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A SIMPLE CONSTRUCTION OF STEIN'S 
COMPLEMENTARY SERIES REPRESENTATIONS 

SIDDHARTHA SAHI 

(Communicated by Jonathan M. Rosenberg) 

ABSTRACT. We given an elementary construction of Stein's complementary se- 
ries for GL(2n) over an arbitrary local field F , and determine their restrictions 
to the "mirabolic" subgroup P2n _ GL(2n - 1, F) K F2n- I . Taken together with 
the results in [S], this allows one to calculate the adduced representation Az 
for an arbitrary irreducible, unitary representation 7r of GL(n, C) . 

The purpose of this paper is (1) to give an elementary construction of Stein's 
complementary series representations [St] for GL(2n , F), and (2) to explicitly 
identify their restriction to the "mirabolic" subgroup P2n GL(2n - 1, F) x 

2n-1 
F. 

The main point is that the Bernstein-Zelevinsky theory of the (highest) 
derivative [B] gives an answer to (2) for nonarchimedean F (where analogous 
representations were constructed by Godement); namely that the restriction cor- 
responds to the Stein (Godement) representation for GL(2n - 2, F) with the 
same parameter. 

For archimedean fields it is not known (at least to the author) how to extend 
the above arguments to answer (2). However, it is reasonable to expect that the 
answer should be the same for all fields. 

Having "guessed" the answer to (2), it seems clear that one should try an 
inductive argument (on n ) to prove it. Such an argument is given in ?2 and 
leads to the construction referred to in (1) above. The interesting feature of this 
argument is that it uses almost nothing from [B] or [St], and reduces the problem 
to the representation theory of GL(2, F) where the corresponding facts are well 
known (and easy to prove). 

1. STATEMENT OF THE MAIN THEOREM 

1.1. Let F be a local field. We begin by describing the degenerate series studied 
by Stein and Godement. 
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Let us write G2n for GL(2n , F), and write a typical element g E G2n as 

a= cbd a, b ,c, de () 

where det(g) : 0, and Mn(F) is the space of n x n F-matrices. 
Also, let us write 

n 0 d } n 0[ } Nn= { 1C] 

and Qn = { [ 
0 

b ] } for the indicated subgroups of G2n Notice that Nn can 

be identified with the additive group of Mn(F). 
Let us fix a Haar measure on F, and use it to define du on M (F). Also 

let I I be the absolute value on F (see Weil [W]). For a in MA (F) we shall 
write Ia as shorthand for I detaI . 

Consider the one-dimensional character Ls of Qn given by 

Ls ([b d lal ldls for s C . 

When s is imaginary, Ls is unitary, and we may consider the unitarily 
induced representation 

s= US = IndG2P(Ls). n Q s 

Using the Gelfand-Naimark decomposition, as may be realized explicitly 
on 

L 2(Nn) --L2 (Mnfl)) 

as follows: 
aS(g)f(x) = a'l -(n/2+s) Id ln/2+sf(X/) 

where a' , d' , x' are obtained by solving 

[1 x][a c [a' 0][I x' 

L? 1JLb d] -bl d'] L? 1 
This gives 

a' =(a + xb), x' =(a + xb) 1 (c + xd) 

and 
Id'I = lglla'l-l lglla + xbl- . 

It is a classical result of Gelfand and Naimark that the representations 
{as: s E iDR} are irreducible and unitary as representations of G2n* In fact, 
the representations stay irreducible upon restriction to Qn , or even Sn (see 

[S]). 
Following Stein [St], we consider the (unitary) operators B(s) on L2(M ) 

given by 
B(s)f(x) = lxlSf(x), for s E iR 
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and their Fourier transforms 

A(s) = 1B(s)J, for s E iR 

The operators A(s) may be used to define the normalized series /nS =Xs 
for s E iR 

Xs(g) = A(-s)5s(g)A(s). 

The representations As(g) are unitarily equivalent to as(g) and satisfy 

(1) yS(q) =XO(q) =O(q) 

for all s E iR and q c Qn. 

1.2. We now recall some ideas from [S]. For a group G, we will write G for 
its unitary dual, and Rep G for the category of unitary representations of G. 
As before, let us write Gm for GL(m , F) . Let Pm be the subgroup of matrices 
fixing the vector (O, ...,O, 1) 

Pm ,Gm_I KFm 
1 

Now Gm_ I has exactly two orbits on (Fm )* ; 0 and everything else. The 
stabilizer of 0 (the trivial character) is Gm1- and that of a nontrivial character 
is isomorphic to Pm- I I 

Thus, by Mackey theory, we have the functors E: Gm-I Pm and 
I: Pm_ 1 - Pm such that 

Pm = E(Gm_1) II I(Pm_l). 

Also, let R be the restriction functor from Rep GM to Rep Pm. Then 
Kirillov's conjecture asserts 

R: GM -* PM 

Motivated by this conjecture, we call a in Rep Gm adducible of depth k if 

R = Ik- E(T) 

for some T E Rep Gm-k 
In this case we call T the adduced representation and denote it by Au . 
The following result is an easy consequence of [S]. We include it only to 

motivate the subsequent results. 

Proposition 0. For s in iR, the representations Ran and IEuss are isomor- 
phic, irreducible, unitary representations of P2n . 

The representation R s and IEus1 may be realized (naturally) upon fixed 
Hilbert spaces Hi and H2 (independent of s), and the proposition implies 
the existence of unitary operators { T E &(H1 , H2) } which intertwine the rep- 
resentations. The key observation in this paper is 
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Lemma 1. There is a fixed unitary operator T which intertwines the normalized 
representations R/;s and IEX;s I for each s in iR. 

This lemma will be proved in the next section. The main theorem is an easy 
consequence. 

Theorem 1. (a) For each g in G2nI the family {XS(g): s E iR } may be ex- 
tended to an analytic family {XS (g): Re s < 1/2} of bounded operators on 
L2(M (F)). 

(b) For a fixed s in { Re(s)l < 1/2}, the map g FS 
s (g) gives a uniformly 

bounded representation of G2n (the bound depends only on n and IRe sl). For 
s in (-1/2, 1/2), Xs is an irreducible unitary representation. 

(c) For s E (-1/2, 1/2), RH/S is irreducible and isomorphic to IEXns I. 

2. PROOF OF THE MAIN THEOREM 

The proofs are by direct computation. It may well be possible to give a more 
transparent, geometric argument, but I have not been able to find one. 

In ??2.1-2.3, s is an imaginary number. 

2. 1. Partition F as Fn- 1 FF G) Fn- e F and accordingly decompose 2n x 2n 
matrices into 4 x 4 block matrices. Then 

P= P2n * * *1 

O 0 1 

Let zsT be the representation as restricted to P. Then by Mackey's subgroup 
theorem, zsr is an induced representation, and may be explicitly realized on 

H1 = L2(M(n , F)) as follows. 

Partition Fn as FnI e F, and decompose n x n matrices as 2 x 2 block 
matrices. Let F E H1 and let 

- 
a d g j- 

(2) p b e h k P 

O0 O 0 1- 

then 

I yt]) |['e | i a )F 
2 [x, z, 

where 

[lI 0 X Z i- a d 0 0 I - x' z'1 

(4) 10 1 y t b e h k b e 0 0 0 1 y t 
0 0 1 0 C 0 i 0 c f i' e' 0 0 1 0 

?0 ? O 1 ? ? O ' 1 LO ? O 1J LO ? O 1 
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2.2. Imbed G2n-2 in G2n as matrices of the form 

* O * O- 
0 1 0 0 
* O * O 
O O 0 1 

Extend os- trivially to 

P - 0 1 0 0 
P2n-1100 2n1 * * * 0, 

L 00 11 

and write Eos1 for the extension. 
Also, let us fix a nontrivial additive unitary character X of F as in [W] and 

use it to extend Es_1 to Eos- (9?X on 

P2n lK F = F* * * *1|'1 
<F 2n I 

{ 1 [ 
P2n-1 I 

where the subgroup 

0 1 0 k 
0 0 1 e 

L f l 1 

acts by the character X(k) . 
Let 2s be the representation IEos = Indp 2n-I (Eos (9 X) Then K is 

2 n2 
n 

2n 2n1F 
n 

realized on L 2(F 2n- ;L2(M(n -1 ,F))) L 2(M(n -1 F,) e F - ) -H2 as 
follows: 

Decompose F as F en-I F en- F and write (y, C, T) for a typical 
2n 1- F hni element in F . Also let x be a typical element in M(n - 1,). Then if 

p c P is as in (2), we have 

(5) 7r2(p)p(X,y,, T)= P X(-k )la | 2 |s(x ,Y I ,T 

where 

-1 0 0 0- -a d g j~~~ ~a d gI~ 0 0 O- 
T y 0 b e h k 0 1 0 k yT 0 

(6) 00 0 c i 1 
0 0 1 0 C f i 0 0 f i 0 0 0 1 0 

n d O 1 ? ? O 1 ? O 0 1 J O 0 1 

and 
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In the appendix it is shown that 

(8) Ti&1 2 s 

with T = C-1 o?t where Y is the partial Fourier transform 
s S z t z t 

pwtF)(x, y, ,T)=JX(Z + Tt)F([ 
x 

) dz dt 

and Cs is the (unitary) change of variables 

Cs( (X, y, C, T) = IT ,r 
(n- 1)/2+s X, CX + y , T) 

2.3. Next we need to consider the normalized versions of zsl and 7S These 2 
are 

(9) ?t =Al (-s)ZZsAI (s) 

and 

(1 0) ft2= A 

where A1 (s) and A2(s) are defined via the commutative diagrams 

H H1 H H H* 

AI (s) BI (s) A2 (s) {B2 (S) 

H1 y > H1 2 2 

where , S are Fourier transforms 

-9-F ( X:T])=J(tr(4x + qy) + (CZ + Tt))F x 
z 

dx dy dz dt 

sxS 4,Y, ; , T) X (tr(4x)) (p (x , y , C, T) d x 

and B I(s), B2 (s) are the multiplication operators 

([ T ] ;T | ([ T ) 

B2 (S) (4, Y, CT)= 1ls,(4,Y,yC,T). 

Now, using (8), (9) and (10) we see that 

A2(-s)TAI(s)fts 
= 

itsA2(-s)TAI(s). 
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The proof of Lemma 1 is now reduced to 

Lemma 2. The operator A2(-s)T AI (s) is independent of s. 
Proof. Consider the following commutative diagram 

AI 7s1C-, A2(-S) H Al ?)4H H -5- H - H H1 , H1 ) H2 2 2 

H* -H * H H * -H 
B1 (s) 

122 
B2(-s) 

Now 
(C C5,FX 1 B2 5, 1 ) (Px, y, T) 

= B (s)7 () (x, x + Ty T) I Tj 
(n-1)/2+s 

= X%( -tr(4x)) 4js (_q- I()(, C4 X + Ty, C, T)JTJ (n - 1 )12+s dX 

= x (-tr(E,x + r1( CX + Ty ) ) ) | |js(p, q, C, T )J|TJ |n /)2 d Xd q. 

Let ($ q') = ( ) ]*Then 

(i) d4'd r' T I(n- 1)-2d r1 

(ii) [ T 0 [ 1 C T C T J] | 
J 

So the integral becomes 

X (-tr(4 x + q'y)D- S(p(', q', C, T) / 
q 

Is I~~~~~~~~~~~~ 
where 

D (p4 q, C, T) ITI l(n-1)/2 ( , T 

with 

(4 6) 
I 

046 ;T 

But the last expression for the integral is 

,9x- BI(s)D 1((x, y, C, T) . 

So we have 

(11) Sf'B1(s)D' = C5S?' B2(s)yY =B2(-s) Cs 7 y B (s) - D 

The operator A2(-s)T A1 (s) is given by the top row of the diagram. So (1 1) 
implies that it equals 
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( 12) pv- >- l D),9F = Jw_ 1D,9S (12) ~ ~ ~ ~~~~)X3 

which is clearly independent of s. This proves Lemma 2 and also Lemma 1. 
C 

2.4. Proof of Theorem 1. We proceed by induction on n. The case n = 1 is 
classical (see [K]). For the inductive step, we observe that the inductive hypoth- 
esis allows us to analytically continue IEH/nsl in the strip {lRe sl < 1/2}. 
Conjugating by T we get the continuation of .1JS restricted to P = P2n . But 
by (1) we have the (constant) analytic continuation on Q and since G2n is 
generated by Q and P, this proves part (a). 

Fix some element w E P2n \ Qn . Now there is a positive integer K = K(n), 
such that every g E G2n is expressible as a word in the elements of Q, together 
with at most K occurrences of w. By the inductive hypothesis XS (w) is 
bounded if IRe s < 1 (with the bound depending only on IRe s ) and is 
unitary if s is in (-1/2, 1/2) . Since rS IQ is unitary, this proves part (b). 

Finally, part (c) is obvious. C 

Corollary. For s in (-1/2,1/2), Ausn = san 

This is just a reformulation of part (c). 

2.5. We give an application to GL(n , C) . If v is a unitary character of of Cx, 
let us write vn for the character of GL(n , C) given by vn(x) = v(det x) . Then 
it is easily seen that 

(13) Avn = 'n-I 

(14) A(v2n 0 'ns) = V2n-2 (& ?ns- I for s in (-1/2, 1/2). 

Now, Vogan [V] has shown that every ir c GL(n, C) is of the form 

(15) 7r = 7rl x x ...X7rk 

where n = nI +* + nk, and each 7r, c GL(n, , C) is either a unitary character 
or a Stein representation tensored with a unitary character. (The right side of 
(15) is Zelevinsky's notation for IndG, (7r ( 0... (0 k).) 

On the other hand in [S] we showed that 

(16) A(rl x .x 7rk)= A7r x... x Ark. 

Now (13), (14) allow one to compute the right side of (16). Thus we get a 
description of Air in terms of Vogan's classification. 

APPENDIX 

We sketch the proof of the intertwining relation (8) asserted in ?2.2. 
First observe that (3) may be rewritten as 

(17) 7rI(p)F([ , ]) P2xl ([ X i,']) 
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and that i' depends only on p and (x ,y). In fact, if (4) is broken up into 

[ 0 x 01 [a d g a x' 01 
0 1 y 0 b e h k b e k 0 1 y' 

(18) 0 1 /c 0 0 ( ) 0 1 o c f i t = f i f 0 0 1 0 

L O O 11 ? L O [ ? ? O 1 0 0 0 0 1 

and 
1 0 0 Z- -a d O[a'd' d O -1 0 0 1 
0 1 0 t b k b' e' 0 0 O O t' 

(19) 0 0 1 0 ie c' f' 0 0 1 0 
0 0 00 0 1 0 O 0 0 0 1 

then 

(20) 1 =1 

Next, observe that (6) and (7) may be combined as 
(21) 

[ 0 X 0 a d g F a" d"l 0" 1 Ox0 1 

g T Y 0 b e h eh k / / 10k" // T" y" 0 

0 0 1 0 c fie i c"f/ "i" e" 0 0 1 0 
o o O 1j L?ooiJ [ 0 0 1 J O O 1 

and (5) becomes 
(22) 

7t2(P) f (X ,y, 4 , T) = IPI 2 x (k ")(lTI 1 IT"IIIii 2 PS(Xtl Y/ tl, T//). 

Now 
I -I 0 l x [1I0 x 

(23) K T 0 0 0 1 y 0 _ T CX +1Ty 
O O 1 0 O O 1 0 _ O 1 0. 
? 0? i 00 0 ? O 1 ? ? O 

So if Cs is the (unitary) operator 

Cs P(X, Y, g T) = ITI n1)+(X' CX + Ty, C T), 

then 

(24) CS2(p)Cs (X,y Y,, T) = IPI 2X(k')I'I (x - g,2) 

where x', y' are determined by (18), and i', k', C',T' are determined by 

I1 o o o- zi dOJl r * 0 I 0 0 0- 
F T 100 O0I O 1 O k 1 00 T 0 1 O 

(25) 0 0 1 0 e I 
- 

* * i *// 0 1 oj 
0 0 o 1 0 00 1 000 il0 00 11 

From (25) it is clear that 1' = i as before, and that 

(26) k' + Tk 
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and 

(27) (c T) = T) a[ e] 

Taking the Fourier transform of (17) we get 

(28) -l7r,(p)F(xIy,IC,T) = X(fx z+Tt)lpl 2 si F ([x, i:]) dzdt 

Now from (19) it follows that 

[t - k- -b' e' [t 
and that 

ab d [ab d- 

and thus 

(29) L51 d[b e [z'1-[ki 

Also, from (18) and (20) we have 

a- d i-I (30) 

Making the change of variables (29) in (28) and using (26), (27) and (30), we 
get 

p l_s(k/).in-i1+2sy-(/y/;/T/) 

And so iC7(P>z7 1 = Cs zK(p)C- 1 which gives (8). 
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