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TWISTED HOMOLOGY FOR THE MIRABOLIC NILRADICAL

AVRAHAM AIZENBUD, DMITRY GOUREVITCH, AND SIDDHARTHA SAHI

ABSTRACT. The notion of derivatives for smooth representations of GL(n,Q,) was defined in [BZT7].
In the archimedean case, an analog of the highest derivative was defined for irreducible unitary repre-
sentations in [Sah89] and called the “adduced” representation. In [AGS| derivatives of all orders were
defined for smooth admissible Fréchet representations (of moderate growth).

A key ingredient of this definition is the functor of twisted coinvariants with respect to the nilradical
of the mirabolic subgroup. In this paper we prove exactness of this functor and compute it on a certain
class of representations. This implies exactness of the highest derivative functor, and allows to compute
highest derivatives of all monomial representations.

In [AGS] these results are applied to finish the computation of adduced representations for all ir-
reducible unitary representations and to prove uniqueness of degenerate Whittaker models for unitary
representations.

1. INTRODUCTION

The notion of derivative was first defined in [BZ77] for smooth representations of G,, = GL(n) over
non-archimedean fields and became a crucial tool in the study of this category. The definition of derivative
is based on the “mirabolic” subgroup P, of G,, consisting of matrices with last row (0,...,0,1). The
unipotent radical of this subgroup is an (n — 1)-dimensional linear space that we denote V,,, and the
reductive quotient is G,,—1. The group G, _; has 2 orbits on V,, and hence also on V,*: the zero and the
non-zero orbit. The stabilizer in G,,—1 of a non-trivial character ¢ of V,, is isomorphic to P,_1.

The construction of derivative is based on two functors: ® and W. This paper deals only with the
functor ® of (normalized) twisted zero homology (in other words co-equivariants) with respect to (V,,, ),
which goes from the category of smooth representations of P, to the category of smooth representations
of Pn—l .

To be more precise, fix an archimedean local field F' and denote G,, := GL(n, F'). Let p,,, 0, .. denote
the Lie algebras of the corresponding Lie groups. Let 1,, be the standard non-degenerate character of V,,,
given by 1, (21, ...,7n_1) := exp(v/—17m Rez,,_1). We will also denote by v, the corresponding character
of the Lie algebra v,,. For all n and for all representations 7 of p,,, we define

B () := | det |71/2 ® (v, = | det |=Y2 @ nt/Span{av — ¢, (a)v : v €T, a € v,}

Now, define E¥(rr) := ®*~!(7). This is one of the three notions of derivatives defined in [AGS]. The
other two are obtained from this one by applying coinvariants (respectively generalized coinvariants) with
respect to v,,_x,1. However, in this paper we will only prove results concerning E*.

In the non-archimedean case there is an equivalence between the category of smooth representations
of P, and the category of G, _i-equivariant sheaves on V,*. This equivalence is based on the Fourier
transform. Under this equivalence, ® becomes the fiber at the point 1. It can also be viewed as the
composition of two functors: restriction to the open orbit and an equivalence of categories between
equivariant sheaves on the orbit and representations of the stabilizer of a point. We used this as an
intuition for the archimedean case. In particular, we expected ® to be exact, which indeed is one of the
main results of this paper, that we will now formulate.

Let M(G),) denote the category of smooth admissible Fréchet representations of moderate growth.

Theorem A. For any 0 <k <n
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(1) E* : M(G,) — M(py) is an exact functor.
(2) For any m € M(G,,), the natural (quotient) topology on E*(r) is Hausdorff, i.e. u*(m @ (—y*))
is closed in 7.

For proof see §3

Theorem B. Let n =ny +---+ny and let x; be characters of Gy,. Let m = x1 X --- X X1 denote the
corresponding monomial representation. Then

E¥(m) = E'(x1) x -+ x E'(x&) = (x0)|cn, 1 X -+ X (X0) |G 1)-

We prove this theorem in §41

In the case of k = n this becomes the Whittaker functor, which is known to be exact by [CHM00]. In
this case Theorem [B]limplies that the space of Whittaker functionals on a principal series representation
is one-dimensional, which was proven for G, by Casselman-Zuckerman and for a general quasi-split
reductive group by Kostant.

1.1. Structure of our proof.

1.1.1. Ezactness and Hausdorffness. It turns out to be convenient to prove the exactness and the Haus-
dorffness together. Let us describe the proof of exactness, and the proof of Hausdorffness will be incor-
porated into this argument.

The ideas of the proof come from two sources: the proof of the case k = n given in [CHMO00] and the
analogy with the p-adic case, where one can use the language of equivariant [-sheaves.

In [CHMOQ], the first step of the proof is reduction to the statement that the principal series represen-
tations are acyclic, using the Casselman embedding theorem. This step works in our case as well. Then
in [CHMOQ] they prove that the principal series representations are acyclic by decomposing them with
respect to the decomposition of the flag variety into U,} orbits. In their case, there is a finite number of
U orbits and each orbit corresponds to an acyclic representation. In our case, U¥ has infinitely many
orbits on the flag variety and some of them give rise to non-acyclic representations.

Eventually we show that these problematic orbits do not contribute to the higher (¥, ¢¥)-cohomologies
of principal series since they are immersed in smooth families of orbits most of which give rise to acyclic
representations. It is difficult to see that directly, therefore we turn to the strategy inspired by equivariant
sheaves.

If we had a nice category of P,-representations, which like in the p-adic case was equivalent to a nice
category of G,_1-equivariant sheaves on V¥, then the functor ® would be a composition of a restriction
to an open set and an equivalence of categories, and thus it should be exact. Unfortunately it seems
too hard at this point to define such categories. Rather than doing this we define a certain class of
P, -representations. We define it using specific examples and constructions and not by demanding certain
properties. We do not view this class as a “nice category of representation of P,”, in particular we do
not analyze it using equivariant sheaves. However it is sufficient for the proof of exactness. Namely we
prove that this class includes the principal series representations of G,,. We prove that it is closed under
®. Finally, we prove that its objects are acyclic with respect to ®.

In order to do this we develop some tools for computing the homology of representations constructed
in a geometric way.

1.1.2. Derivative of monomial representations. In the non-archimedean case, [BZT1] provides a descrip-
tion of any derivative of a Bernstein-Zelevinsky product p; X ps in terms of derivatives of p; and ps.
This description immediately implies the natural analog of Theorem [Bl This description is proved using
geometric analysis of the Bernstein-Zelevinsky product as the space of sections of the corresponding sheaf
on the corresponding Grassmanian.
This method is hard to translate to the archimedean case for the following reasons.
e The analogous statement for the derivative as we defined it here does not hold. If we would not
replace the functor of coinvariants by the functor of generalized coinvariants then the analogous
statement might hold. However, we would lose the exactness, which played a crucial role in the

proof in [BZT1].
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e We do not have an appropriate language of infinite-dimensional sheaves.

For these reasons, we prove a product formula only for the depth derivatives, and only for products
of characters. The drawback of that approach is that we have to consider product of more than two
characters.

We prove the product formula using the geometric description of monomial representations. More
specifically, we decompose the corresponding flag variety into P,-orbits. This decomposition gives a
filtration of the monomial representation. We compute the functor ® on each of the associated graded
pieces in geometric terms, and use the exactness of ® to proceed by induction.

1.2. Tools developed in this paper.

1.2.1. The relative Shapiro lemma. In the proof of the exactness of the derivatives we are interested in
the study of homology of representations of the following type. Let a real algebraic group G act on a
real algebraic manifold X, and let £ be a G-equivariant bundle over X. Consider the space S(X, &) of
Schwartz sections of this bundle (see §2.4). This is a representation of G. For technical reasons we prefer
to study Lie algebra homology rather than Lie group homology. Thus we will impose some homotopic
assumptions on G and X so that there will be no difference. In the case when X is homogeneous,
iie. X = G/H, a version of the Shapiro Lemma states, under suitable homotopic and unimodularity
assumptions on G and H, that H.(g,S(X,&)) = H.(h, &), where £y denotes the fiber of £ at the class
of 1in G/H (cf. [AGIN]).

In Appendix [A] we prove a generalization of this statement to the relative case. Namely, let G' act on
X xY and & be a G-equivariant bundle over X x Y. Suppose that X = G/H. Then, under the same
assumptions on G and H, we have

H*(Q,S(X X ng)) = H*(h,S([l] X Ya 6[1]><Y))'
For the zero homology this statement is in fact Frobenius descent (cf. [AG09, Appendix B.3]).

1.2.2. Homology of families of characters. In the proof of the exactness of the derivatives, we use the
relative Shapiro lemma to reduce to the study of H.(g,S(X,&)), where the action of G on X is trivial.
Moreover, in our case £ is a line bundle and g is abelian. In g8 we prove that S(X, &) is acyclic and
compute Hy(g, S(X,E)) under certain conditions on the action of G on &.

1.2.3. Tempered equivariant bundles. Since we discuss non-algebraic (e.g. unitary) characters, it might
become necessary to consider non-algebraic geometric objects. We tried to avoid that, but had to consider
vector bundles of algebraic nature with a non-algebraic action of a group. A similar difficulty arose in
[AG], and the notion of tempered equivariant bundle was defined in order to deal with it. In this paper
we develop more tools to work with such bundles.

1.3. Structure of the paper.

The proof of exactness and Hausdorffness of ®* and the computation of the depth derivative of the
monomial representations are based on the theory of Schwartz functions on Nash manifolds. In §2.4] we
review this theory, including the notion of equivariant tempered bundle.

In §3 we prove that ®* is exact functor on the category of smooth admissible representations and
that ®*(r) is Hausdorff for any reducible smooth admissible representation 7. In §§3.1] we introduce
the class of good representations of p,,. The construction of this class is based on representations with
simple geometric descriptions that we call geometric representations. We prove that this class includes
the principal series representations of G,,, is closed under ® and that its objects are acyclic with respect
to ®. In order to prove the last two statements we use Lemma BTl (the key lemma), which is proved in
g6l

In §4] we compute the depth derivative of a monomial representation. This computation is based on
the computation of certain geometric representations. We formulate the results of this computation in

8444l and prove them in §§5.8
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In 45 we give the postponed proofs of the technical lemmas that were used in sections Bl and [ For
this we need some preliminaries on homological algebra, topological linear spaces and Schwartz functions
on Nash manifolds, which we give in subsections 511 [5.3] and

In 6] we prove the key lemma (Lemma BIT]).

In Appendix [Alwe prove a version of the Shapiro lemma which is crucial for the proof of Lemma BI.11

1.4. Acknowledgements. We cordially thank Joseph Bernstein for fruitful discussions.

Part of the work on this paper was done during the program “Analysis on Lie Groups” at the Max
Planck Institute for Mathematics (MPIM) in Bonn. The authors would like to thank the organizers of
the programm, Bernhard Kroetz, Eitan Sayag and Henrik Schlichtkrull, and the administration of the
MPIM for their hospitality.

2. PRELIMINARIES
2.1. Notation and conventions.

e We will denote real algebraic groups by capital Latin letters and their complexified Lie algebras
by small Gothic letters.

e Let g be a complex Lie algebra. We denote by M(g) the category of (arbitrary) g-modules. Let
1) be a character of g. For a module M € M(g) denote by M? the space of g-invariants, by MY
the space of (g, 1)-equivariants, by M, the space of coinvariants, i.e. My := M/gM and by M 4
the space of (g, 1)-coequivariants, i.e. Mgy = (M @ (—1))q.

e G, := GL(n, F), we consider the standard embeddings G,, C G,, for any m > n, we denote the
union by G and all the groups we will consider will be embedded to G in a standard way.

e By a composition of n we mean a tuple (ng, ..., nx) of natural numbers such that ny+- - -+ng = n.
By a partition we mean a composition which is non-increasing, i.e. ny > --- > ng.
e For a composition A = (nq,...,ng) of n we denote by Py the corresponding block-upper triangular

parabolic subgroup of Gy,. For example, P, . 1) = B, denotes the standard Borel subgroup,
Py = Gy and P, _1 1) denotes the standard maximal parabolic subgroup that includes P,.

e We denote by P, C G, the mirabolic subgroup (consisting of matrices with last row (0,...,0,1)).

e Let V,, € P, be the last column. Note that V,, = F* ! and P, = G,_1 X V,,. Let U,’j =
Vi—k+1Vn—k42 -V, and S,’j = Gn,kaj. Note that Uff is the unipotent radical of S,’i. Let
N, =U].

e Fix a non-trivial unitary additive character 6 of F, given by 6(z) = exp(y/—17 Re ).

e Let ¢F : UF — F be the standard non-degenerate homomorphism, given by F(u) =

1 _
> ik Ujj+1 and let PF =0 ok

We will usually omit the n from the notations U and S¥, and both indexes from ¥ .

Definition 2.1.1. Define the functor ® : M(p,) — M(pn—1) by ®(7) := my,, 4 @ |det |1/2,

For a p,-module T we define derivative by E*(r) := @5~ (1) 1= w1 yu—1 @ | det [T*=D/2. Clearly it
has a structure of a pn_py1 - representation. For convenience we will also use untwisted versions of the
above functors, defined by ®(r) := ®(r) @ | det |V/2, and E¥(r) := EF(7) @ | det |-=1/2,

2.2. Smooth representations.

Theorem 2.2.1 (Casselman-Wallach).

(i) The category M(QG) is abelian.
(i1) Any morphism in Mo (G) has closed image.

Theorem 2.2.2 (Casselman subrepresentation theorem, see [CMR2], Proposition 8.23). Let 7 be a finitely
generated admissible (g, K)-module and P be a minimal parabolic subgroup of G. Then there exists a
finite-dimensional representation o of P such that m may be imbedded into IndIGD(U).
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2.3. Parabolic induction and Bernstein-Zelevinsky product. Let G be a real reductive group, P
be a parabolic subgroup, M be the Levi quotient of P and pr : P — M denote the natural map.

Notation 2.3.1.

e For a Lie group H we denote by Ay the modulus character of H, i.e. the absolute value of the
determinant of the infinitesimal adjoint action.

e For m € M(M) we denote by I§;(r) the normalized parabolic induction of w, i.e. the space of
smooth functions f : G — 7w such that f(pg) = Au(p)'/2Ag(p)=2n(pr(p))f(g), with the action
of G given by (If;(m)(9)[)(x) == [(xg).

2.3.1. Bernstein-Zelevinsky product. We now introduce the Bernstein-Zelevinsky product notation for
parabolic induction.

Definition 2.3.2. If a = (n1,...,nx) 8 a composition of n and m; € M(Gy,) then 1 ® -+ @ T}, s a
representation of Lo = Goy X -+ X Gy, . We define

ﬂ-lXXﬁk:I]Cj:(ﬂ-1®®7rk)

m X -+ X m, will be referred to below as the Bernstein-Zelevinsky product, or the BZ-product, or
sometimes just the product of 7y, ..., 7. It is well known (see e.g. [Wall92, §§12.1]) that the product is
commutative in the Grothendieck group.

2.4. Schwartz functions on Nash manifolds. In the proofs of Theorems [Al and [B] we will use the
language of Schwartz functions on Nash manifolds, as developed in [AGOS].

Nash manifolds are smooth semi-algebraic manifolds. In sections Bl and @ only algebraic manifolds
are considered and thus the reader can safely replace the word “Nash” by “real algebraic”. However, in
section Bl we will use Nash manifolds which are not algebraic.

Schwartz functions are functions that decay, together with all their derivatives, faster than any polyno-
mial. On R" it is the usual notion of Schwartz function. We also need the notion of tempered functions,
i.e. smooth functions that grow not faster than a polynomial, and so do all their derivatives. For precise
definitions of those notions we refer the reader to [AGO8]. In this section we summarize some elements
of the theory of Schwartz functions. We will give more details in §§5.5

Notation 2.4.1. Let X be a Nash manifold. Denote by S(X) the Fréchet space of Schwartz functions
on X. For any Nash vector bundle € over X we denote by S(X, &) the space of Schwartz sections of &.

Proposition 2.4.2 (JAG0S], Theorem 5.4.3). Let U C X be a (semi-algebraic) open subset, then
S(U,E) ={peS(X,E)| ¢is0on X \U with all derivatives}.

Notation 2.4.3. Let Z be a locally closed semi-algebraic subset of a Nash manifold X. Let £ be a Nash
bundle over X. Denote B _

Sx(Z,8) =8S(X - (Z-2),)/S(X — Z,¢&).
Here we identify S(X — Z, &) with a closed subspace of S(X —(Z —Z), ) using the description of Schwartz
functions on an open set (Proposition[2.4.2).

Corollary 2.4.4. Let X := Ui.c:l X; be a Nash stratification of a Nash manifold X, i.e. Uf:j X; is an
open Nash subset of X for any j. Let £ be a Nash bundle over X.

Then S(X,E) has a natural filtration of length k such that Gr'(S(X,€)) = Sx(X;, ).

Moreover, if Y is a Nash manifold and X CY is a (locally closed) Nash submanifold then Sy (X, &)
has a natural filtration of length k such that Gri(Sy (X, €)) = Sy (X;, &).

Notation 2.4.5. Let X be a Nash manifold.

(i) We denote by Dx the Nash bundle of densities on X . It is the natural bundle whose smooth sections
are smooth measures. For the precise definition see e.g. [AGI0)].

(ii) Let ¢ : X — Y be a map of (Nash) manifolds. Denote Di¥ := Dy := ¢*(D%) ® Dx.

(i4i) Let £ — Y be a (Nash) bundle. Denote ¢°(£) = ¢*(€) @ D5¥.

Remark 2.4.6. If ¢ is a submersion then for all y € Y we have D§|¢71(y) = Dy-1(y)-


http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
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2.5. Tempered functions. Analyzing smooth representations from a geometric point of view we en-
counter two related technical difficulties:

e Most characters of F'* are not Nash
e 1) is not Nash.

This makes the group action on the geometric objects that we consider to be not Nash. This could cause us
to consider geometric objects outside the realm of Nash manifolds. In order to prevent that we introduce
some technical notions, including the notion of G-tempered bundle which is, roughly speaking, a Nash
bundle with a tempered G-action. The price of that is the need to make sure that all our constructions
produce only Nash geometric objects.

Notation 2.5.1. Let X be a Nash manifold. Denote by T(X) the space of tempered functions on X.
For any Nash vector bundle £ over X we denote by T (X,E) the space of tempered functions of &.

Note that any unitary character of a real algebraic group G is a tempered function on G.

Definition 2.5.2. Let X be a Nash manifold and let £ and E' be Nash bundles over it. A morphism of
bundles ¢ : € — &' is called tempered if it corresponds to a tempered section of the bundle Hom(E,E').

Note that if ¢ : &€ — & is a tempered morphism of bundles, then the induced map C*(X,€) —
C>(X,&") maps S(X,€&) to S(X,&’) and T(X, &) to S(X,&").

Definition 2.5.3. Let a Nash group G act on a Nash manifold X. A G-tempered bundle £ over
X is a Nash bundle & with an equivariant structure ¢ : a*(E) — p*(E) (here a : G x X — X s the
action map and p : G x X — X is the projection) that is a tempered morphism of bundles such that
for any element L in the Lie algebra of G and any open (semi-algebraic) subset U C X the derived map
a(L): C=(U,&) = C=(U,E) preserves the sub-space of Nash sections of € on U.

Definition 2.5.4. e We call a character x of a Nash group G multiplicative if x = p o, where
X : G — F* is a homomorphism of Nash groups and p: F* — C* is a character. Note that all
multiplicative characters are tempered.

o A multiplicative representation of G is a product of (finite-dimensional) Nash representation of
G with a multiplicative character.

e Let a Nash group G act on a Nash manifold X. A G-tempered bundle £ over X is called G-
multiplicative bundle if for any point x € X, the fiber £, is a multiplicative representation of
the stabilizer G.

3. PROOF OF EXACTNESS AND HAUSDORFFNESS (THEOREM [Al)

We will prove Theorem [A] for the “untwisted” functor E*. Clearly, these versions are equivalent.
The proof is based on the following theorem.

Theorem 3.0.1. There exists a sequence of collections {Cn}52, of topological Hausdorff p,-
representations such that

(1) Any representation parabolically induced from a finite-dimensional representation of the torus lies
mn Chp.

(2) For any m € C,,, m @ (=) is v,-acyclic (as a linear representation,).

(3) For any w € C,,, we have my, o € Cp_1.

We will prove this theorem in §§3.11

Corollary 3.0.2. Any p,-representation w of the class C, is acyclic with respect to E* and Ek(ﬂ') s
Hausdorff, for any 0 < k < n.

This corollary follows from Theorem B.0] using the following lemma that we will prove in §§5.2

Lemma 3.0.3. Let 7 be a representation of p,. Suppose that 7 is i)—acyclic and &)(ﬂ) 1s Ek—acyclic.
Then 7 is E* T -acyclic.



TWISTED HOMOLOGY FOR THE MIRABOLIC NILRADICAL 7

Corollary 3.0.4. Any representation © of Gy, parabolically induced from a finite-dimensional represen-
tation of the torus is acyclic with respect to E¥ and E* () is Hausdorff, for any 0 < k < n.

Now we are ready to deduce Theorem [Al The deduction follows the lines of the proof of [CHMO0,
Lemma 8.4].

Proof of Theorem[4l (@) First of all, note that it is enough to show that for any 7 € M(G,), the
u™*_representation 7 ® (—¥) is acyclic.

We will prove by downward induction on [ that H'(uk 7 @ (—¢¥)) = 0 for any 7 € M(G,,). For
[ > dimu” it follows from the Koszul complex (see §§45.1.1). Let us assume that the statement holds for
I+ 1 and prove it for I. By the Casselman subrepresentation theorem (Theorem 2:2.2)), one can embed
T into a representation I parabolically induced from a finite dimensional representation of the torus.
Consider the short exact sequence

0—>nm—I1—1I/m—0.
By Theorem2.2.11 I/7 € M(G,,) and thus, by the induction hypothesis, H'*!(uk (I /m)@(—¢F)) = 0. By
CorollaryB.04l H(uF, I®(—k)) = 0foralli > 0. Thus, H (uf, 7@ (—yk)) = HF (uk (I/m)2(—yk)) =
0.

@) By the Casselman subrepresentation theorem (Theorem [2Z22), one can embed 7 into a represen-
tation I parabolically induced from a finite dimensional representation of the torus. By (II), we have an
embedding E*(7) < E* (I). By Corollary B0, E*(I) is Hausdorff and hence E*(r) is Hausdorff.

O

3.1. Good p,-representations and the key lemma. The following lemma will play a key role in this
and the next section.

Lemma 3.1.1 (The key lemma). Let T be a Nash linear group, i.e. a Nash subgroup of GLi(R) for
some k, and let R:= P, x T and R’ := G,—1 x T. Let Q < R be a Nash subgroup and let X :== R/Q
and X' := V,\X. Note that X' = R'/Q’, where Q" = Q/(QNV,). Let Xo = {x € X : ¥|w,), = 1}. Let
X} be the image of Xo in X'. Let & be an R'-tempered bundle on X' and & := p%.(E') be its pullback to
X. Then

(1) Hi(0,,S(X,&) ® (=) =0 for any i > 0.

(i1) X{ is smooth

(i) Ho(0,,S(X,E) @ (=) = S(X{, Elxy) as representations of pn—1.

We will prove this lemma in §6

Definition 3.1.2. Let B,, < G,, denote the standard (upper-triangular) Borel subgroup. In the situation
of the above lemma, assuming that (B, N P,) x T has finite number of orbits on X, and that & is
R’ -multiplicative we call the representation S(X, ) a geometric representation of p,,.

Definition 3.1.3. We define a good extension of nuclear Fréchet spaces to be the following data:

(1) a nuclear Fréchet space W
(2) a countable descending filtration F'(W) by closed subspaces
(3) a sequence of nuclear Fréchet spaces W;
(4) isomorphisms ¢; : F*FY(W)/F{(W) — W;
such that the natural map W — 1131 W/FY W) is an isomorphism of (non-topological) linear spaces.
In this situation we will also say that W is a good extension of W;. If a Lie algebra g acts on W and
on W;, preserving F* (W) and commuting with ¢ we will say that this good extension is g-invariant.

Definition 3.1.4. We define the collection of good representations of p, to be the smallest collection that
includes the geometric representations and is closed with respect to py-invariant good extensions.

We will prove the following concretization of Theorem BT}
Theorem 3.1.5.

(1) The representations of G, parabolically induced from a finite dimensional representation of the
torus are good representations of py,.
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(2) For any good representation w of pn, ® @ (—1) is v,-acyclic (as a linear representation).
(3) For any good representation m of p,, the representation Ty, 4 is good representation of pp—_1.

For the proof we will need some lemmas.

Lemma 3.1.6. Let T be a Nash linear group, and let R := P, X T and R’ := G,,_1 X T. Let Y be an
R-Nash manifold. Let X CY be an R-invariant (locally closed) Nash submanifold such that (B, NP,)xT
has finite number of orbits on X. Let € be an R-multiplicative bundle on Y. Then the representation

Sy (X, &) is good.
We will prove this lemma in §§5.61

Lemma 3.1.7. Let G be a Nash group and H be a closed Nash subgroup. Let x be a multiplicative
character of H. Let K be a closed Nash subgroup of G such that KH = G and x|xnm is a Nash
character. Let £ = G Xy x be the smooth bundle on G/H obtained by inducing the character x. Then &
admits a structure of a G-multiplicative bundle.

We will prove this lemma in §§5.7

Corollary 3.1.8. Let x be a character of the torus T,, < B, < G, continued trivially to B,,. Let
= Indg: (x). Then there exists a Gy-multiplicative bundle £ on G, /By, such that 1 = S(Gy/Bp,E).

Lemma 3.1.9. Let g be a Lie algebra. Let (w, F, ;) be a g-invariant good extension. Suppose that 7; are
g-acyclic and Ho(g, m;) is Hausdorff for any i. Then 7 is acyclic and Ho(g, ) together with the induced
filtration Fi(Ho(g, 7)) = F'(w)/(gm N Fi(r)) and the natural morphisms F*(Ho(g, 7))/ F** 1 (Ho(g, m)) —
Ho(g, m;) form a good extension. In particular, Ho(g, ) is Hausdorff.

We will prove this lemma in §§5.41

Proof of Theorem [T 1.2

@) Let o be a finite dimensional representation of the torus and let 7 € M(G,,) be its parabolic
induction. Without loss of generality, by the definition of goodness, we can assume that o is a
character. In this case 7 is good by Corollary B.I.8 and Lemma B.1.6l

@) The key lemma (Lemma [BIT]) implies that 7 ® (—) is acyclic for any geometric representation
7. Hence Lemma [B.T.9] implies by induction that 7 ® (—1) is acyclic for any good representation
TT.

@) If 7 = S(X,€) is a geometric representation then by the key lemma (Lemma BT, 7y, » =
S(X0, & xy), where £ and X are as in the key lemma. Let T denote the product of T" with the

center of G,_1. Clearly, T acts on Xjand Bp,_1 X T = (B,—1 N P,_1) X T has a finite number
of orbits on X{. Thus, by Lemma B0 7y, 4 is good.

Now let m be a good representation. We can assume by induction that 7 is a good extension
of m;, where m; are good and (7;)y,, . are good. Then Lemma [B.T.9 implies that 7y, 4 is a good
extension of (m;)y, . and hence is good.

O
For the proof of Theorem [B] we will need the following corollary of Lemma [B.1.9 and Theorem [3.1.5]

Corollary 3.1.10. Let (m, F,m;) be a pp-invariant good extension of good representations of pn. Then
E¥ () together with the induced filtration defined by the images of E¥(F'(r)) and the natural morphisms
F{(E*(n))/FHY(E* (7)) — E*(7;) form a good extension.

4. HIGHEST DERIVATIVE OF MONOMIAL REPRESENTATIONS (PROOF OF THEOREM [B])

We first sketch the proof for the case of product of two characters. We believe that using an appropriate
notion of Fréchet bundles it will be possible to upgrade this proof to the case highest derivative of product
of two arbitrary representations, which by induction will give a more straightforward proof of Theorem
Bl

Since we do not currently have a proof for a product of two representations, in §§4.3 - we prove
Theorem [B] directly for a product of & characters.
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4.1. Sketch of proof for the case k = 2. First, note that there exists a GG,,-multiplicative line bundle
& over G/ Py, ny) such that x1 X x2 = S(Gn /P, ny), €) and the action of Py, ,,) on the fiber is given
by trivial extension of x1 ® x2, twisted by a power of the determinant.

Let w, € G, denote the longest Weyl group element. Let 1,22 € X be the classes of 1 and w,, in
correspondence and let O; and Oy be their P,-orbits. Note that X = O; UOs. Thus, by Corollary 22441
we have a short exact sequence

0—8(02,8) = S(X,E) = Sx(01,€) = 0.

By Lemma BT S(02,&) and Sx(01,€&) are good. By Theorem BT (02, &) and Sx(04,&) are
acyclic with respect to ® and thus we have a short exact sequence
0— D(S(02,8)) = P(S(X,E)) = (Sx(01,€)) — 0.
The proposition follows from the following 2 statements:
(1) 2(Sx(01,€)) =0
(2) ©(5(02,8)) = (m1)|Gn, -1 X (72)] Gy 1
Let us first show (). Using the results of §3 and a version of the Borel lemma (Lemma B5.17),
we reduce to the statement ®(S(01,&’)) = 0 for any P,-multiplicative equivariant bundle £’. Let
p: O = V,\O1 be the natural projection. Using the nilpotency of the action of V,, on & we reduce
to the case & = p’(£”). This case follows by the key lemma (Lemma [BIT)) from the inclusion P,, =
PN P(n1,nz) D V,.
The proof of () is a computation based on the key lemma (Lemma BIT]).

4.2. Structure of the proof. Let A = (nq,...,ny) be a composition of n. The monomial representation
is isomorphic to S(G, /Py, £) for some G,,-multiplicative line bundle £ over X := G,,/Py. Let Oy, ..., 0
be the P,-orbits on G, /Py, where O; is the open orbit. We reduce the problem to the following two
tasks:

e to compute E¥(S(04,&))
e to show that E¥(Sx (O;,&’)) for any P,-multiplicative equivariant bundle £ on X any 2 < i < k.
We do both tasks by induction using the key lemma (Lemma BIT]) and the fact that the P,_j-orbits on
the geometric quotient V,,\O; looks exactly like O; when n is replaced by n — 1.
In §§23 we study the geometry of P,-orbits on X. In §§44] we reformulate the above tasks in explicit
lemmas, that will be proven in §§5.8 In §J4.5 we prove Theorem [Bl using those lemmas.

4.3. Geometry of P,-orbits on flag varieties. Let A = (n1,...,n;) be a composition of n. In this
subsection we describe the orbits of P, on G, /Py. Note that the scalar matrices act trivially on G/ Py
and thus P, orbits coincide with P, ;-orbits. By Bruhat theory, P,_1,1)\Grn/Px can be identified with
the set of double cosets of the symmetric group permuting the set {1,...,n} by subgroups corresponding
to P(n—1,1) and Py respectively. The first subgroup is the stabilizer of the point n, and the second is the
subgroup of all permutations that preserve the segment [n;_1+1,n;] for each 7. Thus, the double quotient
consists of k elements. Now we want to find a representative in G,, for each double coset. We can choose
all of them to be powers of the standard cyclic permutation matrix. This discussion is formalized in the
following notation and lemma.

Notation 4.3.1.

e Let c € G,, denote the standard cyclic permutation matriz, i.e. ce; = e;y1 fori < n and ce, = eq,
where e; are basis vectors.
mf\ = 22:1 ny. In particular, m§ =n.
Forl1<i<k,let wg\ = c”_miﬂﬂ e Gy,
Py = wi Py(w})™"
Let z be the class of wh in Gy /P and O := P,x,.
Y= PyNP,.

See Appendix [B] for examples of the objects described in this and the following notations.
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Lemma 4.3.2.
(i) The stabilizer of % is Q5.
(ii) O% are all distinct.
(i) Gu/Pr = U, 0
(iv) For anyl <k, Ué:1 O} is closed in G, /Py .
We will also be interested in the representatives of P,-orbits on G,/ P}'\.
Notation 4.3.3. Let A = (n1,...,ng) be a composition of n. For 1 <i,j <k,
o Let wy := (w})~'w) € G,
o Let ' be the class of wy in Gy/Pi and OY := P,z .
Corollary 4.3.4. Fizi < k. Then
(i) The stabilizer of zgj is Q&
(ii) OF are all distinct.
(iii) G/ P =Uj_, 0F
(iv) For anyl <k, Ué’:l O is closed in G,/ P;.
{:cf\] ?:1 is a full system of representatives for P,-orbits in Gy, /P}, and the stabilizer of zgj 18 Q&
Notation 4.3.5. For any 1 < i <k, denote \; = (n1,...,ni—1,7 — 1,niq11,...,Ng).
The following lemma is a straightforward computation (see Appendix [Blfor a particular example.).

Lemma 4.3.6. Let A = (ny,...,ny) be a composition of n. Let X := P/Q% and Z := (V,)\X be the
geometric quotient. Note that Z = Gn_l/P};,, where N = No—ig1-
Let L =Q4NV, and Zo == {9 € Gn—1 : ¥(gL) =1}. Note that Zy is right-invariant with respect to
P,. Let Zy := Zy/ P}, C Z.
Then x¥, € Zy if and only if 1 < j < i.

4.4. Derivatives of quasi-regular representations on P,-orbits on flag varieties. The proof of
Theorem [B]is based on two lemmas that we formulate in this subsection and prove in §45.8

Lemma 4.4.1. Let A = (n1,...,n;) be a composition of n. Let Y be a Nash P,-manifold and & be
a P,-multiplicative bundle on'Y. Let xg € Y be a point with stabilizer QY and let X := P,xo. Let
7 =S8y (X,E). Then E (1) = 0.

Notation 4.4.2. e Denote by X the set of all characters of F*.
o Leta=(ay,...,ax) € XF. Denote by Ex.a the character of Ly defined by
k
E)\,a(gla cee agk) = H(al(det(gi))
i=1

and by &x.o the character of Ly defined by
k

_ 1/2 n—mt —mi-1
Enalgr--.08) = Exa A 1, = [ (udet(g:))] det(gy)| "™ =3 /%),
i=1
o Let Xxa and X, , be the extensions of {x o and E)\,a to Py.
e Denote by Xg\,a and Yf\,a the characters of Pi defined by xg\ﬁa(g) = Yra((Wl)"tguwl) and
Xf\,a(g> = X/\,a((wg\)ilgwg\)‘
Lemma 4.4.3. Let A = (n1,...,ny) be a composition ofn. Let X := P, /Q%. Let & be a P,-multiplicative
line bundle on X. Let m := S(X,&). Let xg € X be the class of the trivial element of P,. Consider
Elzy as a character of QY. Suppose that this character is the restriction of Xi.a to @, for some a =
(a1,...,ax) € X*. Then

El(ﬂ.)lani = X(nl)y(al‘d5t|71/2) Koo X X(nk,i),(ak,”det\*l/?) X X("kfwlfl)v(akfwl) Koo X X(nkfl),(ak)
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4.5. Proof of Theorem [Bl

Lemma 4.5.1. Let o« = (aq,..., 1) € Xk, There exists a G, -multiplicative line bundle £ over G/ Py
such that X (n,),(a1) X = X X(np),(ar) = S(G/Px,E) and the action of Py on the fiber Ey1 s given by the
character X, q-

This lemma follows from Lemma [3.1.71

Proof of Theorem[B. Let X := G,,/Px and let £ be the G,-multiplicative equivariant bundle given
by Lemma 51l We have to show that E*(S(X,E)) = X(ni—1),(a1) X *°* X X(np—1),(ap)- Recall that
by Lemma B32, G, /Py = Ule Of. Thus, by Corollary 244 there is a finite filtration on S(X, &)
such that Gr'(S(X,€)) = Sx(04,€). By Lemma BI6 each Sx(0%,€) is a good representation of
prn and thus, by Theorem B.LH Sx (05, &) is Ef-acyclic. Thus, E¥(S(X,£)) has a filtration such that
Gri(E*(8(X,€))) = E¥Sx(0%,€)). By Lemma AT, E*(Sx(0%,€)) = 0 for all i < k. By Lemma
E43
Ek(S(OZAaE)HGn—k = X(ni—1),(en) X "7 X X(ng—1),(ak)
Thus,
E*(S(X, e, = B*(S(O3, )G = X(ni—1),(a1) X+ X X(np—1),(ax)
(|

Remark 4.5.2. Note that this proof gives a description of E'(x1 x --- x x&) for an arbitrary . More
precisely, we get a filtration on this space and a description of each quotient. However, this is an infinite
filtration, indexed by a rather complicated ordered set.

In fact, we have a recipe to compute ®(S(P/Q%.E)) for any multiplicative bundle E. First, we use
Lemma [5.6.1 to reduce to the case when & is the pullback of a bundle &' on the geometric quotient
Po/Q4Vy. Then the key lemma (LemmalZ 1) says ®(S(P/Q%,E)) = S(X{,E'), where X}y C Py /Q4 Vi
The set X{, is described in Lemma[].3.01 This gives us a filtration on S(X{,&’) such that the associated
graded pieces are of the type S(Pn,l/Qi,,Ejk) where 1 < j < i and k > 0.

Since the orbits of P, on X/Py are P,/Q%, we can use this recipe in order to describe the value of

the functor ® on products of finite-dimensional representations and then, proceeding inductively, we can
describe the functor E' on such representations.

5. PROOFS OF SOME TECHNICAL LEMMAS

5.1. Preliminaries on homological algebra.

Definition 5.1.1. Let C be an abelian category. A family of objects A C Ob(C) is called a generating
family if for any object X € Ob(C) there exists an object Y € A and an epimorphism' Y — X.

Definition 5.1.2 ([GMS8], I11.6.3). Let C and D be abelian categories and F : C — D be a right-
exact additive functor. A family of objects A C Ob(C) is called F-adapted if it is generating, closed
under direct sums and for any acyclic complex --- — Az — As — Ay — 0 with A; € A, the complex
<o = F(As) = F(A2) — F(A1) — 0 is also acyclic.

For example, a generating, closed under direct sums system consisting of projective objects is F-adapted
for any right-exact functor F. For a Lie algebra, the system of free g-modules (i.e. direct sums of copies
of U(g)) is an example of such system.

The following results are well-known.

Theorem 5.1.3. Let C and D be abelian categories and F : C — D be a right-exact additive functor.
Suppose that there exists an F-adapted family A C Ob(C). Then F has derived functors.

Remark 5.1.4. Note that if the functor F has derived functors, and A is a generating class of acyclic
objects then A is F-adapted.
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Lemma 5.1.5. Let A, B and C be abelian categories. Let F : A — B and G : B — C be right-exact
additive functors. Suppose that both F and G have derived functors.

(i) Suppose that F is exact. Suppose also that there exists a class € C Ob(A) which is G o F-adapted
and such that F(X) is G-acyclic for any X € €. Then the functors L'(GoF) and L'Go F are isomorphic.

(i) Suppose that there exists a class € C Ob(A) which is G o F-adapted and F-adapted and such that
F(X) is G-acyclic for any X € E. Let Y € A be an F-acyclic object. Then L'(G o F)(Y) is (naturally)
isomorphic to L'G(F(Y)).

(iii) Suppose that G is exact. Suppose that there exists a class € C Ob(A) which is G o F-adapted and
F-adapted. Then the functors L'(G o F) and G o L'F are isomorphic.

5.1.1. Lie algebra homology. Let g be a Lie algebra and © € M(g). The homology of g with coefficients
in 7 are defined by H;(g,7) := L‘C(r), where C : M(g) — Vect is the functor of coinvariants and L‘C
denotes the derived functor. The homology H;(g, 7) is equal to the i-th homology of the Koszul complex.

(1) 0+ T+ gRm< -« A'(g) @7« 0.
The following lemmas are standard and can be easily deduced from Lemma [5.1.5]

Lemma 5.1.6. Let h C g1 C g be Lie algebras. Let 1) be a character of h. Suppose that g1 stabilizes
(h,v). Let F : M(g) — M(g1) be the functor defined by F(m) = my . Then LY (F)(m) = H;(h, 7@ (—v)).

Lemma 5.1.7. Let g be a Lie algebra and i be its Lie ideal. Let m be a representation of g. Suppose that
m is i-acyclic and Ho(i,7) is g/i-acyclic. Then 7 is g-acyclic.

The last lemma is in fact a special case of the Hochschild-Serre spectral sequence.

5.2. Acyclicity with respect to composition of derivatives(Proof of Lemma [3.0.3)). By Lemma
BETH(ii), it is enough to show that there exists a class of representations of p,, that is CT)—adapted, Ek+1
adapted, and such that for every object 7 in the class, E)(T) is Ek—acyclic. We claim that the class of free
U (pn)-modules satisfies this conditions.

For this it is enough to show that U (p,,) is E**! and ® acyclic and ®(U(p,,)) is E* acyclic. By Lemma
it is equivalent to showing that

Hi(uf;rl’ U(pn) ® (_waJrl)) = Hi(n’m U(pn) ® (—%)) = Hi(u']fz—la U(Pn)un,wn ® (—1#5_1)) =0,

for any i > 0. This follows from the fact that U(p,) ® (—1**1) is free u¥*1 module, U(p,,) ® (—1,) is free
0,,- module and U (py)v,, 4, @ (—1F_,) is free uf_,-module. This is immediate by the PBW theorem.

5.3. Preliminaries on topological linear spaces. We will need some classical facts from the theory of
nuclear Fréchet spaces. A good exposition on nuclear Fréchet spaces can be found in [CHMO00, Appendix
Al.

Definition 5.3.1. We call a complex of topological vector spaces admissible if all its differentials have
closed 1mages.

Proposition 5.3.2 (see e.g. [CHMO00|], Appendix A).
(1) LetV be a nuclear Fréchet space and W be a closed subspace. Then both W and V/W are nuclear
Fréchet spaces.
(2) Let
C:0=Ci—--—=C,—0
be an admissible complex of nuclear Fréchet spaces. Then H'(C) are nuclear Fréchet spaces.
(3) Let
C:0=-Ci—--—=0C,—0

be an admissible complex of nuclear Fréchet spaces. Then the complex C* is also admissible and
H;(C*) = H(C)*.



TWISTED HOMOLOGY FOR THE MIRABOLIC NILRADICAL 13

Corollary 5.3.3. Let g be a (finite dimensional) Lie algebra and m be its nuclear Fréchet representation
(i.e. a representation in a nuclear Fréchet space such that the action map g @ m — 7 is continuous).
Suppose that H;(g,m) are Hausdorff for all i > 0. Then H;(g,7) are nuclear Fréchet and H'(g,7*) =
Hi (ga ﬂ-)* .

Proposition 5.3.4 (see e.g. [CHMO0], Appendix A).

Let 0 =V — W — U — 0 be an exact sequence of nuclear Fréchet spaces. Suppose that the embedding
V — W is closed. Let L be a nuclear Fréchet space. Then the sequence 0 — VRL — W&L — URL — 0
is ezact and the embedding VRL — WXL is closed.

5.4. Co-invariants of good extensions (Proof of Lemma [B.1.9]). Let us first prove the following
special case.

Lemma 5.4.1. Let 0 = L — M — N — 0 be a short exact sequence of nuclear Fréchet representations
of a Lie algebra g. Suppose that L and N are acyclic and that Ho(g, L) and Ho(g, N) are Hausdorff.

Then M is acyclic, Ho(g, M) is Hausdorff, and 0 — Ho(g, L) — Ho(g, M) — Ho(g, N) — 0 is a short
exact sequence.

Proof. The long exact sequence implies that M is acyclic and 0 — Ho(g, L) — Ho(g, M) — Ho(g, N) = 0
is a short exact sequence.

By Proposition BE32(B) 0 — N* — M* — L* is exact, by Corollary (.33 L* is g-coacyclic (i.e.
H'(g, L*) = 0 for i > 0) and hence 0 — (N*)? — (M*)9 — (L*)® — 0 is exact. We have to show that
gM is closed in M. For that it is enough to show that for any € M, if for any f € (M*)? we have
f(z) =0 then & € gM. Let y be the image of  in N. We know that any f € (N*)? vanishes on y, and
hence y € gN. Hence 32/ € gM such that  — 2’ € L. Since the map (M*)? — (L*)% is onto, every
element in (L*)? vanishes on @ — 2’. Thus  — 2’ € gL and hence x € gM. O

We will also need the following lemma.

Lemma 5.4.2. Let Cy — --- — C} be a complex of linear spaces. Suppose that each C; is equipped
with a descending filtration F*'(C;) such that F°(C;) = C;, (F'(C;) = 0 and lim C;/F'(C;) = C}
and d;(F'(C;)) C FY(Cjt1). Suppose that F'(Cy)/F™*(Cy) — -+ — FY(Cy)/F™1(Cy) is exact. Then
Ci— -+ — Cy is also exact.

Proof. Let m € Kerd; C C;. Let m; := [m] € C;/F(C;). We want to construct n € C;_; such that
dj—1(n) =m. Since C;j_y 2 lim. Cj_;/F*(C;_1) for that it is enough to construct a compatible system
of representatives n; € Cj_1/F*(Cj—1). We build this system by induction. Suppose we constructed
n; and left n be an arbitrary lift of n; to C;_1/F"™'(C;_1). Consider ¢ := m;;1; — d(n;). Then
e € F'(C;)/F"™(C;). Moreover, d(¢) = 0. Hence there exists § € F'(Cj_1)/F"™(C;_1) such that
d(9) = e. Define n;4q :=n} + . O

Proof of Lemma[F1.9 Lemma [BZAI implies by induction that m/Fi(m) is acyclic and A; :=
Ho(g, 7w/ Fi(m)) is Hausdorff, and hence is a nuclear Fréchet space. Lemma [.ZA1] also implies that
A; — A;y1 is onto. Define Ay := lim. A; (as a linear, non-topological, representation). Consider
the Koszul complex of 7 extended by As:

(2) 0+ AT+ gRm -+ A'(g) @7« 0.

LemmalbZ2limplies that the sequence ([2]) is exact. Hence 7 is acyclic and the natural map Hy(g, 7) = Ao
is an isomorphism (of vector spaces).
Let p; : # — 7/F*(mw) denote the natural projection. The exactness of (2)) implies

gm = ﬂpfl(g(ﬂ/Fi(W)))

which in turn implies that gr is closed and thus Hg(g, 7) is a nuclear Fréchet space.
Consider the short exact sequence 0 — F'(7) — m — «/(F*(m)) — 0. We showed that it consists of
acyclic objects and that Ho(g, F(7)) and Ho(g, 7/(F*())) are Hausdorff. By Lemma [E.41] this implies
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that 0 — Ho(g, F*(7)) — Ho(g, ) — Ho(g, 7/(F*())) — 0 is a short exact sequence of nuclear Fréchet
spaces and hence the image of Ho(g, F*(7)) < Ho(g, 7) is closed.

Note that F*(Ho(g, 7)) = Ho(g, F*(7)). To sum up, Ho(g, 7) is a nuclear Fréchet space, F*(Ho(g, 7))
are closed, the natural morphisms F*(Ho(g, 7)) — Ho(g, m;) are isomorphisms and Hg(g,7) & Ay =
lim Ho (g, )/ (£ (Ho(g, 7)))- 0

5.5. More on Schwartz functions on Nash manifolds. In this subsection we will recall some prop-
erties of Nash manifolds and Schwartz functions over them. We work in the notation of [AGOS|, where
one can read about Nash manifolds and Schwartz distributions over them. More detailed references on
Nash manifolds are [BCRIS8] and [Shi8T].

Nash manifolds are equipped with the restricted topology, in which open sets are open semi-algebraic
sets. This is not a topology in the usual sense of the word as infinite unions of open sets are not necessarily
open sets in the restricted topology. However, finite unions of open sets are open and therefore in the
restricted topology we consider only finite covers. In particular, if £ over X is a Nash vector bundle it
means that there exists a finite open cover U; of X such that &|y, is trivial.

Fix a Nash manifold X and a Nash bundle £ over X.

An important property of Nash manifolds is

Theorem 5.5.1 (Local triviality of Nash manifolds; [Shi87], Theorem 1.5.12 ). Any Nash manifold can
be covered by a finite number of open submanifolds Nash diffeomorphic to R™.

Together with [AGO8| Corollary 3.6.3] this implies

Theorem 5.5.2. Let Y C X be a closed Nash submanifold. Then there exist open sunsets {U;}l_; C X

and Nash diffeomorphisms ¢; : R™ = U, such that Y C U™ U; and (bi_l(Ui NY) is a linear subspace of

R™.

Theorem 5.5.3 ([AGI0], Theorem 2.4.16). Let s : X — Y be a surjective submersive Nash map. Then
k

locally it has a Nash section, i.e. there exists a finite open cover Y = |J U; such that s has a Nash

1=1
section on each U;.

Corollary 5.5.4. An étale map ¢ : X =Y of Nash manifolds is locally an isomorphism. That means
that there exists a finite cover X = |JU; such that ¢|y, is an isomorphism onto its open image.

Corollary 5.5.5 (JAG09], Theorem B.2.3). Let p : X — Y be a Nash submersion of Nash manifolds.
Then there exist a finite open (semi-algebraic) cover X = |JU; and isomorphisms ¢; : U; = W, and
¥i = p(U;) =2 O; where W; C R% and O; C R¥ are open (semi-algebraic) subsets, k; < d; and ply,
correspond to the standard projections.

Notation 5.5.6. Let U C X be an open (Nash) subset. We denote by Nash(U, &) the space of Nash
sections of & on U.

Definition 5.5.7. We call a Nash action of a Nash group G on X strictly simple if it is simple (i.e. all
stabilizers are trivial) and there exists a geometric (separated) Nash quotient G\X (see [AGI0 Definition
4.0.4]).

Proposition 5.5.8 ([AGI0], Proposition 4.0.14). Let H < G < Gy, be Nash groups. Then the action of
H on G is strictly simple.

Corollary 5.5.9. Let H < G < Gy, be Nash groups. Let X be a transitive Nash G-manifold. Then there
exists a geometric quotient H\X.

We will use the following theorem that describes the basic properties of Schwartz functions on Nash
manifolds.
Theorem 5.5.10.

(i) S(R™) = Classical Schwartz functions on R™.
(i) The space S(X,E) is a nuclear Fréchet space.


http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
http://arxiv.org/abs/0812.5063
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
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(i1i) Let Z C X be a closed Nash submanifold. Then the restriction maps S(X,E) onto S(Z,E|z).
(iv) Let X =|JU; be a finite open cover of X. Then a global section f of £ on X is a Schwartz section
if and only if it can be written as f =Y -, f; where f; € S(U;, &) (eatended by zero to X ).
Moreover, there exists a tempered partition of unity 1 = > | \; such that for any Schwartz
section f € S(X,E) the section \;f is a Schwartz section of £ on U; (extended by zero to X ).
Note that this property implies that Schwartz sections form a cosheaf in the restricted topology.
(v) Tempered sections of a Nash bundle £ over a Nash manifold X form a sheaf in the restricted topology.
Namely, let U; be a (finite) open Nash cover of X and let s € T'(X,E). Then s is a tempered section
if and only if s|y, is a tempered section for any i.
(vi) For any Nash manifold Y,
S(X xY) =S8(X)BS(Y).

Part (i) is [AGO8, Theorem 4.1.3|, part (@) is [AGIL0, Corollary 2.6.2], for (i) see [AGO8| §§1.5], for
() and @) see [AGOS, §§5], for (i) see e.g. [AGI(, Corollary 2.6.3].
Lemma 5.5.11 (JAOS12], Appendix A). Suppose
0—-& =& —E—0
is an exact sequence of Nash bundles on X. Then
0—S8(X,&) = S(X, &) = S(X, &) — 0.
is an exact sequence of Fréchet spaces.

For the proof we will need the following lemma.

Lemma 5.5.12. Suppose
028686 %Be -0
is a finite exact sequence of Nash bundles on X. Then there exist an open Nash cover X = J| U; s.t. the
sequence
0— &y, B &y, B &y, =0
is isomorphic to the sequence

(3) 0=-U;jxV =U;jx(VieV) - U;jxVa—0

Where V; are finite dimensional vector spaces, U; x V' denotes the constant bundle with fiber V and the
maps in the sequence come from the the standard embedding and projection.

This lemma is essential proven in [BCR9S]|, but for completeness let us prove it here.

Proof. By the definition of a Nash bundle we can find a finite Nash open cover X = [J]' V; s.t. the
bundles &;|y, are constant. Thus we may assume that & are constant bundles with fibers W;. Choose
a basis for Wy and let I be the collection of coordinate subspaces. For any V' € I denote Uy = {z €
X|((d2)z)|v is an isomorphism}. Clearly Uy form a Nash cover of X. Thus we may assume that X = Uy
for some V. in this case d; gives an isomorphism between the constant bundle X x (W; @ V) and the
constant bundle X x Ws. Also dy gives an isomorphism between X x V' and X x W3. Those isomorphisms
gives identification of the sequence

0> X xW; X xWy - X xW3—0

with
02X xW 2 Xx(WiaV)—> X xV =0.

Proof of Lemma 55111

Step 1 The case when the sequence is as in (3)).
It follows immediately from the definition of Schwartz section of a Nash bundle.
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Step 2 The general case
Let X = |JU; be a finite open Nash cover s.t. the sequence

d d
0— 51|U]' 4 52|U]' # 53|Uj — 0
is isomorphic to a sequence
0-U;jxWV=U;jx(VieV,) - U; xVa =0

as in Lemma By Theorem E5T0([v) we can choose a partition of unity 1x = Y e; where
ej € C*(X) with Supp(e;) C U; and such that for any 4,5 and any ¢ € S(X,&;) we have
ejp € S(Uj, E;). Let ¢ € Ker(d;) C S(X,&;) then we have

6= e € Ker(dilsw, e,y =Y m(di-1lsw, & 1jv,)) C Im(di).

The following Lemma follows immediately from Corollary 555 and Theorem E5T0(w).

Lemma 5.5.13. Let p: Y — X be a Nash surjective submersion of Nash manifolds. Let s € T'(X,E) be
a set-theoretical global section of £. Then s is tempered if and only if p*s is a tempered section of p*E.

Lemma 5.5.14 ([AG09], Theorem B.2.4). Let ¢ : Y — X be a Nash submersion of Nash manifolds.
Then

(i) there exists a unique continuous linear map ¢. = S(Y,¢°(€)) — S(X,&) such that for any f €
S(X,*® Dx) and € S(Y, ¢ (€)) we have

/ (), buple)) = / (& F(y), uy))-
rzeX

yey

In particular, we mean that both integrals converge. Here, ¢*(E) = ¢*(E) @ D55, as in Notation [Z1.5}
(i) If ¢ is surjective then ¢, is surjective.

Lemma 5.5.15. [J[AG] ,Lemma B.1.4] Let G be a connected Nash group and g be the Lie algebra of G.
Let p : G x X — X be the projection. Let G act on S(G x X,p*(£)) by acting on the G coordinate.
Consider the pushforward p, : S(G x X,p*(€)) — S(X,E). Then gS(G x X, p’(€)) = Ker(p).

Lemma 5.5.16. Let f : X — R be a Nash function such that 0 is a regular value of f. Then fS(X) =
{¢ € S(X) : ¢(f71(0)) =0}

Proof. By Theorem [5.5.2] and partition of unity (Theorem BE5.T0([V)), we can assume that X = R™ and
F710) = R*! C R". Let x : R® — R be the last coordinate function. Since 0 is a regular value of f,

f/x is a smooth invertible function. Since f is a Nash function, f/x is also a Nash function. Thus, we
can assume f = x. We have to show that the following sequence is exact.

0— SR™) 5 SR") %° S(R™1) — 0,

where Res : S(R") — S(R"™!) is the restriction map.
By the Schwartz Kernel Theorem (Proposition [ this sequence is isomorphic to

0 - SR HBS[R) 'B” SR HBS(R) 2 S(R"1) — 0,
where Res : S(R) — C is evaluation at 0.
By Proposition (341 it is enough to prove the exactness in the case n = 1, which is obvious. |

We will use the following version of Borel’s lemma.

Lemma 5.5.17. Let Z C X be Nash submanifold.
Then Sx(Z) has a canonical countable decreasing filtration by closed subspaces (Sx(Z))! satisfying

(1) N(Sx(2))" =0 ,
(2) gri(Sx(Z,€)) = 8(Z,8ym"(CNF) ® €)


http://arxiv.org/abs/0812.5063
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(8) the natural map
Sx(2,€) = 1im(Sx(Z,£))/Sx(Z,€))")

is an isomorpihsm.

For proof see [AG] Lemmas B.0.8 and B.0.9].

5.6. Good representations of geometric origin (Proof of Lemma [B.1.6]). For the proof we will
fix T, R and R’. We will need the following statements.

Lemma 5.6.1. Let X be an R-transitive Nash manifold. Let £ be an R-tempered bundle on X. Suppose
that for each x € X, the V,-stabilizer of x acts trivially on the fiber .. Note that by Corollary
there exists geometric quotient V,\X. Let p: X — V,\X denote the projection. Then

(1) there exists an R'-tempered bundle &' on the geometric quotient V,)\X and a (tempered) isomor-

phism of R-tempered bundles & — p*(E').
(2) there exists an R'-tempered bundle £ on the geometric quotient V,\X and a (tempered) isomor-

phism of R-tempered bundles € = p’ (E").

Proof. (@) Let € X and let R, be the stabilizer of x. Identify V;,\X with Y := R'x. Let & := &|y.

We will construct a (tempered) isomorphism of R-tempered bundles ¢ : €& = p*(£’). In order
to do that we have to construct, for any € X, an element ¢, € Hom(E,,p*(£’).). Note that
Hom(&,,p*(£'),) = Hom(Ey,Epz)). We know that there exists g € V,, such that gz = p(z). This g
gives an element in ¢, € Hom(&,,p*(€'),). The element ¢ is not unique, but the assumptions of the
lemma imply that ¢, does not depend on the choice of g. Now we have to show that the constructed
¢ € I'(X,Hom(&,p*(€"))) is a tempered section. Consider the action map a : V,, x Y — X. Clearly, it
is a surjective submersion. It is easy to see that a*(¢) € T'(V,, x Y,Hom(a*E,a*p*(£’))) is a tempered
section. Thus, Lemma [.5.13 implies that ¢ € T'(X, Hom(&, p*(£'))) is a tempered section.

@) By part (@) there exists a bundle (D5f)" on V,\X such that p*((Ds)’) ~ Dsf. We define £ :=
& o (DF))". .

Remark 5.6.2. An analog of this lemma holds for Nash equivariant bundles, and for multiplicative
equivariant bundles, with an analogous proof. In particular, the isomorphism p*((Dsy)) ~ Dsf is an
isomorphism of Nash bundles.

Corollary 5.6.3. Let X be a transitive R-Nash manifold. Let £ be a R-multiplicative bundle on X (see
Definition[2.5.4). Then there exists a filtration F* of £ by R-multiplicative bundles such that for every i
there exists an R'-multiplicative bundle E! on the geometric quotient V,\X such that F'(E)/F1(€) =

Pi(E)).
To deduce this corollary we will use the following obvious lemma.

Lemma 5.6.4. Let  be a multiplicative (finite dimensional) representation of a subgroup L of V,,. Then
the Lie algebra of L acts nilpotently on .

Proof of Corollary [5.6.3. Let F*(£) C € be defined by F'(€) := {(z,e) € &|((v,))®"e = 0}. By the last
lemma (Lemma [E.6.4) the filtration F*(£) is exhaustive. Since € is a tempered bundle, the action of the
Lie algebra v is Nash and hence F(€) are Nash. Clearly the action (v,), on F*(£)/Fi=(&) is trivial.
Thus, by Lemma [B.6.1] we are done. O

Proof of Lemmal3 L8 The case Y = X and X is R-transitive follows from Corollary £.6.3] and Lemma
BE5IT By the Borel lemma (Lemma [E5T7T), this implies the case when X is R-transitive and Y is
arbitrary. This in turn implies the general case by Corollary 22441 O



18 AVRAHAM AIZENBUD, DMITRY GOUREVITCH, AND SIDDHARTHA SAHI

5.7. Induced representations as sections of multiplicative bundles (Proof of Lemma B.1.7)).
Identify the variety X := G/H with K/(K N H). Note that under this identification £ =2 K X xnm X-
This is a Nash bundle.

Let us show that the action of G on £ is multiplicative. The only non-trivial part is that any « € g,
preserve the space of Nash sections of £ on any open (Nash) set. For this we note that

Nash(U, &) = {f € C=(p~*(U))|f|x is Nash and f(gh) = x(h)f(g) for any h € H},

where p : G — X is the quotient map. Under this identification, an element o € g acts on Nash(U, &)
via a Nash vector field 3 on p~!(U). This field can be interpreted as a Nash map 3 : p~1(U) — g. Here
we identify the Lie algebra g with the tangent space at a point g € G using the differential of the left
translation by g. Restrict 8 to K Np~1(U) and decompose it to a sum of 31 : K Np~1(U) — € and
B2 : KNp~Y(U) — b, where b and € denote the Lie algebras of H and K respectively. Let f € C*(p~1(U))
such that f|x is Nash and f(gh) = x(h)f(g) for any h € H. Then (8f)|x = B1f|x + dx o B2 - f which is
clearly a Nash function. O

5.8. Derivatives of quasi-regular representations on P,-orbits on flag varieties (Proofs of

Lemmas [4.4.7] and [4.4.3]).

Proof of Lemma[{.4.1} The proof is by induction on n. In step 1 we reduce to the case when ¥ = X =

Pn/Qg\. Let Z and Zj to be as in Lemma 3.6 and p : X — Z denote the natural projection. In step 2

we reduce to the case & = p’(£’), where &' is a G,,_;-multiplicative bundle on Z. In step 3 we prove the

lemma for this case.

Step 1 Reduction to the case Y = X = P, /Q},
By Lemma E5TI7 Sy (X,€) is a good extension of 7; := S(X, &|x ® Sym*(CNY). By Lemma
B.L8 m; are good. Thus, by Corollary BLI0, £ (n) is a good extension of B! (m;). Thus it is
enough to show that B! (m;) = 0.

Step 2 Reduction to the case & = p’(£’), where &' is a G,,_;-multiplicative bundle on Z.
By Corollary (6.3 we have a finite filtration on & and G,,_;-multiplicative bundles & on
Z such that p’(&) ~ Gri(f). By Lemma [E5.I1 this gives a filtration on S(X,€) such
that Gr'(S(X,€)) = S(X,p’(&)). As before, this means that it is enough to show that
BH(S(X,p'(&:))) = 0.

Step 3 Proof for the case & = p*(&').
By the key lemma (Lemma BLI), (1) = S(Zo,&’). Denote 0j = n,lzgj for 1 < j < i
By Corollary 3.4 and Lemma B30 Z, = U;;11 (’)Z)\J By Corollary 2:4.4] there is a filtra-
tion F7 on S(Zy,&') such that Gr’(S(Zo,E")) = Sz,(OF, ). Thus it is enough to show that
E(S7,(0Y,&") = 0 for any j. By Corollary B34, OY = P,_;/QY,. Thus, by the induction
hypothesis, E(Sz, (0¥ ,€")) = 0.

]

For the proof of Lemma[EZ3] consider the embedding of G,,_1 to G,, obtained by conjugating the stan-
dard embedding by the permutation matrix corresponding to the permutation (mf, m4+1,...,n). Under
this embedding, P,- embeds into Py. Denote 3 := (|det |[71/2,...,|det |7¥/2,1,|det [/2,...,|det |'/?) €

X*, where 1 stands on place number i. We will need the following straightforward computation.
Lemma 5.8.1. Let a € X*. Then

XA,a'PA; = X,\;,a.lgia
where o - 31 € X* denotes the coordinate-wise product.

Proof of Lemma[{.7.3 The proof is by induction. Let us first prove the base i = 1. Note that X =
P,/Q\ = Gp_1/P - Thus 7|g, , = S(Gn,l/PA;,S). Consider the fiber of £ at the class of 1 as a

character of P)\;. We get &, = X/\7Q|PA; = XA a-pt- Thus

mle, . = X(n1), (o] det|=1/2) X" X X(np_1),(op_1|det |=1/2) X X(nk—1),(ar)-
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For the induction step, we assume i > 0 and let Z, Zy and A be as in Lemma[£36 and p: X — Z
denote the natural projection. By Lemma B.6.1] (and Remark B:6.2) there exists a G,,—1-multiplicative
equivariant bundle & on Z such that & = p’(£’). By the key lemma (Lemma B.LI)), ®(7) = S(Zo,&') @
|det |~'/2. By Corollary E=3.4] and Lemma @36, Zo = U;;l OY,. By Corollary ZZ4] there is a filtration
Fi on 8(Zy, E') such that Gri(S(Zy, ")) = Sz,(0%, ). By Corollary B34, OF, = P,_1/Q’,. Thus, by
Lemma AT, ®~2(Sy, (0%,€")) = 0 for j < i — 1. Thus

E'(m) = & (1) = &3(D(w)) = '3 (S5, (O3, €) @ | det [1/?) =
SOV E @ | det |TV?)) = EFTHS(OY T, &N @ | det | TV/2)).

In the last expression we consider the character | det |’1/ 2 of P,_1 as a constant P,_;-equivariant bundle
on Zo.
Consider vy := &’

ii—1 and vg := &

i—1
ot ahic1 88 characters of (Pn_l)z';,,ifl = @, . Note that

5/

17;\,,1'71 = (C/‘

1:7;\,,171 39 DX

ii-1 @ Dy
I)\/

piiet

and thus 11 = 1L, ® Yi\T}ﬂQi—l, where = (|det|,...,|det],1,...,1), where the last appearance of | det |
) )\/

is in the place k — i+ 1. Thus

(€' @ |det|1/?)

st =v1 ® | det |72 = vp X bl gia - [det |71 =

) i 3 ; i 3
(Xlk,a Qi? 'XZA',ﬁ QY | det | 1/2)| = ((Xz\,a P;Tl) : X;/ﬁ +| det | 1/2) QL ~
(X g X - 140t T2 g = XA lgiss
where o = (a1,..., i, ag—;t1|det |1/2, Qi 2y -+ oy Q).

Thus, by the induction hypothesis,

E'(m)la, . = NSOy, € @ det |71/?)) =

X(na),(an|det [=1/2) X" X X(ng ), (ak—i| det|=1/2) X X(ng—ip1—1),(ak—it1) X " X X(np—1),(ok)
O

n—i

6. HOMOLOGY OF GEOMETRIC REPRESENTATIONS AND THE PROOF OF THE KEY LEMMA (LEMMA

6.1. Sketch of the proof. We have to compute v,-homology of the representation S(X, &) @ (—v). We
first note that this task is local on X’ = V,\ X, i.e. if we cover X’ by subsets U; it is enough to compute
the homology of S(p~1(U;), &) ® (—1). Now we can cover X’ by refined enough cover s.t. for each U; ,
the space p~1(U;) will look like a product U; x W where W is a V,,-orbit and the bundle |y, is trivial.
Thus we reduced to computation of homology of S(U; x W) @ (—).

Note that the action of V,, on U; x W is not the usual product action but rather a twisted product,
i.e. the action V,, on its orbit {z} x W depends on the point x € U;. We can untwist this product (see
Proposition [6.2Z0]) but this will cause a twist in the character 1. Namely, it will replace it by a line bundle
& where the action of V;, on £,y w depends on the point x € U;. Thus we reduce to computation of
homology of S(U; x W, E).

Now we use a relative version of the Shapiro Lemma (see Theorem [6.271]) in order to reduce to the
computation of the homology of S(U;, £) as a representation of the stabilizer (V;,)o in V;, of a point 0 € .
Note that the action of (V) on U; is trivial and thus we can view S(U;, E) as a family of characters,
ie. it is defined by a map ¢ from U; to the space (V,,)§ of characters of (V;,)o. In Lemma we
compute homology of such families under the assumption that ¢ is submersive at the trivial character.
This assumption is satisfied in our case due to the action of P,.

Remark 6.1.1. The proof is based on series of reductions. If we were interested only in acyclicity then
one could give a relatively simple proof in which each of those reductions is given by general statements.
However we are also interested in computation of Ho and this makes those reductions more complicated.
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For example in the first step when we say that the computation is local one should explain what does this
mean. We do it by constructing an explicit morphism I : Ho(0,,S(X,E) @ (=) = S(Xy,E|x;) and
proving that this morphism is an isomorphism rather than proving that there exists some isomorphism.
This forces us to make each reduction more explicit. This is sometimes unpleasant since some of the
reductions e.g. the Shapiro lemma are using the general machinery of homological algebra which usually
is not so explicit.

Therefore if the reader is not interested in all the details we recommend him to skip all the parts that
regard Hy and concentrate only on the acyclicity. The computation of Hy is essentially the same but its
exposition is much longer.

6.2. Ingredients of the proof. We will need the following version of Shapiro lemma.

Theorem 6.2.1 (Relative Shapiro lemma). Let G be an affine Nash group and X be a transitive Nash
G-manifold. Let' Y be a Nash manifold. Let x € X and denote H := G,. Let £ - X XY be a G
equivariant Nash bundle. Suppose that G and H are homologically trivial (i.e. all their homology except
Ho vanish and Ho = R). Let X : G xY — R be a Nash map such that for any y € Y, the map X|gx(y) 15
a group homomorphism. Let X' be 1-dimensional G-equivariant bundle on' Y, with action of G given by
g(y,v) = (y,0(X(g,y))v). Let & := E@ (CKRX'), where C denotes the trivial bundle on X and ¥ denotes
exterior tensor product. Then

Hi(g, S(X x Y,€")) 2 Hi(h, S({z} x Y, Ef4yy ® A - (AG)m)),
where Ay and Ag denote the modular characters of the groups H and G.

The proof of this theorem is along the lines of the proof of [AGI(, Theorem 4.0.9]. We give it in
Appendix [Al

Lemma 6.2.2. Let X be a Nash manifold and V' be a real vector space. Let ¢ : X — V* be a Nash map.
Suppose that 0 € V* is a regular value of ¢. It gives a map x : V — T(X) given by x(v)(x) = 0(¢(z)(v))
(recall that T(X) denotes the space of tempered functions). This gives an action of V on S(X) by
m()(f) == x(v) - f. Then

(i) H;(0,S(X)) =0 fori > 0.

(ii) Let Xo := ¢=1(0). Note that it is smooth. Let r denote the restriction map r : S(X) — S(Xo).

Then r gives an isomorphism Ho(v, S(X)) == S(Xo).
We will prove this lemma in §§6.5]

Notation 6.2.3. In the situation of the Lemma we will denote the action of v on S(X) by Tx, 4.

In order to check the conditions of Lemma we will need the following lemma that we will prove
in §46.0
Lemma 6.2.4. Let a Nash group G act linearly on a finite-dimensional vector space V' over F', such that
the action on V*\ 0 is transitive. Let Q be a closed Nash subgroup of G and L be a vector subspace of V
stabilized by Q. Let ¢ € V* be a functional. Consider the map a : G — L* defined by a(g) := gp|r. Let
U C G/Q be an open (Nash) subset and s : U — G be a local Nash section of the canonical projection
p:G— G/Q. Then 0 is a regular value of p:=ao s.

Proposition 6.2.5. Let a Nash group G act transitively on a Nash manifold Y and let X be a Nash
manifold.

Let X “act” on G i.e. let G' be a Nash group acting on G by automorphisms and a : X — G’ be a
Nash map. This defines a twisted action of G on X xY. More precisely p1(g)(x,y) = (z,a(x)(g)(y))-
Let x be a fixed tempered character of G. Let ps denote the non-twisted action of G on X XY, i.e.
p2(9)(x,y) = (92,y).

Define function X(g,z,y) = x((a(z))~(g)). Note that it does not depend on y. It defines a tempered
(G, p2)—equuariant structure on the trivial line bundle on X x Y. We denote the resulting bundle by
E. Let w1 denote the representation of g on S(X X Y) ® x given by the action p1 and ma denote the
representation of g on S(X x Y, &) given by the action ps.

Then H,(g,7m1) = Hi(g, m2).
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We will prove this proposition in §§6.4]
Notation 6.2.6. In the situation of the proposition we will denote p1 by pq.xy and m by 74 xy -
6.3. Proof of the key lemma. First, let us prove the following version of the lemma.

Lemma 6.3.1. Let X’ be a Nash manifold. Let 0 — L — V 5 W — 0 be an ezact sequence of finite
dimensional vector spaces over F. Let v: X' — V* be a Nash map, such that 0 is a reqular value of the
composition X' — V* — L*. Let X|, be the preimage of 0 under this composition. Note that it is smooth.
Fiz a Haar measure on W. Let 7, be the representation of V. on S(W x X') given by

™, (0)()(z,w) = 0((v(2), V) f(z,w + p(v)).
Then
(i) m, is acyclic
(i1) Note that v(X(}) C W* C V*. Let vy : X) — W* be the map given by restriction of v. Let
F € T(X) x W) be given by F(z,w) := (vp(2),w). Consider the map I, : S(W x X') — S(X{)
given by L,(f) == (prx/)«(flx;xw - F), where prx, : W x X' — W denotes the projection. Then I,
defines an isomorphism Ho(v,7,) — S(X{).
Proof. () By the relative Shapiro Lemma (Lemma [E2.1)) it is enough to show that 7x/, (see Notation
[623) is acyclic. This follows from Lemma 6221
(@) Fix a Haar measure on L. Since we fixed a Haar measure on W, this defines a Haar measure
on V as well. Define F' € T(X' x V) by F(z,v) := (v(2),v). Define I : S(X’ x V) — S(X') by
I(f) = (prx/)«(f)-F. Let r : S(X') — S(X{) denote the restriction. Let 1 : X’ — L* be the composition
of v with V*—L*. Define an action 7, of V on S(X’ x V') given by
T (V) (F)(z,0") == 0((v(2),0) f(z,0" +v).
Define an action o of L on S(X’ x V) by o(I)(f)(z,v") := f(z,v" +1).
Note that the following diagram is commutative

(1) (2) (3)

Ide®(Idx: Xp)s
_—

(1) RS(X'xV) RS(W x X)
d, dm,
do (IdX/Xp)*
(2) [@S(X' xV) S(X'xV) SWxX') —0
l[d,@l I I
(3) ([®S(X') S(X) - S(Xf) ————=0
0 0 0

Recall that 7,, used in the diagram, is defined in Notation It is enough to show that column
(3) is exact. First, let us show that column (2) is exact. The map I is onto by Lemma 514 and
the exactness in the place of S(X’ x V) follows from The exactness of row (2) is proven in the
same way. The exactness of row (3) follows from Lemma [622.21 The exactness of column (2) implies the
exactness or column (1). Let us prove that column (3) is exact. First, note that I is onto by Lemma
BE5T4 and Theorem B5TOIT).

Now, let f € Ker(I) ¢ S(W x X'). Let f € S(X’' x V) be its preimage under (Id x p),. Then
I(f) € Ker(r) = Im(r,,). Let h € [® S(X') be a preimage of I(f) and let h be a preimage of h in
[®S(X' x V). Then do(h) — f € Ker(I) = Im d7,. Now,

f = (Id % p).(f) = (Id x p).(f — do(h) + do(h)) = (Id x p).(F — do(h)) € (Id x p).(Imd#,) C Tm(dr,)
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We will prove the following Lemma which clearly implies the key lemma.

Lemma 6.3.2. Let T be a Nash linear group and let R := P, X T and R' := Gp_1 xT. Let Q < R be a
Nash subgroup and let X C R/Q be a V,-invariant open Nash subset and X' := V,\X. Note that X' is
an open Nash subset of R'/Q’', where Q" = Q/(Q N Vy). Let Xo ={z € X : ¥|y,), = 1.} Let X; be the
image of Xo in X'. Let & be a R'-equivariant tempered bundle on R'/Q' and & = p%.(£'|x+). Then
(i) H;i(0,,S8(X,E) @ (=) =0 for any i > 0.
(ii) X\, is smooth
(i1i) Since X' C R'/Q’ and X C R/Q we have a canonical section to pz and will consider X' as a closed
submanifold of X . Consider the action map a : X\ xV,, — Xo. Let == 1Ky € T(X[, x V,,). Note
that Z¢ is constant along the fibers of a. Define Z € T (Xo) such that a*(Z) = Zg. Consider the map
I:8(X,p') = S(X4,E|x;) given by I(f) := (px:|xo)«(flx; - E). Then I gives an isomorphism
Ho(b,, S(X,p78)) = S(X0,€|xy), as representations of pp—1.

Remark 6.3.3. The open subset X C R/Q is not necessary Py, _1-invariant, but p,—1 will still act on
the homology.

First let us prove the following special case.

Lemma 6.3.4. Lemmal[6.3.2 holds under the assumption that there exists a Nash section a : X' — R’
of the quotient map R’ — R'/Q’".

Proof. Consider R'/Q" as a subset of R/Q. Without loss of generality we assume that the class of the
unity element lies in X’. We will denote it by z9. Without loss of generality we assume a(zp) = 1. Let
W = p}}(zo). Let L := (Vi.)i(zy) = @NV,. It is a Nash subgroup of V;, and hence is a real vector space.
Note that W = V,, /L. Define ¢ : X' x V;, — X by ¢(z,v) := (a(z)v)z, where a(z)v denotes the action
of a(z) € G,—1 on v € V,,. Note that ¢ factors through X’ x W and let ¢ be the corresponding map
X' x W — X. It is easy to see that ¢ is a Nash diffeomorphism and intertwines Pa,x’,w With the action
of V,, on X (see Notation [E.20]).

Note that the section a gives a tempered isomorphism between &’|x/ and the trivial bundle with fiber
&l,. Thus ¢ gives an V,, -isomorphism 0 8(X,6) @ (=) = maxiw ® EL. Define v : X' — V¥
by v(2)(v) := (a(z)v). Note that X} coincides with X{, from Lemma [E3.1l Note that the underlying
vector space of m, x/ w coincides with the underlying vector space of 7, from Lemma[63.J] Thus we can
consider I, ® Id as a map 7, x'w ® €, — S(Xj) ® &L = S(X(,E'|x;). Note that ¢ intertwines the
map [ to I, ® Id.

By Proposition 620 H. (v, 7 x/,w) = H.(v,,7,) and on Hy the isomorphism is just equality of
quotient spaces. Thus it is enough to show that m, is acyclic and I,, defines an isomorphism Ho(v,,, 7, ) —>
S(X{). To show this, by Lemma it is enough to show that 0 is a regular value of the composition
v X' S V* — L*. This follows from Lemma [6.2.4]

]

Proof of LemmalG.Z2 Let q: R — R'/Q' be the quotient map. By Theorem 553 there exists a finite
Nash cover {U;} of X' C R'/Q’ and sections s; : U; — R’ of q. By Lemma [6.3.7] S(p}}(UZ-),ﬂpq(U_)) is
X/

acyclic and I|S(p;(}(Ui),g|p—1(Uv)) gives an isomorphism
x/ 2

Ho (0w, S (U), €], 0))) > S(U: 1 X5, xy)-

Consider the extended Kozsul complex of S(X, &) @ (—v):

4 0= A"(0,)9S(X)@ () B Bo, 0S(X)® (—p) BSX)® (—v) 5 S(X4,|x;) 0

We have to show that it is exact. The fact that I is onto follows from Theorem 5T and Lemma
BS54 Let us show that it is exact in place [ > 0, i.e. at the object Al(v,) ® S(X). Choose a partition
of unity e; corresponding to the cover X' = JU;.
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Let a € Kerd; C Al(v,) ® S(X) ® (—1). Consider

p ( )CY S Kerdl|Al )OS (P (UN)®(—1)) -
By Lemma [6.3.4] we have

p(ei)a € Im(dit1|ai (v, 0501 (U @(~y))) and thus a = ZP*(ei)Oé € Im(di11).

6.4. Untwisting a product (Proof of Proposition [6.2.5]).

Lemma 6.4.1. Let g be a Lie algebra and A be a commutative algebra with 1. Let M be a (U(g) ® A)-
module. Then Hy(g, M) =H.(g® A, M).

Proof. Let A be the category of (U(g) ® A)-modules and B be the category of g-modules. Let F : A — B
be the forgetful functor and G : B — Vect be the functor of g co-invariants. Note that Go F is the functor
of coinvariants with respect to the Lie algebra g ® A. By Lemma we have

L(GoF)=L'(G)oF.
This proves the assertion. O

Proof of Proposition [6.23. Extend the representations m; to representations IT; of T(X) ® g 2 T (X, g).
Let b: T(X,g) — T(X,g) be given by b(f)(z) = a(z)(f(x)). Note that b is invertible. Let us show
that Hl = H2 ob.
First, note that as linear spaces both can be identified with S(X x Y). Now, denote by dp; the
corresponding maps from g to the space of vector fields on X x Y and by dX : g x X x Y the differential
of X in the first variable. Let f € T(X,g), h € S(X xY), and (z,y) € X x Y. Then

(L (H)R)(@,y) = (dp1(f(x)h)(2,y) + x(f (@) h(z,y) = (dp2(a(z)(f(2)))h)(x,y) + x(f(2))h(z,y) =
(dpa(a(x)(f(x)))h)(x,y) + x(alz) " (a(z)(f(2)))) - h(z,y) =
(dpa(a(x)(f(2))h)(x,y) + dX(a(x)(f(2)), z,y) - h(z,y) =
(dp2((b(f)(2))h) (2, y) +dX(b(f)(2),z,y) - h(z,y) = (T2(b(f))(h))(z,y)
Now
Hi(g,m2) = Ho(T(X) ® g,112) = Ho(T(X) ® g,111) = Hu(g, m1).
O

6.5. Homology of families of characters (Proof of Lemma [6.2.2]). We prove the lemma by induc-
tion on dim V.
Base: dim V' = 1. In this case we have to show that the following extended Koszul complex is exact:

0+ S(Xp) & S(X) + VeS(X) «o0.
Let v € V be a generator. Then the complex is isomorphic to
0+ S(Xg) & S(X) 22 S(X) «0

where mp(f) = hf, and h(z) = df({v, ¢(x))). Clearly, my, is injective. The map r is onto by Theorem
EST0@T) Note that ih is a real-valued Nash function and 0 is its regular value. The exactness in the
middle follows now from Lemma

Induction step. Let us first prove ({il). Let L < V be a one-dimensional subspace. Let ¢ denote
the composition X — V* — L*. Note that 0 is a regular value of ¢z and let X o := ¢, '(0). By the
induction base, S(X) is l-acyclic and 71, : Ho(I,S(X)) = S(X1,0). Note that this is an isomorphism of
representations of V/L. Note also that ¢(Xp,0) C (V/L)* = L+ C V* and let ¢ denote ¢|x, , : Xr,0 —
(V/L)*. Note that 0 is a regular value of ¢'. Finally, note that the action of V/L on S(X1 ) is 7x, ¢
Thus, by the induction hypothesis, Ho(l, S(X)) is V/L-acyclic and Lemma BT implies that S(X) is
V-acyclic.
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To prove () note first that r is onto by Theorem E.5TO(). Now we have to show that vS(X) = Kerr.
The inclusion C is obvious. Let f € Kerr. Consider f|x, ,. As before, the induction hypothesis implies
flxpo € (0/08(XL0). Let h € (0/)@8(X10) = Txy 0.0 ((0/)) ©S(X1,0)) such that flx, , = Tx, .6 (h)-

By Theorem E5 IO, we may extend h to h € b @ S(X). Now, (7x.4(h) — f)x, = 0 and hence by the

induction base 7x 4(h) — f € [S(X). This implies that f € 0S(X). O

6.6. Proof of Lemmal6.2.4l For the proof we will need the following straightforward lemma from linear
algebra.

Lemma 6.6.1. Let Wy, Wy and W be linear spaces. Let T : W1 —Ws and A : W1 —W be epimorphisms.
Suppose that KerT D Ker A. Then Ao S is onto, for any section S of T.

Proof of Lemma[6.2.7) Let € U such that p(xz) = 0. Without loss of generality, using the left action of
G we can suppose s(zz) = 1. Then ¢|;, = 0 and we have to show dja o d,s is onto L*. The map dya is
onto by transitivity of the action of G on V*\ 0, and Kerdp C Kerd;a since @ stabilizes L. Thus, by
the previous lemma, dja o d; s is onto. 0

APPENDIX A. PROOF OF THE RELATIVE SHAPIRO LEMMA

We prove here Theorem [6.2.1] which is a version of the Shapiro lemma. A similar version was proven
in [AGI0] and our proof follows the lines of the proof there.

Proposition A.0.1 (JAGI(], Proposition 4.0.6). Let G be a Nash group and X be a Nash G-manifold.
Suppose that the action is strictly simple (see Definition[5.5.7). Then the projection m: X — G\ X is a
Nash locally trivial fibration.

Corollary A.0.2. Let G be a Nash group and X be a Nash G-manifold with strictly simple action. Let
F — X be a Nash G-equivariant locally-trivial fibration. Then the action of G on the total space F is
strictly simple.

Proof. By the previous proposition we may assume without loss of generality that the map X — G\ X
is a trivial fibration. Hence we can identify X = (G'\ X) x G. Now it is easy to see that G \ F =
Flia\x)x{1}- O
Corollary A.0.3. Let G be a Nash group and X be a Nash G-manifold. Suppose that the action is

strictly simple. Let £ be a Nash G-equivariant bundle on X. Then there exists a Nash bundle &' on G\ X
such that € =m*E', where m: X — G\ X is the standard projection.

Proof. Consider the action of G on the total space of £. Denote £ := G \ £ and consider it as a Nash
bundle over G \ X. It is easy to see that & = 7*&". O

Definition A.0.4. Let X be a Nash manifold and F be a Nash locally trivial fibration over X . Denote by
Hi(F — X) the natural Nash bundle on X such that for any x € X we have H:(F — X), = H.(F,). For
its precise definition see [AGI0, Notation 2.4.11]. Note that if F is a trivial fibration then H{(F — X)
are trivial bundles.

Definition A.0.5. Let F 5 X be a locally trivial fibration. Let & — X be a Nash bundle. We define
Trx CTr by Tr—x = Ker(dr). We denote

0 x = (Trox))M @ e
Now we define the relative de-Rham complexes DRg(F — X) and DRSOC(F — X) by
DRE(F = X)' = S(F, ¢, ) and DR (F — X)' = C®(F, Q4% ).

The differentials in those complexes are defined as the differential in the classical de-Rham complex. If £
s trivial we will omit it.

Theorem A.0.6 (see [AGI0], Theorem 3.2.3). Let w: F — X be an affine Nash locally trivial fibration.
Then
H¥(DRS(F — X)) =2 S(X, HYNF - X)®¢&).


http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf

TWISTED HOMOLOGY FOR THE MIRABOLIC NILRADICAL 25

This theorem gives us the following recipe for computing Lie algebra homology.

Theorem A.0.7. Let G be an affine Nash group. Let K be a Nash G-manifold and L be a Nash manifold.
Let X := Kx L. Let £ — X be a Nash G-equivariant bundle. Let X : Gx L — R be a Nash map such that
for any | € L, the map X|cxqy is a group homomorphism. Let X' be the 1-dimensional G-equivariant
bundle on L, with action of G given by g(l,v) = (I,4%(X(g))v). Let & := € ® (CK X'). Note that &' is
isomorphic to € as a Nash bundle, though the G-equivariant structure on &' is not necessarily Nash.

Let N be a strictly simple Nash G-manifold. Suppose that N and G are homologically trivial and affine.
Denote F = X x N . Note that the bundle &' KX QY has G-equivariant structure given by diagonal action.
Hence the relative de-Rham complex DRE,., (F — X) is a complex of representations of G. Consider the
relative de-Rham complex DRE(F — X)) without the action of G as a subcomplex of DRé... (F — X).
Note that it is G-invariant. We denote by DR (F — X)) the complex DRE(F — X) with the action of
G induced from DRE(F — X).

Then )

H,(9,S(X, &) = H" '((DRS (F = X))g),

where n is the dimension of X.

To prove this theorem we will need the following statements.

Lemma A.0.8. Let G, L, N, X, X' be as in Theorem [A.0.7} Let X be a Nash manifold. Let & be a
Nash bundle over X x Lx N. Let &' = E®@ (CRX'KC). Then S(X x L x N,E) ~S(X x L x N,&") as

representations of G.

Proof. By Theorem BE5I0([v]) and Proposition [AZ0.1] we can assume that N = G x N’, for some Nash
manifold N’. Hence we can assume N = G. Note that S(X x Lx G, ) and S(X x L x G, &’) are identical
as linear spaces. Now, the required isomorphism between them is given by a — (1 X (¢ o X))a.. O

Lemma A.0.9. Let G be an affine Nash group. Let F be a strictly simple Nash G-manifold. Denote

X = G\ F. Let & — X be a Nash bundle. Then the relative de-Rham complezx DRE(F — X)' is
isomorphic to the compler C(g,S(F,7*&))im o=t where 7 : F — X is the standard projection, and

C(g, W) denotes the Koszul complex of a representation W .
The proof of this lemma is the same as the proof of [AGI(], Lemma 4.0.10].

Corollary A.0.10. Let an affine Nash group G act strictly simply on a Nash manifold X. Let £ be a
Nash G-equivariant bundle on X. Suppose that G is homologically trivial. Then S(X, &) is an acyclic
representation of g.

Proof. Follows from Lemma [A.0.9] Theorem [A.0.6] and Corollary [A(0.3] O

Proof of Theorem[A.0.7. From Theorem we know that the complex DRE(F — X), as a complex
of vector spaces, is a resolution of the vector space S(X,€). Hence the complex DR? (F = X)isa
resolution of S(X, ") as a representation of g.

So it is enough to prove that the representations S(F, &’ X Q%) are g- acyclic. By Lemma [AX0.8

S(F,ER QL) = S(F,& RQY)

as g-representations (though those isomorphisms do not commute with differentials). Hence it is enough
to show that S(F, € K QY;) is acyclic. This follows from Corollary [A.0.101 O

Lemma A.0.11 ([AG], Corollary B.1.8). Let G be a connected affine Nash group, X be a Nash manifold
and € be a Nash bundle over X. Let g be the Lie algebra of G. Let p: G x X — X be the projection. Let
G act on S(G x X, p*(€)) by acting on the G coordinate. Then the map p. : S(G x X,p’(£)) — S(X, &)
induces an isomorphism S(G x X,p*(€))y = S(X, ).

Corollary A.0.12. Let G be a connected affine Nash group. Let F be a strictly simple Nash G-manifold.
Denote X := G\ F. Let & — F be a G-equivariant Nash bundle. Let w denote the projection map
m:F — X. Let B be a Nash bundle on X such that & =7*B (B exists by Corollary [A103).

Then the map . : S(F, € ® DY) — S(X, B) induces an isomorphism S(F,€ @ D§), = S(X, B).


http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
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Corollary A.0.13. Let X be a Nash manifold and Y be a closed Nash submanifold. Let an affine Nash
group G act on X strictly simply and H be a subgroup of G that acts on'Y strictly simply. Suppose that
the natural map H\'Y — G\ X is a Nash diffeomorphism. Suppose that G and H are homologically
trivial. Let € be a Nash G-equivariant bundle on X. Then

S(X,5®Dx>g >~ S(Y,Ely ®Dy)h.

Moreover, let a : G X Y — X denote the action map and p2 : G XY — Y denote the projection on the
second coordinate. Then
(i) The map a. gives an isomorphism

a.: S(G XY, (CREly) ® Doxy @ a*(Dx"))gxy —+ S(X,E)g
(i) The map (p2)« gives an isomorphism

(p2)s : S(G X Y, (CRE|y) ® Daxy ® a*(Dx"))gxy — S(Y,Ely @ Dy @ ((Dx)ly) ™)y

Corollary A.0.14. Let G be an affine Nash group and X be a transitive Nash G-manifold. Let N be a
Nash manifold. Let x € X and denote H := G,. Suppose that G and H are homologically trivial. Let
X=XXNxGandY ={z} x N xG. Let £ be a bundle over X. Let X : G x N — R be a Nash map
such that for any n € N, the map X|Gxny 5 a group homomorphism. Let X' be the 1-dimensional G-
equivariant bundle on N, with the action of G given by g(n,v) = (n,¥(X(g))v). Let &' := E@(CRX'KC).
Then

(i) The map a. gives an isomorphism

00 S(G X V,(CHEN) ® Daxy ©a*(Dy"))gxn = S(X, '),
(i) The map (p2)« gives an isomorphism
(p2)s : S(Gx Y, (CREly) ® Daxy ® a*(Dx'))gxy = S(Y,€'ly ® Dy @ (Dx)|y) ™)y
Now we are ready to prove the relative Shapiro Lemma.
Proof of Theorem [6.2.]l From Theorem [A.0.7] we see that
Hi(g,S(X x N, &) = H™~/(DRE (X x N x G — X x N))g).
Now, by Corollary [A.0.14]

i,&' ~ 0,8 (e} x NOD (2} x NOD Y v {ayx v
S(X X N x G’QXXNXG—)XXN)Q - 8({$} X N x G’Q{I}XNXGH{I}XN ’ )h-

and this isomorphism commutes with de-Rham differential. Therefore
/ ’ —1
(DRE (X x N x G — X x N))g 2= (DR = ¥OPerv@Pionlern (0 o N 6o () x Ny
and hence
dim g—i & ~ pydim g—i E' {2y xN®(Dx'| (2} ®C)
H (DR (XXNxG — XxN))y) = H ((DRg {x}x NxG — {x}xN))p)

and again by Theorem [AL0.7]

Hdimg_i((DRi\{m}XN®<D;1|<m}WC>({;c} X N x G = {x} x N))y) =
= Hi(h, S{a} x N, &'lzyxn @ (Dx' |1y BC))) =
= Hi(h, S{z} x N, E'lapxn @ Au - (AgHIm)).
0
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APPENDIX B. EXAMPLES FOR THE NOTATION OF §44.3

In order to help the reader to read Notations 311 and [£4.2] Lemma and Corollary B34 we
describe explicitly the objects discussed in them on one example. Let n = 6 and A = (1,3,2). Then
m3 =1, m3 =4, m3 = 6. Also, ¢ is the permutation (234561), wy = ¥ = Idg, wa = ¢* = (345612), w3 =
¢® = (612345). We have

Powy Py = Pywi Py, Pyws Py = Prws P\UP,, w1 Py, PowsPy\ = Pyw; P\UP,ws P\UP,, w3 P\ = Gg, P/\1 = Py

Typical matrices in Py, P,w; Py, P,ws Py, P} are of the forms

* % *x ok % % * % x ok %k % * % x ok % % * x 0 0 0 O
0 * x *x % = * % %k k% ¥ % ok ok % X * x 0 0 0 O
0 * x *x % = * % %k k% ¥ %k k% % * % % ok k%
0 * *x * *x x ’ * % x ok % % ’ * % *x ok % % ’ * % 0 *x % x
0 0 0 0 x =« * % % ok %k % * % *x ok % % * % 0 *x % x
0 0 0 0 x =« 0 0 0 0 x= =« 0 * *x * *x x * % 0 *x % x
Typical matrices in PJ, Q},Q3, @3 are of the forms

x ok x *x *x 0 * % % ok k% * x 0 0 0 O * *x x *x *x 0
* x *x *x x 0 0 * x *x *x x *x x 0 0 0 O * % *x *x x 0
* x *x *x x 0 0 * x *x *x x * % *x ok % % * % *x *x x 0
00 0 * % O ’ 0 * % * * x* ’ * ok 0 x % % ’ 0 0 0 * *x 0
0 0 0 x % 0 00 0 0 % =x x ok 0 *x k% 00 0 x % 0
¥ % ok k% % 00 0 0 0 1 0 00 0 01 00 0 0 0 1

In order to help the reader to read Lemma 3.6, we describe explicitly the objects discussed there for
i=2. Let N = A3 5, =A; =(1,2,2). Then w3} is the permutation (45123), w37 = Id, w3} = (34512)
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REFERENCES

A. Aizenbud, D. Gourevitch: Schwartz functions on Nash Manifolds, International Mathematics Research Notices,
Vol. 2008, n.5, Article ID rnm155, 37 pages. DOI: 10.1093/imrn/rnm155. See also arXiv:0704.2891 [math.AG].
A. Aizenbud, D. Gourevitch: De-Rham theorem and Shapiro lemma for Schwartz functions on Nash manifolds.
Israel Journal of Mathematics, Volume 177, Number 1, 155-188 (2010). See also arXiv:0802.3305v2 [math.AG].
A. Aizenbud, D. Gourevitch: Generalized Harish-Chandra descent, Gelfand pairs and an archimedean analog of
Jacquet-Rallis’ Theorem, Duke Mathematical Journal, Volume 149, Number 3,509-567 (2009). See also arXiv:
0812.5063[math.RT].

A. Aizenbud, D. Gourevitch: Smooth Transfer of Kloostermann Integrals, arXiv:1001.2490[math.RT], to appear
in American Journal of Mathematics.

A. Aizenbud, O. Offen, E. Sayag: Disjoint pairs for GLyn(R) and GLy,(C), C. R. Math. Acad. Sci. Paris 350, no.
1-2, pp 911 (2012).

A. Aizenbud, D. Gourevitch, S. Sahi: Derivatives for smooth representations of GL(n,R) and GL(n,C),
arXiv:1109.4374v2.

J. Bochnak, M. Coste, M-F. Roy: Real Algebraic Geometry Berlin: Springer, 1998.

I.N. Bernstein, A.V. Zelevinsky: Induced representations of reductive p-adic groups. I. Ann. Sci. Ec. Norm. Super,
4°serie 10, 441-472 (1977).

W. Casselman: Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math., Vol.
XLI, No. 3, pp. 385-438 (1989).

[CHMO00] W. Casselman, H. Hecht, D. Mili¢i¢: Bruhat filtrations and Whittaker vectors for real groups. The mathematical

[CMS82]

[GM8S]

[Kos78]
[Sah89]
[Shig7]
[Wall8g]
[Wall92]

legacy of Harish-Chandra (Baltimore, MD, 1998), 151-190, Proc. Sympos. Pure Math., 68, Amer. Math. Soc.,
Providence, RI, (2000)

W. Casselman, D. Milicié: Asymptotic behavior of matriz coefficients of admissible representations. Duke Math.
J. Volume 49, Number 4, 869-930 (1982).

S. Gelfand, Y. Manin: Metody gomologicheskoi algebry. Tom 1. [Methods in homological algebra. Vol. 1] Vvedenie
v teoriyu kogomologii i proizvodnye kategorii. [Introduction to the theory of cohomology, and derived categories],
with an English summary. “Nauka”, Moscow, 1988. 416 pp.

B. Kostant: On Whittaker vectors and representation theory., Invent. Math. 48, 101-184 (1978).

S. Sahi: On Kirillov’s conjecture for Archimedean fields, Compositio Mathematica 72, 67-86 (1989).

M. Shiota: Nash Manifolds, Lecture Notes in Mathematics 1269 (1987).

N. Wallach: Real Reductive groups I, Pure and Applied Math. 132, Academic Press, Boston, MA (1988).

N. Wallach: Real Reductive groups II, Pure and Applied Math. 132, Academic Press, Boston, MA (1992).


http://imrn.oxfordjournals.org/cgi/reprint/2008/rnm155/rnm155?ijkey=bddq0itkXKrVjlG&keytype=ref
http://arxiv.org/PS_cache/arxiv/pdf/0802/0802.3305v2.pdf
http://arxiv.org/abs/0812.5063

28 AVRAHAM AIZENBUD, DMITRY GOUREVITCH, AND SIDDHARTHA SAHI

E-mail address: aizenr@gmail.com

AVRAHAM AIZENBUD, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, DEPARTMENT OF MATHEMATICS, CAMBRIDGE, MA
02139 USA.

E-mail address: dmitry.gourevitch@weizmann.ac.il

DMITRY GOUREVITCH, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, WEIZMANN INSTITUTE OF SCIENCE, POB
26, REHOVOT 76100, ISRAEL

E-mail address: sahi@math.rugers.edu

SIDDHARTHA SAHI, DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, HILL CENTER - BuscH CAMPUS, 110 FREL-
INGHUYSEN ROAD PIscATAWAY, NJ 08854-8019, USA



	1. Introduction
	1.1. Structure of our proof
	1.2. Tools developed in this paper
	1.3. Structure of the paper
	1.4. Acknowledgements

	2. Preliminaries
	2.1. Notation and conventions
	2.2. Smooth representations
	2.3. Parabolic induction and Bernstein-Zelevinsky product
	2.4. Schwartz functions on Nash manifolds
	2.5. Tempered functions

	3. Proof of exactness and Hausdorffness (Theorem A)
	3.1. Good pn-representations and the key lemma

	4. Highest derivative of monomial representations (Proof of Theorem B)
	4.1. Sketch of proof for the case k=2
	4.2. Structure of the proof
	4.3. Geometry of Pn-orbits on flag varieties
	4.4. Derivatives of quasi-regular representations on Pn-orbits on flag varieties
	4.5. Proof of Theorem B

	5. Proofs of some technical lemmas
	5.1. Preliminaries on homological algebra
	5.2. Acyclicity with respect to composition of derivatives(Proof of Lemma 3.0.3)
	5.3. Preliminaries on topological linear spaces
	5.4. Co-invariants of good extensions (Proof of Lemma 3.1.9)
	5.5. More on Schwartz functions on Nash manifolds
	5.6.  Good representations of geometric origin (Proof of Lemma 3.1.6)
	5.7. Induced representations as sections of multiplicative bundles (Proof of Lemma 3.1.7)
	5.8. Derivatives of quasi-regular representations on Pn-orbits on flag varieties (Proofs of Lemmas 4.4.1 and 4.4.3)

	6. Homology of geometric representations and the proof of the key lemma (Lemma 3.1.1)
	6.1.  Sketch of the proof
	6.2. Ingredients of the proof
	6.3. Proof of the key lemma
	6.4. Untwisting a product (Proof of Proposition 6.2.5)
	6.5. Homology of families of characters (Proof of Lemma 6.2.2)
	6.6. Proof of Lemma 6.2.4

	Appendix A. Proof of the relative Shapiro lemma
	Appendix B. Examples for the notation of §§4.3
	References

