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Abstract.
We study Sp2n(R)-invariant functionals on the spaces of smooth vectors in Speh rep-

resentations of GL2n(R).
For even n we give expressions for such invariant functionals using an explicit realiza-

tion of the space of smooth vectors in the Speh representations. Furthermore, we show
that the functional we construct is, up to a constant, the unique functional on the Speh
representation which is invariant under the Siegel parabolic subgroup of Sp2n(R). For
odd n we show that the Speh representations do not admit an invariant functional with
respect to the subgroup Un of Sp2n(R) consisting of unitary matrices.

Our construction, combined with the argument in [GOSS12], gives a purely local and
explicit construction of Klyachko models for all unitary representations of GLn(R).

1. Introduction

In recent years, there has been considerable interest in periods of automor-
phic forms in relation to the Langlands program and equidistribution problems
([SV, Ven10]). The study of periods admits a local counterpart: the study of
invariant linear functionals and the concomitant notion of distinction of a rep-
resentation π of a reductive group G with respect to a subgroup H ⊂ G. We
recall that a representation π is called distinguished with respect to a subgroup
H ⊂ G if the multiplicity space HomH(π∞,C) of H-invariant continuous func-
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tionals on the space π∞ of smooth vectors of π is non-zero. In many interesting
cases the pair (G,H) is a Gelfand pair, which means that the dimension of the
multiplicity space is at most one for any irreducible admissible representation π of
G. This allows one to connect the global period integral to local linear function-
als. Motivated by the work of Jacquet-Rallis [JR92] and Heumos-Rallis [HR90],
the third author together with O. Offen classified in [OS07, OS08a, OS08b, OS09]
those unitary representations of GL2n(F ) that are distinguished with respect to
the subgroup Sp2n(F ), in the case that F is a non-archimedean local field. The
case of archimedean F was treated subsequently in [GOSS12, AOS12]. We remark
that the pair Sp2n(F ) ⊂ GL2n(F ) is a Gelfand pair (see [OS08b, AS12, Say]).

The classification of Sp2n(R)-distinguished unitary representations of GL2n(R)
involves the family of unitary representations discovered by B. Speh ([Sp83]). We
recall that these unitary representations and their generalizations to GLn(F ),
where F is a local field, play a central role in the Tadic-Vogan classification of
the unitary dual of GLn(F ). To describe this classification we use the Bernstein-
Zelevinsky notation π1×π2 for (normalized) parabolic induction from GLn1

(F )×
GLn2

(F ) to GLn1+n2
(F ). For a discrete series representation σ of GLr(F ) we

denote by U(σ, n) the corresponding Speh representation of GLnr(F ), and by

π(σ, n, α) := U(σ, n)| · |α × U(σ, n)| · |−α, 0 < α <
1

2

the corresponding Speh complementary series representation.
Then any irreducible unitary representation of GLm(F ) can be written in the

form

π = π1 × · · · × πk, (1)

where each πi is either a U(σi, ni) or a π (σi, ni, αi), and such an expression is
unique up to reordering of the πi (see [Tad86, Vog86]). The answer to the dis-
tinction is summarized in the next theorem, which in the archimedean case is a
combination of [GOSS12, Theorem A] and [AOS12, Theorem 1.1].

Theorem. If π is an irreducible unitary representation of GL2n(F ) as in (1), then
π is Sp2n(F )-distinguished iff all the ni are even.

One of the key steps in the proof is to show that the generalized Speh represen-
tations U(σ, n) with even n are distinguished by the symplectic group. The proof
of this result in [OS07] and [GOSS12] is based on a global argument involving
periods of residues of automorphic Eisenstein series.

Recall that for archimedean F we have r ≤ 2, and if F = C then r = 1. If r = 1
then U(σ, n) is a character of GLn(F ), and π(σ, n, α) is a Stein complementary
series representation of GL2n(F ). We denote by Dm the discrete series representa-
tions of GL2(R) and by δm the corresponding Speh representations of GL2n(R). In
[SaSt90] the Speh representations δm of GL2n(R) have been constructed explicitly
as natural Hilbert spaces of distributions on matrix space. The paper [SaSt90]
also describes and uses a construction of the Speh representations as quotients of
degenerate principal series representations induced from characters of the (n, n)
standard parabolic subgroup (see §2.2 below).
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In the present paper we use the explicit constructions of [SaSt90] and give a
direct proof that the spaces of Sp2n(R)-invariant functionals on the Speh repre-
sentations of GL2n(R) are zero if n is odd and one-dimensional if n is even. We
also analyze functionals invariant with respect to subgroups of Sp2n(R).

To describe our result we need some further notation. Let G := G2n denote the
group GL2n(R). Let ω2n be the standard symplectic form on R2n. More explicitly

ω2n is given by

(
0 Idn
− Idn 0

)
and let H := H2n = Sp2n(R) ⊂ G2n denote the

stabilizer of this form. Let

P :=

{(
g X
0 (gt)−1

)
| g ∈ GLn(R), X ∈ Matn×n(R), X = Xt

}
⊂ H

denote the Siegel parabolic subgroup. Let Un ⊂ H2n ⊂ G2n be the unitary group.
In this paper we prove the following result.

Theorem A.

(i) If n is even then

HomH(δ∞m ,C) = HomP (δ∞m ,C) ' C

(ii) If n is odd then

HomH(δ∞m ,C) = HomUn(δ∞m ,C) = {0}.

It is known that the restriction of δm to SL2n(R) decomposes as a direct sum
of two irreducible components δ±m. It follows from Theorem A that exactly one of
them admits an H-invariant functional. In Lemma 15 we determine that δ+

m does.
It is easy to see that if n is odd and m is even then there are no functionals on

δ∞m invariant with respect to − Id ∈ P ∩Un, and thus neither P -invariant nor Un

-invariant functionals exist (see Remark 4).

Remark. Although the pair (G,P ) is not a Gelfand pair for simple geometric
reasons, we show that the Speh representation δm still admits at most one P -
invariant functional (at least for even n). The reason we suspected this result
to hold is that, as shown in [SaSt90], Speh representations stay irreducible when
restricted to a standard maximal parabolic subgroup Q ⊂ G satisfying Q∩H = P .
It is possible that (Q,P ) is a generalized Gelfand pair, i.e. the space of P -invariant
functionals on the space of smooth vectors of any irreducible unitary representation
of Q is at most one dimensional. However, this statement would still not imply
our uniqueness result, since the space of G-smooth vectors of δm could a priori
afford more continuous functionals.

1.1. Related results

The present work was motivated by our previous results on Klyachko models for
unitary representations of GLn(R). For any n, any even k ≤ n and any field F ,
[Kly84] defines a subgroup Klk of GLn(F ) and a generic character ψk of Klk. In
particular, Kl0 is the group of upper unitriangular matrices and Kln = Spn(F ) (if
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n is even). It is shown in [Kly84, IS91, HZ00] for finite fields F and in [HR90, OS07,
OS08a, OS08b, OS09, GOSS12, AOS12] for local fields F that for any irreducible
unitary representation π of GLn(F ) there exists a non-zero (Klk, ψk)-equivariant
functional on π∞ for exactly one k. The uniqueness of such functional is known
only over non-archimedean fields (see [OS08b]).

The proof of existence of k for F = R, given in [GOSS12], is achieved by
reduction to the statement that certain representations of G = GL2n(R) are
H = Sp2n(R)-distinguished. This statement is further reduced, using the Vo-
gan classification of the unitary dual, to an existence statement of H-invariant
functionals on the Speh representations (for even n). Finally, the existence state-
ment is proved using a global (adelic) argument. In the present paper we give an
explicit local construction of such a functional. Together with [GOSS12] this gives
a proof of existence of Klyachko models which uses only the representation theory
of GLn(R) (and the theory of distributions).

The study of invariant functionals in this paper, and more broadly the study of
multiplicity spaces belongs to the long and classical tradition of branching laws (see
e.g. [GW09, Chapter 8]). In the context of symmetric pairs and more generally in
the context of spherical spaces, the basic result is that these multiplicity spaces are
finite dimensional ([KO13], cf. [KrSch]). Granted this qualitative result, one turns
to the question of precisely determining the dimension. We note that in many
interesting cases these spaces are at most one-dimensional (see e.g. [vD86, AG09,
AGRS10, SZ12]). This multiplicity one phenomenon has important consequences
in number theory ([Gross91]).

In some situations there are precise conjectures as to the dimensions of these
multiplicity spaces (see e.g. [GGP12, Wald12]) but in general these dimensions are
hard to determine, even in the context of symmetric pairs. Another important task,
motivated in part by the theory of automorphic forms, is to construct a basis for
these multiplicity spaces. Recently, there has been a considerable interest in these
aspects of the theory under the title of symmetry breaking. The general theory of
branching laws attempts the description of symmetry breaking operators occurring
in the general context of restrictions of representations as in [KoSp14, KoSp]. In
particular, it is interesting to compare our main result with [KoSp, Chapter 14].

Another related result is the exact branching of the representations δ±m of
SL(4,R) to Sp(4,R) as analyzed in [OrSp08]. It is shown there that the decom-
position of δ−m is discrete and multiplicity free, while the decomposition of δ+

m is
continuous.

1.2. Structure of the proof

We use the realization of δ∞m as the image of a certain intertwining differential
operator �m : π∞−m → π∞m , where π∞−m and π∞m are degenerate principal series rep-
resentations induced from certain characters of a fixed (n, n)-parabolic subgroup
Q ⊂ G (see §2.2).

The study of the even case is divided into two parts. In §3 we first use the
realization of δ∞m as a quotient of the degenerate principal series π∞−m to lift a
linear P -invariant functional on δ∞m to an equivariant distribution on G. More
precisely, we study P × Q equivariant distributions on G. The technical heart is
Corollary 9, which shows that such distributions do not vanish on the open cell
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NQ. This is based on the techniques of [AGS08], classical invariant theory and a
careful analysis of the double cosets P \G/Q, which is postponed to §5. Then we
analyze the space of distributions on the open cell NQ by identifying it with the
space of distributions on N with a certain equivariance property. Identifying N
with its Lie algebra and using the Fourier transform we show that this space is at
most one-dimensional for even n. This finishes the proof of Proposition 7 which
states that there exists at most one P -invariant functional in the n even case.

In the second part (§4) we construct an H-invariant functional as an H × Q-
equivariant distribution on G. For that we fix an explicit H × Q-equivariant
non-negative polynomial p, consider the meromorphic family of distributions pλ

(cf. [Ber72]) and take the principal part of this family at λ = (n−m)/2, i.e. the
lowest non-zero coefficient in the Laurent expansion. This distribution defines an
H-invariant functional on π∞m . To show that the restriction of this functional to δ∞m
is non-zero (Lemma 14) we use Corollary 9 along with another lemma from §3 on
non-existence of equivariant distributions with certain support. The uniqueness of
P -invariant functionals and the existence of H-invariant ones imply that the two
spaces are equal. Our proof shows that the spaces of such functionals are equal
and one-dimensional also for the (reducible) representations π∞m and π∞−m.

For odd n we prove that already a Un-invariant functional does not exist
(Corollary 25). We do that by analyzing the O2n(R)-types of δm described in
[HL99, Sah95] and showing that none of those have a Un-invariant vector.

To summarize, Theorem A follows from Proposition 7 on uniqueness of P -
invariant functionals for even n, Lemma 14 on existence of H-invariant functionals
for even n and Corollary 25 on non-existence of Un-invariant functionals for odd
n.
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2. Preliminaries

2.1. Notation

Recall the notation G = G2n = GL2n(R), and H = H2n = Sp2n(R) ⊂ G. Let

Q :=

{(
a c
0 d

)
∈ G

}
Q :=

{(
a 0
b d

)
∈ G

}
N :=

{(
Idn c
0 Idn

)
∈ G

}
.

Recall that P denotes Q ∩H and let

M :=

{(
g 0
0 (gt)−1

)}
and U :=

{(
Idn B
0 Idn

)
|B = Bt

}
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denote the Levi subgroup and the unipotent radical of P .
For g ∈ Mati×i(R) we denote |g| := |det(g)| and sgn(g) := sgn(det(g)).

For q =

(
A 0
B D

)
∈ Q we denote γ(q) := |A||D|−1 and ε(q) := sgn(D).

For any integerm let Lm denote the character ofQ given by Lm := εm+1γ−(n+m)/2.
Let π∞m denote the (unnormalized) induced representation IndG

Q
(Lm), with the

topology of uniform convergence on G/Q together with all the derivatives. Con-
sidering N as an open subset of G/Q, one can restrict smooth vectors of π∞m to N .
This restriction is an embedding since N is an open subset of G/Q. We sometimes
identify N and its Lie algebra n with Matn×n(R) by(

1 X
0 1

)
7→ X and

(
0 X
0 0

)
7→ X.

This enables us to define the Fourier transform on n. Denote by M+
n (respec-

tively M−n ) the subset of Matn×n(R) consisting of matrices with nonnegative (resp.
nonpositive) determinant. For f ∈ π∞m we denote its restriction to n by f |n. We
denote the space of all smooth functions obtained in this way by π∞m |n.

2.2. Sahi-Stein realization of the Speh representations

For any m ∈ Z≥0 define

Ĥm := {f ∈ S∗(n) | f̂ ∈ L2(n, |x|−mdx)} and Ĥ±m := {f ∈ Ĥm |Suppf̂ ⊂M±n },

where S∗(n) denotes the space of tempered distributions n. The Ĥm and Ĥ±m are
Hilbert spaces with the scalar product

〈f, g〉 = 〈f̂ , ĝ〉L2(n,|x|−mdx).

Define an action of Q on Ĥm by

δm(q)f(x) := Lm(q)f(a−1(c+ xd)), for q =

(
a c
0 d

)
,

or equivalently on the Fourier transform side by

δ̂m(q)f(ξ) = exp(2πiTr(cd−1ξ))L−1
−m(q)f̂(d−1ξa).

Summarizing the main results of [SaSt90] we obtain

Theorem 1 ([SaSt90]). Let m ∈ Z≥0. Then

(i) The action of Q extends to a unitary representation δm of G on Ĥm.

(ii) (G, δm, Ĥm) is isomorphic to the Speh representation of G.
(iii) There exists an epimorphism π∞−m → δ∞m and an embedding δ∞m ⊂ π∞m . The

latter is defined by the inclusion δ∞m ⊂ π∞m |n.
(iv) The restriction of δm to SL(2n,R) is a direct sum of two irreducible repre-

sentations δ±m , realized on the subspaces Ĥ±m.

Consider the determinant as a polynomial on n and let � denote the corre-
sponding differential operator.
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Theorem 2. The operator �m defines a continuous G-equivariant map π∞−m →
π∞m with image δ∞m .

Proof. By [KV77, Proposition 2.3] (see also [Boe85]), the operator �m defines a
continuous G-equivariant map π∞−m → π∞m , which is non-zero by [SaSt90]. By
[HL99, Theorems 3.4.2-3.4.4] π∞−m has unique composition series in the strong
sense, meaning that any quotient of π∞−m has a unique irreducible subrepresen-
tation, and all these irreducible subquotients are pairwise non-isomorphic. It is
easy to see that π∞m is dual to π∞−m and thus their composition series are oppo-
site. Hence the image of any nonzero intertwining operator from π∞−m to π∞m is
the unique irreducible subrepresentation of π∞m . Since δ∞m is an irreducible sub-
representation of π∞m , the image of �m is a dense subspace of δ∞m . By the result
of Casselman and Wallach (see [Cas89] or [Wall92, Chapter 11]), the category of
smooth admissible Fréchet representations of moderate growth is abelian and any
morphism in it has closed image. Thus the image of �m is δ∞m .

Remark 1. One can deduce Theorem 2 also from [KS93], which computes the
action of �m on every K-type, where K = O(2n,R). From the formula in [KS93]
and the description of the K-types of the composition series of π∞−m in [HL99,
Sah95] one can see that �m does not vanish precisely on the K-types of δ∞m .

2.3. Invariant distributions

We will now recall some generalities on Schwartz functions and tempered distri-
butions.

Definition 1. For an affine algebraic manifold M we denote by S(M) the space
of Schwartz functions on M , that is smooth functions f such that df is bounded for
any differential operator d on M with algebraic coefficients. We endow this space
with a Fréchet topology using the sequence of seminormsNd(f) := supx∈M |df(x)|,
where d is a differential operator on M with algebraic coefficients. Also, for an
algebraic vector bundle E over M we denote by S(M,E) the space of Schwartz
sections of E. We denote by S∗(M,E) the space of continuous linear functionals
on S(M,E) and call its elements tempered distributional sections. For a closed
subvariety Z ⊂M we denote by S∗M (Z,E) ⊂ S∗(M,E) the subspace of tempered
distributional sections supported in Z. For the theory of Schwartz functions and
distributions on general semi-algebraic manifolds we refer the reader to [AG08].

Notation 2.

• For a manifold M and closed submanifold Z ⊂ M we denote by NM
Z :=

TM |Z/TZ the normal bundle to Z in M and by CNM
Z ⊂ T ∗M its dual

bundle, i.e. the conormal bundle to Z in M .
• For a point z ∈ Z we denote by NM

Z,z the normal space at z to Z in M and

by CNM
Z,z the conormal space at z to Z in M .

• For a group K acting on a vector space V we denote by V K the subspace
of K-invariant vectors and by V K,χ the subspace of vectors that change by
the character χ.

• If K acts on a manifold M we denote by S∗(M)K,χ the space of distribu-
tions on M that change by the character χ under the action of K.

• For a real algebraic group K we denote by ∆K its modular character.
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Theorem 3 ([AGS08, §B.2]). Let a real algebraic group K act on a real alge-

braic manifold M . Let Z ⊂ M be a Zariski closed subset. Let Z =
⋃l
i=1 Zi be a

K-invariant stratification of Z. Let χ be a character of K. Suppose that for any
k ∈ Z≥0 and 1 ≤ i ≤ l,

S∗(Zi,Symk(CNM
Zi ))

K,χ = {0}.

Then S∗M (Z)K,χ = {0}.

Theorem 4 (Frobenius descent, see [AG09, Appendix B]). Let a real al-
gebraic group K act on a real algebraic manifold M . Let Z be a real algebraic
manifold with a transitive action of K. Let φ : M → Z be a K-equivariant map.
Let z ∈ Z be a point and Mz := φ−1(z) be its fiber. Let Kz be the stabilizer of z
in K. Let E be a K-equivariant algebraic vector bundle over M .

Then there exists a canonical isomorphism

Fr : (S∗(Mz, E|Mz )⊗∆K |Kz ·∆−1
Kz

)Kz ∼= S∗(M,E)K .

From those two theorems we obtain the following corollary.

Corollary 5. Let a real algebraic group K act on a real algebraic manifold M .
Let Z ⊂ M be a Zariski closed subset. Suppose that Z has a finite number of
orbits: Z =

⋃l
i=1Kzi. Let χ be a character of K. Suppose that for any 1 ≤ i ≤ l

we have

Sym∗(NM
Kzi,zi)

Kzi ,χ·∆K |Kzi ·∆
−1
Kzi = {0},

where Sym∗ denotes the symmetric algebra. Then S∗M (Z)K,χ = {0}.

Lemma 6. Let K be a real algebraic group, and R be a (closed) algebraic subgroup.
Consider the right action of R on K and suppose that K/R is compact. Let ξ be
a character of R. Then we have a natural isomorphism of left K - representations

(C∞(K, ξ)R)∗ ∼= S∗(K, ξ∆−1
R )R ∼= S∗(K)(R,ξ−1∆R).

Proof. Let Ind(ξ) be the bundle on K/R corresponding to ξ. Consider the sur-
jective submersion π : K → K/R. It defines an isomorphism C∞(K, ξ)R ∼=
C∞(K/R,Ind(ξ)).

Since K/R is compact, we have C∞(K/R,Ind(ξ))∗ ∼= S∗(K/R,Ind(ξ)). Con-
sider the diagonal action of K on K×K/R and the projections p1, p2 of K×K/R
on both coordinates. From Theorem 4 we obtain

S∗(K/R, Ind(ξ)) ∼= S∗(K ×K/R, p∗1(ξ))K ∼= S∗(K, ξ∆−1
R )R.

The isomorphism S∗(K, ξ∆−1
R )R ∼= S∗(K)(R,ξ−1∆R) is straightforward.

3. Uniqueness of P -invariant functionals

In this section we assume that n is even. The goal of this section is to prove
the following proposition.
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Proposition 7. For any integer m we have

dim((π∞m )∗)P ≤ 1.

Recall the character Lm of Q from §2.1 and note that L−1
−m = εm+1γ(n−m)/2.

Since ∆Q = γ−n, we obtain from the definition of π∞m and Lemma 6

(π∞m )∗ ∼= S∗(G)Q,L
−1
−m (2)

and thus in order to prove Proposition 7 we have to show that for even n

dimS∗(G)P×Q,1×L
−1
−m ≤ 1.

We will need the following proposition, which we will prove in section 5.

Proposition 8. Denote K := P ×Q, and let x /∈ NQ. Then

Sym∗(NG
PxQ,x

))Kx,L
−1
−m·∆K |Kx∆−1

Kx = {0}.

From this proposition and Corollary 5 we obtain

Corollary 9.

S∗G(G−NQ)P×Q,1×L
−1
−m = {0}.

By this corollary it is enough to analyze S∗(NQ)P×Q,1×L
−1
−m . Let S denote the

space of symmetric n×n matrices, and A denote the space of anti-symmetric n×n
matrices. Identify M ∼= GLn(R) and let it act on S and on A by x 7→ gxgt.

Lemma 10. We have

S∗(NQ)P×Q,1×L
−1
−m ∼= S∗(A)GLn(R),det1−m ∼= S∗(A)GLn(R),sgnm+1 |·|m−n

Proof. Identify U ∼= S and let it act on itself by translations. Then NQ is isomor-
phic as a P × Q-space to A × S × Q, where Q acts on the third coordinate (by
right translations), U acts on the second coordinate and M acts on the first and
the second coordinates. Note that the action of P ×Q on S ×Q is transitive and

that ∆Q = γ−n and ∆P

(
g 0
0 (g−1)t

)
= |g|n+1. The first isomorphism follows now

from Frobenius descent.
The second isomorphism is given by Fourier transform on A defined using the

trace form.

Let O ⊂ A denote the open dense subset of non-degenerate matrices and Z
denote its complement. The following lemma is a straightforward computation.

Lemma 11.

(i) Every orbit of GLn(R) in Z includes an element of the form x :=

(
0k×k 0

0 ωn−k

)
,

for some even k.

(ii) NA
GLn(R)x,x

∼=
{(

0k×k b
0 0

)}
and GLn(R)x =

{(
ak×k 0
c d

)
such that d ∈ Sp(n−k)

}
.

(iii) ∆GLn(R)x = | · |−(n−k).
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Corollary 12. For any x ∈ Z we have

Sym∗(NA
GLn(R)x,x)

GLn(R)x,sgnm+1 |·|m−n·∆−1
GLn(R)x = {0}.

Proof. From the previous lemma sgnm+1 |·|m−n·∆−1
GLn(R)x

= sgnk+1 detm−k = sgn detm−k.

This is not an algebraic character of GLn(R)x and thus there are no tensors that
change under this character.

Corollary 13.

dimS∗(A)GLn(R),sgnm+1 |·|m−n ≤ 1.

Proof. By Corollary 12 and Corollary 5,

S∗A(Z)GLn(R),sgnm+1 |·|m−n = {0}. (3)

Therefore, the restriction of equivariant distributions to O is an embedding. Now,

dimS∗(O)GLn(R),sgnm+1 |·|m−n ≤ 1,

since O is a single orbit.

Proposition 7 follows now from Corollary 13, Lemma 10, Corollary 9 and (2).

Remark 2. Corollary 9 does not extend to the case of odd n. For example, in this
case the closed P ×Q-orbit Q does support an equivariant distribution.

4. Construction of the H-invariant functional

Let n be even. In this section we construct an H-invariant functional φ on
π∞m for any m ∈ Z≥0 and show that its restriction to δ∞m is non-zero. Define a
polynomial p on Mat2n×2n(R) by

p

(
A B
C D

)
:= det(DtB −BtD) = Pfaffian2(DtB −BtD). (4)

Note that p is non-negative, H-invariant on the left and changes under the right
multiplication by Q by the character | · |γ−1. Consider the meromorphic family
of distributions on Mat2n×2n(R) given by pλ. This family is defined for Reλ > 0
and by [Ber72] has a meromorphic continuation (as a family of distributions) to
the entire complex plane. For Reλ > 0, the restriction of this distribution to
G = GL2n(R) is a non-zero smooth function, and thus the restriction of the
family to G is not identically zero. Define

ηmλ := (pλ|G)| · |−λεm+1. (5)

This is a tempered distribution, since | · |λ is a smooth function on G of moderate
growth. Note that

ηmλ ∈ S∗(G)(H×Q,1×εm+1γλ).

Let α ∈ S∗(G) be the principal part of this family at λ = n−m
2 , i.e. the lowest non-

zero coefficient in the Laurent expansion. By (2) α defines a non-zero H-invariant
functional φ on π∞m .
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Lemma 14. φ|δ∞m 6= 0.

Proof. By Theorem 2 it is enough to show that �mφ 6= 0. By Corollary 9, α|NQ 6=
0. It is enough to show that (�mα)|NQ 6= 0. As in §3, let A ⊂ N denote the
subspace of anti-symmetric matrices and O ⊂ A the open subset of non-degenerate
matrices. Note that α|NQ 6= 0 is P×Q-equivariant and let β ∈ S∗(A)GLn(R),det1−m

be the distribution on A corresponding to α by the Frobenius descent (see Lemma
10). Note that F(�mβ) is F(β) multiplied by a polynomial. Thus it is enough
to show that F(β) has full support, i.e. F(β)|O 6= 0. This follows from the
equivariance properties of F(β) by (3).

This argument in fact proves slightly more.

Lemma 15. φ|(δ+m)∞ 6= 0.

Proof. If g is a Schwartz function on M+
n ⊂ N then its Fourier transform ĝ defines

a vector in (δ+
m)∞ by Theorem 1. Thus it is enough to find such a g for which

ζ(ĝ) 6= 0, where ζ denotes the P -invariant distribution on N corresponding to α.
Let f be a compactly supported smooth function on O such that β(F(f)) 6= 0.

Since the determinant is positive on O, there exists a compact neighborhood Z of
zero in the space S of symmetric n by n matrices such that Supp(f) + Z ⊂ M+

n .
Let h be a smooth function on S which is supported on Z and s.t. h(0) = 1. Let
g := f � h be the function on N defined by g(X + Y ) := f(X)h(Y ) where X ∈ A
and Y ∈ S. Let FS denote the Fourier transform on S. Then we have

ζ(ĝ) = ζ(F(f) � FS(h)) = β(F(f)) 6= 0.

Remark 3. (i) For odd n, the polynomial p is identically zero, since the matrix
DtB −BtD is an anti-symmetric matrix of size n.

(ii) The polynomial p defines the open orbit of H on G/Q. In general, one can
show that if a linear complex algebraic group K acts with finitely many
orbits on a complex affine algebraic manifold M, both defined over R, W is
a basic open subset of M defined by a K-equivariant polynomial p with real
coefficients, χ is a character of the group of real points K of K and there
exists a non-zero (K,χ)-equivariant tempered distribution ξ on W then there
exists a non-zero (K,χ)-equivariant tempered distribution on M . Here, W
and M denote the real points of W and M.
To prove that consider the analytic family of distributions |p|λξ on W . For
Reλ big enough, it can be extended to a family ηλ on M . By [Ber72] the
family ηλ has a meromorphic continuation to the entire complex plane. Note
that the distributions in this family are equivariant with a character that
depends analytically on λ. Thus taking the principal part at λ = 0 we obtain
a non-zero (K,χ)-equivariant tempered distribution on M .
Note that since this construction involves taking principal part, the obtained
distribution is not necessary an extension of the original ξ. This can already
be seen in the case when M = C is the affine line, W is the complement to
0 and K is the multiplicative group C×.
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5. Proof of Proposition 8

We start from the description of the double cosets P \ G/Q. Let r1, r2, s, t be
non-negative integers such that r1 + r2 + 2s + 2t = n. We will view 2n × 2n
matrices as 10 × 10 block matrices in the following way. First of all, we view
them as 2 × 2 block matrices with each block of size n × n. Now, we divide each
block to 5 × 5 blocks of sizes r1, r2, s, s, 2t in correspondence. Denote by σ16 the
permutation matrix that permutes blocks 1 and 6, by σ39 the permutation matrix

that permutes blocks 3 and 9, and by τ5,10 the matrix which has

(
Id2t ω2t

0 Id2t

)
in

blocks 5 and 10 and is equal to the identity matrix in other blocks. Recall the

notation ω2t :=

(
0 Idt
− Idt 0

)
. Denote

xr1,r2,s,t := σ16σ39τ5,10. (6)

Lemma 16. Each double coset in P \ GL2n(R)/Q includes a unique element of
the form xr1,r2,s,t. The orbits in NQ correspond to r1 = s = 0.

Proof. Consider the Lagrangian subspaces L := Span{e1, . . . en} ⊂ R2n and L′ :=
Span{en+1, . . . e2n} ⊂ R2n. Note that Q preserves L and Q preserves L′. Identify
G/Q with the Grassmannian of n-dimensional subspaces of R2n by g 7→ gL′. To
an n-dimensional subspace W ⊂ R2n we associate the following invariants:

r1 := dimL∩W∩W⊥, r2 := dimW⊥∩W−r1, s := dimL∩W−r1, t := (n−r1−r2)/2−s.

Note that n − r1 − r2 is even since it is the rank of ω|W . Clearly, W ∈ NL′ if
and only if r1 = s = 0.

Note the equality of vectors

(v1, 0, v2, 0, ω2tu | 0, w2, w1, 0, u)t = xr1,r2,s,t(0, 0, 0, 0, 0 | v1, w2, w1, v2, u)t. (7)

It is enough to show that W can be transformed, using the action of P , to a space
of vectors of the form (7).

Let us first show that W can be transformed to a space of vectors of the form

(v,Aw+Bv |Cw,w,Dw)t, where size(v)+size(w) = n and A is a square matrix.
(8)

There exists a set S of n coordinates such that the projection of W on the space
of vectors that have zero coordinates from S is an isomorphism. Suppose that S
has k of the coordinates 1 . . . n, and thus n − k of the coordinates n + 1, . . . 2n.
Note that acting by M we can perform any permutation of the first n coordinates
followed the same permutation on the last n coordinates. Using such permutations
we can transform S to the set {n−k+1, . . . , n, n+1, . . . n+ l, n+k+ l+1, . . . , 2n}
for some l ≤ n− k. Then W will have the form (8).

Let us now rewrite (8) in more detailed form, using four blocks of the same sizes
yi in the first n coordinates and last n coordinates:

(v1, v2, A11w1+A12w2+B11v1+B12v2, A21w1+A22w2+B21v1+B22v2 |C1w1+C2w2, w1, w2, D1w1+D2w2)t
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Denote the first four blocks by ei and the last by fi. For any i, j ∈ {1, 2, 3, 4}
with i 6= j, M = GLn(R) allows us to do the following operations:

(1)i ei 7→ gei, fi 7→ (gt)−1fi, where g ∈ GLyi(R)

(2)ij ei 7→ ei + aej , fj 7→ fj − atfi, where a ∈ Matyi×yj (R).

Similarly, U allows us to do two more operations:

(3)ij ei 7→ ei + bfj , ej 7→ ej + btfi, where b ∈ Matyi×yj (R)

(4)i ei 7→ ei + (c+ ct)fi, where c ∈ Matyi×yi(R).

Using (2)31 and (2)41, and redefining C and D we get B = 0. Using (2)21 and
(2)34, and redefining A we get C = 0 and D = 0.

Using (3)32 and (3)42 and (3)43 we can arrange A11 = A21 = A22 = 0. Using
(3)33 we make A12 anti-symmetric. Now, using (1)3 we can replace A12 by gA12g

t

and thus we can bring it to the form A12 =

(
0 0
0 ω2t

)
.

Lemma 17 (See §5.1 below). Let K := P ×Q and x := xr1,r2,s,t. Then
(i) If s > 0 then

Sym∗(NG
PxQ,x

))Kx,L
−1
−m·∆K |Kx∆−1

Kx = {0}.

(ii) If s = 0 then

Sym∗(NG
PxQ,x

))Kx,L
−1
−m·∆K |Kx∆−1

Kx ∼= Sym∗(glr1)GLr1 ,|·|
−m−r1 sgnm+1

⊗Sym∗(or2)GLr2 ,det2t−m+1

where or2 denotes the space of antisymmetric matrices and GLr1 and GLr2 act
by a 7→ gagt.

Lemma 18. Let k, l ∈ Z≥0, r ∈ Z>0.
(i) If k 6= l (mod 2) then

Sym∗(glr)
GLr,|·|k sgnl = {0}.

(ii) If k 6=0 and r is odd then

Sym∗(or)
GLr,detk = {0}.

Proof.
(i)The only algebraic characters of GLr are powers of the determinant.
(ii) The stabilizer in GLr of every matrix in or has an element with determinant
different from 1.
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Proof of Proposition 8. By Lemma 16 it is enough to show that for x = xr1,r2,s,t
with r1 + s > 0 we have

Sym∗(NG
PxQ,x

))Kx,L
−1
−m·∆K |Kx∆−1

Kx = {0}.

If s > 0 this follows from Lemma 17(i). Otherwise r1 > 0 and, by Lemma 17(i),
we have to show that

Sym∗(glr1)GLr1 ,| det |−m−r1 sgn(det)m+1

⊗ Sym∗(or2)GLr2 ,det2t−m+1

= {0} (9)

Note that since n is even, r1 and r2 are of the same parity. If they are even then
(9) follows from Lemma 18(i), and otherwise from Lemma 18(ii).

5.1. Proof of Lemma 17

Let x = xr1,r2,s,t be as in the lemma. We need to compute the space NG
x,PxQ

,

the stabilizer Kx and its modular function. In order to do that we compute the
conjugates of P and its Lie algebra p under x.

Lemma 19. Let q :=

(
a b
0 d

)
∈ q. Then x−1qx =

(
A B
C D

)
, where

A =


d11 0 d14 0 0
b21 a22 b24 a24 a25

d41 0 d44 0 0
b41 a42 b44 a44 a45

b51 − ω2td51 a52 b54 − ω2td54 a54 a55



B =


0 d12 d13 0 d15

a21 b22 b23 a23 b25 + a25ω2t

0 d42 d43 0 d45

a41 b42 b43 a43 b45 + a45ω2t

a51 b52 − ω2td52 b53 − ω2td53 a53 b55 + a55ω2t − ω2td55



C =


b11 a12 b14 a14 a15

d21 0 d24 0 0
d31 0 d34 0 0
b31 a32 b34 a34 a35

d51 0 d54 0 0

 D =


a11 b12 b13 a13 b15 + a15ω2t

0 d22 d23 0 d25

0 d32 d33 0 d35

a31 b32 b33 a33 b35 + a35ω2t

0 d52 d53 0 d55

 .

This lemma is a straightforward computation.
We can identify TxG ∼= gl2n. Under this identification TxPxQ ∼= x−1px+ q and

NG
x,PxQ

∼= gl2n/(x
−1px+ q) ∼= n/(n ∩ (x−1px+ q)).

From the previous lemma we obtain
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Corollary 20. Recall the identification n ∼= Matn×n(R) and let V ⊂ n denote the
subspace consisting of matrices of the form

n11 n12 0 n14 n15

nt12 n22 0 0 0
n31 0 0 n34 0
0 0 0 0 0
nt15 0 0 0 0

 ,

such that n22 = −nt22.
Then V projects isomorphically onto n/(n ∩ (x−1px+ q)).

Now let us analyze the stabilizer Kx. From Lemma 19 we obtain

Corollary 21.

(i) The Lie algebra p ∩ xqx−1 consists of matrices

(
A B
0 −At

)
such that

A =


A11 A12 A13 A14 A15

0 A22 0 0 0
0 A32 A33 0 −ω2tB35

0 A42 0 A44 ω2tB45

0 A52 0 0 A55

 , B =


B11 B12 B13 B14 B15

Bt12 0 0 0 0
Bt13 0 B33 0 B35

Bt14 0 0 B44 B45

Bt15 0 Bt35 Bt45 0

 ,

A55 ∈ sp(2t), B11 = Bt11, B33 = Bt33, B44 = Bt44.

(ii) Let p =

(
A B
0 (At)−1

)
∈ P . Let k = (p, x−1px) ∈ Kx. The modular function

of Kx is given by

∆Kx(k) = |A11|2n−r1+1|A22|−n+r1+r2 |A33|n−r1−s+1|A44|n−r1−s+1.

(iii) Let q =

(
A 0
C D

)
∈ Q ∩ x−1Px. Let k = (xqx−1, q) ∈ Kx. Then k acts on

V by
k · n = prV (AnD−1),

where prV : n→ V denotes the projection.

Corollary 22. Denote

χ := L−1
−m ·∆K |Kx∆−1

Kx
= εm+1γ(n−m)/2 ·∆K |Kx∆−1

Kx
.

Let
q = diag(a, b, c, (ct)−1, Id, (at)−1, (bt)−1, d, (dt)−1, Id).

Let k := (xqx−1, q) ∈ Kx. Then

χ(k) = (sgn(a) sgn(b) sgn(c) sgn(d))m+1|a|−m−r1 |b|2s+2t−m+1|c|−r1−s|d|−r1−s.
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Proof.

γ(q) = |a|2|b|2 and ∆Q(q) = |a|−2n|b|−2n.

xqx−1 = diag((at)−1, b, (dt)−1, (ct)−1, Id, a, (bt)−1, d, c, Id).

∆K(k) = |a|−3n−1|b|−n+1|c|−n−1|d|−n−1.

∆Kx(k) = |a|−2n+r1−1|b|−n+r1+r2 |c|−n+r1+s−1|d|−n+r1+s−1.

Now we are ready to prove Lemma 17.

Proof of Lemma 17. If s > 0 then Sym∗(V )Kx,χ = 0, since tensors cannot have
negative homogeneity degrees. Otherwise, V involves only 3 blocks - the ones
numbered 1, 2 and 5.

Let p ∈ Sym∗(V )Kx,χ. Identify Kx with x−1Px∩Q using the projection on the
second coordinate.

Consider the action of the block A21. It can map any non-zero vector in the
block n11 to any vector in the block n12. This action does not change any element
in any other block of V (it does effect n22, but not its anti-symmetric part). Also,
the character χ does not depend on A21. Therefore p does not depend on the
variables in the block n12.

In the same way, using the action of A52, we can show that p does not depend
on the variables in the block n15. Therefore, p depends only on n11 and n22. Hence

Sym∗(V )Kx,χ ∼= Sym∗(glr1)GLr1 ,|·|
−m−r1 sgnm+1

⊗ Sym∗(or2)GLr2 ,|·|
2t−m+1 sgnm+1

.

6. Non-existence of an H-invariant functional for odd n

In this section we prove that if n is odd then there are no Un-invariant func-
tionals on the Speh representations and therefore there are no H-invariant func-
tionals. We do that using K-type analysis. The maximal compact subgroup of G
is K := O2n(R), and Un = K ∩H is a symmetric subgroup of K. We show that
no K-type of δm has a Un-invariant vector.

The root system of K is of type Dn, and we make the usual choice of positive
roots

{εi ± εj : i < j}

where εi is the i-th unit vector in Rn. With this choice, the highest weights of
K-modules are given by integer sequences µ = (µ1, . . . , µn) ∈ Zn such that

µ1 ≥ · · · ≥ µn−1 ≥ µn ≥ 0. (10)
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Remark 4. From the definition of π∞m we see that if n is odd and m is even then
the central element − Id ∈ G acts by scalar −1, and there are neither P -invariant
nor Un -invariant functionals on δ∞m .

Since δ∞m is the irreducible quotient of π∞−m, the following theorem follows from
[HL99, Theorems 3.4.2 - 3.4.4] (see also [Sah95]).

Theorem 23. The K-types of π∞±m are given by sequences as in (10) with µi ≡
m + 1 (mod 2), while the K-types of the Speh representation δm satisfy the addi-
tional condition µn ≥ m+ 1.

Lemma 24. If n is odd then no K-type (µ1, . . . , µn) with µn 6= 0 has Un-invariant
vectors.

Proof. Let ρ be an irreducible representation of K with µn 6= 0. Suppose that ρ
has a non-zero Un-invariant vector. Then ρ = ρ1 ⊕ ρ2, where ρi are irreducible
non-zero representations of K0 = SO2n(R). The pair (K,Un) is a symmetric pair
of compact groups and therefore a Gelfand pair. Hence the Un-invariant vector is
unique up to a scalar and belongs to one of the ρi. Denote it by v and say v ∈ ρ1.

Consider g :=

(
Id 0
0 − Id

)
∈ K. Since n is odd, g /∈ K0. Hence ρ(g)v /∈ ρ1,

since otherwise ρ would be reducible. However, g normalizes Un and hence ρ(g)v
is Un-invariant and therefore proportional to v. Contradiction.

Corollary 25. If n is odd then there are no Un-invariant functionals on δ∞m .

Proof. By Remark 4 we can assume that m is odd. Then by Lemma 24 and
Theorem 23, no K-type of δm has a Un-invariant vector. Therefore, the space of
K-finite vectors, which decomposes to a direct sum of K-types, does not have a
Un-invariant functional. This space is dense in δ∞m , hence there are no Un-invariant
functionals on δ∞m either.

Remark 5. Using the Cartan-Helgason theorem and the table in [Kna85, Appendix
C, §2] it can be shown that the K-types that have Un-invariant vectors are of the
form µ2i−1 = µ2i for 1 ≤ i ≤ n/2 and if n is odd then µn = 0, which gives an
alternative proof of Lemma 24.

References

[AG08] A. Aizenbud, D. Gourevitch: Schwartz functions on Nash Manifolds, Interna-
tional Mathematics Research Notices, Vol. 2008, n.5, Article ID rnm155, 37 pages.
DOI: 10.1093/imrn/rnm155. See also arXiv:0704.2891 [math.AG].

[AG09] A. Aizenbud, D. Gourevitch:Generalized Harish-Chandra descent, Gelfand pairs
and an Archimedean analog of Jacquet-Rallis’ Theorem, (with an appendix by
E.Sayag), Duke Mathematical Journal, Volume 149, Number 3,509-567 (2009). See
also arXiv: 0812.5063[math.RT].

[AGRS10] A. Aizenbud, D. Gourevitch, S. Rallis, G. Schiffmann: Multiplicity One Theo-
rems, arXiv:0709.4215v1 [math.RT], Annals of Mathematics, Pages 1407-1434 from
Volume 172 (2010), Issue 2.

[AGS08] A. Aizenbud, D. Gourevitch, E. Sayag: (GLn+1(F ),GLn(F )) is a Gelfand
pair for any local field F , postprint: arXiv:0709.1273v4[math.RT]. Origi-



DMITRY GOUREVITCH, SIDDHARTHA SAHI, EITAN SAYAG

nally published in: Compositio Mathematica, 144 , pp 1504-1524 (2008),
doi:10.1112/S0010437X08003746.

[AOS12] A. Aizenbud, O. Offen, E. Sayag: Disjoint pairs for GL(n,R) and GL(n,C),
Comptes Rendus Mathematique 350, 9-11 (2012).

[AS12] A. Aizenbud, E. Sayag: Invariant distributions on non-distinguished nilpotent
orbits with application to the Gelfand property of (GL(2n,R),Sp(2n,R)), Journal of
Lie Theory 22 (2012), No. 1, 137–153. See also arXiv:0810.1853 [math.RT].

[Ber72] J. Bernstein: Analytic continuation of generalized functions with respect to a
parameter, Functional Analysis and its Applications 6, No.4, 26-40 (1972).

[Boe85] B. Boe: Homomorphisms between generalized Verma modules, Trans. A.M.S 288,
791-799 (1985).

[BSS88] D. Barbasch, S. Sahi, B.Speh: Degenerate series representations for GL(2n, R)
and Fourier Analysis. Symposia Mathematica, Vol. XXXI (1988, Rome), Sympos.
Math., Vol. XXXI, Academic Press, London, 1990, 45-69.

[Cas89] W. Casselman: Canonical extensions of Harish-Chandra modules to representa-
tions of G, Can. J. Math., XLI, No. 3, 385-438 (1989).

[GGP12] W. Gan, H. Gross, D. Prasad: Symplectic local root numbers, central critical
L-values, and restriction problems in the representation theory of classical groups.
Asterisque 347, 1-109 (2012).

[GW09] R. Goodman, N. R. Wallach: Symmetry, Representations, and Invariants, Grad-
uate Texts in Mathematics 255. Springer, Dordrecht xx+716 pp. (2009).

[GOSS12] D. Gourevitch, O. Offen, S. Sahi and E. Sayag: Existence of Klyachko models
for GL(n,R) and GL(n,C), Journal of Functional Analysis 262, Issue 8, pp 3465-
3664 (2012). See also arXiv:1107.4621.

[Gross91] H. Gross: Some applications of Gelfand pairs to number theory, Bull. Amer.
Math. Soc. (N.S.) Volume 24, Number 2 (1991), 277-301.

[HL99] R. Howe, S. T. Lee: Degenerate Principal Series Representations of GLn(C) and
GLn(R), Journal of Functional Analysis 166, n. 2, 244-309 (1999).

[HR90] M. J. Heumos, S. Rallis: Symplectic-Whittaker models for GLn. Pacific J.
Math., 146(2):247–279, 1990.

[HZ00] R. B. Howlett, C. Zworestine: On Klyachko’s model for the representations of
finite general linear groups. In Representations and quantizations (Shanghai, 1998),
pages 229–245. China High. Educ. Press, Beijing, 2000.

[IS91] N. F. J. Inglis, J. Saxl: An explicit model for the complex representations of the
finite general linear groups. Arch. Math. (Basel), 57(5):424–431 (1991).

[JR92] H. Jacquet and S. Rallis: Symplectic periods J. Reine Angew. Math., 423 175-197
(1992).

[Kly84] A. A. Klyachko: Models for complex representations of groups GL(n, q). Mat.
Sb. (N.S.), 48(2)(3):365–378 (1984).

[Kna85] A. Knapp: Representation Theory of Semisimple Groups: An Overview Based
on Examples, Princeton University Press, Princeton, NJ (1986).

[KO13] T. Kobayashi, T. Oshima: Finite multiplicity theorems for induction and restric-
tion, Advances in Mathematics, 248, 921-944, (2013).



INVARIANT FUNCTIONALS ON SPEH REPRESENTATIONS

[KoSp14] T. Kobayashi, B. Speh: Intertwining operators and the restriction of represen-
tations of rank-one orthogonal groups, C. R. Math. Acad. Sci. Paris 352, no. 2, 89-94
(2014).

[KoSp] T. Kobayashi, B. Speh: Symmetry breaking for representations of rank one or-
thogonal groups, to appear in Memoirs of American Mathematical Society, 131 pp.
arXiv: 1310.3213.

[KS93] B.Kostant, S. Sahi:Jordan algebras and Capelli identities. Invent. Math. 112 ,
no. 3, 657–664 (1993).

[KrSch] B. Kroetz, H. Schlichtkrull: Multiplicity bounds and the subrepresentation theo-
rem for real spherical spaces, arXiv:1309.0930 [math.RT], to appear in Trans. Amer.
Math. Soc.

[KV77] M. Kashiwara, M. Vergne: Remarque sur la covariance de certains opérateurs
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