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Abstract. Let Gn = GL(n, F) where F is either R or C and let P. be the subgroup consisting of those
matrices whose last row is (0, 0, ... , 0, 1). A long standing conjecture of A.A. Kirillov asserts that any
irreducible unitary representation of Gn remains irreducible upon restriction to Pn. In this paper
this conjecture is completely proved for F = C and partial results are obtained for F = R.

Introduction

The general linear groups form a natural class of reductive groups whose
representation theory is now fairly well understood [B, T, V]. The foundation of
the non-archimedean theory is the work of Bernstein and Zelevinsky [BZ], and
central to their approach is the notion of the derivatives of an admissible

representation of GL(n, F), where F is non-archimean. This notion in-

volves restriction of the given admissible representation to a subgroup Pn(F) ~
GL(n - 1, F)  IFn-1 consisting of matrices with last row (0,...,0, 1).

This paper was motivated by three considerations. First, since the group Pn(F)
is not reductive, it is problematic to define the derivatives in the case when F
is archimedean; but it seemed that one might still be able to make sense of
the highest derivative for irreducible unitary representations. Of course, this was
intimately involved with Kirillov’s Conjecture [K] which states

CONJECTURE 1.1. If F is a local field and 03C0 is an irreducible unitary
representation of GL(n, F) then ni Pn(F) is irreducible.

So the second motivation was to study this conjecture. This turned out to be
inextricably intertwined with the following conjecture which was the third
motivation.

CONJECTURE 1.2. If F is a local field and n, and 03C02 are irreducible unitary
representations of GL(n1, F) are GL(n2, F). Then ni x 03C02 is an irreducible

representation of GL(nl + n2’ F). (By ni x 03C02 we mean the representation
obtained by unitary parabolic induction from the representation 03C01 ~ 03C02 of the
Levi subgroup GL(n1, F) x GL(n2, F)).
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For non-archimedean fields these conjectures are all theorems due to

Bernstein. For R, and C. Conjecture 1.2 is implicit in [V].
A word now about our methods and results. From now on F is either R or C;

and for z E F, we will write Re z for its real part (so Re z = z if F = R).
The first ingredient is the classical Mackey theory of unitary representations of

semi-direct products. In this connection, we note the following facts about the
groups Pn(F).

(i) The group Pn(F) is a semi-direct product GL(n - 1, F)  Fn-1 with the
second factor normal and abelian.

(ii) For z E F, we will denote by e the unitary character e(z) = exp(i Rez), and
use it to identify the algebraic and unitary duals of Fn, writing (Fn)* for both.

(iii) On (Fn-1)*, the group GL(n - 1, F) has exactly two orbits viz., 0 and

(Fn-1)*B0. Furthermore, if ~~(Fn-1)*B0 is given by ~(t(x1,...,xn-1)) =
xn-1, then StabGL(n-1,F)(~) ~ Pn-1(F), imbedded in the top left corner

of GL(n, F). This implies the following result (see [M]).

FACT 1.1. Every irreducible unitary representation of Pn(F) is obtained in one
of two ways

either (a) by trivially extending an irreducible unitary representation of

GL(n - 1, F)
or (b) by extending an irreducible unitary representation of Pn-1(F) to

Pn-1(F)  Fn-1 by the character X and unitarily inducing to Pn(F).

NOTATION. We shall write G for the set of irreducible unitary representations
of G. Also we shall use E and I for the two constructions (really functors)
given in parts (a) and (b) of the above fact.
Then the above fact, and a bit more, is summarized by the equality

Ên(F) = E(GL(n - 1, F))  I(n-1(F)). (*)

We shall use the convention that Pi (F) = G0(F) = trivial group (consisting of
the identity element alone). With this in mind and iterating (*) we observe:

FACT 1.2. Every irreducible unitary representation i of Pn(F) is of the form

03C4 = Ik-1E03C3 for some k  1,

where k and 03C3 ~ GL(n - k, F) are uniquely determined by i .

DEFINITION 1.1. (i) If T is a unitary representation of Pn(F) (not necessarily
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irreducible) we shall say that i is homogeneous of depth k if

for some unitary representation 6 of GL(n - k, F).
(ii) If p is a unitary representation of GL(n, F) we shall say that p is adducible of

depth k if 03C1|pn(F) is homogeneous of depth k ; and if

we shall write a = Ap and term it the adduced representation of p.

Note that if p is adducible, the 03C1|Pn(F) is irreducible if and only if Ap is
irreducible.

We are now in a positon to state the key result about adducibility.

THEOREM 2.1. If p and u are adducible representations of GL(r, F) and GL(s, F)
of depths k and t, then p x 6 is adducible of depth k + e and

Using Theorem 2.1 and a semi-classical fact about the discrete series of
GL(2, R) we can deduce Conjectures 1.1 and 1.2 for tempered representations of
GL(n, R) and GL(n, C). This is the content of Theorem 3.1.

Then, using an extension of some arguments in Stein [St] and results of Vogan
on the unitary dual of GL(n, C), we establish both Conjectures 1.1 and 1.2 for
F = C. This is Theorem 3.2.

In some remarks at the end of Section 3 we indicate the additional effort

necessary to prove Kirillov’s Conjecture for F = Il and also suggest some
connections with the theory of rank of representations as developed by Howe
and Scaramuzzi.

Section 2. The considerations in this section are motivated by Bernstein and
Zelevinsky [BZ].
We will be concerned with three instances of the following situation:
A is a group and B and C are "disjoint" commuting subgroups of A, so that

B x C is imbedded in A. D is an extension of B x C by a normal, abelian factor
N such that A/D is compact.
For a group G, let Rep G be the category of unitary representations of G, and

then we define a bifunctor " x " from Rep B x Rep C to Rep A as follows.
For ni E Rep B and n2 E Rep C, we shall denote by ni x n2 the representation
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of A obtained by extending 03C01 Q9 n2 from B x C to D (trivially on N) and then
unitarily inducing from D to A.
The three cases are

Here by Gn, Pn and Mm n we mean the groups GL(n, F), Pn(F) and Mmxn(lF) - the
additive group of m x n matrixes with entries in F, where F is some fixed local
field.

We will also consider the following functors:

(a) E: Rep Gn _ 1 ~ Rep Pn is the trivial extension functor.
(b) I : Rep Pn-1 ~ Rep Pn is the "Mackey induction" functor.
(c) R : Rep Gn ~ Rep Pn is the restriction functor.

The above functors enter into the definition of "adduction" . The following
lemma shows how they "distribute" over the " x -functors".

LEMMA 2.1. If 03C1 ~ Rep Gr, 03C3 ~ Rep Gs, 03C4 ~ Rep Pt, ’ then
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The rest of the section is devoted to the proof of this Lemma. The ideas are
closely related to [BZ] and depend on classical results of Mackey.

Proof.

Now on G = Gr+s, there are two Q, P double cosets viz. 1 = Q.l.P and w = QwP
where w is the matrix of the cyclic permutation (r, r + s, r + s - 1,..., r - 1).
Since 1 has strictly smaller dimension than G, w is the only double coset with
nonzero Haar measure.

So by Mackey’s subgroup Theorem ([Wr; 5.3.4.1])

Parts (ii), (iii), (iv) are applications of unitary induction by stages. We shall be
considering various subgroups of Gn and Pn and their representations. It is

convenient to adopt the following convention:

A diagram such as

means a representation of the subgroup
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of Pr+t+1 which is p on

1 on

etc.

(ii) Consider the following diagram of subgroups of Pr+t+1 and their represen-
tations.

Starting from the indicated representation at the bottom, the induced represen-
tation at the top (- - -) may be computed via the left and right paths (shown
by ~). The two methods yield I( p x r) and p x Ir respectively.
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(iii) Consider the following diagram of subgroups of Pr + and their represen-
tations

The arrows marked "E" correspond to the functor of trivial extension to the
last column. The other two arrows correspond to unitary induction and from the
definition of induction the diagram obviously commutes. The left and right paths
yield E( p x i) and p x ET respectively.

(iv) The proof of this identity is a little long but quite straightforward.
(a) The representation Ir x Q is obtained by induction in the following

diagram

Let us write S for the group on the left and y for the indicated representation.
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Consider also the group R

and let 03B4 = IndRS(03BC).
Then, appealing to induction by stages, we have

(b) On the other hand, the representation I(03C4 x 03C3) is obtained by induction in
the diagram shown below.

Where x is the character of the normal subgroup N ~ IFt+s corresponding to the
last column given by ~(t(x1,..., Xt+s)) = e(Xt+s).

Let us write So for the group on the left and po for the indicated representa-
tion, then

Now, the group So is not a subgroup of R. However, let w be the matrix of
the cyclic permutation (t, t + 1,..., t + s) ; and write S 1 = w·S0 and ,u 1 = w·03BC0
for the conjugates of So and po by w. Then S1 is a subgroup of R and, clearly,

This identity corresponds to induction in the following diagram
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Where x 1 = w·~0 so that ~1(t(x1,...,xs+t)) = e(xt).
Let us write 03B41 = IndRS1(03BC1). Then it suffices to prove that 03B4 and 03B41 are

equivalent representations of R.
(c) Let Yf(f and 03C4 be the representation spaces of J and T and write Jf for the

Hilbert space tensor product of Yf(f and A,. Our method of proof is to give
explicit realizations of 03B4 and 03B41 on the space L2(Ft+s; ) and show that the
desired equivalence is implemented by a partial Fourier transform.

(d) Note first that the group R is a semidirect product Q t&#x3E; N where N = Fs+t
and Q is a maximal parabolic subgroup of Gt+s.

R acts on N by conjugation and so also on its unitary dual V. V is again
isomorphic to Ft+s and under the action of R, there is a unique orbit (D which is
open, dense and of full Lebesgue measure. Furthermore x 1 belongs to (9 and

StabR(~1) = Sl’

so 03B41 may be realized explicitly on L2(O; ) ~ L2(V; ).
Carrying out the necessary computations, one obtains the following ex-

pressions.

Suppose r

and

write
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Let p E Pt be uniquely determined by solving

Finally, let q = |det ql if F = R and q = I det ql2 if F = C. Then

(e) Let Np Ns be the subgroups of N corresponding to the top t and lower
s entries in the last column.

Write V, and V for the unitary duals of Nt and Ns. Then the representation 17:
is realized on the space L2(Vt; 03C4).

Let T be the following subgroup of R:

Then the natural projection from R to T is a homomorphism.
. 

Now T acts transitively on Ns by left multiplication and we may lift this action
to R. Let 0 denote the identity element of N,, then it is easily checked that

so b may be realized on the space:
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Again, after some computation, one obtains the following explicit description.
Let r, q, n, p be as before, and let

Write

Then, for ~ ~ L2(Vt C Ns; ).

(f) Now corresponding to the decomposition N = N, ~ N,, we have the dual
decomposition V = V, ~ Vs.
Define

by

We shall now show that F intertwines 03B4 and 03B41.

Now using the formula for 03B41(r) from (d) and writing v = (03BC, 03B6), n = [m], the
integrand above becomes

so
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with

Substituting 03B6’ = pw + Ch, this becomes

Substituting in (t), and noting that |det q| = 1 det g 11 det h we have

(v) Consider the following diagram
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The representation obtained by induction along the extreme left arrow is
I(03C1 x Ra) and invoking induction by stages we see that

Similarly Ep x J is obtained via the extreme right arrow and we see that

So to complete the proof, it suffices to prove the following claim:

CLAIM. If 03C3 is a unitary representation of Gs, then

Proof. Write Ps+1 = Gs  Ns with Ns ~ Fs. Then IndPs+1Gs(03C3) can be realized
on L’(N,; Jeu) with the action:

On the other hand, let V be the dual group of N,,, then I(R03C3) is realizable on
L2(V; 03C3) with the following action:

For 03BE = (03BE1,..., çs) in V, let v = v(03BE) denote the s x s matrix

For g ~ Gs let 03BE’ = 03BEg and v’ = v(03BE’). Then v’ is invertible if 03BE’s ~ 0 (i.e. for
almost all ç), and if

then p is an element of P,.
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With the above notation yi = I(R6) is given by:

Let F : L2(Ns; 03C3) ~ L2(V; 03C3) be the (inverse) Fourier transform given by

Then

After the substitution z = g-1(y - x), this becomes

Now let T : L2(V; 03C3) ~ L2(V; 03C3) be the (unitary) "multiplication" operator

where v = v(03BE) as in (2). Then

This shows that ToF is a (unitary) intertwining operator for y and y,.
Q.E.D.

Here is the crucial

THEOREM 2.1. If p and Q are adducible representations of GL(r, F) and GL(s, F)
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of depths k and t, then p x u is adducible of depth k + t, and

Proof By assumption, R03C1 ~ Ik-1E(A03C1) and R03C3 ~ I~-1(A03C3). Now

by Lemma 2.1 (i)

Section 3.

In this section we examine some consequences of Theorem 2.1. As a first step, we
need to prove adducibility for some representations which serve as building
blocks.

LEMMA 3.1.

(i) If x is a unitary character of GL(n, F), then n is adducible of depth 1 and
A03C0 = 03C0|GL(n - 1, F) where GL(n - 1, F) is imbedded in the top left corner of
GL(n, F).

(ii) If n is a discrete series representation of GL(2, R), then n is adducible of
depth 2 and An is the trivial representation of the trivial group.
Proof. (i) This is trivial.

(ii) This result is well-known, but for the sake of completeness we include the
following sketch which uses some pretty ideas from classical complex analysis.

Recall [L] that the discrete series {03B4m} of GL(2, R) is parametrized (up to the
action of the center) by the positive integers m  2, and the representation ô. may
be explicitly realized as follows.

Let X = CBR be the complex plane minus the real axis. Let
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Then the Dm(X) are the representation spaces for the discrete series representa-
tion ô. and H2(X) is the usual Hardy space (on which the limit of discrete series
may be realized).
Now it is a consequence of the Payley-Wiener theorem that

1 dt is an isometry up to a constant; and it is an easy matter
to show that

is also an isometry up to a constant.
Finally, let F be the Fourier transform from L2(R) ~ L2(R), and let T. be the

operator SmoF-1 : L2(R) ~ Dm(X). Then T. is an isometry up to a constant and
it is completely straightforward to check that

These formulas show that (T-1mo03B4mo Tm) ~ IE(10) where 10 is the trivial repre-
sentation of the trivial group Go. Q.E.D.

Before continuing, let us note the following immediate corollary, part of which is
well known and may be proved by other methods. (See [W], for (i) and (ii) for
GL(n, C) and [KS] for GL(n, R)).

THEOREM 3.1.

(i) Every irreducible tempered representation of GL(n, C) or GL(n, R) is fully
induced from a relative discrete series representation of some Levi subgroup.

(ii) If 03C31,...,03C3k are irreducible and tempered so is 03C31  ··· x 6k.

(iii) Every tempered representation of GL(n, C) and GL(n, R) is adducible of
(maximal) depth n, so that the adduced representation is the trivial representation
of the trivial group.

Proof. Let a be a tempered representation .of GL(n, C) or GL(n, R). Then, by
a well known result of Harish-Chandra, there is a cuspidal parabolic subgroup
M N and a relative discrete series representation ô of M such that 6 is a sub-
representation of IndGMN(03B4 0 1).
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In the case of GL(n, C), M is necessarily of the form GL(1, C) x ... x GL(1, C)
and ô = x ~ ··· Q9 nn where 03C0i are unitary characters. For GL(n, R), M has to be
of the form

where the ni’s are unitary characters for the GL(1, Rl’s and discrete series

representations for the GL(2, Rl’s.
So IndGM·N(03B4) = ni x ... x n, where each ni is either a character of G, or

a discrete series representation. Now, by Lemma 3.2 all the ni’s are adducible and
An is the trivial representation of the trivial group in each case.

So, by Theorem 2.1, n, 1  ··· x nk is adducible and

trivial representation of the trivial group.

This shows first of all that 03C01 x ... x 03C0k)|Pn = In 1 E 1 and is therefore

irreducible; second since, by assumption 03C3 is contained in ni 1 x ... x 03C0k, o- must

actually be equal to 03C01 x ... x 03C0k. This proves (i) and (iii). To prove (ii) we note
that we can first write each 03C3i as ni, x ... x 03C0in where 03C0ij is either a unitary
character of G, or a discrete series representation. So ul  ··· x Uk = 03C011 x

03C012 x ... x 03C0kn which is irreducible by the argument as before. Q.E.D.

We now continue with the main argument.

LEMMA 3.2. For s E (0, 2), let a 2m(j, s) the Stein complementary series representa-
tion with parameter s. (See [V], [Ge], [St]) of GL(2m, F) with F = R or C. Then
03C32m(j, s)|p is irreducible.

Proof. As remarked in [V], it suffices to treat the case of Q2m(s) = a 2m(1, s). Let
Q be the parabolic subgroup of GL2m. It follows by [St] that 03C32j(S)|Q are all
equivalent, irreducible and isomorphic to the unitarily induced degenerate
principal series representation ( 1 m x 1m)|Q where 1 m is the trivial representation
of GLm.

Let S ~ P ~ Q be the "strip" group
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Then, it is clearly enough to show that ( 1 m x 1m)|S is irreducible. This is implicit
in [St, p. 479] and we sketch the necessary extension of his argument.

First of all, the representation ( 1 m x 1n)|S may be explicitly realized on
L2(Mm; C) with the action

where g-1 = (ô b1) ~ S.
Let T be an intertwining operator for ( 1 m x 1m)|S. Since T commutes with

translations, its Fourier transform is the operator of multiplication by a bounded
measurable function 03BC(x). Further, since T commutes with the action of [], it
follows that 03BC(a·x) = 03BC(x) almost everywhere. But under the action of GLm there
is an orbit of full measure in Mm. So J.1 must be constant on this orbit, hence
T must be a scalar. This proves the irreducibility of 1. x 1m|S and the
lemma. Q.E.D.

We are now ready to prove Kirillov’s conjecture for C. For this we shall use the
following result of Vogan.

FACT 3.1 [V]. Every irreducible unitary representation of GLn(C) is the

x -product of unitary characters and Stein representations.

THEOREM 3.2.

(i) If n is an irreducible unitary representation ofGL(n, C) then ni P is irreducible.
(ii) If 03C0i are irreducible unitary representations of GL(ni, C) and n = Eni then Xi03C0i

is an irreducible unitary representation of GL(n, C).

Proof. We shall prove (i) and (ii) simultaneously by induction on n.
For n = 0 or 1 the results are trivially true. Let us assume it for n  m and let

03C0 be an irreducible unitary representation of GL(n + 1, C). Then, if n is a unitary
character or Stein complementary series representation, (i) is implied by Lemmas
3.1 and 3.2. If not then by Fact 3.1, we can write n = 03C01 x n2 with ni irreducible

unitary representations of GL(n; C) and each ni  m. By the inductive hypothesis,
each 03C0i|P is irreducible. So by Theorem 2.1 nlP is homogeneous and

where An, are irreducible representations of GL(mi, C) with mi = ni -
depth(ni)  ni. Thus m, + m2  ni + n2 = m + 1.

Again, by the inductive hypothesis, An = A03C01 x Arc2 is irreducible. This

implies that n 1 P is irreducible, establishing (i) for n = m + 1. In fact, the argument
just given also proves (ii). Q.E.D.
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In conclusion, some remarks are in order.
First, Vogan [V] has shown that every irreducible unitary representation of

GL(n, R) is a x -product of the following:

(i) Unitary characters
(ii) Stein representation

(iii) Speh representations
(iv) Speh complementary series representations.

Our approach shows that in order to prove Conjectures 1.1 and 1.2 for Il it
suffices to establish Kirillov’s conjecture for representations of types (iii) and (iv).

Secondly, the notion of N-rank of a unitary representation of GL(n, F) has been
considered in [H] and [Sc], and its connection with rates of decay of matrix
coefficients has been established in [Sc]. In the existing definition, the rank of
a representation is at most [n/2]. This is unsatisfactory since a disproportionately
large number of representations of GL(n, F) turn out to have rank [n/2]. In this
connection it seems that the following alternative definition has some merit:

DEFINITION 3.1. A representation 03C0 ~ GL(n, C) has rank n - k if k is the

smallest value of the index i such at Ai03C0 is the trivial representation of the trivial
group.

Using results from [Sc] it is not too hard to show that this definition agrees
with the earlier definition for rank  [n/2] and further differentiates among
representations of rank[n/2]. Also, Theorem 3.1 implies that tempered
representations have rank n - 1.
Once Kirillov’s conjecture is proved for R, one can use the same definition for

GL(n, R).
Finally, M. Tadic [Tl] has shown that the full unitary dual of GL(n, R) and

GL(n, C) may be deduced from an a priori knowledge of Kirillov’s conjecture
(more specifically from Conjecture 1.2). It seems possible that one might be able
to give an inductive argument that simultaneously establishes both Kirillov’s
conjecture and the classification.

Added in proof: It is shown in [S] that Au 2m(j, s) = 62m - 2 (j, s) for all m  1.
Taken together with Theorem 2.1 and Fact 3.1, this enables one to explicitly
compute An for all irreducible unitary representations of GL(n, C).
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