Harmonic vectors and matrix tree theorems

Siddhartha Sahi

Mathematics Department, Rutgers University, New Brunswick, NJ

September 16, 2013

1 Introduction

In this paper we prove a new result in graph theory that was motivated by considerations in mathematical economics; more precisely by the problem of price formation in an exchange economy [3]. The aggregate demand/supply in the economy is described by an $n \times n$ matrix $A = (a_{ij})$ where a_{ij} is the amount of commodity j that is on offer for commodity i . In this context one defines a *market-clearing* price vector to be a vector p with strictly positive components p_i , which satisfies the equation

$$
\sum_{j} a_{ij} p_j = \sum_{j} a_{ji} p_i \text{ for all } i
$$
 (1)

The left side of (1) represents the total value of all commodities being offered for commodity i, while the right side represents the total value of commodity i in the market. It was shown in [3] that if the matrix A is irreducible, *i.e.* if it cannot be permuted to block upper-triangular form, then (1) admits a positive solution vector p , which is unique up to a positive multiple.

The primary purpose of the present paper is to describe an explicit combinatorial formula for p . The formula and its proof are completely elementary, but nonetheless the result seems to be new. This formula plays a crucial role in forthcoming joint work of the author [4], which seeks to address a fundamental question in mathematical economics: How do prices and money emerge in a barter economy? We show in $[4]$ that among a reasonable class of exchange mechanisms, trade via a commodity money, even in the absence of transactions costs, minimizes complexity in a very precise sense.

It turns out however that equation (1) is closely related to well-studied problems in graph theory, in particular to the so-called matrix tree theorems. Therefore as an additional application of our formula, we give an elementary proof of the matrix tree theorem of W. Tutte [5], which was independently discovered by R. Bott and J. Mayberry [1] coincidentally also in an economic context. With a little additional effort, we also obtain a short new proof of S. Chaiken's generalization of the matrix tree theorem [2].

2 Harmonic vectors

We first give a slight reformulation and reinterpretation of equation (1) in standard graph-theoretic language. Let G be a simple directed graph (digraph) on the vertices $1, 2, \ldots, n$, with weight a_{ij} attached to the edge ij from i to j. The weighted *adjacency* matrix of G is the $n \times n$ matrix $A = (a_{ij})$, where $a_{ij} = 0$ for missing edges. The *degree matrix* D is the diagonal matrix with diagonal entries (d_1, \ldots, d_n) , where d_i is the *in-degree* $\sum_j a_{ji}$ of the vertex *i*. The Laplacian of G is the matrix $L = D - A$ and we say that a vector $\mathbf{x} = (x_i)$ is harmonic if **x** is a null vector of L, i.e. if it satisfies

$$
L\mathbf{x} = \mathbf{0}.\tag{2}
$$

It is easy to see that equation (1) is equivalent to equation (2), *i.e.* the market-clearing condition is the same as harmonicity of p .

To describe our construction of a harmonic vector, we introduce some terminology. A directed tree, also known as an arborescence, is a digraph with at most one incoming edge ij at each vertex j , and whose underlying undirected graph is acyclic and connected (*i.e.* a tree). Following the edges backwards from any vertex we eventually arrive at the same vertex called the root. Dropping the connectivity requirement leads to the notion of a *directed* forest, which is simply a vertex-disjoint union of directed trees. We define a dangle to be a digraph D that is an edge-disjoint union of a directed forest F and a directed cycle C linking the roots of F ; note that D determines C and F uniquely, the former as its unique simple cycle.

In the context of the digraph G , we will use the term *i*-tree to mean a directed spanning tree of G with root i , and i -dangle to mean a spanning dangle whose cycle contains i. We define the weight $wt(\Gamma)$ of a subgraph Γ of G to be the product of weights of all the edges of Γ , and we define the weight vector of G to be $\mathbf{w} = (w_i)$ where w_i is the weighted sum of all *i*-trees.

Theorem 1 The weight vector of a digraph is harmonic.

Proof. If Γ is an *i*-dangle in G with cycle C, and ij and ki are the unique outgoing and incoming edges at i in C , then deleting one of these edges from Γ gives rise to an j-tree and a *i*-tree, respectively. The dangle can be recovered uniquely from each of the two trees by reconnecting the respective edges; thus, writing \mathcal{T}_i for the set of *i*-trees, we obtain bijections from the set of i-dangles to each of the following sets

$$
\{(ij, t) : t \in T_j\}, \quad \{(ki, t) : t \in T_i\}.
$$

where ij and ki range over all outgoing and incoming edges at i in G .

Thus if v_i is the weighted sum of all *i*-dangles, we get

$$
\sum\nolimits_j a_{ij} w_j = v_i = \sum\nolimits_k a_{ki} w_i.
$$

Rewriting this we get $A\mathbf{w} = D\mathbf{w}$, and hence $(D - A)\mathbf{w} = \mathbf{0}$, as desired.

3 The matrix tree theorem

In this section we use Theorem 1 to derive the matrix tree theorem due to [5] (see also [1]). This is the following formula for the cofactors of the Laplacian L , which generalizes a classical formula of Kirchoff for the number of spanning trees in an undirected graph.

Theorem 2 The ij -th cofactor of the Laplacian L is given by

$$
c_{ij}(L) = \sum_{t \in \mathcal{T}_j} wt(t) \text{ for all } i, j.
$$

We will prove this in a moment after some discussion on cofactors.

3.1 Interlude on cofactors

We recall that ij -th cofactor of an $n \times n$ matrix X is

$$
c_{ij}(X) = (-1)^{i+j} \det X_{ij},
$$

where X_{ij} is the matrix obtained from X by deleting row i and column j. The *adjoint* of X is the $n \times n$ matrix adj (X) whose ij-th entry is $c_{ji}(X)$.

Lemma 3 If det $X = 0$ then the columns of adj (X) are null vectors of X; moreover these are the same null vector if the columns of X sum to 0.

Proof. By standard linear algebra we have X adj $(X) = \det(X)I_n$. If $\det X = 0$ then X adj (X) is the zero matrix, which implies the first part. For the second part we note that if X has zero column sums then necessarily $\det X = 0.$ In view of the first part it suffices to show that $c_{ij}(L) = c_{i+1,j}(L)$ for all i, j ; or equivalently that

$$
\det (L_{ij}) + \det (L_{i+1,j}) = 0.
$$

The left side above equals $\det P$, where P is obtained from L by deleting column j and replacing rows i and $i+1$ by the single row consisting of their sum. But P too has zero column sums, and so det $P = 0$.

3.2 Proof of the matrix tree theorem

Proof. It suffices to prove Theorem 2 for the complete simple digraph G_n on *n* vertices, with edge weights $\{a_{ij} | i \neq j\}$ regarded as variables, and we work over the field of rational functions $\mathbb{C} (a_{ij})$. The Laplacian L has zero column sums by construction, and so by the previous lemma, $c_j := c_{ij}(L)$ is independent of i and the vector $\mathbf{c} = (c_1, \ldots, c_n)^t$ is a null vector for L. To complete the proof it suffices to show that the null vectors $\mathbf c$ and $\mathbf w$ are equal. Now the null space of L is 1-dimensional since $c_{ij}(L) \neq 0$, and hence

$$
c_i w_j = c_j w_i \text{ for all } i, j. \tag{3}
$$

Note that c_j and w_j belong to the polynomial ring $\mathbb{C}[a_{ij}]$. We claim that the polynomials c_j are distinct and irreducible. Consider first $c_n = \det(B)$ where $B = L_{nn}$ has entries

$$
b_{ij} = \begin{cases} -a_{ij} & \text{if } i \neq j \\ a_{nj} + \sum_{k=1}^{n-1} a_{kj} & \text{if } i = j \end{cases}; \quad \text{for } 1 \leq i, j \leq n-1.
$$

This is an *invertible* $\mathbb{C}\text{-linear}$ map relating $\{b_{ij}\}\$ to the $(n-1)^2$ variables

$$
\{a_{ij} \mid 1 \le i \le n, 1 \le j \le n-1, i \ne j\},\
$$

which occur in c_n . Thus the irreducibility of c_n follows from the irreducibility of the determinant as a polynomial in the matrix entries [1, P. 176]. The argument for the other c_i is similar, and their distinctness is obvious.

Since c_i and c_j are distinct and irreducible, we conclude from (3) that c_i divides w_i . Since c_i and w_i both have total degree $n-1$, we conclude that $w_i = \alpha c_i$ for some $\alpha \in \mathbb{C}$. To prove that $\alpha = 1$, it suffices to note that the monomial $m_i = \prod_{j \neq i} a_{ij}$ occurs in both c_i and w_i with coefficient 1.

4 The all minors theorem

The all minors theorem [2] is a formula for det L_{IJ} , where L_{IJ} is the submatrix of L obtained by deleting rows I and columns J . It turns out this follows from Theorem 2 by a specialization of variables. We will state and prove this below after a brief discussion on signs of permutations and bijections.

4.1 Interlude on signs

Let I, J be equal-sized subsets of $\{1,\ldots,n\}$ and let Σ_I,Σ_J denote the sums of their elements. If $\beta : J \to I$ is a bijection, we write $inv(\beta)$ for the number of inversions in β , *i.e.* pairs $j < j'$ in J such that $\beta(j) > \beta(j')$ and we define

$$
\varepsilon(\beta) = (-1)^{inv(\beta) + \Sigma_I + \Sigma_J}
$$

:

Note that if $J = I$ then $\varepsilon(\sigma) = (-1)^{inv(\sigma)}$ is the sign of σ as a permutation.

Lemma 4 If $\beta : J \to I$, $\alpha : I \to H$ are bijections then $\epsilon(\alpha\beta) = \epsilon(\alpha)\epsilon(\beta)$.

Proof. This follows by combining the following mod 2 congruences

$$
\Sigma_H + \Sigma_I + \Sigma_I + \Sigma_J \equiv \Sigma_H + \Sigma_J, inv(\alpha \beta) \equiv inv(\alpha) + inv(\beta),
$$

the first of which is obvious. To establish the second congruence we replace α, β by the permutations $\lambda \alpha, \beta \mu$ of I, where $\lambda : H \to I, \mu : I \to J$ are the unique order-preserving bijections; this does not affect inv (α) etc., and reduces the second congruence to a standard fact about permutations.

The meaning of $\varepsilon(\beta)$ is clarified by the following result. For a bijection $\beta: J \to I$ and any $n \times n$ matrix X, let X_{β} be the matrix obtained from X by replacing, for each $j \in J$, the jth column of X by the unit vector $\mathbf{e}_{\beta(j)}$.

Lemma 5 We have $\det X_{\beta} = \varepsilon(\beta) \det X_{IJ}$.

Proof. If σ is a permutation of I then by the previous lemma, and standard properties of the determinant, we have

$$
\varepsilon(\sigma\beta) = \varepsilon(\sigma)\,\varepsilon(\beta)\,,\,\,\det(X_{\sigma\beta}) = \varepsilon(\sigma)\,\det(X_{\beta})
$$

Thus replacing β by a suitable $\sigma\beta$, we may assume $inv(\beta) = 0$ and write

 $I = \{i_1 < \cdots < i_p\}, J = \{j_1 < \cdots < j_p\}$ with $\beta(j_k) = i_k$ for all k.

The lemma now follows from the identity

$$
\det(X_{\beta}) = (-1)^{i_p + j_p} \cdots (-1)^{i_1 + j_1} \det X_{IJ} = (-1)^{\Sigma_I + \Sigma_J} \det X_{IJ}
$$

obtained by iteratively expanding det (X_{β}) along columns j_p, \ldots, j_1 .

4.2 Directed forests

Let $\mathcal{F}(J)$ be the set of all directed spanning forests f of G with root set J. Let $\mathcal{F} \subset \mathcal{F}(J)$ be the subset consisting of those forests f such that each tree of f contains a unique vertex of I. Note that the trees of $f \in \mathcal{F}$ give a bijection $\beta_f: J \to I$. The all minors theorem is the following formula [2].

Theorem 6 We have det $(L_{IJ}) = \sum_{f \in \mathcal{F}} \varepsilon(\beta_f)$ wt (f) .

We fix a bijection $\beta : J \to I$ and define $\sigma_f = \beta^{-1} \beta_f : J \to J$. In view of Lemmas 4 and 5 , it suffices to prove the following reformulation of the previous theorem.

Theorem 7 We have $\det L_{\beta} = \sum_{f \in \mathcal{F}} \varepsilon(\sigma_f) \operatorname{wt}(f)$.

Proof. As usual it is enough to treat the complete digraph G_n with arbitrary edge weights a_{ij} . We fix an index $j_0 \in J$ and put $i_0 = \beta(j_0)$, $J_0 = J \setminus \{j_0\}.$ We now consider a particular specialization \bar{a}_{ij} of a_{ij} , and the entries \bar{l}_{ij} of the specialized Laplacian \bar{L} . For $j \notin J_0$ we set $\bar{a}_{ij} = a_{ij}$ and hence $l_{ij} = a_{ij}$; while for $j \in J_0$ we set

$$
\bar{a}_{ij} = \begin{cases}\n1 & \text{if } i = i_0 \\
-1 & \text{if } i = \beta(j) \\
0 & \text{otherwise}\n\end{cases} \implies \bar{l}_{ij} = \begin{cases}\n-1 & \text{if } i = i_0 \\
1 & \text{if } i = \beta(j) \\
0 & \text{otherwise}\n\end{cases}
$$
\n(4)

Note that L and L_{β} have the same entries outside of row i_0 and column j_0 ; hence we get $\det L_{\beta} = c_{i_0 j_0} (L_{\beta}) = c_{i_0 j_0} (\bar{L})$ and it remains to show that

$$
c_{i_0j_0}(\bar{L}) \stackrel{?}{=} \sum_{f \in \mathcal{F}} \varepsilon(\sigma_f) \operatorname{wt}(f).
$$
 (5)

Specializing Theorem 2 we get

$$
c_{i_0j_0}(\bar{L}) = \sum\nolimits_{f \in \mathcal{F}(J)} \psi(f) \operatorname{wt}(f) , \psi(f) := \sum\nolimits_{t \in \mathcal{A}_f} (-1)^{p(t)},
$$

where \mathcal{A}_f is the set of j_0 -trees t such that for each $j \in J_0$ the unique edge ij in t satisfies $i = i_0$ or $i = \beta(j)$, and for which deleting all such edges from t yields the forest f; and $p(t)$ is the number of edges in t of type $i_0j, j \in J_0$. Therefore to prove (5) it suffices to show

$$
\psi(f) \stackrel{?}{=} \begin{cases} 0 & \text{if } f \notin \mathcal{F} \\ \varepsilon(\sigma_f) & \text{if } f \in \mathcal{F} \end{cases}.
$$

First suppose $f \notin \mathcal{F}$. In this case if $t \in \mathcal{A}_f$ then there is some $j \in J_0$ such that the j-subtree contains no I vertex. Choose the largest such j and change the edge ij, from $i = i_0$ to $i = \beta(j)$ or vice versa. This is a sign-reversing involution on \mathcal{A}_f and hence we get $\psi(f) = 0$.

Now let $f \in \mathcal{F}$, and for each subset $S \subset J_0$ consider the graph obtained from f by adding the edges i_0j for $j \in S$, and $\beta(j)j$ for $j \in J_0 \setminus S$. This graph is a tree in \mathcal{A}_f iff S meets every cycle c of the permutation σ_f of J, and is disconnected otherwise. Thus a tree $t \in A_f$ is prescribed uniquely by choosing, for each cycle c of σ_f , a nonempty subset S_c of its vertex set J_c . By definition we have $(-1)^{p(t)} = \prod_c (-1)^{|J_c|-|S_c|}$, and so $\psi(f)$ factors as

$$
\psi(f) = \prod_{c} \psi(c), \psi(c) := \sum_{J_c \supseteq S_c \neq \emptyset} (-1)^{|J_c| - |S_c|}
$$

:

Now we get $\psi(c) = (-1)^{|J_c|-1}$ using the elementary identity

$$
\sum_{k=1}^{m} {m \choose k} (-1)^{m-k} = (1-1)^m - (-1)^m = (-1)^{m-1}.
$$

Thus $\psi(f)$ agrees with the standard formula $\prod_{c} (-1)^{|J_c|-1}$ for $\varepsilon(\sigma_f)$.

References

- [1] Raoul Bott and James Mayberry; *Matrices and trees*, pp. 391–400 in Economic activity analysis. Edited by O. Morgenstern. John Wiley and Sons (New York), 1954.
- [2] Seth Chaiken; A combinatorial proof of the all minors matrix tree theorem, SIAM J. Algebraic Discrete Methods 3 (1982), $319-329$.
- [3] Pradeep Dubey and Siddhartha Sahi; Price-mediated trade with quantity signals: an axiomatic approach, Journal of mathematical economics 39 (2003), 377-390
- [4] Pradeep Dubey, Siddhartha Sahi, and Martin Shubik; Money as minimal complexity, (in preparation)
- [5] William Tutte; The dissection of equilateral triangles into equilateral triangles, Proc. Cambridge Philos. Soc. 44 (1948), $463 - 482$