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Introduction 

The irreducible unitary representations of GL(n, ~) have been classified by 
D. Vogan in [V2]. In his work, four families of representations play a special role. 
They are (i) the one dimensional unitary representations and (ii) their com- 
plementary series; (iii) Speh's representations and (iv) their complementary series. 
These representations serve as "building blocks" in the sense that every irreducible 
unitary representation is obtained, via unitary parabolic induction, from a tensor 
product of these representations. 

Vogan's techniques and results are completely algebraic in nature; indeed they 
represent a considerable triumph for the algebraic method. What Vogan actually 
classifies are the irreducible, admissible (g, K)-modules which possess an invariant, 
positive-definite Hermitian form. However, by a well known theorem of Harish- 
Chandra [HI ,  every such module is the space of K-finite vectors of a unique 
irreducible unitary representation. 

For many purposes, the (g, K)-module is an adequate substitute for the unitary 
representation itself. However, for certain other problems, especially those of an 
analytic nature, it is important to have an explicit construction of the unitary 
representation together with its Hilbert space. For representations of type (i), this is 
a trivial problem. For those of type (ii), there is an analytic construction of the type 
carried out in [St] for the case of GL(n, C); similar results are true for any local 
field. An alternative, uniform approach to this problem is described in [$2]. 

This brings us to Speh's representations which are the subject of this paper. 
They occur for each GL(n, R) with n even; and for each such group there is, up to 
tensoring by a one-dimensional unitary representation, exactly one Speh repres- 
entation for each positive integer m. 

The existence of these representations was conjectured as early as 1956 by 
Gelfand and Graev in [GG];  and they are mentioned again in [B]. However, all 

The authors were supported in part by NSF grants at Princeton University and at MSRI, 
Berkeley 



380 S. Sahi and E.M. Stein 

attempts to construct these representations were unsuccessful until B. Speh [Sp]  
showed that they occur in the residual spectrum of L2(G/F) for suitable arithmetic 
subgroups F. They may also be constructed by the cohomological induction 
procedure (a.k.a. the derived functor construction) of Zuckerman (see [V 1 ]), and 
then their unitarizability is a consequence of more general unitarizability results for 
this procedure. (See w for further discussion.) 

All of the existing approaches are purely algebraic and construct only a 
unitarizable (g, K)-module. 

In this paper we give a new construction and proof of unitarity for Speh's 
representations. Our construction differs from earlier realizations in that we give 
explicit Hilbert spaces on which the representations act unitarily. To describe our 
result it is convenient to introduce some notation. 

We will write M, for the vector space of n • n real matrices, and M + 
(respectively M~-) for the set of matrices with nonnegative (resectively nonpositive) 
determinant. Also we will write G, for GL(n, ~). For any square matrix x, we will 
write Ixl for Idetx[, ~(x) for sign (detx) and Z(x) for exp(itrace(x)). 

This notation will be used without further comment in the rest of the paper. 
The pairing (x, 3 ) ~  Z(x~) allows us to identify M, with its unitary dual and to 

define the (additive) Fourier transform ~ by 

o~f(~) = S Z( -- x~ ) f ( x )d x  (0) 
M~ 

For each m �9 Z +, we define 

Hm - H,.(n) - L2(M. ,  ]~ l - 'd~)  (1) 
and 

H + - {q~ �9 c M + } (2) 

Then Hm and H + are Hilbert spaces with respect to the norm 

(~0,0> = ~ ~o~l~f-md~. (3) 

Furthermore, it is easily checked that functions in Hm are tempered distribu- 
tions on M,. Consequently, we may define 

/lm = {,~-'(PI~P �9 (4) 
and 

- + =  .,~- �9 (5) 
as spaces of tempered distributions. Let us equip/4, ,  and v + H,; with the norm 

< ~ - - ' q ~ , , ~ - ~ O >  = <~~ 0 > .  (6) 

Then/4, ,  (resp./4~ ) becomes a Hilbert space isometric (via ~ ) to Hm (resp. H~ ). 
We show in this paper (Theorem 1) that the m-th Speh representation for Gz. is 

realized naturally on H,.. Furthermore, the C~~ of the representation 
consist of certain functions in C~ on which the action of Gz. is by fractional 
linear transformations. 

The explicit description allows us to prove Kirillov's conjecture for these 
representations. This conjecture [ K ]  says that every irreducible unitary rep- 
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resentation of GL(n, ~) remains irreducible upon restriction to the subgroup P, 
consisting of matrices whose last row is (0 . . . . .  0, 1). 

In fact we prove much more. Theorem 2 contains a stronger version of this 
conjecture and shows that these representations stay irreducible even when we 
restrict them to G, ~,< M,. Theorem 3 is a "finer" version of this conjecture and in it 
we compute the "adduced" representation (see [S1] and [ $ 2 ] ) o f  a Speh repres- 
entation. We show that it is the Speh representation of G2,,-2 with the same 
parameter. Finally, in Theorem 4 we show that the restriction to SL(2n, R) of the 
m-th Spehrepresentation is the sum of two irreducible pieces realized on the spaces 

~+ 
H,, and H ~ .  

Our construction depends on the possibility of realizing Speh's representations 
as subrepresentations of certain degenerate principal series for G2, in a manner 
analogous to the classical imbedding of the discrete series inside the non-unitary 
principal series for GL(2, R) (see [BSS]). The key step in our approach is an 
inductive argument, similar to [$2],  which reduces everything to the classical 
situation. 

The organization of this paper is as follows. In Section 1 we introduce most of 
the notation and state the main results. In Section 2, we recall the relevant results 
for GL(2, ~); and in Section 3 we present the inductive argument. Finally, in 
Section 4, we discuss the applications to Kirillov's conjecture, describe the restric- 
tion to SL(2n, ~), and also bring out the connection between our construction and 
the derived functor realization. 

w Degenerate principal series for 6L(2n, R) 

Let us write Gz, as 2 • 2 matrices of n • n blocks, writing a typical element 9 as 

[~ 1 g= b d ;  

Also, let us write 

{[: el) Q = Q n =  d ' 

{E,0 cl) N = Nn = 1 ' 

for the indicated subgroups of Gzn. 

a, b, c, d ~ M, . (7) 

0]} 
(8) 

The degenerate principal series of interest to us is induced from one dimen- 
sional characters of Q as follows: 

For each m ~ 7/+, let L m denote the character 

and write I,~- I,,(n) for the space of smooth vectors of the representation 
Ind~2~(Lm). 
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In other words, 

1m = {FeC|  L , , (q)F(g) ,  for ~ e Q } .  (10) 

We will write nm for the representation of G2~ on Im by right translations. 
Now, by the Gelfand-Naimark decomposition, functions in lm are determined 

by their restriction to N ~ M~. For F e Ira, let FN denote this restriction, then for g 
as in (7), we have 

(zt,,,(g)F)N(X) = L,,, b' d' 

where a', d', x '  are obtained by solving 

(11) 

(12) 

This gives a' = (a + x b ) , x '  = (a + x b ) - l ( c  + xd) and detd '  = (detg)(det  a ' )  -1 
= (de tg)de t (a  + xb) -~. 

Consequently (11) holds for all x such that det(a + xb) :4:0 and the action is 

= e(g)"+le(a  + xb)m+llglt"+m~/2la + xbl -tn+m) 

x FN((a + x b ) - l ( c  + xd)) (13) 

The next lemma allows us to characterize those functions on M n which are 
restrictions of functions in Ira. 

Lemma 1. A smooth function f on Mn is o f  the form F N for a (necessarily unique) 

([ ol) function F in lm if, for  each g as in (7), the function x ~ Lm b' ' f ( x ' )  (defined 

initially for  those x for  which det(a + xb) • O) extends to a smooth function on M , .  

Proof. Let U = N.  (~. Then U is open and dense in G = GEn, and f extends to a 
smooth function F e on U defined by Fe(xq) = Lm(gl)f(x).  The assumption of the 
lemma implies that for each g e G, there is a smooth function F o defined on U o - Ug 
which agrees with Fe on U o ~ U. For g and h in G, F o and Fh agree with F~ on 
Ug n Uh c~ U; but this set is dense in U o c~ Uh, SO Fg and Fh must agree on U o c~ Uh. It 
follows that the functions F o have a common (smooth) extension F to all of G. [] 

The Iwasawa decomposition on G implies that G - - K . ( ~ .  Consequently a 
function in/,1 is also determined by its values on K. An easy calculation (which we 
omit) shows readily that for F e Ira, 

[FN(x)[ < A[1 + xtx[ -(n+m)/2 (14) 

where A = sup{ IF(k)[; k e K } .  
Let us remark that [1 + xtx[ __> 1 for all x in M..  The basic estimate for this 

function is the following: 
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Lemma 2. 

S I I + x t x [ - S d x <  ov if s > n - 1 / 2 .  
Mn 

Proof This follows easily by transferring the integral to G, and using the Cartan 
( K A + K )  decomposition (see [Hu]  p. 63). [] 

Corollary. I f  Fe lmfor  some m( > 0), then F N is in L2(M,). 

Let us write 
S,,, = S,,(n) = { F 6 Im]~ ( FN)e H,, } . (15) 

We first show that Sm is not zero. To see this, let us write di~ = O/dxij and 
[] = det((?~j). Now specializing (13) we see that 

( n m ( [  10 ~ ] ) F ) N ( X ) = F N ( X + C ) .  (16) 

Thus the Lie algebra n of N acts by differential operators; and we can find an 
element X m in its enveloping algebra q/(n) such that 

(nm(Xm)F)N = D"FN.  (17) 

Lemma 3. n,,(X,,) is an injective map from lm into Sin. 

Proof Suppose F is a nonzero function in I,., then nm(Xm)F belongs to I,. as well. 
Now by Lemma 2 and (17), F u and E2mFN are both in LZ(Mn). Taking the Fourier 
transform we get, 

~'([~mFN) : i""(detr  a.e. (18) 

which shows that [ ] " F  u 4= 0. 
It remains only to check that nm(X,,)F is in S,.. To see this, we calculate 

I:~((nm(Xm)f)N)l=lr = ~ I ~ ( D ' F N ) I  I~(FN)Id~ 

< II~(DmFN) IIL211:(FN)I[L2 
= IID~FNIIL211FNllL2 < OO . [] 

Recalling the definition of H"  from (4), we see that the map F ~ F N gives us an 
imbedding of Sm inside/q,.. In what follows, we will implicitly identify S~ with its 
image in /qm, and write <, ) for the inner product on H,. restricted to S~. 

Lemma 4. Sm is a Q-invariant subspace of (nm, Ira) and Q preserves the inner product 
<,>. 

Proof. First of all, observe that if q = d ' 

n, , (q) f (x )  = ~(d)m+'la I -r + xd)) .  

Taking the Fourier transform gives 

~((rCm(q))f)(~ ) = z(cd-1~)e(d)~+'{a{~"-") /21d{(m-") /~f(d- l~a) .  (19) 

Now the Lemma follows by an easy calculation. [] 
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As the reader may have observed, Lemma 4 has very little to do with the fact 
that m is an integer! Our main result is that for m e Z + we have 

Theorem 1. Sm is G2.-invariant and G2, preserves the inner product ( , ) .  

This is well known for m = 0, and will be proved in Section 3 for m > 1. We 
devote the rest of this section to various consequences of this result. 

First of all, let us write 5,, for the closure of Sm in H,,. Then by a well known 
theorem of Harish-Chandra (see I-H]), the representation (n,,, Sin) extends to a 
unitary representation 6m on the Hilbert space Sin" 

Theorem 2. (a) Sm = I4,.. 

(b) (6m, Itm) is irreducible, even upon restriction to R (see (8)). 
(c) (C~m, I4,,) is equivalent to the m-th Speh representation of G2.. 

We shall prove this in a moment; but first we deduce a corollary. Let Pm be the 
subgroup of G m consisting of those matrices whose last row is (0, 0 , . . . ,  1). Then 
Kirillov's conjecture asserts that any irreducible unitary representation of G,, stays 
irreducible upon restriction to P,,. Since P2, -~ R, we have the following 

Corollary. Speh's representations satisfy Kirillov's conjecture. 

In w we will prove a "finer" version of this corollary and calculate the 
"adduced" representation of a Speh representation (see [SI ]  and Theorem 3 
below). 

We conclude this section with the 

Proof of Theorem 2. Let us write A m for the operator on M, given by 

Amgo(~ ) - - i r  

Then Am~ gives an isometric imbedding of S,, into LE(M.); and if we write tim(g) 
for the operator on Am~(S~)  given by 

nm(g)f = ( A , , ~ ) n m ( g ) ( A m Y ) - l f ,  

then, specializing (19) to I g 1 6R, wehave  

1 4) = Z(c~)lal"/ef(a~) �9 (20) 

But it is a classical fact, (first observed by Gelfand and Naimark) that the right- 
hand side of (20) gives an irreducible representation of R on LZ(M.). Indeed any 

operator commuting with the action of 0 1 consists of multiplication by a 

bounded, Borel function. The condition of commuting with { [ :  01 ] } implies 

that this function is a constant (a.e.). 
Consequently, A , ~ ( S m ) =  L2(M,), and so Sm= /~m" This proves part (a) 

and (b). 
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Part (c) is a simple consequence of the results in [BSS]. Let Wm ~_ Vm be the 
Harish-Chandra modules of S,, and I,.. In [BSS] all the composition factors of V,. 
are computed. In particular it is shown that the Harish-Chandra module Zm of the 
m-th Speh representation is a submodule of V,,. 

Now if X m is as in Lemma3, then ~m(Xm)Z m ~ mm; consequently 
Z,. n W,, 4: 0. But by part (b), W., is irreducible; so it must be equal to Z,.. [] 

w Discrete series for GL(2, ~) 

The material of this section is classical. We merely record it here in a form suitable 
for use in Section 3. 

Proposition 0. Let I,, and Sm be as in Section 2,for GL(2, R) (i.e., the case n = 1), 
and let 

S + = {f~Sm [f(~) -- 0 on ~ - }  . 

Then 
(1) s~=s+~| 
(2) S + and S~, are SL(2, ~)-invariant subspaces; 
(3) S~ [f(~)] 2~-"d~ (respectively ( - -1)mS~174 is a positive 

definite, SL(2, ~)-invariant inner product on S + (resp. S~, ). 

Proof This is essentially contained in Chapter VII of [GGV].  [] 

Corollary. Theorem 1 holds for n = 1. 

Proof The above proposition shows that the norm ~_~ [fl2[~[-"d~ is SL(2, ~)- 
invariant. Since SL(2, ~) and Q generate GL(2, R), the result follows from 
Lemma 4. [] 

w Proof of the main theorem 

We shall prove Theorem 1 by induction on n; that is, we shall assume the result for 
n and prove it for n + 1. This means that we will need to use the notation of 
section l for both n and n + 1. To forestall confusion, we adopt the following 
conventions: 

Notation 1. a) We will write 7z m (resp. g~) for the action of G2n+2 (resp. G2n ) on 
lm(n + 1)(resp. Ira(n)). 

b) The norms on Sm(n + 1) and Sin(n) will be denoted by H ]I and [] H-, 
respectively. 

c) x, y, z, t will denote typical elements of the spaces M., ~n• 1, R1 • and R 
respectively; ~, q, ~, z will denote elements of their dual spaces M~, ~ 1 • R.• 1, ~. 

ThuslXy Z ] i s a t y p i c a l e l e m e n t ~  q] isa typica le lementof i t sT 

dual space. We will write J//(x, y, (, r), J / (~ ,  y, (, r), etc., for the spaces of all 
measurable functions of the indicated variables. 
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d) Matr ices  in M2n + 2 will be decomposed  into b locks  in accordance  with the 
decompos i t ion  1~2"+2 = I~"ON@I~"~R.  Thus  a typical  element of  M2.+2 is 
wri t ten as 

n 1 n 1 

1 * 

n * 

1 * , 1,g . 

W e  define the following subgroups  of Gz.+ 2 

I[**t f P 2 n + 2  = . . . . , G 2 n + l  = 

0 0 0 1 0 0 0 

0 

0 ' 
l 

V 2 n + l  ~- I 1 0 

0 1 

0 0 

0 0 ~ 1 
0 * 

1 * 

0 1 

0 1 0 
* * * '~ 

0 0 0 

G 2 =  0 

0 

0 * 

1 0 

0 * 

0 0 

0 

0 ' 

1 

(21) 

0 1 0 0 
V 2 . =  0 * 1 0 " 

0 0 0 1 

T h e n  P 2 n + 2  ~ G 2 n + l  t>< V 2 n + l  a n d  P z n + I  ~ G2n t>< V2n" 
Let V~'. + l be the g r o u p  of  un i ta ry  charac te rs  of  V2. + 1. Then V*. + i ~ R 2" + 1 

and under  the ac t ion  of P : .  + 2, there are exact ly  two orbits:  a) the trivial orbi t ,  and 
b) (9 = everything else. 

Let  COo e (9 denote  the charac te r  

(D O 11~176 0 1 0 k 

0 0 1 1 

0 0 0 1 

= ; t ( k )  = e i k  �9 (22) 

Then the stabi l izer  of  o9 o is P2. + ~ ~'< V2. + t,  where these groups  are as in (21). 
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By the inductive hypothesis, we have the representation 6,,(n) of GL(2n, R) as 
described in Theorem 2. Using this we construct  a unitary representation z,. of 
P2n + 2 as follows: 

First extend 6.,(n) (trivially on II2.) to a representation Ef,.(n) of P2. + ~; and 
then define the representation zm = IE6,.(n) to be 

Ind~-++~ v~.+ ~(Ef.,(n) | Oo) .  (23) 

Now, by M a c k e y  theory, this is an irreducible unitary representation of Pz. + 2 
on the space L2(C; Hm(n)) ~ LE(V*.+ 1; [-I,.(n)). 

We wish to write down explicit formulas for zm on a certain dense subspace 5e,. 
of  LE(v*.+ 1; {-I,.(n)). 

Definition,1. A subset f2 of R k will be called a full set if it is open and dense, and its 
complement  has Lebesgue measure zero. 

Examples. I fp  is a polynomial  on I~ k, then the set {xlp(x)  ~ 0} is a full set. Also, the 
intersection of a finite number  of full sets is a full set. 

Let us identify V~'. + 1 with ~" @ • @ I/~" by 

1 0 k 
( y , ~ , ( ) ~ o w h e r e c o  0 1 l 

0 0 1 

= x(yJ + Tk + r . (24) 

Definition 2. Let 6era be the space of S,.(n)-valued measurable functions 
f = f ( x ,  y, ~, r) on V~'. + 1 such that 

a) There is a full set V ( f )  ~_ liT*,+ 1 on w h i c h f i s  continuous. 
b) S IIf(',Y,~,r)ll2-dy d~dv < ~ 

Let Bm be the opera tor  acting on J/r162 y, (, T) by the formula 

B,.tp(~, y, ~, z) = I~l-m/2~o(~, y, ~, r) ; 

and let B~ be the opera tor  acting on Jr r/, ~, z) by the formula 

n,~ tp(r q, r z) = 1r q~(r n, if, ~). 

Then we may rewrite b) as 

b') S I B , . ~ j l 2 d C d y d ( d z  < oo 

where ~x  is the Fourier  transform in the x-variables. 

Now the action z., is given as follows: 

b e  h k 
P =  c f i l and q~eSa., 

0 0 0 1 

If 

(25) 

(26) 

(27) 
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then 

z.,(p)q)(x, y, ~, v) = Ip[1/zZ( -k")[a"l-~"+~)/ze(i") m+ x li"[~"+")/2q)(x" , y", (", x") 
(28) 

Ei ~ ~ iJ 0 0 01 

where 

and 

b e h k 0 1 0 k" I " z" y" 
c f i l = ? f i l |  0 1 (29) 
0 0 0 1 0 0 0 l J  0 0 

- Fa" 0 1 

The action given by formulas (28)-(30) extends also to a larger space of 
functions. 

Definition 3. Let .r be the space of those functions f in  Jg(x, y, ~, z) for which there 
is a full set U(f )  ~ M, • V*,+ 1 such that f[  U(f )  is continuous. 

Then ~ is stable under the action described by formulas (28)-(30). In fact, if p 
is as in (27), let us define 

U p = {(x, y, ~, r)[r 4= 0, z" 4 = 0, det(a") =1 = 0} (31) 

where 3" and a" are as in (29) and (30). Then we may choose 

U(zm(p)f) = U( f )  c~ U p . (32) 

The key ingredient of the inductive argument is the "change-of-variables" 
operator C,, acting on ~ '(x,  y, (, z) by the formula 

C, f ( x , y , ( , r ,= l z l - t "+m' /2 f ( [ i  : l - t  [ y l ,  ( , r )  . (33, 

We also define C2, which acts on J[(~, r/, (, r) by 

C~, f ( , , r l , ( , z )=Jz l ( " -m ' /2 f ( [ , t l ] [ :  : l , ~ , z ) .  (34) 

Let us write T,, for the operator C, ,o~,  where o~t is the partial Fourier 
transform in the z, t variables. 

Proposition 1. Suppose F e lm(n + 1), then T,,F e J~,; and for all peP2. + 2 

Tjc . (p)F = Zm(p)T,.F a.e. (35) 

Proof. Start with Fel, .(n + 1); note that by (14) and the elementary identity 

d e t ( l + I ~  z]tFxt] LY : ] )  >l+[[zl[z+t2= 
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we get that F(x, y , . , . )~Ll(dzdt)  for each x and y. Then making the change of 
variables implied by C,, shows that we may take U(T,,F) = M, x (9', where 
(9' = {(y, (, r)lr =1 = 0} = (9. 

The proof of (35) is identical with the argument in the appendix of [-$2]. The 
following comments may help to clarify the situation. The right-hand side of (35) is 
made up of the operator ~=~ (acting on F)  followed by change-of-variables and 
multiplication operators. However as far as the (~, r) variables are concerned, this 
change is linear (see (23) in [$2]). Now in the left-hand side of (35), the operator 
rtm(p) consists effectively in a change of variables and multiplication operator, 
where the (z, t) variables are changed in an affine manner (the linear part is dual to 
the transformation in the (~, z) variables), and the translation contributing the 
character factor Z ( - k )  in the definition of r,,. Note of course that FEI,,(n + 1) 
implies that F ~ L 2 (M, + 1)' (see Lemma 2). [] 

The "almost everywhere" part of Proposition 1 can be sharpened considerably. 
In fact, let U p be as in (31), then 

Corollary. With the hypotheses of Proposition 1, 

Tmrtm(p)V(x, y, ~, ~) = T,,(p)T,,F(x, y, ~, ~) (36) 

for all (x, y, ~, r) ~ U p. 

Proof. Since F~l,,(n + 1), nm(p)FEIm(n + 1) as well. Now by (32) and the proof of 
Proposition 1, both sides of (36) are continuous functions on UP. Since they agree 
almost everywhere, they must be equal on U p. [] 

Proposition 2. Suppose F e lm(n + 1). Then, for each (y', (', ~') in (9', 

(T,,F)(', y', ~', r ')~lm(n). 

Proof Let us fix (y', ~", r ' )~C',  and let ~O denote the function 

In view of Lemma 1 

) ' = [ ~  d ]  in G2. (where 

Let 

p = 

(37) 

r = (TmF)(x, y', ~', r ' ) .  

it suffices to check that 7r~(7)~, is in C~(M,)  for all 

nm is the representation of G2, on l,.(n), as in Notation 1). 

[i ~ 
1 
0 
0 

and consider (29) with (y, ~, r) 
left-hand side of (29) by (38), we 
a" = (a + xc). Consequently for p as in (38), we see that 
U p = {(x, 0, 0, 1)ldet(a + xc) 4= 0}. Thus, by the Corollary to Proposition 1, 

T.drm(p)F(x, O, O, 1) = r,,(p)TmF(x, O, O, 1) for all x with det(a + xc) 4= O . 

Now the formula for r,, implies that 

rm(p)T,.F(', O, O, 1) = I p 1 1 / 2 7 ~  (~/)1// . 

co],oo ] 
0 0 (' { y' 
d 0 0 0 1 ' (38) 

0 1 0 0 0 

= (0,0, 1). Replacing the second matrix in the 
see that z" = z', a = a and g = c. Then (30) gives 

(39) 

(4o) 



390 S, Sahi and E.M. Stein 

Replacing nm(p)F by F, it suffices to show that for each F e lm(n + 1), the function 
x~--~ TmF(x, O, O, 1) is a smooth function. But by (33), 

T,,F(x, O, O, 1) = S F (x, O, z, t)dzdt (41) 

Now if ~ is any constant coefficient differential operator in the x variables, 
then 9 belongs to nm(ql(n)), where n is the Lie algebra of N = M,+t ;  hence 
~F(x ,  O,., .)e Lt(dzdt). Thus, the result follows by differentiating under the integral 
in (41). [] 

Let us write D for the operator Co ~ . Then D acts on s//(r q, (, z) by the formula 

Dtp(~, q, ~, ~)--Izl"/2tp(l'~ r/] [ I 0 ] ,  ~, v ) .  (42) 

Also let us write A m for the operator on ~'(~, q, (, z) given by 

:]) ,43, 

Recall that o~t is the partial Fourier transform in the z, t variables. The function 
~ , y, ~, z) can be viewed in two equivalent ways (whenf~ L 2 (M n + 1)). The first 
is as a function (x, y) w-+ L 2 ( ~  n • 1 X ~) ,  which is defined for almost every (x, y); the 
second is as a function ((, z)~'-*LZ(Mn x R ~• 1), defined for almost all ((, z). The 
partial Fourier transform o~v can similarly be defined in two equivalent senses. If 
we use the second definition of o~tf(as a function of(~, z)) and the first definition of 
~ v 9  (as a function of (4, q)), then we get that ~ ( f )  = ~xy(.~tf)  almost every- 
where. Below it will also be necessary to decompose ~ y  as ~ - x  in a similar 
fashion. 

Proposition 3. Suppose f e L 2 (dxdyd( dz), then 

B/. ~xyCmJ~ztf = D A m ~ f  a.e. (44) 

Proof The right-hand side is of course defined almost everywhere. As far as the 
left-hand side is concerned, ~zt f i s  in L2(dxdy) for almost all (, z, and so CmY~tfis 
in L2(dxdy) for almost all (, z; hence o~y acts on this function for those (, v, giving 
for those (, z an element in L2(d~dq). Applying the change of variables and 
multiplication operators (34) and (26), shows that the left side of (44) is defined 

= v ~ (see almost everywhere. To prove the resulting identity, note that O~xvC m Cm #*"r 
(33) and (34)). 

Therefore (44) follows because first, ~ v  ~, t  = o~; and second, by comparing the 
definitions (26), (34), (42) and (43) we see that B ;  C~ = DAm. [] 

Proposition 4. Suppose Fe I , . ( n+  1). Then FeSta(n+ 1) if and only if  
TmF(', y, ~, z) ~ Sm(n), for almost all (y, ~, z), and 

S II TmF(', Y, ~, z)[] 2 dyd(dv < ~ . (45) 

Proof Recall that according to the definition of Sm(n + 1), F(x, y, z, t)ESm(n + 1), 
if F e lm(n + 1), and A m ~ F  e LZ(M,+ 1). Similarly, given G(x, y, ~, z), then for each 
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(y, ~, z), G(', y, ~, z)e S,,(n) if and only if G(-, y, (, ~)e I,.(n), and 
B,.~xG(',  y, ~, z ) eL2(0 .  Indeed 

II a(.,  y, (, T)II 2_ = ~ l n m  ~x  G(~, y, (, z)12 d4 .  (46) 

We shall need the following simple variant of (44) which holds for F e S,,(n + 1). 

B.,~x T,,F = ~ 1DA,,,~rF . (47) 

In fact when F e S,,(n + 1), we have seen that  A , , ~ F  belongs to L2(M. + 1), and 
D - 1 and ~ r -  1 are unitary operators (respectively from L2(4, q, if, ~) to  L2(~, r/, ~, ~') 
to L2(~, y, ~, r)). Thus the right side of (47) is well defined for a.e. (4, Y, ~, v). For  the 
left-side we observe that, by Proposi t ion 2, T,,F e L2(x) for almost every (y, ~, ~) and 
so (47) is again defined for a.e. (4, Y, ~, ~). The identity (47) then follows from (44) by 
observing that ~-xy = ~ y ~ x ,  and B,~ ~ r  = ~ rB , ,  �9 Once (47) is established we see 
that if FeSm(n + 1), then 

IB,,~xTmF(r y, ~, r)lZ d~dyd~dz < ~ . (48) 

but since (T,,F)(y, ~, z)elr,(n) for a.e. (y, ~, ~) we get (45). 
The  converse follows in the same way, proving the proposition. [] 

Corollary. I f  F eSm(n + 1), then T,.F eb~ and 

IIFII = = j" II Z, , f  112dyd~dT. (49) 

This follows immediately from the proof  of the proposition. 

Proof of Theorem 1. We proceed by induction on n. The case n = 1 was treated in 
Section 2. For  n + 1 (with n > 1) we observe that  Q2, + z and 1~ + 2 generate G2, + 2. 
So, by Lemma 4, it suffices to show that if PEP2,+2 and FeS, . (n + 1), then 
n,,(p)F e S,,(n + 1), and II 7tm(p)F II -- 11F II. 

Now if FeS. , (n  + 1), then FeI, ,(n + 1) and so by the Corollary to Pro-  
position 1 

Tmn,.(p)F(', y, ~, T) = z,.(p)T~F(', y ,( ,z)  a.e. 

for a.e. (y, (, T). However  TmF(', y, ~, T) belongs to Sr,(n) for a.e. (y, (, T), so, for a.e. 
(y,(, z), zm(p)T.,F also belongs to Sin(n), by the inductive step. Hence Tmrc,,(p)F 
belongs to Sin(n) for a.e. (y, (, z). However  rc.,(p)F is in I,.(n + 1) for all peP ,  since 
FeI, . (n + 1). Thus  by Proposi t ion 4, nm(p)FeSm(n + 1), as soon as we see that  
J" II Tmnm(p)F I[ 2 dyd(dz < ~ .  This is equivalent with 

Ilv,,(P)T,,F[12-dyd(dz = ~ II TmFllZ dyd(dv < o~ 

(by the inductive step), and the second integral is finite, again, by Proposi t ion 4. 
Thus if F e S,,(n + 1), then r~(p)F e S,.(n + 1). The fact that II 7z(p)F II = II F II follows 
immediately from Corollary to Proposi t ion 4 (identity (49)). [] 

w Concluding remarks 

For  the first result of this section we recall some ideas from IS1]. 
As before, let P. be the group G. _ 1 ~'< R" - 1. Then if/~. is the unitary dual of Pn, 
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then by Mackey theory 

~. ~ 6._1 u 6._: u . . . U 6 o  (50) 

A unitary representation p of G, is called adducible of depth k, if p IP, corres- 
ponds to a representation a of G._ k" Also, a is called the adduced representation of 
p, and is denoted by Ap. 

Now the proof of Theorem 1 shows that 

6,,(n + 1)IPe,+2 ~ rm = IE6,,(n). 

This means that the adduced representation of 6,,(n + 1) is 6,,(n). Thus we have 

Theorem 3. The m-th Speh representation 6m(n + 1) of G2n + 2 is adducible, of depth 
2; and 

Ag,,(n + 1) = 6,,(n). 

The next objective of this section is to prove the following result. 

Theorem 4. Let (6,,, [-lm) be the m-th Speh representation of G L(2n, g~ ) (realized as in 
Theorem 2). Then 6m ] SL(2n, ~ ) is a direct sum of two irreducible representations ~+, 

+ realized on H;, . 

Proof The proof of part b) in Theorem 2 shows that for R as in (8), 
6~ I(SL(2n, g~) c~ R) decomposes exactly as asserted. It remains only to show that 
6~ I SL(2n, ~) is reducible. Let Wm be the Harish-Chandra module of (6,.,// , ,) and 
let g' be the Lie algebra of SL(2n, ~); then it suffices to prove that W,,I g' is 
reducible. Now it is quite easy to see this for the derived functor realization, but to 
keep our development self-contained, we give an alternative proof. 

We claim that it suffices to produce a nonzero K-finite function ~o in S,, such 
that 

supp(~q~) __ M + . 

For then, since (13) shows that the Lie algebra g' acts by (polynomial coefficient) 
differential operators, it follows that the set W + = {~o r W,,[ s u p p ( ~ o )  _ M + } is a 
g'-submodule of W,.. 

It is not too hard to write down all the K-finite functions in S,n. In particular, 
the functions 

~o~(x) = 11 + x'xl -t"+x)/2 and r = det(x)ll + xtxl -~"+1)/2 

are in Wo; and if [] is as in (17), then []"(r and E3~(cp2) are in IV,,. 
Now the Fourier transforms of ~o I and rp 2 were computed by C. Herz ([He]) in 

1954! It follows from his work (formulas 5.2 and 5.7) that 

f,~o~(3) = i%(~) ~02(~) 

Consequently, if q~ + = ~01 + i"q~2 then supp([] " ~0 + ) = supp(q~ + ) ___ M r .  [] 
We would like to close this section with some remarks which may serve to 

clarify the relation between our construction and the derived functor realization of 
Speh's representations. 

Let f~z"(c) be the Grassmannian of complex n-planes in C 2". Under the action 
of GL(2n, ~) there is an open (and dense) orbit X ~ GL(2n, R)/GL(n, C), and 
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also a closed orbit GL(2n, E)/Q ~ ff2,(~), where Q is a maximal parabolic 
~(GL(n, R) • GL(n, E))r~<M,(~). 

Let us write gm for the character of  GL(n, C) given by g,.(g)= ((detg)/lgl)". 
Then Z~ can be used to define a line bundle 2,. on X ~- GL(2n, R)/GL(n, C). 

According to the "philosophy" of cohomological  induction (see [VI]), the 
m-th Speh representation should be realized on the (Dolbeault) cohomology  of 2,. 
in degree n(n - 1)/2 which is half the (real) dimension of the compact ,  complex 
subvariety (O(2n)/U (n)). 

If this could be done rigorously, then one ought  also to be able to define the 
"boundary  values" bf  such cohomology  classes to be certain hyperfunction sections 
of a (corresponding) line bundle on fC.z"(R). In particular, for C~ in the 
Speh representation, one should get C~ of the bundle L,., in other words, 
functions in I,,. 

N o w  using the "flat" description of ~r (i.e., the full set M,(E)) one ought  to 
be able to obtain the connection with the spaces H,, and t/,.. In fact, one should be 
able to define the analogue of the Fourier-Laplace transform from the spaces H,.V + 
into the Dolbeault  cohomology  groups in the appropriate  degree. 

The program just described makes perfect sense in much greater generality. We 
intend to take it up in a future paper. 
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