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Introduction 

The purpose of this paper is to establish a connection between semisimple Jordan 
algebras and certain invariant differential operators on symmetric spaces; and to prove 
an identity for such operators which generalizes the classical Capelli identity. 

The norm function on a simple real Jordan algebra gives rise to invariant dif- 
ferential operators Dm on a certain symmetric space which is a natural "conformal 
compactification" of the Jordan algebra. If t is the Lie algebra of a maximal torus of 
the symmetric space, and "7 is the Harish-Chandra isomorphism, then q,~ = 7(Din) 
is a polynomial on t*, and our generalized Capelli identity is an explicit formula for 
q,~ which we now describe. 

It turns out that the restricted root system of the symmetric space is one of three 
possible types - -  A,~-l, D,,, or Cn where n = dim(t). We shall call these cases A, 
D, and C, respectively, and choose a basis "Yt, �9 �9 �9 "Y~ for I* such that the root system 
is {:k:(74' - 7 j ) /2} ,  {• • 7 j ) /2} ,  or {=t=(% i -,/3)/2, =t=%} in the three cases. Let 
Pm be the polynomial on t* given by 

j=l  4,=1 

Theorem. Up to a scalar multiple, qm equals Pm in cases AD and P2m in case C. 

In case A, the Jordan algebra is formally real, and its compactification is the Shilov 
boundary of a symmetric tube domain. Here the result was proved earlier in [KS] (see 
also [W2]). As pointed out in [S1, $2], in this case the identity is closely related to 
the results of [W1, G, FK]. Additionally, for the Jordan algebras of skew-Hermitian 
matrices over R, C, and H, the identity is implicit in [J]. 

�9 This research was supported in part by NSF grants at MIT and Princeton. 
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The argument in [KS] depends on the holomorphic structure on the tube domain 
and makes essential use of the Laplace transform - -  a technique which is not available 
for cases C and D. 

To obtain the result in its present generality, we exploit the connection between 
the Capelli identity and the representation theory of a certain semisimpte Lie group, 
the "conformal group" of the Jordan algebra. This group acts on sections of line 
bundles on the symmetric space, and the operators Dm are intertwining operators 
for appropriate line bundles. Now, using some information about the K-spectrum of 
finite--dimensional subrepresentations, we deduce that q,~ must have certain factors, 
and then the explicit formula for qm follows from its Weyl group invariance. 

The classical Capelli identity expresses the holomorphic "Cayley" differential 
operator det(ec'~j)det(O/Om,3) on r~ • n complex matrices, in terms of a "determinant" 
of n 2 non-commuting vector fields (the polarization operators), and we now explain 
the precise sense in which our main theorem generalizes this identity. 

By restricting the Cayley operator to the (non-compact) symmetric space of pos- 
itive definite I-termitian matrices, and applying the Cayley transform, one gets an 
invariant differential operator - -  the "spherical" operator on the (compact) symmetric 
space S(Un • U , O / S U , .  As observed in [KS] and [S1], the Capelli identity follows 
easily from an explicit formula for the radial component of this operator. This formula 
in turn is a very special case of our result, and corresponds to the Jordan algebra of 
Hermitian matrices (with m = 1). 

Similar identities can be obtained for the other cases, and in the appendix, by 
way of example and dessert, we deduce such an identity for the Jordan algebra of all 
~z x 'rz real matrices, which expresses the operator det(l + zr in terms 
of a certain "Pfaffian" of vector fields[ 

In a subsequent paper we will return to the connection with representation theory 
and obtain results analogous to [S1, $2, $3] for the general case. These will include 
explicit constructions of certain small unitary representations of conformal groups of 
Jordan algebras in a form which may be useful for certain physical and number- 
theoretic considerations. 

1. Preliminaries 

1.1 Generalities 

With the possible exception of certain neologisms, the material of this subsection is 
well-known. (See [BK], [Sat], and [Sp] for background on Jordan algebras.) 

Let N be a real semisimple Jordan algebra with unit e and norm qS. The trace form 
on N gives an isomorphism 0 between the algebra of polynomial functions on N and 
the algebra of constant coefficient differential operators. We define the (generalized) 
Cayley operator D to be O(qS). 

Motivated by the special case of Minkowski space (as in [JV]), we define the 
following Lie groups associated to N: the Lorentz group L is the subgroup of G L ( N )  
which preserves 0 up to a scalar multiple, the Poincard group is the semidirect 
product P = L N ,  and the conformal group is the group G of rational transformations 
generated by P and the conformal inversion L : x ~ - x  -1 . 

Then, as shown in [KI] (see also [Sp, w G is a semisimple Lie group and 
P = L N  is the Levi decomposition of a parabolic subgroup such that (i) N is abelian, 
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and (ii) P is conjugate to its opposite P .  (Note the happy notational coincidences!) 
We define the conformal compactification of N to be the flag space G / P  into which 
N embeds as an open and dense subset. If  K is a maximal compact subgroup of G, 
and M = L N K,  then G/-P = K / M  is a symmetric space for K.  

(In the literature on Jordan algebras, K is called the automorphism group and L 
is called the structure group, or the norm-preserving group of N.  The Lie algebra 
[I = Lie(G), is the Koecher-Tits algebra of N (see [Til and [K2]). The conformal 
compactification G / P  is called a symmetric R-space in IT], [N], [L], and elsewhere.) 

Conversely, every parabolic subgroup P = L N  (in a simple group G) which 
satisfies (i) and (ii) above, arises in the indicated manner from a (unique up to isotopy) 
Jordan algebra structure on N.  From the viewpoint of Lie theory, such parabolics are 
easily classified, and we give a complete list in the appendix A.2. 

1.2 Structure theory 

Let t be a maximal toral subalgebra in the orthogonal complement of m(= Lie(M)) 
in t~(= Lie(K)),  and let S be the restricted root system of t in tL From appendix A.2, 
we see that there are only three possibilities for 27, namely A~_ l, Dn, and CT~, where 
n = dim(t). Case A occurs if and only if K has a one-dimensional center, while case 
C occurs if and only if the degree of 0 is 2n. (The degree is n in the other two 
cases!). 

Thus there is a basis {'ll, �9 �9 �9 %~ } of t* of the form described in the introduction, 
and we choose positive root systems so that the simple roots of  t in 1~ are {(%-%+1)/2} 
in case A, together with the additional roots (7 ,  i + %,)/2 and 7,~ in cases D and C 
respectively. 

Now the roots of t in g are {•  ~: yj)/2, ~3'i} in all cases. (For case A this is 
proved in [M], and for cases CD it follows easily by passing to the complexification.) 
Moreover if t? + p is a Caftan decomposition of  ~t, then the extreme t-weights of pc 
are 7• and the Cartan-Helgason theorem implies that the root spaces P• are 1 
dimensional. 

Fix non-zero elements Xi  in p~,, and put X_~ = X ,  Z.i = [ X i , X - d ,  H~ = 
X~ + X - d  then {X~, X_~, Z~} are standard bases for n commuting S-triples. The 
Z~'s span t while the H~'s span an R-split toral subalgebra a of  [ and 13- The Cayley 
transform is the element c in Ad(~) defined by c = [ L  exp{rr(X~ - X _ 0 / 4 }  and we 

have c(t) = ~ -  la. 
Let v = c(7 ~ + . -  - + % 0 / 2  C a*, then u extends to a character of [ which, in turn, 

is the differential of a positive (multiplicative) character of L that we continue to 
denote by u. Write 26 for the trace of the adjoint action of I on n and let r be such 
that 6 = ru. 

(As observed in the appendix, r is closely related to the dual Coxeter number of 
~ . )  

Now let p = ~ r(,/,: be the half sum of positive roots in L'. Then the following 
crucial fact can easily be checked from appendix A.2: r = 2r~ + 1. 
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1.3 Representation Theory 

Consider for each real s, the (normalized) induced representation (Trs, I(s)) = lnd~(u ~) 
regarded as a (9, K)-module.  By restricting to N we get the "noncompact picture" 
which is a realization of I(s) as a subspace of C~(N) .  If 0 is as in 1.1 and 'ad '  is the 
adjoint representation of [ on the space of functions on n, then we have 7r~(x) = 0(.~:) 
and Try(u) = (s - r)u(u) + ad(u) for x C n and u C [. 

Alternatively, restricting to K ,  we may realize all the I(s)  on the fixed space of 
K-finite functions in C~ which is called the "compact picture". The K-types 
have multiplicity 1 and if ~ is the set of their highest weights, then by the Cartan- 
Helgason theorem, , ~  consists of ~ r  aiTi where the a~'s are integers which satisfy 
ai >_ a~+l in all cases, and which satisfy the additional conditions an-1 _> [a.,,l and 
r >_ 0 in cases D and C respectively. 

It follows from a result of [B] (see also [JV]) that the m-th power of the Cayley 
operator (see 1.1) intertwines the noncompact pictures of I (m)  and I ( - n 0  in cases 
AD, and I (2m)  and I ( - 2 m )  in case C. Thus in the compact picture D "  becomes 
an operator Dm in the algebra D ( K / M )  of K-invariant differential operators on the 
symmetric space K / M .  

Via the Harish-Chandra homomorphism 7, D.,, determines a polynomial q,~ = 
7(Dm) on f*, which is invariant under the Weyl group of  K / M .  (See [HI for details.) 
For cases AD, q,~ has degree ran, while in case C it has degree 2nzn. 

2. Proofs 

2.1 Finite dimensional representations 

It follows from [K], for example, that for each non-negative integer k, I(2k + r) has 
a finite dimensional spherical subrepresentation F~. 

Lemma.  The K-types ofF1 have highest weights {Y~ a~Ti C . ~  : la~l < l}. 

Proof. For case A, this is a special case of Theorem 3 of [$2] which computes the 
K-structure of all the constituents of I(s). For cases C and D, we argue as follows: 

The highest a-weight of F1 is 2u and applying the Cayley transform we see 
that 3'1 + "' " + 3',~ is the highest t-weight of F1. This means that the corresponding 
K-type occurs in Fl ,  and the possible highest weights for the other K-types are 
{71 + "  "+7i  ] i = 1 , - - . ,  n - 1} in case C, and {71 + ' "  +7i}  U {71 + ' "  '"kTn--1 --  7 n }  

in case D. It remains only to show that each of these K-types actually occurs in Fl .  

If Vl, is a K-type of FI with highest weight #, then from the t-weights of 0 
it follows that 7r~(g)Vu is contained in the sum ~-~{Va I A = #,p, :~ 7s}. So if 
one of the K-types, say 71 + " "' + 7i, were not to occur in F1, then the subspace 
~{V-r)+...+. b [ 0 _< j < i} would be a 9-submodule - -  a contradiction. This proves 
the result for case C. 

Since P and P are conjugate, it follows that F) admits a (9, K)-invariant Hermi- 
tian form. But F1 is the complexification of a real representation - -  the real valued 
functions in F1. This implies that Fl is self contragredient. In case D, the contra- 
gredient of the K-type 71 + �9 �9 �9 + 7,~ is 71 + �9 �9 �9 + 7~-!  - 7~, so it too must occur. 
Yq 
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Corollary.  The K-types of  Fk have highest weights { ~ a ( y ,  E .5 r : la~.t < k}. 

Pro@ . The highest t-weight of  Fk is k(yl + . . .  + "Tn), so the K-types of Fk are 
contained in the indicated set. Also, regarded as a vector space of functions on n, 
Fk is spanned by h-fold products of functions in Fi .  It follows that if  AI , . . .  ,Ak 
are K-types in Fl ,  then A1 + . . .  + ~k is a K-type of Fk. This proves the reverse 
containment. I_-j 

2.2 The main result 

Let c~ = ~ a~'~ and/4 = c~ + ~/1 be K-types of I(s)  with corresponding highest weight 
vectors v and w, and let Xl  C P-r~ be as in 1.2. 

Lemma.  7r~(Xt)v = c(s - 2al - r)w, where c is a non-zero number, independent of 
8 .  

Pro@ Considering the compact picture we see that 7r,(X~)v is a multiple of w, and 
that it is an affine function of the parameter s. For generic s, [(s) is irreducible and 
so is not a highest weight module, and then Lemma 3.4 of [V] shows that 7r~(Xt) is 
injective. In particular % ( X l ) v  ~ 0. On the other hand, Corollary 2.1 implies that c~ 
is a K-type of F ~  while/~ is not. Thus 7r~(Xl)v = 0 for s = 2at + r ,  and the Lemma 
follows. [] 

Proof (Of the main theorem) By definition, Dmv = q., (cx + p)v and D.~w = qm(3 + 
p)w, while 1.3 shows that in cases AD, D~Tr,,~(Xl)v = 7v_.~(X1)Dmv. Combining 
these with the Lemma, and using the fact that r = 2ri + 1, we get that q.~(/4+p)/q~(c~+ 
P) -- (al + r~ + 1/2 + ,,~/2) / (a, + r~ + 1/2 - m / 2 ) .  

rr~ 
So if r/,;(z) = I~s= , (z - (m - 2 j  + 1)/2) then we get q,~(Y3+p)/rlm(at + r~ + 1) = 

qm(C~ + p)/~7,~(al + rl). Since q,~(c~) = q m ( a l , ' " ,  a,~) is a polynomial in al it fol- 
lows that qm(z, a2 + r2,. �9 �9 an + r,) /~lm(z) is independent of z. Thus r/m(a~) divides 
q,~(c~). 

Now the Weyl groups of An-1 and D~, contain the symmetric group S,~, so the 
invariance of qm implies it must be divisible by Pn~ = II,~=~ ~/,~(a0. Since both polyno- 
mials have degree ran, the result follows. In case C, D,,Tr2,~(XOv = 7r_2,~,(Xi)D,~v, 
and arguing as above, we conclude that qm must be a scalar multiple of P2 , ,  [] 

Appendix 

A.1 Applications 

We illustrate our main result by specializing it to the Jordan algebra of  n • n real 
matrices, whose conforrnal compactification is K / M  = S 0 2 n /  S(On • On). 

Let -,~ be the center of the enveloping algebra of ~ = ~02n. Since rank(K) = 
rank(K/M) ,  the natural map 7r : ~ ~ D ( K / M )  is an isomorphism; moreover, if 

: ~ --, , / ( t )  w is the usual Harish-Chandra isomorphism ([Hu, w then 7o7r = ~. 
contains a distinguished element f f  of degree n, which is obtained from the 

Pfaffian by the usual procedure of dualizing and symmetrizing, and is characterized 
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as the unique element in ~Z of degree _< n which transforms by sign(det) under the 
adjoint action of O2~,~. 

From this it follows easily that ~(ff)(~,.  a~3',) = [I~ a~, and since, by our main 
theorem, this is the same as ~'(D1), we get the following: 

Corollary. Up to a scalar multiple, D1 = 7c(ff). 

(If n is odd, this is obvious since then f f  is the unique element of degree n in 
.-g~) 

We now make this explicit as follows: Write a typical ~z x n matrix as ~ x~3 E~) 
where E~j is the ij-th elementary matrix, and write O.,j for O/O:l:~j. Then X,. 3 = 

o o] ' X  . . . .  3 = - X ~ ' + J , ~ = ( - ~  ' a n d X  ......... 3 = ( ~  fo rm a  

basis for z02,,.. 

Writing .q C G =  S L z , ( R ) a s  ( : b )  where a,b,c ,d  are z, • n matrices, the action 

in the noncompact picture is %(g) f (x )  = Idet(a + xc) l~-" f  ((a + xc)-~(b + zd)). 
Differentiating this we get 7r~(X,j) = ~q(2gzqO3q -:rjqOzq), 71-s(X~z+,~,,~+3 ) --  

~p(XpzOpj--Xp3Opi), and 7r~(X ..... 3) = --Trs(Xn+J, z) = (~l-8)x'z2 +O't,i+ ~p ,q  xp32gzqOpq" 
A typical skew symmetric matrix may be written as ~ z k l X k z ;  its Pfaffian is 

a polynomial of degree n in z~,  and the element f f  in ~ is obtained from this 
polynomial by replacing each zkt by the corresponding Xkt,. (The Xm's  occun'ing in 
each term of the polynomial commute amongst themselves, and so there is "no need 
to symmetrize" !) 

It is easily checked that t~' = det(l+xtx) is the K-fixed vector in FI (see 2.1). As in 
[Sll ,  it follows that the map f ,-~ ~)tf is a K-isomorphism between I(s) and I (s+2t) ;  
and that in the non-compact picture at I(s), DI = det(1 + xtx)(l+")/2det(Od)det(1 + 
xtx)r The Corollary says that this operator is a scalar multiple of the "Pfaffian" 
of the %(Xkl)! 

A.2 Classification 

The parabolics P of 1.1 can be determined easily from the restricted root system of 
G. If G is simple, then P must be a maximal parabolic corresponding to a simple root 
ct which has coefficient 1 in the highest root, and which is mapped to -c~ by the long 
element of the Weyl group. In the usual indexing, the possible roots are c~n E A2,~-1, 
O~1 E J~n or D.,z, a~ E Cn, Ct2~,--1 or ~2r~ E Dzr~ and c~7 E E 7. 

We list below all simple groups with these restricted root systems organizing them 
according to the complex form of the (implicit) parabolics. In each case, we also write 
down the corresponding symmetric spaces K / M ,  their restricted root systems S ,  and 
the numbers r and r~ (see 1.2). (Xp denotes the symmetric space SOp/S(O v_ ~ x 01).) 

We conclude with an intriguing observation. Recall that the dual Coxeter number 
of an irreducible root system is defined to be 1 plus the sum of the coefficients of the 
expression of the highest short root of the dual system in terms of its simple roots. 
From the table we observe that in cases AD, the dual Coxeter number of gc is 2r, 
while in case C the dual Coxeter number of each irreducible component of g~ is r. 
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Table 1. Conformal groups of simple real Jordan algebras. 

663 

G K / M  S r , r ,  

SL2n(R) S 0 2 n / S ( O n  x On) Dn 
SL2,z(C) SUzr, /S(Un • Un) C,, 
SL2n(H) Sp2n / (Spn  x Spn)  Cn 

S O ~  2 Xp  x X~ AI p, 
SO~,q Xp x Xq  D2 = 
P>q23 A~ x A~ 

SOp(C) S O p / ( S O p  2 x UI) C2 
SOp, 1 Xp C| = At  

Sp,~(R) U,~/O,~ A n - l  
sp , , ( c )  Sp. /U,~  c,~ 
Sp  ..... (Sp,~ x Sp,O/Sp,~ C,, 

SOL~ U 2 n / S p .  An  1 

SO~ .... (SO2n X S02n)/S02,, Dn 

SO4n(C) S04n/U2n Cn 

E T ( 2 5 )  (E6 • S 0 2 ) / F 4  A2 
/;27(7) SUs/Sloa D3 = A3 
ET(C) E7/(E6 • S02)  C3 

71, (n 2i + 1)/2 
n, (n -- i ) /2  
2n, rt -- i +  1/2 
4n, 2(n -- i) + 3 /2  

p/2,  r I = r 2 = (p -- 2)/4 

( p + q ) / 2 - - l , r  t = ( p + q ) / 4 - -  1, 

r2 = (p--  q)/4 
p - -  2, rt = (p - -  3)/2, r2 = 1/2 
p - - l , r ~ = ( p - 2 ) / 2  

( n +  t ) / 2 , ( n  -- 2 i+  1)/4 
n + l , ( ~ - i + 1 ) / 2  
2 n + l , n - i + l  

2 n - -  l . n - 2 i + l  
2 a - -  1 , n - - i  

4 n - - 2 , 2 ( n - - i ) + l / 2  

9,2(3 -- 2 i+  l) 
9, 2(3 - i) 
18,4(3 - i )+  1/2 
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