where it was called the adduced representation and
denoted Aπ . This definition, which we now recall, involves two ingredients.

Let Pn ⊂ Gn be the “mirabolic” subgroup consisting of matrices with last row
(0, 0, . . . , 0, 1). To forestall confusion, we note that Pn is not a parabolic subgroup,
it has codimension 1 in P(n−1,1) and is completely different from P(n) = Gn .

The first ingredient in the definition of Aπ is the following result that was conjec-
tured by Kirillov.
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Theorem 1.2.7 Let π ∈ ̂Gn, then π |Pn is irreducible.

This was first proven in the p-adic case in [7], then in the complex case in [30], and
finally in the real case in [6]. New proofs have been obtained recently in [2,35].

The second ingredient is Mackey theory that describes the unitary dual of Lie
groups, such as Pn , which are of the form G = H � Z with Z abelian. In this case, ̂Z
consists of unitary characters and H acts on ̂Z ; for χ ∈ ̂Z let Sχ denote its stabilizer
in H . If σ ∈ ̂Sχ then σ ⊗ χ is a unitary representation of Sχ � Z , and we define

Iχ (σ ) = IndG
Sχ�Z (σ ⊗ χ)

The main results of Mackey theory are as follows:

(a) Iχ (σ ) is irreducible for all σ ∈ ̂Sχ ;

(b) ̂G is the disjoint union of Iχ
(

̂Sχ
)

as χ ranges over representatives of distinct
H -conjugacy classes in ̂Z .

Since Pn ≈ Gn−1 � R
n−1, we may analyze ̂Pn by Mackey theory. There are two

Gn−1-conjugacy classes in R̂n−1; one class consists of the trivial character χ0 alone,
while the other class contains all other characters. As a representative of the second
class, we pick the character χ1 defined by

χ1(a1, . . . , an−1) = exp (ian−1)

The stabilizers in Gn−1 are Sχ0 = Gn−1 and Sχ1 = Pn−1, and therefore, we get

̂Pn = Iχ0

(

Ĝn−1

)
∐

Iχ1

(

P̂n−1

)

(4)

We may iterate (4) until we arrive at the trivial group P1 = G0

̂Pn =
n
∐

k=1

I k−1
χ1

Iχ0

(

Ĝn−k

)

Combining this with Theorem 1.2.7, we deduce that for π ∈ ̂Gn with n > 0, there
exists a unique natural number d and a unique π ′ ∈ Ĝn−d such that

π |Pn = I d−1
χ1

Iχ0

(

π ′) (5)

Definition 1.2.8 [30] If π ∈ ̂Gn and π ′ ∈ Ĝn−d satisfy (5), we say that π has depth
d and that π ′ is the adduced representation (or highest derivative) of π , and we write
π ′ = Aπ .
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Let � denote the trivial representation of the trivial group G0. The procedure of
taking the adduced representation can be iterated until we arrive at �. Thus we obtain
a sequence of unitary representations

(π0 = π, π1, . . . , πl−1, πl = �) satisfying π j = A
(

π j−1
)

for 1 ≤ j ≤ l. (6)

and we write di = di (π) for the depth of πi−1. Note that d1, d2, . . . , dl are natural
numbers, and their sum is precisely n.

Definition 1.2.9 The composition (d1, d2, . . . , dl) is called the depth composition of
π ∈ ̂Gn and is denoted DC (π).

1.2.10 Howe rank

Pα is called a maximal parabolic if α has length 2 so that α = (a, b) with a + b = n.
In this case, Nα is abelian and isomorphic to Ma×b, the additive group of a × b real
matrices. The unitary dual of Nα consists of unitary characters and can also be iden-
tified with Ma×b via χy (x) = exp

(

iT r
(

xyt
))

. The group Lα = Ga × Gb acts on
Ma×b in the usual manner, and the orbits are R0, . . . ,Rmin(a,b) where Rk denotes
the set of matrices of rank k. Note that min (a, b) ≤ �n/2� and that equality holds for
a = �n/2� , b = n − �n/2�.

We now briefly describe the theory of Howe rank for Gn ; let us fix α = (a, n − a)
as above. If π ∈ ̂Gn then by Stone’s theorem the restriction π |Nα corresponds to a
projection-valued Borel measure μπ on ̂Nα ≈ Ma×(n−a). Since π is a representation
of Pα , μπ is Pα-invariant and decomposes as a direct sum

μπ = μπ0 + · · · + μπmin(a,n−a) with μπk (E) = μπ (E ∩ Rk)

Building on the work of Howe [16], Scaramuzzi [33] proved that μπ has “pure rank”,
that is, there is some integer k = H R (π, a) such that μπ = μπk . Moreover, if we
define H R (π) = H R (π, �n/2�) then

H R (π, a) = min (H R (π) , a, n − a) for all a ≤ n

Definition 1.2.11 For π ∈ ̂Gn the integer H R (π) is called the Howe rank of π.

1.3 Results over other local fields and a uniform formulation of Theorem A

Theorem A also holds in the complex case, and the proof is very similar. We comment
on that in Sect. 5.

In Sect. 6, we prove a p-adic analog of Theorem A, using [8,24,42]. In the p-adic
case, one cannot define annihilator variety, but one can consider the wave front set
W F(π). It is not known to be the closure of a single nilpotent orbit for general reduc-
tive group but for irreducible smooth representations of GLn(F), this is proven to be
the case in [24].
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Since in the p-adic case the notion of derivative is defined for all smooth represen-
tations, this analog does not require the representation to be unitary. This gives us the
following uniform formulation of the main theorem.

Theorem B Let F be a local field of characteristic zero. Let π be an irreducible
smooth admissible representation of GL(n, F)) and let W F(π) ⊂ gln(F) denote the
wave front set of π . Let λ be the partition of n such that W F(π) = Oλ. Suppose that
either F is non-Archimedean or π is unitarizable. Then

(1) W h∗
λ(π) �= 0, and for any composition α with W h∗

α(π) �= 0 we have Oα ⊂ Oλ.
(2) DC (π) = λ; in particular DC (π) is a non-increasing sequence.
(3) λ is the transpose of the classification partition of π (see Remark 1.3.1 below).

Moreover, if π is unitarizable then H R (π) = min (�n/2� , n − length(λ)).

If F is non-Archimedean, we also have dim W h∗
DC(π)(π) = 1.

In the p-adic case, W h∗
α denotes the space of all linear equivariant functionals,

since all representations are considered in discrete topology.

Remark 1.3.1 The classification partition is defined in [37] for all irreducible unitary
representations, through the Tadic-Vogan classification, and in [27], for all irreduc-
ible smooth representations through the Zelevinsky classification. For representations
of Arthur type, this partition describes the SL(2)-type of the representation of the
Weil-Deligne group corresponding to π by local Langlands correspondence.

In the Archimedean case, Theorem B follows from Theorem A, Corollary 1.4.1, The-
orem 4.2.1 and Remark 4.2.3 below.

1.4 Earlier works

It was proven by Casselman-Zuckerman for Gn (unpublished) and by Kostant [19] for
all quasi-split reductive groups that for a generic character ψ of N , W h∗

ψ(π) �= 0 if
and only if W h′

ψ(π) �= 0 if and only if V(π) is maximal possible, that is, equal to the
nilpotent cone. Matumoto ([21, Theorem 1]) proved a generalization of one direction
of this statement. For the case of Gn his theorem implies

Corollary 1.4.1 If α is a composition of n, and M is a gn-module such that
Homn(M, ψα) �= 0 then Oα ⊂ V(M).

Over p-adic fields, a connection between wave front set and generalized Whittaker
functionals was investigated in [24] for smooth (not necessary unitarizable) represen-
tations of any reductive group. However, the main theorem of [24] involves a lot of
choices and for the case of GLn can be made much more concrete, using derivatives
and Zelevinsky classification, following [8,42].

Several works (e.g., [13,22,23]) give a partial Archimedean analog of the results
of [24], by considering non-degenerate (“admissible”) characters of the (smaller) nil-
radicals of bigger parabolic subgroups. However, much less is known in the Archi-
medean case. Our work establishes a different type of analog: Instead of considering
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non-degenerate characters of smaller nilradicals, we consider degenerate characters
of the nilradical of the standard Borel subgroup. Following Zelevinsky [42, §§8.3],
we call functionals equivariant with respect to such characters degenerate Whittaker
functionals. The behavior of the space of such functionals under induction is studied
in [1].

1.5 Generalizations in future works

In [3], we define the notion of highest derivative for all admissible smooth Fréchet
representations of Gn . We show that this notion extends the notion of adduced rep-
resentation discussed in the current paper and establish several properties of highest
derivative analogous to the ones proven in the p-adic case in [8]. We apply those
properties to questions raised in the current paper. Namely, we complete the compu-
tation of adduced representations for all Speh complementary series, and prove that
dim W h∗

DC(π)(π) = 1 for all π ∈ ̂Gn .
In our work in progress [11], we prove that

W h∗
α (π) �= 0 ⇔ W h′

α

(

πHC
)

�= 0 ⇔ Oα ⊂ V(π).

for any irreducible admissible smooth Fréchet representation π of Gn and any com-
position α of n.

Furthermore, we prove the following generalization for any quasi-split real reduc-
tive group G. Let N be the nilradical of a Borel subgroup of G, and K be maximal
compact subgroup of G. Let g and n be the complexified Lie algebras of G and N .
Let π be an irreducible admissible smooth representation of G. Denote

	(π) :={ψ ∈ 	 s.t. W h∗
ψ(π) �= 0}, and 	

(

πHC
)

:= {ψ ∈ 	 s.t. W h′
ψ(π) �= 0}.

In [11], we prove

(1) 	(πHC ) = prn∗(AV (πHC ))∩	
(2) 	(π) ⊂ 	(πHC ) ∩ i	(R), and under certain condition on G equality holds.

1.6 The proposed notion of rank

We suggest the following definition of rank.

Definition 1.6.1 If π is a smooth Fréchet representation of Gn , we define the rank of
π , written rk(π), to be the maximum rank of a matrix in V(π).

If V(π) is a closure of a single orbit given by a partition of length k then
rk(π) = n − k. Theorem B implies that for π ∈ ̂Gn our notion of rank agrees
with the notion proposed in [30] and extends Howe’s notion of rank. In Sect. 4.2, we
compute (extended) ranks of all irreducible unitary representations of Gn in terms of
the Vogan classification.
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Our definition extends literally to all classical groups and connects to Howe’s notion
of rank by [15, Theorem 0.4].

For Gn , we can give another interpretation of rank, in terms of parabolic induction.
Let λ be a partition of n, α := λ≤ be the inverse reordering of λ, Pα the corresponding
standard parabolic subgroup, Lα its Levi component, Nα its nilradical, and nα its Lie
algebra. Consider the “naive” (non-exact) Jacquet restriction functor rα that maps π to
π/nαπ . This functor is adjoint to parabolic induction from Pα . Note that W h∗

α(π) is
equal to the space W h∗(rα(π)) of generic (classical) Whittaker functionals on rα(π).
Therefore, Theorem A implies that for π ∈ ̂Gn , rk(π) ≥ k if and only if the Jacquet
restriction of π to some Levi subgroup of semi-simple rank k is generic.

The rk(π) is also equal to the (real) dimension of the variety consisting of unitary
characters ψ of N such that W h∗

ψ(π) �= 0.
For G �= Gn , we do not have equivalent descriptions of the rank using Jacquet

functor or the space of functionals.

1.7 Application to construction of Klyachko models

Our technique can be applied to construction of another family of models for unitary
representations of Gn , called Klyachko models. Let F be a local field. For any decom-
position n = r + 2k define a subgroup Hr,2k ⊂ Gn , which is a semi-direct product
of Sp2k(F) and the nilradical N(1,...,1,2k) of the standard parabolic P(1,...,1,2k), and
let φ2k,r denote the generic character ψ(n) restricted to N(1,...,1,2k) and then extended

trivially to Hr,2k . Then the r -th Klyachko model of π ∈ Ĝr+2k is defined to be
HomHr,2k (π

∞, φr,2k).
Offen and Sayag proved existence, uniqueness, and disjointness of Klyachko mod-

els over p-adic fields. They defined the appropriate r in terms of Tadic classification,
used derivatives to reduce the statement to the case r = 0, in which an Sp-invariant
functional is constructed using a global (automorphic) argument. Theorem B allows
one to define r in terms of the partition corresponding to π and then to extend the
construction of Klyachko models given in [26, §3] to the Archimedean case. This is
done in [12].

1.8 Structure of the paper

In Sect. 2, we give several necessary definitions and preliminary results on geometry
of coadjoint orbits, analytic and smooth vectors, and annihilator varieties.

In Sect. 3, we prove the main theorem by induction. First we note thatπ |Pn is induced
from Aπ . This gives us a map π∞ → (Aπ)∞ which has dense image and satisfies a
certain equivariant condition with respect to a subgroup of Pn that includes N . This
also enables us to compute the dimension of V(π |Pn ) in terms of dim V(Aπ). Using the
induction hypothesis and the map π∞ → (Aπ)∞, we show that W h∗

DC(π)(π) �= 0.

By Matumoto’s theorem, this implies ODC(π) ⊂ V(π). To show equality, we prove
that the dimension of the annihilator variety does not drop when we restrict π to Pn ,
and then use the induction hypothesis.
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In Sect. 4, we compute the adduced representation for representations of Speh
complementary series (except one special case), thus almost finishing the computa-
tion of adduced representations of all unitary irreducible representations. We use the
restriction on the annihilator variety of the adduced representation given by Theorem
A and a restriction on the infinitesimal character of the adduced representation that
we deduce from Casselman-Osborne lemma. Those two restrictions allow us to deter-
mine the adduced representation uniquely, except in one case where we present two
possibilities.

In Sect. 5, we explain how our proofs adapt to the complex case.
In Sect. 6, we deal with the p-adic case. Most of the arguments here are simply

sketched since the components of various proofs appear already in [24,42].

2 Preliminaries

2.1 Induction and dimensions of nilpotent orbits

We now recall Lusztig-Spaltenstein induction of nilpotent orbits. Let g be a com-
plex reductive Lie algebra. Let p be a parabolic subalgebra with nilradical n and Levi
quotient l := p/n. Then we have a natural projection pr : g∗ � p∗ and a natural
embedding l∗ ⊂ p∗.

Theorem 2.1.1 ([10], Theorem 7.1.1) In the above situation let Ol ⊂ l∗ be a nilpotent
orbit. Then there exists a unique nilpotent orbit Og that meets pr−1(Ol) in an open
dense subset. We have

dim Og = dim Ol + 2 dim n.

Definition 2.1.2 The orbit Og is denoted I ndg
l (Ol) and called the induced orbit

of Ol.

Theorem 2.1.3 ([9], Theorem 2) Let G be a real reductive Lie group. If π is an irre-
ducible representation of G that is parabolically induced from a representation σ of
a Levi subgroup L, then O (π) = I ndg

l [O (σ )].

We now specialize this discussion to g = gn . In this case, nilpotent obits are
described by partitions.

Definition 2.1.4 If λ,μ are partitions of p, q of lengths k, l respectively, we define a
partition λ+ μ of p + q of length m = max (k, l) as follows:

(λ+ μ)i = λi + μi for i ≤ m

where the missing λi , μi are treated as 0.

Remark 2.1.5 We can describe λ+μ using transposed partitions: (λ+ μ)t is the par-
tition rearrangement of the composition

(

λt , μt
)

. On the level of Young diagrams,
λ + μ is obtained by concatenating the columns of λ and μ and reordering them in
descending order.
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Proposition 2.1.6 ([10], Lemma 7.2.5) Let λ be a partition of l, and μ be a partition
of m. Then

I ndgl+m
gl×gm

(Oλ × Oμ) = Oλ+μ.

Proposition 2.1.7 ([10], Corollary 7.2.4.) If λ is a partition of n and ν = λt then

dim Oλ = n2 −
∑

j

ν2
j .

We recall the BZ-product notation for parabolic induction as in Definition 1.1.6
and the associated partition AP(π) as in Definition 1.2.2. From Proposition 2.1.6,
we obtain

Corollary 2.1.8 If σ × τ is irreducible then

AP (σ × τ) = AP (σ )+ AP (τ ) .

2.2 Unitary induction

Let G be a Lie group and let dx denote a right invariant Haar measure, then we have

∫

δG (g) f (gx) dx =
∫

f (x) dx

where δG (g) = |det Ad (g)| is the modular function of G.
Let H be a closed subgroup of G and write δH\G (h) = δH (h) δG (h)−1. We define

Cc
(

H\G, δH\G
)

to be the space of continuous functions f ∈ C (G) that satisfy

f (hx) = δH\G (h) f (x) for all h ∈ H (7)

and for which supp( f ) ⊆ H S for some compact set S. Then G acts on Cc
(

H\G, δH\G
)

by right translations and there is a unique continuous G-invariant functional
∫

H\G on

Cc
(

H\G, δH\G
)

satisfying

∫

H\G

⎡

⎣

∫

H

δH\G (h)
−1 f (xh) dh

⎤

⎦ =
∫

G

f (x) dx for all f ∈ Cc (G)

One shows that f �→ ∫

H δH\G (h)−1 f (xh) dh is a continuous surjection from Cc (G)
to Cc (H\G) whose kernel is densely spanned by functions f (x) − δG (h) f (hx).
Consequently

∫

G dx vanishes on the kernel and descends to a functional on
Cc
(

H\G, δH\G
)

.
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If (σ, V ) is a unitary representation of H , we define Cc

(

H\G, δ1/2
H\Gσ

)

to be the

set of continuous functions f : G → V that satisfy

f (hg) = δ
1/2
H\G (h) σ (h) f (g) (8)

and for which supp( f ) ⊆ H S for some compact set S. For such f we have ‖ f (x)‖2
V ∈

Cc
(

H\G, δH\G
)

, and we define W to be the closure of Cc

(

H\G, δ1/2
H\Gσ

)

with

respect to the norm
∫

H\G ‖ f (x)‖2
V . Then W is a Hilbert space under 〈 f1, f2〉 =

∫

H\G 〈 f1 (g) , f2 (g)〉V and the action of G by right translations defines a unitary
representation (π,W ) of G.

Definition 2.2.1 In the above situation, (π,W ) is called the unitarily induced repre-
sentation and denoted by IndG

H (σ ) = IndG
H (σ, V ).

2.3 Analytic and smooth vectors

Definition 2.3.1 Let M be an analytic manifold and B be a Banach space. A map
M → B is said to be smooth if it is infinitely differentiable, and analytic if its Taylor
series at every point has a positive radius of convergence.

Remark 2.3.2 A map f : M → B is smooth/analytic if and only if the composition
φ ◦ f is smooth/analytic for every continuous linear functional φ : B → C .

Definition 2.3.3 Let (σ, B) be a continuous Banach representation of a Lie group
G. A vector v ∈ B is called smooth/analytic if the action map G → B defined
by g �→ σ(g)v is smooth/analytic. Both G and its Lie algebra g act on the spaces
of smooth and analytic vectors, and we denote the corresponding representations by
(σ∞, B∞) and (σω, Bω) respectively. (σ∞, B∞) is naturally a Fréchet representation
of G.

Remark 2.3.4 By [25, Theorem 4], Bω is dense in B.

The following theorem by Poulsen can be interpreted as a representation-theoretic
version of Sobolev’s embedding theorem.

Theorem 2.3.5 ([28], Theorem 5.1 and Corollary 5.2) Let (π,W ) = I ndG
H (σ, V );

if f ∈ W ∞ (Wω) then f is a smooth (analytic) function from G to V .

Corollary 2.3.6 Let (π,W ) = IndG
H (σ, V ) be as above; if f ∈ W ∞ (Wω) then f

takes values in V ∞ (V ω).

Proof Let f ∈ W ∞ (Wω) and let v := f (g), then the action map of H on v is

h �→ σ (h) v = σ (h) f (g) = δ
−1/2
H\G (h) f (hg)

This is a smooth (analytic) map by Poulsen’s theorem; hence, v is in V ∞ (V ω). ��
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Corollary 2.3.7 Let (π,W ) = IndG
H (σ, V ); then f �→ f (e) defines a continuous

H-equivariant morphism (π∞,W ∞) � (̃σ∞, V ∞) , where σ̃ (h) = δ
1/2
H\G (h) σ (h)

as in (8) above.

The continuity of the evaluation morphism follows from [28, Lemma 5.2].

Definition 2.3.8 Let V1, V2 be two modules for a Lie algebra g; we say V1, V2 are
non-degenerately g-paired if there is a non-degenerate bilinear pairing 〈·, ·〉 that is
invariant in the Lie algebra sense, i.e.

〈Xv1, v2〉 = − 〈v1, Xv2〉 for all v1 ∈ V1, v2 ∈ V2, X ∈ g

Lemma 2.3.9 Let (π,W ) = IndG
H (σ ); suppose G/H is connected and σ̃ ωis non-

degenerately h-paired with an h-module τ . Then πω is non-degenerately g-paired
with a quotient of U (g)⊗U (h) τ .

Here and elsewhere g, h denote the Lie algebras of G, H and U (g), U (h) their
enveloping algebras.

Proof As noted above g and hence U (g) acts on Wω. Let u �→ u′ be the principal
anti-automorphism of U (g) extending X �→ −X on g, and define a pairing between
πω and U (g)⊗τ by 〈 f, u ⊗ v〉 := 〈

(u′ f )(e), v
〉

. The pairing descends to U (g)⊗U (h) τ

in the second variable since if X is in h then

〈 f, u X ⊗ v〉 = − 〈[πω (X) u′ f
]

(e) , v
〉 = − 〈σ̃ ω (X) [u′ f (e)

]

, v
〉

= 〈

u′ f (e) , τ (X) v
〉 = 〈 f, u ⊗ Xv〉

Let us check that the pairing is non-degenerate in the first variable. If f lies in the
left kernel, then

〈

(u′ f )(e), v
〉 = 0 for any u, v and hence f vanishes at e together

with all its derivatives. By Theorem 2.3.5, f is an analytic function and therefore f
vanishes in the connected component of e. Since the support of f is H -invariant and
G/H is connected this implies f = 0.

Now if the pairing is degenerate in the second variable, we quotient U (g)⊗U (h) τ

by the right kernel. ��

2.4 Gelfand-Kirillov dimension

Let A be a finitely generated associative algebra over C with increasing filtration
{

Fi A : i ≥ 0
}

, and let M be a finitely generated A-module. Choose a finite dimen-
sional generating subspace S, define a filtration of M by Fi M := (

Fi A
)

S. It is known
that there exists a polynomial p such that p(i) := dim Fi M for large enough i and
that the degree of p does not depend on the choice of the finite dimensional generating
subspace S. This degree is called the Gelfand-Kirillov dimension of M and denoted
by GKdim(M).

We will apply this in particular to the case when A is the universal enveloping alge-
bra U (g) for some complex Lie algebra g, equipped with the usual filtration inherited
from the tensor algebra T (g).
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Lemma 2.4.1 ([38], Lemma 2.3) Let h ⊂ g be Lie algebras, and let M be a finitely
generated U (h)module. Then N = U (g)⊗U (h)M is a finitely generated U (g)-module,
and we have

GKdim(N ) = GKdim(M)+ dim(g/h)

If (σ,M) is a finitely generated g-module, we will sometimes write GKdim(σ ) for
GKdim(M) etc. Recall the annihilator variety V(σ ) ⊂ g∗ as defined in Sect. 1.2.1.
It is easy to show that

GKdim(σ ) ≤ dim V(σ ).

There is also a bound in the other direction for the Lie algebras we consider in this
paper.

Theorem 2.4.2 (Gabber-Joseph) Let g be the Lie algebra of an algebraic group over
an algebraically closed field. Let M be a finitely generated U (g) module. Then

GKdim(M) ≥ 1

2
dim V(M).

For proof see [17, Proposition 6.1.4] or [20, Theorem 9.11]. This theorem does not
hold for general Lie algebras. On the other hand, a stronger result is true for reductive
Lie algebras.

Theorem 2.4.3 ([38], Theorem 1.1) Let G be a real reductive group, g be its complex-
ified Lie algebra and K be a maximal compact subgroup. Let (σ,M) be an irreducible
Harish-Chandra module over (g, K ). Then

GKdim(σ ) = 1

2
dim V(σ ).

3 Proof of Theorem A

We will prove the theorem by induction, using the following three lemmas that will
be proven in the next three subsections.

Lemma 3.0.1 Let π ∈ ̂Gn and let d := depth(π). Let α = (n1, . . . , nk) be a com-
position of n − d and β = (d, α) = (d, n1, n2, . . . , nk). Then we have a natural
embedding W h∗

α(Aπ) ↪→ W h∗
β(π).

Lemma 3.0.2 Let λ,μ be partitions of n and n − d, respectively, and suppose that

(1) O(d,μ) ⊆ Oλ.
(2) dim Oλ ≤ dim Oμ + (2n − d) (d − 1).

Then λ = (d, μ).



Annihilator varieties, adduced representations, Whittaker functionals

Lemma 3.0.3 Let π ∈ ̂Gn and let d := depth(π). Then

dim V(π) ≤ dim V(Aπ)+ (2n − d)(d − 1).

Proof of Theorem A We prove the statement by induction on n. For n = 0, 1, there
is nothing to prove. Now take n > 1 and suppose that the theorem holds true for all
r < n. Let π ∈ ̂Gn, d := depth(π) and λ := AP(π).

Let μ be the depth composition of Aπ . By the induction hypothesis, we know that
μ is a partition of n − d, V(Aπ) = Oμ and W h∗

μ(Aπ) �= 0.
Let β = (d, μ). Then β is the depth composition of π . From the induction hypoth-

esis and Lemma 3.0.1, we obtain W h∗
β(π) �= 0. It suffices to show that β = λ.

By Corollary 1.4.1 we have Oβ ⊂ V(π) = Oλ. By Lemma 3.0.3, we have
dim Oλ ≤ dim Oμ + (2n − d) (d − 1) . Thus, by Lemma 3.0.2, β = λ. ��

3.1 Proof of Lemma 3.0.1

Now we construct a functional on π ∈ ̂Gn from a functional on its adduced represen-
tation.

Let P(n−d,d) = (Gn−d × Gd) � N(n−d,d) be the maximal parabolic subgroup
corresponding to the partition (n − d, d) and define the subgroup Sn−d,d :=
(

Gn−d × N1d

)

� N(n−d,d) where N1d is the nilradical of the Borel subgroup of Gd .

Lemma 3.1.1 Let π ∈ ̂Gn, and let d := depth(π). Then π |Pn = IndPn
Sn−d,d

(Aπ⊗
ψ ⊗ 1) where ψ is a non-degenerate unitary character of N1d .

Proof This follows from the definition of Aπ by a straightforward argument involving
induction by stages. ��
Proposition 3.1.2 Let π ∈ ̂Gn, and let d := depth(π). Then there exists an Sn−d,d -
equivariant map from π∞ to (Aπ)∞ ⊗ | det |(d−1)/2 with dense image.

Proof Note that for g ∈ Sn−d,d , �Pn (g) = | det(g)| and �Sn−d,d (g) = | det(g)|d . By
Corollary 2.3.7, the evaluation f �→ f (e) is an Sn−d,d -equivariant map from (π |Pn )

∞
to (Aπ)∞ ⊗| det |(d−1)/2. Note that Aπ is an irreducible unitary representation of Gd

and thus, by [41, Theorem 3.4.12], (Aπ)∞ is an irreducible Fréchet representation
of Gd . Thus it is enough to show that this map does not vanish on π∞. For that let
v ∈ π∞ be a nonzero vector. Then v ∈ π |∞Pn

= IndPn
Sn−d,d

(Aπ ⊗ ψ ⊗ 1)∞ defines a
smooth function on Pn that does not vanish at some point p. Then π(p)v does not
vanish at e. ��

This proposition immediately implies Lemma 3.0.1.

3.2 Proof of Lemma 3.0.2

It will be useful to have a second formula for dim Oλ directly in terms of λ. We will
also consider reorderings of λ.
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Lemma 3.2.1 If α is a composition of n then we have

dim Oα ≥ n2 + n − 2
∑

i

iαi . (9)

Moreover, equality holds if and only if α is a partition.

Proof Let λ = α≥ and let ν = λt be the transposed partition.
We first show that equality holds in (9) if α is a partition, that is, α = λ. By Proposition
2.1.7 it suffices to prove

∑

j

ν2
j = 2

∑

i

iλi − n.

Consider the Young diagram of λ and write the number 2i in every box in the i-th row.
Compute the sum of these numbers in two ways: a) adding rows first and b) adding
columns first. This gives

2
∑

i

iλi = 2
∑

j

(

1 + · · · + ν j
) =

∑

j

(

ν2
j + ν j

)

= n +
∑

j

ν2
j ,

as needed.
Now, for general α, we have Oα = Oλ. If α is not a partition then we have strict

inequality in (9) since
∑

i iαi >
∑

i iλi . ��
Corollary 3.2.2 Let μ be a partition of n − d and write α = (d, μ) then we have

dim Oα ≥ dim Oμ + (2n − d) (d − 1) ,

and equality holds if and only if α = (d, μ) is a partition (i.e., d ≥ μ1).

Proof We observe that

∑

j

jα j = d +
∑

i

(i + 1) μi = n +
∑

i

iμi

Let r = n − d and apply Lemma 3.2.1 to get the following inequality

dim Oα − dim Oμ ≥
⎛

⎝n2 + n − 2
∑

j

jα j

⎞

⎠−
(

r2 + r − 2
∑

i

iμi

)

=
(

n2 − n
)

−
(

r2 + r
)

=(n + r) (n − r − 1)=(2n − d) (d − 1)

By Lemma 3.2.1 equality holds iff α is a partition. ��
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Proof of Lemma 3.0.2 Let us write α = (d, μ). By assumptions (1) and (2) and Cor-
ollary 3.2.2, we get

dim Oα ≤ dim Oλ ≤ dim Oμ + (2n − d) (d − 1) ≤ dim Oα .

Hence equality must hold throughout. This implies that dim Oα = dim Oλ and, by
Corollary 3.2.2, that α is a partition. Now assumption (1) implies that α = λ.

3.3 Proof of Lemma 3.0.3

First we want to prove that dim V(π |Pn ) ≥ dim V(π). We will start with a geometric
lemma.

Lemma 3.3.1 Let O ⊂ g∗
n be a nilpotent coadjoint orbit. Then there exists an open

dense subset U ⊂ O such that the restriction to U of the projection pr := pr
g∗

n
p∗

n
is

injective.

For the proof see Sect. 3.3.4.

Corollary 3.3.2 Let V ⊂ g∗
n be the closure of a nilpotent coadjoint orbit. Then

dim pr
g∗

n
p∗

n
(V) = dim V .

Corollary 3.3.3 Let π ∈ ̂Gn. Then dim V(π |Pn ) ≥ dim V(π).
Proof Let I = AnnU (gn)π

ω and J = AnnU (pn)(π |Pn )
ω. Since (π |Pn )

ω ⊃ πω we
have J ⊂ AnnU (pn)π

ω = I ∩ U (pn) and hence we get

gr(J ) ⊂ gr(I ∩ U (pn)) ⊂ gr(I ) ∩ S(pn).

Since V(π) is the closure of a nilpotent coadjoint orbit, by the previous Corollary, we
conclude

dim V(π |Pn ) ≥ dim Zeroes (gr(I ) ∩ S(pn)) = dim pr
g∗

n
p∗

n
(V(π)) = dim V(π).

��
Now we want to use Theorem 2.4.2 to bound dim V(π |Pn ). In order to do that we

find a finitely generated U (pn)-module which is non-degenerately paired with (π |Pn )
ω

and therefore has the same annihilator.

Proof of Lemma 3.0.3 We will use Lemma 3.1.1. Let σ := Aπ ⊗ ψ ⊗ 1 and τ :=
| det |(1−d)/2((Aπ)HC ⊗ψ ⊗ 1) be representations of Sn−k,k and sn−k,k respectively,
where (Aπ)HC denotes the complex conjugate representation to (Aπ)HC . Then τ is
equivariantly non-degenerately paired with σ̃ = | det |(d−1)/2σ .

By Lemma 3.1.1, π |Pn = IndPn
Sn−k,k

(σ ) and thus, by Lemma 2.3.9, (π |Pn )
ω is equiv-

ariantly non-degenerately paired with a quotient of U (pn) ⊗U (sn−k,k ) τ . Denote this
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quotient by L . Then V(π |Pn ) = V(L). Note that twist by a character does not effect
annihilator variety and Gelfand-Kirillov dimension. Neither does exterior tensor prod-
uct with a character.

From Lemma 2.4.1 we obtain:

GKdim(L) ≤ GKdim(τ )+ dim pn − dim sn−k,k

= GKdim(AπHC )+ (2n − d)(d − 1)/2.

By Theorem 2.4.2, we have dim V(L) ≤ 2 GKdim(L). By Theorem 2.4.3, we
have 2 GKdim(AπHC ) = dim V(Aπ). By Corollary 3.3.3, we have dim V(π) ≤
dim V(π |Pn ). Altogether we have

dim V(π) ≤ dim V(π |Pn ) = dim V(L) ≤ 2 GKdim(L)

≤ 2 GKdim
(

AπHC
)

+ (2n − d)(d − 1)

= dim V(Aπ)+ (2n − d)(d − 1).

��

3.3.4 Proof of Lemma 3.3.1

Identify g∗
n with gn using the trace form; then p∗

n consists of matrices whose last col-
umn is zero, and pr (A) replaces the last column of A by zero. Now O corresponds
to a nilpotent orbit in gn ; let k denote the size of the biggest Jordan block in O and
define

U := {A ∈ O | e′
n Ak−1 �= 0} where e′

n = (0, . . . , 0, 1)

Then U is an open dense subset of O, and we will show pr |U is injective. Suppose
A, B ∈ U with pr (A) = pr (B), then A and B differ only in the last column and so

B = A + ve′
n

where v is some column vector; it suffices to prove that v = 0.
We first prove by induction that e′

n Aiv = 0 for any i ≥ 0. Since A and B are
nilpotent, we have

0 = Tr B = Tr A + Tr ve′
n = e′

nv

which proves the claim for i = 0. Now suppose the claim holds for i < l, then

Bl+1 = (

A + ve′
n

)l+1 = Al+1 +
l
∑

j=0

A j (ve′
n

)

Al− j + · · · (10)
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Each omitted term in (10) has at least two factors of the form ve′
n , hence at least

one factor of the form e′
n Aiv for some 0 ≤ i < l , which vanishes by the induction

hypothesis. Now taking trace in (10), we get

0 =
l
∑

j=0

Tr
(

A jve′
n Al− j

)

= (l + 1) e′
n Alv

which implies the claim for i = l, and by induction for all i .
Suppose now by way of contradiction that v �= 0 and let m ≥ 0 be the largest

integer such that Amv �= 0. Substitute l = k − 1 in (10); since Ak = Bk = 0, we get

0 =
k−1
∑

j=0

A jve′
n Ak−1− j =

m
∑

j=0

A jve′
n Ak−1− j (11)

Note that v, Av, . . . , Amv are linearly independent; indeed suppose
∑m

j=i c j A jv = 0

with ci �= 0, then multiplying by Am−i , we deduce ci Amv = 0, which is a contradic-
tion. Therefore, we can choose a row vector φ such that φAmv = 1 but φA jv = 0 for
any j < m. Multiplying (11) by φ on the left, we get 0 = e′

n Ak−1−m which contradicts
the assumption that e′

n Ak−1 �= 0. ��
Remark 3.3.5 Using [7, 3.1;4.1–4.2] one can show that U is a single Pn-orbit.

4 Computation of adduced representations for (almost) all unitary
representations

It is an interesting and important problem to explicitly compute the adduced rep-
resentations of all irreducible unitary representations of Gn . The answer has been
conjectured in [32] and in the present paper we make substantial progress towards the
proof of this conjecture.

4.1 Vogan classification

By the Vogan classification [39], irreducible unitary representations of Gn are Bern-
stein-Zelevinsky (BZ) products of the form

π = π1 × · · · × πk

where each πi is one of the following basic unitary representations:

(a) A one-dimensional unitary character of some Gm . Such a character is of the form

x �→ (sgn det x)ε |det x |z , ε ∈ {0, 1} , z ∈ C
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and we shall denote it by χ (m, ε, z). This character is unitary if z is imaginary,
that is,

z = i t, t ∈ R.

(b) A Stein complementary series representation of some G2m , twisted by a unitary
character. The Stein representations are complementary series of the form

σ (2m, s) = χ (m, 0, s)× χ (m, 0,−s) , s ∈ (0, 1/2)

and we write σ (2m, s; ε, i t) to denote its twist byχ (2m, ε, i t).
(c) A Speh representation of some G2m , twisted by a unitary character. As shown in

[4] and [32] the Speh representation δ (2m, k) is the unique irreducible submodule
of

χ (m, 0, k/2)× χ (m, εk+1,−k/2) , k ∈ N, εk+1 ≡ k + 1 (mod 2) (12)

and we write δ (2m, k; i t) to denote its twist by χ (2m, 0, i t).
(d) A Speh complementary series representation of some G4m , twisted by a unitary

character. The Speh complementary series representation is

ψ (4m, k, s) = δ (2m, k; 0, s)× δ (2m, k; 0,−s) , s ∈ (0, 1/2)

and we write ψ (4m, k, s; i t) to denote its twist by χ (4m, 0, i t).

The reader might well ask why we do not consider twists in (c) and (d) for ε = 1.
The reason is the following:

Lemma 4.1.1 Speh representation and their complementary series are unchanged if
we twist them by the sign character.

Proof If π is a representation of Gn , we denote its sign twist by π̃ = π ⊗ χ (n, 1, 0).
This operation is compatible with parabolic induction in the sense that we have

π̃1 × π2 = π̃1 × π̃2. (13)

We leave the easy verification of (13) to the reader.
For the group GL (2,R), the Speh representations δ (2, k) are precisely the discrete

series. In this case, the result δ (2, k) = δ̃ (2, k) is well known (see 1.4.7 in [40]). The
general Speh representation δ (2m, k) is the unique irreducible quotient (Langlands
quotient) of

δ (2, k; s1)× · · · × δ (2, k; sm) where si = m + 1

2
− i (14)

see, e.g., [39]. By (13), the induced representation (14) is unchanged under sign twist.
Therefore, so is its unique irreducible quotient.

The result for Speh complementary series now follows from (13). ��
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4.2 Annihilator variety and rank

In this subsection, we compute the associated partition in terms of the Vogan classifi-
cation. Let

π =
k
∏

i=1

χi ×
l
∏

j=1

δ j withn =
k
∑

i=1

pi + 2
l
∑

j=1

q j (15)

where χi is a character of G pi and δ j is a Speh representation of G2q j (perhaps
twisted by a non-unitary character in order to include complementary series). By
Corollary 2.1.8 , to compute AP(π), it suffices to determine AP(χi ) and AP(δ j ).
Clearly AP(χi ) = 1i . By [32, Theorem 3], the adduced of the Speh representation
δ(2n, k) ∈ ̂G2n is the Speh representation δ(2(n − 1), k) ∈ ̂G2n−2. By induction, we
obtain from Theorem A that AP(δ j ) = 2 j .

Theorem 4.2.1 For π as in (15), AP(π)t has one part of size pi for each i and
two parts of size q j for each j . Consequently, the rank (see Definition 1.6.1) and the
Gelfand-Kirillov dimension of π are given by

rk(π) = n − max(pi , q j ), GKdim(π) = 1

2

(

n2 −
∑

p2
i − 2

∑

q2
j

)

(16)

Corollary 4.2.2 Let π ∈ ̂Gn and let k < n/2. Then rk(π) = k if and only if there
exist a representation σ ∈ ̂Gk and a character χ ∈ ̂Gn−k such that π = σ × χ .

Remark 4.2.3 By [33, Part II, Corollary 3.2], an analogous statement holds for Howe
rank. This gives an independent proof of the statement that for any π ∈ ̂Gn ,

Howe rank (π) = min(rk(π), �n/2�).

The following theorem follows from [4,32].

Theorem 4.2.4 For the Speh representation δ(2n, k) ∈ ̂G2n, there exist degener-
ate principal series representations πk and π−k , induced from certain characters
of the standard parabolic subgroup given by the partition (n, n), an embedding
i : δ(2n, k) ↪→ πk and an epimorphism p : π−k � δ(2n, k).

Corollary 4.2.5 Any irreducible unitarizable representation π of Gn can be pre-
sented both as a subrepresentation and as a quotient of a degenerate principal series
representation with the same annihilator variety. Those degenerate principal series
representations will be induced from characters of the standard parabolic described
by the partition which is transposed to the partition describing V(π).

Remark 4.2.6 In [3], we show, using [4], that all other Jordan-Holder constituents
of the degenerate principal series representations mentioned above will have smaller
annihilator varieties.
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4.3 Infinitesimal characters: general considerations

In this subsection only, we let g denote an arbitrary complex reductive Lie algebra.
We fix a Cartan subalgebra h and a Borel subalgebra b = h + n, and let W denote
the Weyl group of g. Let Z (g) denote the center of the universal enveloping algebra
U (g). Then by the Harish-Chandra homomorphism, we have Z (g) ≈ S (h)W . Thus
each λ ∈ h∗ determines a character χλ of Z (g) with χwλ = χλ for all w ∈ W .

The Harish-Chandra homomorphism is a special case of the following more general
construction. Let q = l + u be a standard parabolic subalgebra containing b so that
h ⊂ l and u ⊂ n. Then we have a triangular decomposition g = u + l + u, and by the
PBW theorem, the universal enveloping algebra of g can be decomposed as follows

U (g) = U (u)⊗ U (l)⊗ U (u) = U (l)⊕ [

uU (g)+U (g) u
]

(17)

Let P = Pg
l denote the corresponding projection from U (g) to U (l), and let Z (g)

and Z (l) denote the centers of U (g) and U (l).

Lemma 4.3.1 (1) P is ad (l)-equivariant.
(2) P maps Z (g) to Z (l).
(3) For z ∈ Z (g) we have z − P (z) ∈ uU (g).

Proof See, e.g., [40, p. 118]. ��
Lemma 4.3.2 Let V be a g-module then

(1) The subspace uV is Z (g)-invariant and U (l)-invariant.
(2) The quotient space V/uV is a Z (g)-module and a U (l)-module.
(3) For z ∈ Z (g) the actions of z and P (z) agree on V/uV .

Proof Parts 1 and 2 are straightforward. Part 3 follows from the previous lemma.
��

We say that a g-module V has infinitesimal character λ if each z ∈ Z (g) acts by
the scalar χλ (z). We say that V has generalized infinitesimal character χλ if there
is an integer n such that (z − χλ (z))n acts by 0 for all z ∈ Z (g). We say that V
is Z (g)-finite if V is annihilated by an ideal of finite codimension in Z (g). If V is
Z (g)-finite then V decomposes as a finite direct sum

V = V1 ⊕ · · · ⊕ Vk

where each Vi has generalized infinitesimal character.

Corollary 4.3.3 (Casselman-Osborne) Let V be a Z (g)-finiteg-module, then V/uV is
a Z (l)-finite l-module. Moreover, if the generalized infinitesimal character χμ occurs
in V/uV then there exists λ ∈ h∗ such that

(1) the generalized infinitesimal character χλ occurs in V ;
(2) μ = λ+ ρ (u) where ρ (u) is half the sum of the roots of h in u.

Proof The proof is similar to that of Corollary 3.1.6 in [40]. ��
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4.4 Infinitesimal characters for Gn

If π is an irreducible admissible representation of Gn , the infinitesimal character
ξπ of π can be regarded as a multiset (set with multiplicity) of n complex num-
bers {z1, . . . , zn}. If all the zi are real, we say that π has real infinitesimal charac-
ter. For convenience, we write � for the (disjoint) union of multisets; for example,
{1, 2} � {2, 3} = {1, 2, 2, 3} .

For m ∈ N and z ∈ C, we define the corresponding “segment” to be the set

S (m, z) = {z1, . . . , zm} where zi = z + (m + 1) /2 − k.

Thus z1, . . . , zm is an arithmetic progression of length m, mean z, and common dif-
ference 1.

The following lemma summarizes the main facts about infinitesimal characters for
unitary representations of Gn .

Lemma 4.4.1 (1) ξπ1×···×πk = ξπ1 � · · · � ξπk

(2) For π = χ (m, ε, z) we have ξπ = S (m, z)
(3) For π = σ (2m, s; ε, i t) we have ξπ = S (m, s + i t) � S (m,−s + i t)
(4) For π = δ (2m, k; i t) we have ξπ = S (m, (k/2)+ i t) � S (m, (−k/2)+ i t)
(5) For π = ψ (4m, k, s; i t) we have ξπ = ⊔

S (m,± (k/2)± s + i t)

Proof 1) and 2) are standard [40] and together they imply 3). Similarly 1) and 4)
imply 5). Part 4) follows from 1) and formula (12); alternatively one may deduce it
from 1), formula (14), and the fact that the discrete series δ (2, k) of GL (2,R) has
infinitesimal character

{ k
2 ,− k

2

}

. ��
Lemma 4.4.2 If π ∈ ̂Gn then ξπ is symmetric in the sense z and −z̄ have the same
multiplicity in ξπ for all z ∈ C.

This lemma is in fact an easy elementary fact about Hermitian representations.
For π ∈ ̂Gn , it also follows easily from the previous lemma by checking it for basic
representations.

4.5 Adduced representations

Conjecture 1 ([32]) Let π ∈ ̂Gn and write π = π1 × · · · × πk as in the Vogan classi-
fication with each πi a basic unitary representation of type a–d listed above. Then we
have

Aπ = Aπ1 × · · · × Aπk (18)

where

A (χ (m, ε, i t)) = χ (m − 1, ε, i t) (19)

A (σ (2m, s; ε, i t)) = σ (2 (m − 1) , s; ε, i t)

A (δ (2m, k; i t)) = δ (2 (m − 1) , k; i t)

A (ψ (4m, k, s; i t)) = ψ (4 (m − 1) , k, s; i t)
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Most of this result is already known. The identity (18) is proved in [30]. As for
(19), part 1 is obvious, part 2 is proved in [31], part 3 is proved in [32], where part
4 was conjectured. We show that the techniques of the present paper suffice to prove
(19) part 4 for k �= m.

Lemma 4.5.1 Let π ∈ ̂Gn and for t ∈ R let π [i t] denote the unitary twist of π by the
character |det|i t . Then we have A (π [i t]) = (Aπ) [i t].
Proof This is straightforward. ��
Lemma 4.5.2 The Speh complementary series representation ψ (4m, k, s; i t) is
uniquely determined by its infinitesimal character and associated partition.

Proof By Lemma 4.4.1 π = ψ (4m, k, s; i t) has infinitesimal character
ξπ = ⊔

S (m,± (k/2)± s + i t), and by Theorem 4.2.1 its associated partition is
4m . Since 0 < s < 1/2, it follows that

(1) 2 Re (z) is not an integer for any z ∈ ξπ ,
(2) max {2 Re (z) : z ∈ ξπ } = m − 1 + k + 2s

Let π ′ be a unitary representation with the same infinitesimal character and asso-
ciated partition as π . Write π ′ = π1 × · · · × πl as in the Vogan classification. Then
condition 1 above implies that none of the πi can be unitary characters or Speh rep-
resentations, while condition 2 implies that π ′ cannot be the product of two Stein
representations of G2m , for then we would have max (2 Re (z)) < m. Therefore, we
conclude that π ′ is a Speh complementary series representation of G4m . Thus π ′ =
ψ
(

4m, k′, s′; i t ′
)

. By looking at the integral and fractional parts of max (2 Re (z)),
we deduce k = k′ and s = s′. By looking at the imaginary part of z ∈ ξπ = ξπ ′ , we
conclude that t = t ′. ��
Remark 4.5.3 Due to the previous lemma, Conjecture 1 becomes now equivalent to
the statement that for any π ∈ ̂Gn , the infinitesimal character parameter of Aπ is
obtained from the infinitesimal character parameter of π by the following procedure:
consider the Young diagram X with the sizes of rows described by the partition cor-
responding to π , write the infinitesimal character parameter of π in the columns such
that in each column, we will have a segment and make each of those segments shorter
by one without changing its center. This is similar to the effect of highest derivatives
on the Zelevinsky classification in the p-adic case (see Sect. 6). We cannot prove this
statement here, but we deduce its weaker version from Corollary 4.3.3 and Proposition
3.1.2.

Proposition 4.5.4 Let π ∈ ̂Gn and let d = depth(π). Let S = {z1, . . . , zn} and
S′ = {y1, . . . , yn−d} be the multisets corresponding to infinitesimal characters of π
and Aπ respectively. Then S′is obtained from S by deleting d of the zi ’s and adding
1/2 to each of the remaining zi ’s.

Proof Let σ := Aπ and let π∞ and σ∞ be the spaces of smooth vectors of π and σ ,
respectively, and let λ and μ be their infinitesimal character parameters.
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By Proposition 3.1.2, there is an Sn−d,d -equivariant morphism ϕ : π∞ → σ∞ ⊗
| det |(d−1)/2 with dense image. Since Nn−d,d acts trivially onσ∞⊗| det |(d−1)/2,ϕ fac-
tors through the quotient π∞/uπ∞,where u = Lie

(

Nn−d,d
)

. By Corollary 4.3.3, the
possible Gn−d × Gd infinitesimal characters in π∞/uπ∞ are of the formwλ+ρ (u).
Further restricting to Gn−d , we conclude that these characters are of the form

λ− + d

2
(1, 1, . . . , 1)

where λ− ⊂ λ is a subset of size n − d.
On the other hand, the Gn−d module σ∞ ⊗| det |(d−1)/2 has infinitesimal character

μ+ d − 1

2
(1, 1, . . . , 1) .

Comparing the two displayed expressions, we get μ = λ− + 1
2 (1, 1, . . . , 1) and

the result follows. ��
We are now ready to prove the main theorem of this section.

Theorem 4.5.5 Suppose k �= m then A (ψ (4m, k, s; i t)) = ψ (4 (m − 1) , k, s; i t).

Proof Let π = ψ (4m, k, s; i t) , π ′ = ψ (4 (m − 1) , k, s; i t) and let ξ, ξ ′, ξ ′′
be the

infinitesimal characters of π, π ′, Aπ respectively. By Theorem 4.2.1, AP(π) = 4m

and AP(π ′) = 4m−1. By Theorem A, AP(Aπ) = 4m−1 as well. Therefore, by Lemma
4.5.2, it suffices to show that ξ ′ = ξ

′′
.

For simplicity we assume t = 0, the argument is the same if t �= 0. Now by Lemma
4.4.1, we have

ξ =
⊔

S

(

m,±k

2
± s

)

and ξ ′ =
⊔

S

(

m − 1,±k

2
± s

)

Now by 4.5.4 ξ
′′

is obtained from B = ξ + 1
2 by deleting 4 elements. Indeed ξ ′ is

obtained from B by deleting the following 4 elements

C =
{

m

2
± k

2
± s

}

.

and we need to show that no other infinitesimal character of a unitary representation
can be so obtained.

In fact we note that ξ ′ is the only symmetric submultiset of ξ + 1
2 with

∣

∣ξ ′∣
∣ =

4 (m − 1). Indeed any other symmetric subset of cardinality |B| − 4 is obtained from
B by replacing a symmetric subset of ξ ′ with a symmetric subset of equal size con-
tained in C , but if k �= m then C has no symmetric subsets. ��
Remark 4.5.6 For k = m, the proof of Theorem 4.5.5 fails, since in this case, we have

C = {m ± s,±s}
which admits the symmetric subset {±s} . Indeed it is easy to see that for k = m,
the infinitesimal character of ψ

(

4m − 4,m − 1, 1
2 − s

)

is also a subset of ξ + 1
2 .
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Therefore, we may conclude only that

Aψ (4m,m, s) = ψ (4m − 4,m, s) or ψ

(

4m − 4,m − 1,
1

2
− s

)

An additional argument is required to rule out the latter possibility.

5 The complex case

Let us discuss the setting and the geometry of nilpotent orbits. We have

G = Gn = GL(n,C), g ≈ gl(n,C)⊕ gl(n,C), gR = gl(n,C)⊕ 0,

k = {(x, x)}, k⊥ = {(x,−x)},

where k denotes the complexified Lie algebra of maximal compact subgroup. The
nilpotent orbits are parameterized by pairs of partitions and have the form Oλ × Oμ.
However, associated orbits of Harish-Chandra modules intersect k⊥ and are therefore
of the form Oλ×Oλ and so are still parameterized by single partitions, rather than two
partitions. Standard parabolic subgroups are also parameterized by single partitions.
The degenerate Whittaker functionals are defined in the same way as in Sect. 1.2.3:
using Jα ∈ gR. Therefore, they are also parameterized by single partitions. There-
fore, the formulation of Theorem A in the complex case stays the same. The proof
of Theorem A is obtained from the proof in Sect. 3 by replacing the term “coadjoint
nilpotent orbit” by “coadjoint nilpotent orbit that intersects k⊥” and doubling all the
expressions for the dimensions of such orbits.

The Vogan classification of ̂GL(n,C) is simpler: Each π ∈ ̂GL(n,C) is a product
of characters, where the non-unitary characters come in pairs. As shown in [30,31],
the adduced representation of π is a product of the same form, where each character
of Gn is restricted to Gn−1, and characters of G1 are thrown away. The associated
partition of π is determined in the obvious way, similar to Theorem 4.2.1.

6 The p-adic case

In this section, we fix F to be a non-Archimedean local field of characteristic zero and
let Gn := GL(n, F).

6.1 Definition of derivatives

In the p-adic case, there is an additional definition of highest derivative, using
co-invariants. This definition works for all smooth admissible representations of Gn ,
not only unitarizable. Moreover, Bernstein and Zelevinsky define in [8, §3] all deriv-
atives and not only the highest ones in the following way.
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Recall that Pn = Gn−1 � Fn−1. Fix a non-trivial additive character χ of F and
define a character θn of Fn−1 by applying χ to the last coordinate. Denote by ν the
determinant character ν(g) = | det(g)|.

Define two normalized coinvariants functors 	− : Rep(Pn) → Rep(Gn−1) and
�− : Rep(Pn) → Rep(Pn−1) by

	−(τ ) := ν−1/2τFn−1,1 and �−(τ ) := ν−1/2τFn−1,θn
.

Both functors are exact.
For a smooth representation τ of Pn , they define τ (k) := 	−(�−)k−1τ and call it

the k-th derivative of τ . For a smooth representation π of Gn , k-th derivative is defined
by Dkπ := π(k) := (π |Pn )

(k).
If Dkπ > 0 but Dk+lπ = 0 for any l > 0 then Dkπ is called the highest derivative

of π and we denote it by A(π), and k is called the depth of π and denoted d(π).
For unitarizable representations, one can also define a shifted highest derivative

of π using Mackey theory, in the same way as adduced representation is defined in
the Archimedean case (see Sect. 1.2.6). By [7], this shifted highest derivative will be
isomorphic to ν1/2 A(π).

For a composition α = (α1, . . . , αk), we define Dα(π) := Dα1 , . . . , Dαk (π). By
[42, §§8.3], we have (Dαk Dαk−1, . . . , Dα1π)∗ � W h∗

α(π).
Denote by M(Gn), the category of smooth admissible representations of Gn and

define the Grothendieck ring R = ⊕

n �(M(Gn)). As an additive group it is the direct
sum of Grothendieck groups of M(Gn) for all n, and the product is defined by para-
bolic induction. Define the total derivative D : R → R as the sum of all derivatives.
By [8, §§4.5], D is a homomorphism of rings.

6.2 Zelevinsky classification

In [42], Zelevinsky describes the generators of R in the following way. Denote by
C := ⋃

n Cn the subset of all cuspidal irreducible representations of Gn for all n. For
ρ ∈ Cd , a subset � ⊂ Cd of the form (ρ, νρ, ν2ρ, . . . , νl−1ρ) is called a segment.
The representation ν(l−1)/2ρ is called the center of�, the number l is called the length
of �, and the number d is called the depth of �. We denote the set of all segments
� ⊂ C by S. We define a segment �− by �− = (ρ, νρ, ν2ρ, . . . , νl−2ρ).

Theorem 6.2.1 ([42], §3 and §§7.5) Let � = (ρ, νρ, ν2ρ, . . . , νl−1ρ) ⊂ Cd be a
segment. Then the representation ρ × νρ × . . . νl−1ρ contains a unique irreducible
constituent 〈�〉 of the depth d = depth(�). Moreover,

(1) D(〈�〉) = 〈�〉 + 〈�′〉.
(2) R is a polynomial ring in indeterminates {〈�〉 : � ∈ S}

Zelevinsky furthermore describes all irreducible representations in terms of
segments and shows, in [42, §§8.1], that A maps irreducible representations to irre-
ducible.



D. Gourevitch, S. Sahi

6.3 The wave front set

Let π ∈ M(Gn). Let χπ be the character of π . Then χπ defines a distribution ξπ on
a neighborhood of zero in gn , by restriction to a neighborhood of 1 ∈ G and applying
logarithm. This distribution is known to be a combination of Fourier transforms of
Haar measures of nilpotent coadjoint orbits ([14, p. 180]). This enables to define a wave
front cycle, W FC(π) as a linear combination of orbits. Clearly, W FC is additive on
R. In [24, II.1], it is shown that it is also multiplicative, in the sense of Corollary 2.1.8.
The wave front set, W F(π), is defined to be the set of orbits that appear in W FC(π)
with nonzero coefficients. Denote by W Fmax(π) the set of maximal elements of
W F(π) (with respect to the Bruhat ordering). In [24, II.2], W FC(〈�〉) is computed
to be the orbit given by the partition λ� that has length(�) parts of size depth(�),
with multiplicity 1. Thus, for an arbitrary smooth irreducible representation π of Gn ,
W Fmax(π) consists of a single nilpotent orbit, given by the partition defined by the
Zelevinsky classification (see [27]).

6.4 Proof of Theorem B over F

Since both D and in a sense W FC are homomorphisms, and since segment represen-
tations 〈�〉 generate R, it is enough to prove Theorem B for them. The above infor-
mation implies that W hα(〈�〉) = Dα(〈�〉) = 0 unless α = λ�. Now, W hλ�(〈�〉) =
Dλ�(�) = 〈∅〉 = C. Since W FC(〈�〉) = Oλ� , this completes the proof of the main
three parts of Theorem B.

We can prove the “moreover” part through an analog of Corollary 4.2.2: there is a
Tadic classification of the unitary representations as products of certain building blocks
(see [36]), from which we see that rank(π) = k < n/2 if and only if π = χ × τ ,
for some character χ of Gn−k and some τ ∈ M(Gk). Since the same holds for Howe
rank (by [33, Part II, Corollary 3.2]), the “moreover” part follows. One can also prove
the “moreover” part directly, as was done in Moeglin and Waldspurger [24, II.3] for
the symplectic group.
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